In this paper, the advantages, state-of-the-art, and current challenges in the field of adaptive composite marine propulsors and turbines are reviewed. Adaptive composites are used in numerous marine technologies, including propulsive devices and control surfaces for marine vessels, offshore platforms, unmanned surface and underwater vehicles, and renewable energy harvesting devices. In the past, most marine propulsors and turbines have been designed as rigid bodies, simplifying the design and analysis process; however, this can lead to significant performance decay when operating in off-design conditions or in spatially or temporally varying flows. With recent advances in computational modeling, materials research, and manufacturing, it is possible to take advantage of the flexibility and anisotropic properties of composites to enable passive morphing capabilities to delay cavitation and improve overall energy efficiency, agility, and dynamic stability. Moreover, active materials can be embedded inside composites to enable energy harvesting, in situ health and condition monitoring, mitigation and control of flow-induced vibrations, and further enhancements of system performance. However, care is needed in the design and testing of adaptive composite marine propulsors and turbines to account for the inherent load-dependent deformations and to avoid potential material failures and hydroelastic instabilities (resonance, parametric excitations, divergence, flutter, buffeting, etc.). Here, we provide a summary of recent progress in the modeling, design, and optimization of adaptive composite marine propulsors and turbines, followed by a discussion of current challenges and future research directions.

References

References
1.
Mouritz
,
A.
,
Gellert
,
E.
,
Burchill
,
P.
, and
Challis
,
K.
,
2001
, “
Review of Advanced Composite Structures for Naval Ships and Submarines
,”
Compos. Struct.
,
53
(
1
), pp.
21
41
.
2.
Hwang
,
S.
, and
Gibson
,
R.
,
1993
, “
Influence of Bending-Twisting and Extension-Bending Coupling on Damping of Laminated Composites
,”
J. Mater. Sci.
,
28
(
1
), pp.
1
8
.
3.
Fukunaga
,
H.
, and
Sekine
,
H.
,
1994
, “
A Laminate Design for Elastic Properties of Symmetric Laminates With Extension-Shear or Bending-Twisting Coupling
,”
J. Compos. Mater.
,
28
(8), pp.
708
731
.
4.
Green
,
J.
,
1987
, “
Aeroelastic Tailoring of Aft-Swept High-Aspect-Ratio Composite Wings
,”
J. Aircr.
,
24
(
11
), pp.
812
819
.
5.
Popelka
,
D.
,
Lindsay
,
D.
,
Parham
,
D.
,
Berry
,
V.
, and
Baker
,
D. J.
,
1995
, “
Results of an Aeroelastic Tailoring Study for a Composite Tiltrotor Wing
,”
Annual Forum of the American Helicopter Society
, Vol.
2
, pp.
1117
1131
.
6.
Yamane
,
T.
,
1992
, “
Aeroelastic Tailoring Analysis for Advanced Turbo Propellers With Composite Blades
,”
Comput. Fluids
,
21
(
2
), pp.
235
245
.
7.
Friedmann
,
P.
,
Venkatesan
,
C.
, and
Yuan
,
K.
,
1992
, “
Development of a Structural Optimization Capability for the Aeroelastic Tailoring of Composite Rotor Blades With Straight and Swept Tips
,”
AIAA
Paper No. 92-477.
8.
Ganguli
,
R.
, and
Chopra
,
I.
,
1996
, “
Aeroelastic Optimization of a Helicoptor Rotor to Reduce Vibration and Dynamic Stress
,”
J. Aircraft
,
12
(4), pp. 808–815.
9.
Ganguli
,
R.
, and
Chopra
,
I.
,
1997
, “
Aeroelastic Tailoring of Composite Couplings and Blade Geometry of a Helicopter Rotor Using Optimization Methods
,”
J. Am. Helicopter Soc.
,
42
(
3
), pp.
218
228
.
10.
Soykasap
,
O.
, and
Hodges
,
D.
,
2000
, “
Performance Enhancement of a Composite Tilt-Rotor Using Aeroelastic Tailoring
,”
J. Aircr.
,
37
(5), pp.
850
858
.
11.
Glaz
,
B.
,
Friedmann
,
P.
, and
Lu
,
L.
,
2009
, “
Helicopter Vibration Reduction Throughout the Entire Flight Envelope Using Surrogate-Based Optimization
,”
J. Am. Helicopter Soc.
,
54
(
1
), p.
012007
.
12.
Karaolis
,
N.
,
Mussgrove
,
P.
, and
Jeronimidis
,
G.
,
1988
, “
Active and Passive Aeroelastic Power Control Using Asymmetric Fibre Reinforced Laminates for Wind Turbine Blades
,”
10th British Wind Energy Conference
, London, Mar. 12, pp. 446–458.
13.
Lobitz
,
D.
, and
Veers
,
P.
,
1998
, “
Aeroelastic Behavior of Twist-Coupled HAWT Blades
,”
AIAA
Paper No. 98-0029.
14.
Veers
,
P.
,
Bir
,
G.
, and
Lobitz
,
D.
,
1998
, “
Aeroelastic Tailoring in Wind-Turbine Blade Applications
,”
Windpower’98
, American Wind Energy Association Meeting and Exhibition, Bakersfield, CA, Apr. 28–May 1.
15.
Lee
,
A.
, and
Flay
,
R.
,
2000
, “
Compliant Blades for Passive Power Control of Wind Turbines
,”
Wind Eng.
,
24
(
1
), pp.
3
11
.
16.
Lobitz
,
D.
,
Veers
,
P.
,
Eisler
,
G.
,
Laino
,
D.
,
Migliore
,
P.
, and
Bir
,
G.
,
2001
, “
The Use of Twist-Coupled Blades to Enhance the Performance of Horizontal Axis Wind Turbines
,” Sandia National Laboratories, Albuquerque, NM,
Technical Report No. SAND2001-1303
.
17.
Griffin
,
D.
,
2002
, “
Evaluation of Design Concepts for Adaptive Wind Turbines
,” Sandia National Laboratories, Albuquerque, NM, Technical Report,
Sandia Report No. 2002-2424
.
18.
Lobitz
,
D.
, and
Veers
,
P.
,
2003
, “
Load Mitigation With Bending/Twist-Coupled Blades on Rotors Using Modern Control Strategies
,”
Wind Energy
,
6
(
2
), pp.
105
117
.
19.
Lobitz
,
D.
,
Veers
,
P.
, and
Migliore
,
P.
,
1996
, “
Enhanced Performance of HAWTs Using Adaptive Blades
,” Sandia National Laboratories, Albuquerque, NM, Technical Report,
Sandia Report No. CONF-960154
.
20.
Maheri
,
A.
,
Noroozi
,
S.
, and
Vinney
,
J.
,
2007
, “
Application of Combined Analytical/FEA Coupled Aero-Structure Simulation in Design of Wind Turbine Adaptive Blades
,”
Renewable Energy
,
32
(
12
), pp.
2011
2018
.
21.
Barlas
,
T.
,
van Wingerden
,
J.
,
Hulskamp
,
A.
, and
van Kuik
,
G.
,
2008
, “
Closed-Loop Control Wind Tunnel Tests on an Adaptive Wind Turbine Blade for Load Reduction
,”
AIAA
Paper No. 2008-1318.
22.
Maheri
,
A.
, and
Isikveren
,
A.
,
2009
, “
Performance Prediction of Wind Turbines Utilizing Passive Smart Blades: Approaches and Evaluation
,”
Wind Energy
,
13
(2–3), pp.
255
265
.
23.
Lackner
,
M.
, and
Rotea
,
M.
,
2010
, “
Passive Structural Control of Offshore Wind Turbines
,”
Wind Energy
,
14
(
3
), pp.
373
388
.
24.
Lin
,
H.
, and
Lin
,
J.
,
1997
, “
Effect of Stacking Sequence on the Hydroelastic Behavior of Composite Propeller Blades
,”
11th International Conference on Composite Materials
, Australian Composite Structures Society, Gold Coast, Australia, July 14–18.
25.
Lee
,
Y.
, and
Lin
,
C.
,
2004
, “
Optimized Design of Composite Propeller
,”
Mech. Adv. Mater. Struct.
,
11
(
1
), pp.
17
30
.
26.
Lin
,
C.
, and
Lee
,
Y.
,
2004
, “
Stacking Sequence Optimization of Laminated Composite Structures Using Genetic Algorithm With Local Improvement
,”
Compos. Struct.
,
63
(3–4), pp.
339
345
.
27.
Plucinski
,
M.
,
Young
,
Y.
, and
Liu
,
Z.
,
2007
, “
Optimization of a Self-Twisting Composite Marine Propeller Using a Genetic Algorithms
,”
16th International Conference on Composite Materials
, Kyoto, Japan, July 3–8.
28.
Liu
,
Z.
, and
Young
,
Y.
,
2009
, “
Utilization of Bending-Twisting Coupling Effects for Performance Enhancement of Composite Marine Propellers
,”
J. Fluids Struct.
,
25
(
6
), pp.
1102
1116
.
29.
Motley
,
M.
,
Liu
,
Z.
, and
Young
,
Y.
,
2009
, “
Utilizing Fluid-Structure Interactions to Improve Energy Efficiency of Composite Marine Propellers in Specially Varying Wake
,”
Compos. Struct.
,
90
(
3
), pp.
304
313
.
30.
Young
,
Y.
,
Michael
,
T.
,
Seaver
,
M.
, and
Trickey
,
S.
,
2006
, “
Numerical and Experimental Investigations of Composite Marine Propellers
,”
26th Symposium on Naval Hydrodynamics
, Rome, Italy, Sept. 17–22.
31.
Young
,
Y. L.
,
2008
, “
Fluid-Structure Interaction Analysis of Flexible Composite Marine Propellers
,”
J. Fluids Struct.
,
24
(
6
), pp.
799
818
.
32.
Young
,
Y.
, and
Motley
,
M.
,
2009
, “
Rate-Dependent Hydroelastic Response of Self-Adaptive Composite Propellers in Fully Wetted and Cavitating Flows
,”
7th International Symposium on Cavitation
(
CAV2009
), Ann Arbor, MI, Aug. 16–20.
33.
Motley
,
M.
, and
Young
,
Y.
,
2010
, “
Reliability-Based Global Design of Self-Adaptive Marine Rotors
,”
ASME
Paper No. FEDSM-ICNMM2010-30414.
34.
Motley
,
M.
, and
Young
,
Y.
,
2010
, “
Performance-Based Design of Adaptive Composite Marine Propellers
,”
28th Symposium on Naval Hydrodynamics
, Pasadena, CA, Sept. 12–17.
35.
Motley
,
M.
, and
Young
,
Y.
,
2011
, “
Performance-Based Design and Analysis of Flexible Composite Propulsors
,”
J. Fluids Struct.
,
27
(
8
), pp.
1310
1325
.
36.
Motley
,
M.
, and
Young
,
Y.
,
2011
, “
Influence of Uncertainties on the Response and Reliability of Self-Adaptive Composite Rotors
,”
Compos. Struct.
,
94
(
1
), pp.
114
120
.
37.
Nicholls-Lee
,
R.
,
Turnock
,
S.
, and
Boyd
,
S.
,
2008
, “
Performance Prediction of a Free Stream Tidal Turbine With Composite Bend-Twist Coupled Blades
,”
2nd International Conference on Ocean Energy
, Brest, France, Oct. 15–17.
38.
Nicholls-Lee
,
R.
,
Boyd
,
S.
, and
Turnock
,
S.
,
2009
, “
Development of High Performance Composite Bend-Twist Coupled Blades for a Horizontal Axis Tidal Turbine
,”
17th International Conference on Composite Materials
, Edinburgh, UK, July 27–31, Institute of Materials, Minerals and Mining, London, UK.
39.
Nicholls-Lee
,
R.
,
Turnock
,
S.
, and
Boyd
,
S.
,
2013
, “
Application of Bend-Twist Coupled Blades for Horizontal Axis Tidal Turbines
,”
Renewable Energy
,
50
, pp.
541
550
.
40.
Motley
,
M.
, and
Barber
,
R.
,
2014
, “
Passive Control of Marine Hydrokinetic Turbine Blades
,”
Compos. Struct.
,
110
, pp.
133
139
.
41.
Barber
,
R.
, and
Motley
,
M.
,
2015
, “
A Numerical Study of the Effect of Passive Control on Cavitation for Marine Hydrokinetic Turbines
,”
European Wave and Tidal Energy Conference
, Nantes, France, Sept. 6–11.
42.
Barber
,
R.
, and
Motley
,
M.
,
2016
, “
Cavitating Response of a Passively Controlled Tidal Turbine Blade
,”
J. Fluids Struct.
,
66
, pp. 462–475.
43.
Gibson
,
R.
,
2010
, “
A Review of Recent Research on Mechanics of Multifunctional Composite Materials and Structures
,”
Compos. Struct.
,
92
(
12
), pp.
2793
2810
.
44.
Chu
,
W.
,
Lee
,
K.
,
Song
,
S.
,
Han
,
M.
,
Lee
,
J.
,
Kim
,
H.
,
Kim
,
M.
,
Park
,
Y.
,
Cho
,
K.
, and
Ahn
,
S.
,
2012
, “
Review of Biomimetic Underwater Robots Using Smart Actuators
,”
Int. J. Precis. Eng. Manuf.
,
13
(
7
), pp.
1281
1292
.
45.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
, New York.
46.
Waid
,
R. L.
,
1968
, “
Experimental Investigation of the Ventilation of Vertical Surface-Piercing Struts in the Presence of Cavitation
,” Naval Ship Research and Development Center, Bethesda, MD,
Technical Report No. AD0738493
.
47.
Olofsson
,
N.
,
1996
, “
Force and Flow Characteristics of a Partially Submerged Propeller
,”
Ph.D. thesis
, Department of Naval Architecture and Ocean Engineering, Chalmers University of Technology, Göteborg, Sweden.
48.
Young
,
Y.
, and
Brizzolara
,
S.
,
2013
, “
Numerical and Physical Investigation of a Surface-Piercing Hydrofoil
,”
Third International Symposium on Marine Propulsors
(
SMP13
), Launceston, Tasmania, May 5–8, Paper No. 1A.
49.
Harwood
,
C.
,
Young
,
Y.
, and
Ceccio
,
S.
,
2016
, “
Ventilated Cavities on a Surface-Piercing Hydrofoil at Moderate Froude Numbers: Cavity Formation, Elimination, and Stability
,”
J. Fluid Mech.
,
800
, pp.
5
56
.
50.
Young
,
Y.
,
Harwood
,
C.
,
Montero
,
F.
,
Ward
,
J.
, and
Ceccio
,
S.
,
2016
, “
Ventilation of Lifting Bodies: Review of the Physics and Discussion of Scaling Effects
,”
ASME Appl. Mech. Rev.
(submitted).
51.
Hammond
,
D.
,
Amateau
,
M.
, and
Queeney
,
R.
,
1993
, “
Cavitation Erosion Performance of Fiber Reinforced Composites
,”
J. Compos. Mater.
,
27
(
16
), pp.
1522
1544
.
52.
Yamatogi
,
T.
,
Murayama
,
H.
,
Uzawa
,
K.
,
Kageyama
,
K.
, and
Watanabe
,
N.
,
2009
, “
Study on Cavitation Erosion of Composite Materials for Marine Propeller
,”
Seventeenth International Conference on Composite Materials
(
ICCM17
), Edinburgh, UK, July 27–31.
53.
Choi
,
J.
,
Jayaprakash
,
A.
, and
Chahine
,
G.
,
2012
, “
Scaling of Cavitation Erosion Progression With Cavitation Intensity and Cavitation Source
,”
Wear
,
278–279
, pp.
53
61
.
54.
Motley
,
M.
,
Kramer
,
M.
, and
Young
,
Y.
,
2013
, “
Free Surface and Solid Boundary Effects on the Free Vibration of Cantilevered Composite Plates
,”
Compos. Struct.
,
96
, pp.
365
375
.
55.
Kramer
,
M.
,
Liu
,
Z.
, and
Young
,
Y.
,
2013
, “
Free Vibration of Cantilevered Composite Plates in Air and in Water
,”
Compos. Struct.
,
95
, pp.
254
263
.
56.
Akcabay
,
D. T.
, and
Young
,
Y. L.
,
2014
, “
Influence of Cavitation on the Hydroelastic Stability of Hydrofoils
,”
J. Fluids Struct.
,
49
, pp.
170
185
.
57.
Akcabay
,
D. T.
,
Chae
,
E. J.
,
Young
,
Y. L.
,
Ducoin
,
A.
, and
Astolfi
,
J. A.
,
2014
, “
Cavity Induced Vibration of Flexible Hydrofoils
,”
J. Fluids Struct.
,
49
, pp.
463
484
.
58.
Akcabay
,
D. T.
,
Young
,
Y. L.
,
Lelong
,
A.
, and
Astolfi
,
J. A.
,
2014
, “
Cavity-Induced Vibrations of Flexible Hydrofoils and Their Susceptibility to Lock-In and Parametric Excitations
,”
2014 Symposium on Naval Hydrodynamics
, Hobart, Tasmania, Australia, Nov. 2–7.
59.
Akcabay
,
D. T.
, and
Young
,
Y. L.
,
2015
, “
Parametric Excitations and Lock-In of Flexible Hydrofoils in Two-Phase Flows
,”
J. Fluids Struct.
,
57
, pp.
344
356
.
60.
Chae
,
E.
,
Akcabay
,
D.
,
Lelong
,
A.
,
Astolfi
,
J.
, and
Young
,
Y.
,
2016
, “
Numerical and Experimental Investigation of Natural Flow-Induced Vibrations of Flexible Hydrofoils
,”
Phys. Fluids
,
28
(
7
), p.
075102
.
61.
Chae
,
E.
,
Akcabay
,
D.
, and
Young
,
Y.
,
2013
, “
Dynamic Response and Stability of a Flapping Foil in a Dense and Viscous Fluid
,”
Phys. Fluids
,
25
(
10
), p.
104106
.
62.
Ducoin
,
A.
, and
Young
,
Y. L.
,
2013
, “
Hydroelastic Response and Stability of a Hydrofoil in Viscous Flow
,”
J. Fluids Struct.
,
38
, pp.
40
57
.
63.
Brennen
,
C.
,
Oey
,
K. T.
, and
Babcock
,
C. D.
,
1980
, “
Leading-Edge Flutter of Supercavitating Hydrofoils
,”
J. Ship Res.
,
24
(
3
), pp.
135
146
.
64.
Harwood
,
C. M.
,
Stankovich
,
A. J.
,
Young
,
Y. L.
, and
Ceccio
,
S. L.
,
2016
, “
Combined Experimental and Numerical Study of the Free Vibration of Surface-Piercing Struts
,”
International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, Apr. 10–15.
65.
Harwood
,
C. M.
,
Brucker
,
K. A.
,
Montero
,
F. M.
,
Young
,
Y. L.
, and
Ceccio
,
S. L.
,
2014
, “
Experimental Investigation of the Hydro-Elastic Response of a Surface-Piercing Hydrofoil in Multi-Phase Flow
,” 30th Symposium of Naval Hydrodynamics, Hobart, Tasmania, Australia, Nov. 2–7.
66.
Greene
,
E.
,
1999
, “
Marine Composites
,” 2nd ed., Eric Greene Associates, Annapolis, MD.
67.
Gay
,
D.
, and
Hoa
,
S.
,
2007
,
Composite Materials: Design and Applications
,
2nd ed.
,
CRC Press
, Boca Raton, FL.
68.
Strait
,
L.
,
Karasek
,
M.
, and
Amateau
,
M.
,
1992
, “
Effects of Seawater Immersion on the Impact Resistance of Glass Fiber Reinforced Epoxy Composites
,”
J. Compos. Mater.
,
26
(
14
), pp.
2118
2133
.
69.
Davies
,
P.
, and
Rajapakse
,
Y.
,
2014
,
Durability of Composites in a Marine Environment
,
Springer
, New York.
70.
Moriarty
,
P.
, and
Hansen
,
A.
,
2005
, “
AeroDyn Theory Manual
,”
National Renewable Energy Laboratory
, Golden, CO.
71.
Carlton
,
J.
,
2007
,
Marine Propellers and Propulsion
,
2nd ed.
,
Elsevier
, Burlington, MA.
72.
Batten
,
W.
,
Bahaj
,
A.
,
Molland
,
A.
, and
Chaplin
,
J.
,
2008
, “
The Prediction of the Hydrodynamic Performance of Marine Current Turbines
,”
Renewable Energy
,
33
(
5
), pp.
1085
1096
.
73.
Greco
,
L.
,
Leone
,
S.
,
Testa
,
C.
,
Salvatore
,
F.
, and
Mauro
,
S.
,
2011
, “
Theoretical and Numerical Hydromechanics Analysis of Self-Pitching Propellers
,”
2nd International Symposium on Marine Propulsors
, Hamburg, Germany, June 15–17, Paper No. TB2-1, pp. 284–293.
74.
Murray
,
R.
,
Doman
,
D.
,
Pegg
,
M.
,
Nevalainen
,
T.
,
Gracie
,
K.
, and
Johnstone
,
C.
,
2015
, “
Design Tool for Passively Adaptive Tidal Turbine Blades
,”
11th European Wave and Tidal Energy Conference
, Nantes, France, Sept. 6–11.
75.
Batten
,
W.
,
Bahaj
,
A.
,
Molland
,
A.
, and
Chaplin
,
J.
,
2007
, “
Experimentally Validated Numerical Method for the Hydrodynamic Design of Horizontal Axis Tidal Turbines
,”
Ocean Eng.
,
34
(
7
), pp.
1013
1020
.
76.
Bahaj
,
A.
,
Batten
,
W.
, and
McCann
,
G.
,
2007
, “
Experimental Verifications of Numerical Predictions for the Hydrodynamic Performance of Horizontal Axis Marine Current Turbines
,”
Renewable Energy
,
32
(
15
), pp.
2479
2490
.
77.
Lee
,
J.
,
Park
,
S.
,
Kim
,
D.
,
Rhee
,
S.
, and
Kim
,
M.-C.
,
2012
, “
Computational Methods for Performance Analysis of Horizontal Axis Tidal Stream Turbines
,”
Appl. Energy
,
98
, pp.
512
523
.
78.
Masters
,
I.
,
Chapman
,
J.
,
Willis
,
M.
, and
Orme
,
J.
,
2011
, “
A Robust Blade Element Momentum Theory Model for Tidal Stream Turbines Including Tip and Hub Loss Corrections
,”
J. Mar. Eng. Technol.
,
10
(
1
), pp.
25
35
.
79.
Nicholls-Lee
,
R.
,
Turnock
,
S.
, and
Boyd
,
S.
,
2008
, “
Simulation Based Optimisation of Marine Current Turbine Blades
,”
7th International Conference on Computer and IT Applications in the Maritime Industries
, Liège, France, Apr. 21–23.
80.
Beyene
,
A.
, and
Peffley
,
J.
,
2009
, “
Constructal Theory, Adaptive Motion, and Their Theoretical Application to Low-Speed Turbine Design
,”
J. Energy Eng.
,
135
(4), pp.
112
118
.
81.
Kerwin
,
J.
,
1986
, “
Marine Propellers
,”
Annu. Rev. Fluid Mech.
,
18
(
1
), pp.
367
403
.
82.
Harwood
,
C.
, and
Young
,
Y.
,
2014
, “
A Physics-Based Gap-Flow Model for Potential Flow Solvers
,”
Ocean Eng.
,
88
, pp.
578
587
.
83.
Ward
,
J. C.
,
Harwood
,
C. M.
, and
Young
,
Y. L.
,
2016
, “
Inverse Method for Determination of the In Situ Hydrodynamic Load Distribution in Multi-Phase Flow
,”
31st Symposium on Naval Hydrodynamics
, Monterey, CA, Sept. 11–16.
84.
Gonzalez-Martino
,
I.
,
Costes
,
M.
,
Rodriguez
,
B.
, and
Devinant
,
P.
,
2012
, “
Application of an Unsteady Curved Lifting-Line Theory to Propeller Simulations
,”
AIAA
Paper No. 2012-2917.
85.
Parsons
,
M. G.
,
Vorus
,
W. S.
, and
Richard
,
E. M.
,
1980
, “
Added Mass and Damping of Vibrating Propellers
,” University of Michigan, Ann Arbor, MI,
Technical Report No. 1980-10-01
.
86.
Mao
,
Y.
, and
Young
,
Y.
,
2016
, “
Influence of Skew on the Added Mass and Damping Characteristics of Marine Propellers
,”
Ocean Eng.
,
28
, p.
023601
.
87.
Guermond
,
J.-L.
,
1990
, “
A Generalized Lifting-Line Theory for Curved and Swept Wings
,”
J. Fluid Mech.
,
211
, pp.
497
513
.
88.
Kerwin
,
J.
, and
Lee
,
C.-S.
,
1978
, “
Prediction of Steady and Unsteady Marine Propeller Performance by Numerical Lifting-Surface Theory
,”
SNAME
Annual Meeting, Nov. 16–18, Paper No. 8.
89.
Kinnas
,
S.
,
Xu
,
W.
,
Yu
,
Y.-H.
, and
He
,
L.
,
2012
, “
Computational Methods for the Design and Prediction of Performance of Tidal Turbines
,”
J. Offshore Mech. Arctic Eng.
,
134
(
1
), p.
011101
.
90.
Kinnas
,
S.
,
Lee
,
H.
, and
Young
,
Y.
,
2003
, “
Modeling of Unsteady Sheet Cavitation on Marine Propeller Blades
,”
Int. J. Rotating Mach.
,
9
(
4
), pp.
263
277
.
91.
Kinnas
,
S.
, and
Pyo
,
S.
,
1999
, “
Cavitating Propeller Analysis Including the Effects of Wake Alignment
,”
J. Ship Res.
,
43
(
1
), pp.
38
47
.
92.
Lin
,
C.-C.
,
Lee
,
Y.-J.
, and
Hung
,
C.-S.
,
2009
, “
Optimization and Experiment of Composite Marine Propellers
,”
Compos. Struct.
,
89
(
2
), pp.
206
215
.
93.
Kinnas
,
S.
,
1992
, “
A General Theory for the Coupling Between Thickness and Loading for Wings and Propellers
,”
J. Ship Res.
,
36
(
1
), pp.
59
68
.
94.
Fernandez-Rodriguez
,
E.
,
Stallard
,
T.
, and
Stansby
,
P.
,
2014
, “
Experimental Study of Extreme Thrust on a Tidal Stream Rotor Due to Turbulent Flow and With Opposing Waves
,”
J. Fluids Struct.
,
51
, pp.
354
361
.
95.
Menéndez Arán
,
D.
, and
Kinnas
,
S.
,
2014
, “
On Fully Aligned Lifting Line Model for Propellers: An Assessment of Betz Condition
,”
J. Ship Res.
,
58
(
3
), pp.
130
145
.
96.
Molland
,
A.
, and
Turnock
,
S.
,
2007
,
Marine Rudders and Control Surfaces: Principles, Data, Design and Applications
,
Butterworth-Heinemann
, Burlington, MA.
97.
Hess
,
J. L.
,
1981
, “
An Improved Higher Order Panel Method for Three-Dimensional Lifting Potential Flow
,” Naval Air Development Center (NADC), Warminster, PA,
Technical Report No. 79277-60
.
98.
Kinnas
,
S.
, and
Fine
,
N.
,
1993
, “
A Numerical Nonlinear Analysis of the Flow Around Two- and Three-Dimensional Partially Cavitating Hydrofoils
,”
J. Fluid Mech.
,
254
, pp.
151
181
.
99.
Fine
,
N.
, and
Kinnas
,
S.
,
1993
, “
A Boundary Element Method for the Analysis of the Flow Around 3-D Cavitating Hydrofoils
,”
J. Ship Res.
,
37
, pp.
213
224
.
100.
Kinnas
,
S.
,
1996
, “
Theory and Numerical Methods for the Hydrodynamic Analysis of Marine Propulsors
,”
Advances in Marine Hydrodynamics
, Vol. 5, M. Ohkusu, ed.,
Computational Mechanics Publications
, Fukuoka, Japan, Chap. 6, pp.
279
322
.
101.
Young
,
Y.
, and
Kinnas
,
S.
,
2001
, “
A BEM for the Prediction of Unsteady Midchord Face and/or Back Propeller Cavitation
,”
ASME J. Fluids Eng.
,
123
(
2
), pp.
311
319
.
102.
Young
,
Y.
, and
Kinnas
,
S.
,
2003
, “
Analysis of Supercavitating and Surface-Piercing Propeller Flows Via BEM
,”
Comput. Mech.
,
32
, pp.
269
280
.
103.
Young
,
Y.
, and
Kinnas
,
S.
,
2003
, “
Numerical Modeling of Supercavitating Propeller Flows
,”
J. Ship Res.
,
47
(1), pp.
48
62
.
104.
Young
,
Y.
, and
Kinnas
,
S.
,
2004
, “
Performance Prediction of Surface-Piercing Propellers
,”
J. Ship Res.
,
28
(
4
), pp.
288
305
.
105.
Dincer
,
I.
,
Colpan
,
C.
,
Kizilkan
,
O.
, and
Ezan
,
M.
,
2015
,
Progress in Clean Energy
(Analysis and Modeling), Vol.
1
,
Springer
, New York.
106.
Nicholls-Lee
,
R.
,
Boyd
,
S.
, and
Turnock
,
S.
,
2011
, “
A Method for Analyzing Fluid Structure Interactions on a Horizontal Axis Tidal Turbine
,” 9th European Wave and Tidal Energy Conference (
EWTEC 2011
), Southampton, UK, Sept. 4–9.
107.
He
,
L.
,
Xu
,
W.
, and
Kinnas
,
S.
,
2011
, “
Numerical Methods for the Prediction of Unsteady Performance of Marine Propellers and Turbines
,”
International Society of Offshore and Polar Engineers Conference
, Maui, HI, June 19–24, Paper No. ISOPE-I-11-520.
108.
Young
,
Y.
,
2007
, “
Time-Dependent Hydroelastic Analysis of Cavitating Propellers
,”
J. Fluids Struct.
,
23
(
2
), pp.
269
295
.
109.
Young
,
Y.
,
Motley
,
M.
, and
Yeung
,
R.
,
2010
, “
Three-Dimensional Numerical Modeling of the Transient Fluid-Structure Interaction Response of Tidal Turbines
,”
ASME J. Offshore Mech. Arctic Eng.
,
132
(
1
), p.
011101
.
110.
Blasques
,
J.
,
Berggreen
,
C.
, and
Andersen
,
P.
,
2010
, “
Hydro-Elastic Analysis and Optimization of a Composite Marine Propeller
,”
Mar. Struct.
,
23
(
1
), pp.
22
38
.
111.
Motley
,
M.
, and
Barber
,
R.
,
2014
, “
Passive Pitch Control of Horizontal Axis Marine Hydrokinetic Turbine Blades
,”
ASME
Paper No. OMAE2014-24150.
112.
Lee
,
H.
,
Song
,
M.-C.
,
Suh
,
J.-C.
, and
Chang
,
B.-J.
,
2014
, “
Hydro-Elastic Analysis of Marine Propellers Based on a BEM-FEM Coupled FSI Algorithm
,”
Int. J. Nav. Archit. Ocean Eng.
,
6
(
3
), pp.
562
577
.
113.
Chang
,
P.
,
Ebert
,
M.
,
Young
,
Y.
,
Liu
,
Z.
,
Mahesh
,
K.
,
Jang
,
H.
, and
Shearer
,
E.
,
2008
, “
Propeller Forces and Structural Response Due to Crashback
,”
27th Symposium on Naval Hydrodynamics
, Seoul, Korea, Oct. 5–10.
114.
Liu
,
Z.
, and
Young
,
Y.
,
2010
, “
Static Divergence of Self-Twisting Marine Propellers
,”
J. Fluids Struct.
,
26
(
5
), pp.
841
847
.
115.
Abramson
,
H. N.
, and
Ransleben
,
G. E.
,
1965
, “
An Experimental Investigation of Flutter of a Fully Submerged Subcavitating Hydrofoil
,”
J. Aircr.
,
2
(
5
), pp.
439
442
.
116.
Abramson
,
H. N.
,
1969
, “
Hydroelasticity: A Review of Hydrofoil Flutter
,”
ASME Appl. Mech. Rev.
,
22
(
2
), pp.
115
121
.
117.
Chu
,
W.
,
1966
, “
A Critical Re-Evaluation of Hydrodynamic Theories and Experiment in Subcavitating Hydrofoil Flutter
,”
J. Ship Res.
, pp.
122
132
.
118.
Chu
,
W.
, and
Abramson
,
H. N.
,
1969
, “
Further Calculations of the Flutter Speed of a Fully Submerged Subcavitating Hydrofoil
,”
J. Hydronautics
,
3
(
4
), pp.
168
174
.
119.
Cieslowski
,
D. S.
, and
Besch
,
P. K.
,
1970
, “
Flutter of a Two Degree of Freedom Hydrofoil in Two Dimensional Subcavitating Flow
,” Naval Ship Research and Development Center, Bethesda, MD,
Technical Report No. 3183
.
120.
Besch
,
P. K.
, and
Liu
,
Y.
,
1971
, “
Flutter and Divergence Characteristics of Four Low Mass Ratio Hydrofoils
,” Naval Ship Research and Development Center, Bethesda, MD,
Technical Report No. 3410
.
121.
Besch
,
P. K.
, and
Liu
,
Y.
,
1973
, “
Bending Flutter and Torsional Flutter of Flexible Hydrofoil Struts
,” Naval Ship Research and Development Center, Bethesda, MD,
Technical Report No. 4012
.
122.
Besch
,
P. K.
, and
Liu
,
Y.
,
1974
, “
Hydroelastic Design of Subcavitating and Cavitating Hydrofoil Strut System
,” Naval Ship Research and Development Center, Bethesda, MD,
Technical Report No. 4257
.
123.
Lottati
,
I.
,
1985
, “
Flutter and Divergence Aeroelastic Characteristics for Composite Forward Swept Cantilevered Wing
,”
J. Aircr.
,
22
(
11
), pp.
1001
1007
.
124.
Theodorsen
,
T.
,
1935
, “
General Theory of Aerodynamic Instability and the Mechanism of Flutter
,” National Advisory Committee for Aeronautics, Langley Aeronautical Lab., Langley Field, VA,
Technical Report No. 496
.
125.
Sears
,
W. R.
,
1941
, “
Some Aspects of Non-Stationary Airfoil Theory and Its Practical Application
,”
J. Aeronaut. Sci.
,
8
(
3
), pp.
104
108
.
126.
Garrick
,
I. E.
,
1946
, “
Bending-Torsion Flutter Calculations Modified by Subsonic Compressibility Corrections
,” National Advisory Committee for Aeronautics, Langley Aeronautical Lab., Langley Field, VA,
Technical Report No. 836
.
127.
Weissinger
,
J.
,
1947
, “
The Lift Distribution of Swept-Back Wings
,”
National Advisory Committee for Aeronautics
, Langley Aeronautical Lab., Langley Field, VA,
Technical Report No. 1120
.
128.
Cantwell
,
B.
, and
Coles
,
D.
,
1983
, “
An Experimental Study of Entrainment and Transport in the Turbulent Near Wake of a Circular Cylinder
,”
J. Fluid Mech.
,
136
(
1
), pp.
321
374
.
129.
Pope
,
S. B.
,
2000
, “
Turbulent Flows
, Cambridge University Press, Cambridge, UK.
130.
Rodi
,
W.
,
1993
, “
On the Simulation of Turbulent Flow Past Bluff Bodies
,”
J. Wind Eng. Ind. Aerodyn.
,
46–47
, pp.
3
19
.
131.
Fröhlich
,
J.
, and
von Terzi
,
D.
,
2008
, “
Hybrid LES/RANS Methods for the Simulation of Turbulent Flows
,”
Prog. Aerosp. Sci.
,
44
(
5
), pp.
349
377
.
132.
Hussain
,
A. F.
,
1986
, “
Coherent Structures and Turbulence
,”
J. Fluid Mech.
,
173
, pp.
303
356
.
133.
Wienken
,
W.
,
Stiller
,
J.
, and
Keller
,
A.
,
2006
, “
A Method to Predict Cavitation Inception Using Large-Eddy Simulation and Its Application to the Flow Past a Square Cylinder
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
316
325
.
134.
Rodi
,
W.
,
Ferziger
,
J.
,
Breuer
,
M.
, and
Pourquie
,
M.
,
1997
, “
Status of Large Eddy Simulation: Results of a Workshop
,”
ASME J. Fluids Eng.
,
119
(
2
), pp.
248
262
.
135.
Durbin
,
P.
,
1995
, “
Separated Flow Computations With the k-Epsilon-v-Squared Model
,”
AIAA J.
,
33
(
4
), pp.
659
664
.
136.
Leonard
,
A.
,
1974
, “
Energy Cascade in Large Eddy Simulation of Turbulent Fluid Flow
,”
Adv. Geophys. A
,
18
(Part A), pp.
237
248
.
137.
Vyšohlíd
,
M.
, and
Mahesh
,
K.
,
2006
, “
Large Eddy Simulation of Crashback in Marine Propellers
,”
AIAA
Paper No. 2006-1415.
138.
Mahesh
,
K.
,
Kumar
,
P.
,
Gnanaskandan
,
A.
, and
Nitzkorski
,
Z.
,
2015
, “
LES Applied to Ship Research
,”
J. Ship Res.
,
59
(
4
), pp.
238
245
.
139.
Balaras
,
E.
,
Schroeder
,
S.
, and
Posa
,
A.
,
2015
, “
Large-Eddy Simulations of Submarine Propellers
,”
J. Ship Res.
,
59
(
4
), pp.
227
237
.
140.
Spalart
,
P. R.
,
2000
, “
Strategies for Turbulence Modelling and Simulations
,”
Int. J. Heat Fluid Flow
,
21
(
3
), pp.
252
263
.
141.
Spalart
,
P. R.
,
2009
, “
Detached-Eddy Simulation
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
181
202
.
142.
Spalart
,
P.
,
Jou
,
W.
,
Strelets
,
M.
, and
Allmaras
,
S.
,
1997
, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,”
Adv. DNS/LES
,
1
, pp.
4
8
.
143.
Shur
,
M.
,
Spalart
,
P.
,
Strelets
,
M.
, and
Travin
,
A.
,
1999
, “
Detached-Eddy Simulation of an Airfoil at High Angle of Attack
,”
Eng. Turbul. Modell. Exp.
,
4
, pp.
669
678
.
144.
Forsythe
,
J. R.
,
Squires
,
K. D.
,
Wurtzler
,
K. E.
, and
Spalart
,
P. R.
,
2004
, “
Detached-Eddy Simulation of the F-15E at High Alpha
,”
J. Aircr.
,
41
(
2
), pp.
193
200
.
145.
Mendonça
,
F.
,
Allen
,
R.
,
De Charentenay
,
J.
, and
Lewis
,
M.
,
2002
, “
Towards Understanding LES and DES for Industrial Aeroacoustic Predictions
,”
International Workshop on LES for Acoustics
, DLR, Göttingen, Germany, Oct. 7–8.
146.
Abbas
,
N.
, and
Kornev
,
N.
,
2016
, “
Validation of Hybrid URANS/LES Methods for Determination of Forces and Wake Parameters of KVLCC2 Tanker at Manoeuvring Conditions
,”
Ship Technol. Res.
,
63
(
2
), pp.
1
14
.
147.
Kume
,
K.
,
Hasegawa
,
J.
,
Tsukada
,
Y.
,
Fujisawa
,
J.
,
Fukasawa
,
R.
, and
Hinatsu
,
M.
,
2006
, “
Measurements of Hydrodynamic Forces, Surface Pressure, and Wake for Obliquely Towed Tanker Model and Uncertainty Analysis for CFD Validation
,”
J. Mar. Sci. Technol.
,
11
(
2
), pp.
65
75
.
148.
Muscari
,
R.
,
Di Mascio
,
A.
, and
Verzicco
,
R.
,
2013
, “
Modeling of Vortex Dynamics in the Wake of a Marine Propeller
,”
Comput. Fluids
,
73
, pp.
65
79
.
149.
Guilmineau
,
E.
,
Deng
,
G. B.
,
Leroyer
,
A.
,
Queutey
,
P.
,
Visonneau
,
M.
, and
Wackers
,
J.
,
2014
, “
Wake Simulation of a Marine Propeller
,” 11th World Congress on Computational Mechanics (
WCCM XI
),
5th European Conference on Computational Mechanics (ECCM V), 6th European Conference on Computational Fluid Dynamics (ECFD VI)
, July 20.
150.
Shin
,
K.
, and
Andersen
,
P.
,
2015
, “
CFD Analysis of Cloud Cavitation on Three Tip-Modified Propellers With Systematically Varied Tip Geometry
,”
J. Phys. Conf. Ser.
,
656
(
1
), p.
012139
.
151.
Guilmineau
,
E.
,
Deng
,
G. B.
,
Leroyer
,
A.
,
Queutey
,
P.
,
Visonneau
,
M.
, and
Wackers
,
J.
,
2016
, “
Numerical Simulations for the Wake Prediction of a Marine Propeller in Straight Ahead Flow and Oblique Flow
,”
International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, Apr. 10–15.
152.
Lee
,
M.
, and
Moser
,
R. D.
,
2015
, “
Direct Numerical Simulation of Turbulent Channel Flow up to Reτ Approx. 5200
,”
J. Fluid Mech.
,
774
, pp. 395–415.
153.
Vreman
,
A.
, and
Kuerten
,
J.
,
2014
, “
Comparison of Direct Numerical Simulation Databases of Turbulent Channel Flow at Re = 180
,”
Phys. Fluids
,
26
(
1
), p.
015102
.
154.
Raj
,
S. S.
, and
Reddy
,
P. R.
,
2011
, “
Performance Evaluation of Composite Marine Propeller Using L8 Orthogonal Array
,”
Int. J. Eng. Sci. Technol.
,
3
(
12
), p.
7998
.
155.
He
,
X.
,
Hong
,
Y.
, and
Wang
,
R.
,
2012
, “
Hydroelastic Optimisation of a Composite Marine Propeller in a Non-Uniform Wake
,”
Ocean Eng.
,
39
, pp.
14
23
.
156.
Miller
,
R.
,
Kim
,
S.
,
Rhee
,
B.
, and
Young
,
Y.
,
2012
, “
Unsteady Fluid Structure Interaction Response of Marine Propellers in Crashback
,”
29th Symposium on Naval Hydrodynamics
, Gothenburg, Sweden, Aug. 26–31.
157.
Platzer
,
M. F.
,
Jones
,
K. D.
,
Young
,
J.
, and
Lai
,
J. C. S.
,
2008
, “
Flapping Wing Aerodynamics: Progress and Challenges
,”
AIAA J.
,
46
(
9
), pp.
2136
2149
.
158.
Shyy
,
W.
,
Aono
,
H.
,
Chimakurthi
,
S. K.
,
Trizila
,
P.
,
Cesnik
,
C. E. S.
, and
Liu
,
H.
,
2010
, “
Recent Progress in Flapping Wing Aerodynamics and Aeroelasticity
,”
Prog. Aerosp. Sci.
,
46
(
7
), pp.
284
327
.
159.
Anderson
,
J. M.
,
Streitlien
,
K.
,
Barrett
,
D. S.
, and
Triantafyllou
,
M. S.
,
1998
, “
Oscillating Foils of High Propulsive Efficiency
,”
J. Fluid Mech.
,
360
, pp.
41
72
.
160.
Read
,
D.
,
Hover
,
F.
, and
Triantafyllou
,
M.
,
2003
, “
Forces on Oscillating Foils for Propulsion and Maneuvering
,”
J. Fluids Struct.
,
17
(1), pp. 163–183.
161.
Taylor
,
G.
,
Nudds
,
R.
, and
Thomas
,
A.
,
2003
, “
Flying and Swimming Animals Cruise at a Strouhal Number Tuned for High Power Efficiency
,”
Nature
,
425
(
6959
), pp.
707
711
.
162.
Hover
,
F.
,
Haugsdal
,
O.
, and
Triantafyllou
,
M.
,
2004
, “
Effect of Angle of Attack Profiles in Flapping Foil Propulsion
,”
J. Fluids Struct.
,
19
(
1
), pp.
37
47
.
163.
Ducoin
,
A.
,
Astolfi
,
J. A.
,
Deniset
,
F.
, and
Sigrist
,
J.-F.
,
2009
, “
Computational and Experimental Investigation of Flow Over a Transient Pitching Hydrofoil
,”
Eur. J. Mech. B/Fluids
,
28
(
6
), pp.
728
743
.
164.
Munch
,
C.
,
Ausoni
,
P.
,
Braun
,
O.
,
Farhat
,
M.
, and
Avellan
,
F.
,
2010
, “
Fluid–Structure Coupling for an Oscillating Hydrofoil
,”
J. Fluids Struct.
,
26
(
6
), pp.
1018
1033
.
165.
Huang
,
B.
,
Ducoin
,
A.
, and
Young
,
Y. L.
,
2013
, “
Physical and Numerical Investigation of Transient Cavitating Flows Around a Pitching Hydrofoil
,”
Phys. Fluids
,
25
(
10
), p.
102109
.
166.
Blake
,
W.
,
1984
, “
Excitation of Plates and Hydrofoils by Trailing Edge Flows
,”
ASME J. Vib. Acoust.
,
106
(
3
), pp.
351
363
.
167.
Heathcote
,
S.
,
Wang
,
Z.
, and
Gursul
,
I.
,
2008
, “
Effect of Spanwise Flexibility on Flapping Wing Propulsion
,”
J. Fluids Struct.
,
24
(
2
), pp.
183
199
.
168.
Ducoin
,
A.
,
Deniset
,
F.
,
Astolfi
,
J. A.
, and
Sigrist
,
J. F.
,
2009
, “
Numerical and Experimental Investigation of Hydrodynamic Characteristics of Deformable Hydrofoils
,”
J. Ship Res.
,
53
(4), pp.
214
226
.
169.
Reese
,
M. C.
,
2010
, “
Vibration and Damping of Hydrofoils in Uniform Flow
,”
Master thesis
, Pennsylvania State University, State College, PA.
170.
Ducoin
,
A.
,
Astolfi
,
J. A.
, and
Gobert
,
M.
,
2012
, “
An Experimental Study of Boundary-Layer Transition Induced Vibrations on a Hydrofoil
,”
J. Fluids Struct.
,
32
, pp.
37
51
.
171.
Zarruk
,
G.
,
Brandner
,
P.
,
Pearce
,
B.
, and
Phillips
,
A. W.
,
2014
, “
Experimental Study of the Steady Fluid-Structure Interaction of Flexible Hydrofoils
,”
J. Fluids Struct.
,
51
, pp.
326
343
.
172.
Ducoin
,
A.
,
Astolfi
,
J.
, and
Sigrist
,
J. F.
,
2012
, “
An Experimental Analysis of Fluid Structure Interaction on a Flexible Hydrofoil in Various Flow Regimes Including Cavitating Flow
,”
Eur. J. Mech. B/Fluids
,
36
, pp.
63
74
.
173.
Gowing
,
S.
,
Coffin
,
P.
, and
Dai
,
C.
,
1998
, “
Hydrofoil Cavitation Improvements With Elastically Coupled Composite Materials
,”
25th American Towing Tank Conference
, Iowa City, IA, Sept. 24–25.
174.
Calclough
,
W.
, and
Russell
,
J.
,
1972
, “
Development of a Composite Propeller Blade With a Carbon Fibre Reinforced Plastics Spar
,”
Aeronaut. J.
,
76
(
733
), pp. 53–57.
175.
Black
,
S.
,
2011
,
Composite Propeller for Royal Navy Minehunter
,
Composites World
,
Cincinnati, OH
.
176.
Grunditz
,
G.
,
2015
, “
Quieter, More Efficient Propellers
,”
Ingenia
,
65
, pp.
37
42
.
177.
Chen
,
B.
,
Neely
,
S.
,
Michael
,
T.
,
Gowing
,
S.
,
Szwerc
,
R.
,
Buchler
,
D.
, and
Schult
,
R.
,
2006
, “
Design, Fabrication and Testing of Pitch-Adapting (Flexible) Composite Propellers
,”
The SNAME Propellers/Shafting Symposium’06
, Williamsburg, VA, Sept. 12–13.
178.
Young
,
Y.
,
2006
, “
Hydroelastic Response of Composite Marine Propellers
,”
SNAME 2006 Propeller and Shafting Symposium
, Williamsburg, VA, Sept. 12–13.
179.
Young
,
Y.
, and
Liu
,
Z.
,
2007
, “
Hydroelastic Tailoring of Composite Naval Propulsors
,”
ASME
Paper No. OMAE2007-29648.
180.
Young
,
Y.
,
2010
, “
Analysis and Design of Advanced Marine Propellers
,”
ASME
Paper No. OMAE2010-21180.
181.
Paik
,
B.
,
Kim
,
G.
,
Kim
,
K.
,
Seol
,
H.
,
Hyan
,
B.
,
Lee
,
S.
, and
Jung
,
Y.
,
2013
, “
Investigation on the Performance Characteristics of the Flexible Propellers
,”
Ocean Eng.
,
73
, pp.
139
148
.
182.
Jiang
,
C.
,
Dong
,
W.
,
Liu
,
H.
, and
Chang
,
M.
,
1996
, “
24-in Water Tunnel Flow Field Measurements During Propeller Crashback
,”
21st Symposium on Naval Hydrodynamics
, Trondheim, Norway, June 24–28.
183.
Jessup
,
S.
,
Chesnakas
,
C.
,
Fry
,
D.
,
Donnelly
,
M.
,
Black
,
S.
, and
Park
,
J.
,
2004
, “
Propeller Performance at Extreme Off Design Conditions
,”
25th Symposium on Naval Hydrodynamics
, St. John's, Newfoundland, Canada, Aug. 8–13.
184.
Jessup
,
S.
,
Fry
,
D.
, and
Donnelly
,
M.
,
2006
, “
Unsteady Propeller Performance in Crashback Conditions With and Without a Duct
,”
26th Symposium on Naval Hydrodynamics
, Rome, Italy, Sept. 17–22.
185.
Swithenbank
,
S.
,
Jessup
,
S.
, and
Etebari
,
A.
,
2008
, “
Measurement of Crashback Loads on a Blade of Propeller 4381 in an Open and Ducted Configuration in the 36-inch Water Tunnel
,” Carderock Division, Naval Surface Warfare Center, Potomac, MD,
Technical Report No. NSWCCD-50-TR-2008/061
.
186.
Vysohlid
,
M.
, and
Mahesh
,
K.
,
2006
, “
Large Eddy Simulation of Crashback in Marine Propellers
,”
26th Symposium on Naval Hydrodynamics
, Rome, Italy, Sept. 17–22.
187.
Jang
,
H.
, and
Mahesh
,
K.
,
2010
, “
Large Eddy Simulation of Marine Propulsors in Crashback
,”
28th Symposium on Naval Hydrodynamics
, Pasadena, California, USA, Sept. 12–17.
188.
Black
,
S.
, and
Swithenbank
,
S.
,
2009
, “
Analysis of Crashback Forces Compared With Experimental Results
,”
First International Symposium on Marine Propulsion
(
SMP’09
), Trondheim, Norway, June 22–24.
189.
Jeffcoate
,
P.
,
Starzmann
,
R.
,
Elsaesser
,
B.
,
Scholl
,
S.
, and
Bischoff
,
S.
,
2015
, “
Field Measurements of a Full Scale Tidal Turbine
,”
Int. J. Mar. Energy
,
12
, pp.
3
20
.
190.
Starzmann
,
R.
,
Baldus
,
M.
,
Groh
,
E.
,
Hirsch
,
N.
,
Lange
,
N.
, and
Scholl
,
S.
,
2013
, “
A Stepwise Approach Towards the Development and Full-Scale Testing of a Marine Hydrokinetic Turbine
,”
1st Marine Energy Technology Symposium
, Washington, DC, Apr. 10–11.
191.
Starzmann
,
R.
,
Jeffcoate
,
P.
,
Scholl
,
S.
,
Bischoff
,
S.
, and
Elsaesser
,
B.
,
2015
, “
Field Testing a Full-Scale Tidal Turbine
,”
11th European Wave and Tidal Energy Conference
, Nantes, France, Sept. 6–11.
192.
Jameson
,
A.
,
1989
, “
Computational Aerodynamics for Aircraft Design
,”
Science
,
245
(
4916
), pp.
361
371
.
193.
Anderson
,
W. K.
, and
Venkatakrishnan
,
V.
,
1999
, “
Aerodynamic Design Optimization on Unstructured Grids With a Continuous Adjoint Formulation
,”
Comput. Fluids
,
28
(
4
), pp.
443
480
.
194.
Reuther
,
J. J.
,
Jameson
,
A.
,
Alonso
,
J. J.
,
Rimlinger
,
M. J.
, and
Saunders
,
D.
,
1999
, “
Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers—Part 2
,”
J. Aircr.
,
36
(
1
), pp.
61
74
.
195.
Reuther
,
J. J.
,
Jameson
,
A.
,
Alonso
,
J. J.
,
Rimlinger
,
M. J.
, and
Saunders
,
D.
,
1999
, “
Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers—Part 1
,”
J. Aircr.
,
36
(
1
), pp.
51
60
.
196.
Peter
,
J. E. V.
, and
Dwight
,
R. P.
,
2010
, “
Numerical Sensitivity Analysis for Aerodynamic Optimization: A Survey of Approaches
,”
Comput. Fluids
,
39
(
3
), pp.
373
391
.
197.
Kenway
,
G. K. W.
, and
Martins
,
J. R. R. A.
,
2014
, “
Multipoint High-Fidelity Aerostructural Optimization of a Transport Aircraft Configuration
,”
J. Aircr.
,
51
(
1
), pp.
144
160
.
198.
Dhert
,
T.
,
Ashuri
,
T.
,
Chen
,
S.
, and
Martins
,
J. R. R. A.
,
2015
, “
Aerodynamic Shape Optimization of Wind Turbine Blades Using A Reynolds-Averaged Navier-Stokes Model and an Adjoint Method
,”
Wind Energy
(submitted).
199.
Hsin
,
C. Y.
,
1994
, “
Application of the Panel Method to the Design of Two-Dimensional Foil Sections
,”
J. Chin. Soc. Nav. Archit. Mar. Eng.
,
13
(2), pp.
1
11
.
200.
Brockett
,
T.
,
1966
, “
Minimum Pressure Envelopes for Modified NACA-66 Sections With NACA A = 0.8 Camber and Buships Type 1 and Type 2 Sections
,”
DTIC Report No. DTMB-1780
.
201.
Eppler
,
R.
, and
Shen
,
Y. T.
,
1979
, “
Wing Sections for Hydrofoils–Part 1: Symmetrical Profiles
,”
J. Ship Res.
,
23
(
3
), pp.
207
217
.
202.
Kinnas
,
S. A.
,
Mishima
,
S.
, and
Brewer
,
W. H.
,
1994
, “
Nonlinear Analysis of Viscous Flow Around Cavitating Hydrofoils
,”
20th Symposium on Naval Hydrodynamics
, pp.
21
26
.
203.
Mishima
,
S.
, and
Kinnas
,
S. A.
,
1996
, “
A Numerical Optimization Technique Applied to the Design of Two-Dimensional Cavitating Hydrofoil Sections
,”
J. Ship Res.
,
40
(
1
), pp.
28
38
.
204.
Nelson
,
M.
,
Temple
,
D. W.
,
Hwang
,
J. T.
,
Young
,
Y. L.
,
Martins
,
J. R. R. A.
, and
Collette
,
M.
,
2013
, “
Simultaneous Optimization of Propeller–Hull Systems to Minimize Lifetime Fuel Consumption
,”
Appl. Ocean Res.
,
43
, pp.
46
52
.
205.
Wilson
,
W.
,
Gorski
,
J.
,
Kandasamy
,
M.
,
Takai
,
T. H. W.
,
Stern
,
F.
, and
Tahara
,
Y.
,
2010
, “
Hydrodynamic Shape Optimization for Naval Vehicles
,”
High Performance Computing Modernization Program Users Group Conference
(
HPCMP-UGC
), June 14–17, pp.
161
168
.
206.
Campana
,
E.
,
Peri
,
D.
,
Tahara
,
Y.
,
Kandasamy
,
M.
,
Stern
,
F.
,
Cary
,
C.
,
Hoffman
,
R.
,
Gorski
,
J.
, and
Kennell
,
C.
,
2006
, “
Simulation-Based Design of Fast Multihull Ships
,”
26th Symposium on Naval Hydrodynamics
, Rome, Italy, Sept. 17–22.
207.
Tahara
,
Y.
,
Peri
,
D.
,
Campana
,
E. F.
, and
Stern
,
F.
,
2011
, “
Single- and Multiobjective Design Optimization of a Fast Multihull Ship: Numerical and Experimental Results
,”
J. Mar. Sci. Technol.
,
16
(
4
), pp.
412
433
.
208.
Chen
,
X.
,
Diez
,
M.
,
Kandasamy
,
M.
,
Zhang
,
Z.
,
Campana
,
E. F.
, and
Stern
,
F.
,
2015
, “
High-Fidelity Global Optimization of Shape Design by Dimensionality Reduction, Metamodels and Deterministic Particle Swarm
,”
Eng. Optim.
,
47
(
4
), pp.
473
494
.
209.
Diez
,
M.
,
Campana
,
E. F.
, and
Stern
,
F.
,
2015
, “
Design-Space Dimensionality Reduction in Shape Optimization by Karhunen–Loève Expansion
,”
Comput. Methods Appl. Mech. Eng.
,
283
, pp.
1525
1544
.
210.
Campana
,
E. F.
,
Liuzzi
,
G.
,
Lucidi
,
S.
,
Peri
,
D.
,
Piccialli
,
V.
, and
Pinto
,
A.
,
2009
, “
New Global Optimization Methods for Ship Design Problems
,”
Optim. Eng.
,
10
(
4
), pp.
533
555
.
211.
Motley
,
M. R.
,
Nelson
,
M.
, and
Young
,
Y. L.
,
2012
, “
Integrated Probabilistic Design of Marine Propulsors to Minimize Lifetime Fuel Consumption
,”
Ocean Eng.
,
45
, pp.
1
8
.
212.
Kramer
,
M. R.
,
Motley
,
M. R.
, and
Young
,
Y. L.
,
2013
, “
An Integrated Probability-Based Propulsor-Hull Matching Methodology
,”
ASME J. Offshore Mech. Arctic Eng.
,
135
(
1
), p.
011801
.
213.
Young
,
Y.
,
Baker
,
J.
, and
Motley
,
M.
,
2010
, “
Reliability-Based Design and Optimization of Adaptive Marine Structures
,”
Compos. Struct.
,
92
(
2
), pp.
244
253
.
214.
Lin
,
H.
,
Lai
,
W.
, and
Kuo
,
Y.
,
2010
, “
Effects of Stacking Sequence on Nonlinear Hydroelastic Behavior of Composite Propeller Blade
,”
J. Mech.
,
26
(
3
), pp.
293
298
.
215.
Herath
,
M. T.
,
Natarajan
,
S.
,
Prusty
,
B. G.
, and
John
,
N. S.
,
2014
, “
Smoothed Finite Element and Genetic Algorithm Based Optimization for Shape Adaptive Composite Marine Propellers
,”
Compos. Struct.
,
109
, pp.
189
197
.
216.
Herath
,
T. M.
,
2015
, “
Optimization of Composite Marine Propeller Blades and Hydrofoils
,” Ph.D. thesis, University of New South Wales, Sydney, NSW.
217.
Herath
,
M. T.
,
Natarajan
,
S.
,
Prusty
,
B. G.
, and
John
,
N. S.
,
2015
, “
Isogeometric Analysis and Genetic Algorithm for Shape-Adaptive Composite Marine Propellers
,”
Comput. Methods Appl. Mech. Eng.
,
284
, pp.
835
860
.
218.
Belanger
,
F.
,
Paidoussis
,
M.
, and
de Langre
,
E.
,
1995
, “
Time-Marching Analysis of Fluid-Coupled Systems With Large Added Mass
,”
AIAA J.
,
33
(
4
), pp.
752
757
.
219.
Causin
,
P.
,
Gerbeau
,
J.
, and
Nobile
,
F.
,
2005
, “
Added-Mass Effect in the Design of Partitioned Algorithms for Fluid–Structure Problems
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
42
), pp.
4506
4527
.
220.
Forster
,
C.
,
Wall
,
W.
, and
Ramm
,
E.
,
2007
, “
Artificial Added Mass Instabilities in Sequential Staggered Coupling of Nonlinear Structures and Incompressible Viscous Flows
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
7
), pp.
1278
1293
.
221.
Degroote
,
J.
,
Bruggeman
,
P.
,
Haelterman
,
R.
, and
Vierendeels
,
J.
,
2008
, “
Stability of a Coupling Technique for Partitioned Solvers in FSI Applications
,”
Comput. Struct.
,
86
(23), pp.
2224
2234
.
222.
van Brummelen
,
E.
,
2009
, “
Added Mass Effects of Compressible and Incompressible Flows in Fluid-Structure Interaction
,”
ASME J. Appl. Mech.
,
76
(
2
), p.
021206
.
223.
Young
,
Y. L.
,
Chae
,
E. J.
, and
Akcabay
,
D. T.
,
2012
, “
Hybrid Algorithm for Modeling of Fluid-Structure Interaction in Incompressible, Viscous Flows
,”
Acta Mech. Sin.
,
28
(
4
), pp.
1030
1041
.
224.
Blake
,
W. K.
, and
Maga
,
L. J.
,
1975
, “
On the Flow-Excited Vibrations of Cantilever Struts in Water—I: Flow-Induced Damping and Vibration
,”
J. Acoust. Soc. Am.
,
57
(
3
), pp.
610
625
.
225.
Woolston
,
D. S.
, and
Castile
,
G. E.
,
1951
, “
Some Effects of Variations in Several Parameters Including Fluid Density on the Flutter Speed of Light Uniform Cantilever Wings
,” National Advisory Committee for Aeronautics, Langley Field, VA,
Technical Report No. 2558
.
226.
Franc
,
J.
, and
Michel
,
J.
,
2004
,
Fundamentals of Cavitation
,
Kluwer Academic Publishers
, Berlin.
227.
Ganesh
,
H.
,
Makiharju
,
S.
, and
Ceccio
,
S. L.
,
2014
, “
Partial Cavity Shedding Due to the Propagation of Shock Waves in Bubbly Flows
,”
30th Symposium on Naval Hydrodynamics
, Hobart, Tasmania, Australia, Nov. 2–7.
228.
Ausoni
,
P.
,
Farhat
,
M.
,
Escaler
,
X.
,
Egusquiza
,
E.
, and
Avellan
,
F.
,
2007
, “
Cavitation Influence on von Karman Vortex Shedding and Induced Hydrofoil Vibrations
,”
ASME J. Fluids Eng.
,
129
(
8
), pp.
966
973
.
229.
Kato
,
K.
,
Dan
,
H.
, and
Matsudaira
,
Y.
,
2007
, “
Lock-In Phenomenon of Pitching Hydrofoil With Cavitation Breakdown
,”
JSME Int. J. Ser. B
,
49
(3), pp.
797
805
.
230.
Benaouicha
,
M.
, and
Astolfi
,
J.-A.
,
2012
, “
Analysis of Added Mass in Cavitating Flow
,”
J. Fluids Struct.
,
31
, pp.
30
48
.
231.
De La Torre
,
O.
,
Escaler
,
X.
,
Egusquiza
,
E.
, and
Farhat
,
M.
,
2013
, “
Experimental Investigation of Added Mass Effects on a Hydrofoil Under Cavitation Conditions
,”
J. Fluids Struct.
,
39
, pp.
173
187
.
232.
Stankovich
,
A.
,
Harwood
,
C.
,
Montero
,
F. M.
,
Young
,
Y.
, and
Ceccio
,
S.
,
2014
, “
Numerical and Experimental Analysis of the Added Mass and Resonance Frequency of a Partially Submerged Hydrofoil
,” 17th U.S. National Congress on Theoretical and Applied Mechanics, East Lansing, MI, June 15–20.
233.
Rajaomazava
,
T.
, III
,
Benaouicha
,
M.
, and
Astolfi
,
J.-A.
,
2013
, “
Structure Dynamics Analysis in Inhomogeneous Density Flows
,”
ASME
Paper No. PVP2013-97637.
234.
Van Terwisga
,
T.
,
Fitzsimmons
,
P.
,
Ziru
,
L.
, and
Jan Foeth
,
E.
,
2009
, “
Cavitation Erosion: A Review of Physical Mechanisms and Erosion Risk Models
,” 7th International Symposium on Cavitation, Ann Arbor, MI, Aug. 17–22.
235.
Singh
,
R.
,
Tiwari
,
S.
, and
Mishra
,
K.
,
2011
, “
Cavitation Erosion in Hydraulic Turbine Components and Mitigation by Coatings: Current Status and Future Needs
,”
J. Mater. Eng. Perform.
,
21
(7), pp.
1539
1551
.
236.
Franc
,
J.
,
Riondet
,
M.
,
Karimi
,
A.
, and
Chahine
,
G.
,
2012
, “
Material and Velocity Effects on Cavitation Erosion Pitting
,”
Wear
,
274–275
, pp.
248
259
.
237.
Bhagat
,
R.
,
1987
, “
Cavitation Erosion of Composites: A Materials Perspective
,”
J. Mater. Sci. Lett.
,
6
(
12
), pp.
1473
1475
.
238.
Zhang
,
J.
,
Richardson
,
M. O. W.
,
Wilcox
,
G. D.
,
Min
,
J.
, and
Wang
,
X.
,
1996
, “
Assessment of Resistance of Non-Metallic Coatings to Silt Abrasion and Cavitation Erosion in a Rotating Disk Test Rig
,”
Wear
,
194
(1–2), pp.
149
155
.
239.
Caccese
,
V.
,
Light
,
K.
, and
Berube
,
K.
,
2006
, “
Cavitation Erosion Resistance of Various Material Systems
,”
Ships Offshore Struct.
,
1
(
4
), pp.
309
322
.
240.
Hattori
,
S.
, and
Itoh
,
T.
,
2011
, “
Cavitation Erosion Resistance of Plastics
,”
Wear
,
271
(7–8), pp.
1103
1108
.
241.
Deplancke
,
T.
,
Lame
,
O.
,
Cavaille
,
J.
,
Fivel
,
M.
,
Riondet
,
M.
, and
Franc
,
J.
,
2015
, “
Outstanding Cavitation Erosion Resistance of Ultra High Molecular Weight Polyethylene (UHMWPE) Coatings
,”
Wear
,
328–329
, pp.
301
308
.
242.
Paris
,
F.
,
2001
, “
A Study of Failure Criteria of Fibrous Composite Materials
,”
Technical Report No. NASA/CR-2001-210661
.
243.
Berthelot
,
J.-M.
,
2003
, “
Transverse Cracking and Delamination in Cross-Ply Glass-Fiber and Carbon-Fiber Reinforced Plastic Laminates: Static ANC Fatigue Loading
,”
ASME Appl. Mech. Rev.
,
56
(
1
), pp.
111
147
.
244.
Icardi
,
U.
,
Locatto
,
S.
, and
Longo
,
A.
,
2007
, “
Assessment of Recent Theories for Predicting Failure of Composite Laminates
,”
ASME Appl. Mech. Rev.
,
60
(
2
), pp.
76
86
.
245.
Orifici
,
A.
,
Herszerg
,
I.
, and
Thomson
,
R.
,
2008
, “
Review of Methodologies for Composite Material Modelling Incorporating Failure
,”
Compos. Struct.
,
86
(1–3), pp.
194
210
.
246.
Garnich
,
M.
, and
Akula
,
V.
,
2009
, “
Review of Degradation Models for Progressive Failure Analysis of Fiber Reinforced Polymer Composites
,”
ASME Appl. Mech. Rev.
,
62
(
1
), p.
010801
.
247.
Bak
,
B.
,
Sarrado
,
C.
,
Turon
,
A.
, and
Costa
,
J.
,
2014
, “
Delamination Under Fatigue Loads in Composite Laminates: A Review on the Observed Phenomenology and Computational Methods
,”
ASME Appl. Mech. Rev.
,
66
(
6
), p.
060806
.
248.
Sevenois
,
R.
, and
Paepegem
,
W. V.
,
2015
, “
Fatigue Damage Modeling Techniques for Textile Composites: Review and Comparison With Unidirectional Composite Modeling Techniques
,”
ASME Appl. Mech. Rev.
,
67
(2), p.
020802
.
249.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Oxford University Press
,
London
.
250.
Azzi
,
V.
, and
Tsai
,
S.
,
1965
, “
Anisotropic Strength of Composites
,”
Exp. Mech.
,
5
(
9
), pp.
283
288
.
251.
Tsai
,
S.
, and
Wu
,
E.
,
1971
, “
A General Theory of Strength for Anisotropic Materials
,”
J. Compos. Mater.
,
5
(
1
), pp.
58
80
.
252.
Hashin
,
Z.
, and
Rotem
,
A.
,
1973
, “
A Fatigue Failure Criterion for Fiber Reinforced Materials
,”
J. Compos. Mater.
,
7
(
4
), pp.
448
464
.
253.
Hashin
,
Z.
,
1980
, “
Failure Criteria for Unidirectional Composites
,”
ASME J. Appl. Mech.
,
47
(
2
), pp.
329
334
.
254.
Yamada
,
S.
, and
Sun
,
C.
,
1978
, “
Analysis of Laminate Strength and Its Distribution
,”
J. Compos. Mater.
,
12
(
3
), pp.
275
284
.
255.
Chang
,
F.
, and
Chang
,
K.
,
1987
, “
A Progressive Damage Model for Laminated Composites Containing Stress Concentrations
,”
J. Compos. Mater.
,
21
(
9
), pp.
834
855
.
256.
Chang
,
F.
, and
Lessard
,
L.
,
1990
, “
Damage Tolerance of Laminated Composites Containing an Open Hole and Subjected to Compressive Loadings—Part I: Analysis
,”
J. Compos. Mater.
,
25
(1), pp.
2
43
.
257.
Shahid
,
I.
, and
Chang
,
F.
,
1995
, “
An Accumulative Damage Model for Tensile and Shear Failures of Laminated Composite Plates
,”
J. Compos. Mater.
,
29
(
7
), pp.
926
981
.
258.
Puck
,
A.
, and
Schneider
,
W.
,
1969
, “
On Failure Mechanisms and Failure Criteria of Filament-Wound Class-Fibre Resin Composites
,”
Plast. Polym.
,
37
(
127
), pp.
33
44
.
259.
Puck
,
A.
, and
Schurmann
,
H.
,
1998
, “
Failure Analysis of FRP Laminates by Means of Physically Based Phenomenological Models
,”
Compos. Sci. Technol.
,
58
(
7
), pp.
1045
1067
.
260.
Puck
,
A.
, and
Schurmann
,
H.
,
2002
, “
Failure Analysis of FRP Laminates by Means of Physically Based Phenomenological Models—Part B
,”
Compos. Sci. Technol.
,
62
(12–13), pp.
1\1633
1662
.
261.
Soden
,
P.
,
Kaddour
,
A.
, and
Hinton
,
M.
,
2004
, “
Recommendations for Designers and Researchers Resulting From the World-Wide Failure Exercise
,”
Compos. Sci. Technol.
,
64
(3–4), pp.
589
604
.
262.
Zinoviev
,
P.
,
Grigoriev
,
S.
,
Lebedeva
,
O.
, and
Tairova
,
L.
,
1998
, “
Strength of Multilayered Composites Under Plane Stress State
,”
Compos. Sci. Technol.
,
58
(
7
), pp.
1209
1224
.
263.
Zinoviev
,
P. A.
,
Lebedeva
,
O. V.
, and
Tairova
,
L. P.
,
2002
, “
Coupled Analysis of Experimental and Theoretical Results on the Deformation and Failure of Laminated Composites Under a Plane State of Stress
,”
Compos. Sci. Technol.
,
62
(12), pp.
1711
1723
.
264.
Bogetti
,
T.
,
Hoppel
,
C.
,
Harik
,
V.
,
Newill
,
J.
, and
Burns
,
B.
,
2004
, “
Predicting the Nonlinear Response and Progressive Failure of Composite Laminates
,”
Compos. Sci. Technol.
,
64
(3–4), pp.
329
342
.
265.
Bogetti
,
T.
,
Hoppel
,
C.
,
Harik
,
V.
,
Newill
,
J.
, and
Burns
,
B.
,
2004
, “
Predicting the Nonlinear Response and Progressive Failure of Composite Laminates: Correlation With Experimental Results
,”
Compos. Sci. Technol.
,
64
(3–4), pp.
477
485
.
266.
Liu
,
K.
, and
Tsai
,
S.
,
1998
, “
A Progressive Quadratic Failure Criterion of a Laminate
,”
Compos. Sci. Technol.
,
58
(
7
), pp.
1023
1032
.
267.
Kuraishi
,
A.
,
Tsai
,
S.
, and
Liu
,
K.
,
2002
, “
A Progressive Quadratic Failure Criterion—Part B
,”
Compos. Sci. Technol.
,
62
(12), pp.
1683
1695
.
268.
Cuntze
,
R.
, and
Freund
,
A.
,
2004
, “
The Predictive Capability of Failure Mode Concept-Based Strength Criteria for Multidirectional Laminates
,”
Compos. Sci. Technol.
,
64
(3), pp.
344
377
.
269.
Cuntze
,
R.
, and
Freund
,
A.
,
2004
, “
The Predictive Capability of Failure Mode Concept-Based Strength Criteria for Multidirectional Laminates—Part B
,”
Compos. Sci. Technol.
,
64
(3–4), pp.
487
516
.
270.
Icardi
,
U.
, and
Ferrero
,
L.
,
2008
, “
A Comparison Among Several Recent Criteria for the Failure Analysis of Composites
,”
J. Adv. Mater.
,
40
(4), pp.
73
111
.
271.
Marin
,
J.
,
Barroso
,
A.
,
Paris
,
F.
, and
Canas
,
J.
,
2008
, “
Study of Damage and Repair of Blades of a 300 kW Wind Turbine
,”
Energy
,
33
(
7
), pp.
1068
1083
.
272.
Degrieck
,
J.
, and
Van Paepegem
,
W.
,
2001
, “
Fatigue Damage Modelling of Fibre-Reinforced Composite Materials: Review
,”
ASME Appl. Mech. Rev.
,
54
(
4
), pp.
279
300
.
273.
Freebury
,
G.
, and
Musial
,
W.
,
2000
, “
Determining Equivalent Damage Loading for Full-Scale Wind Turbine Blade Fatigue Tests
,”
AIAA
Paper No. 2000-0050.
274.
Young
,
Y. L.
,
Liu
,
Z.
, and
Motley
,
M.
,
2008
, “
Influence of Material Anisotropy on the Hydroelastic Behaviors of Composite Marine Propellers
,”
27th Symposium on Naval Hydrodynamics
, Seoul, Korea, Oct. 5–10.
275.
Potter
,
K.
,
Campbell
,
M.
,
Langer
,
C.
, and
Wisnom
,
M.
,
2005
, “
The Generation of Geometrical Deformations Due to Tool/Part Interaction in the Manufacture of Composite Components
,”
Composites Part A
,
36
(
2
), pp.
301
308
.
276.
Potter
,
K.
,
Khan
,
B.
,
Wisnom
,
M.
,
Bell
,
T.
, and
Stevens
,
J.
,
2008
, “
Variability, Fibre Waviness and Misalignment in the Determination of the Properties of Composite Materials and Structures
,”
Composites Part A
,
39
(
9
), pp.
1343
1354
.
277.
Tekular
,
S.
,
Shivakumar
,
K.
, and
Shukla
,
A.
,
2008
, “
Mechanical Behavior and Damage Evolution in E-Glass Vinyl Ester and Carbon Composites Subjected to Static and Blast Loads
,”
Composites Part B
,
39
(
1
), pp.
57
65
.
278.
Mehrez
,
L.
,
Moens
,
D.
, and
Vandepitte
,
D.
,
2012
, “
Stochastic Identification of Composite Material Properties From Limited Experimental Databases—Part I: Experimental Database Construction
,”
Mech. Syst. Signal Process.
,
27
, pp.
471
483
.
279.
Mehrez
,
L.
,
Doostan
,
A.
,
Moens
,
D.
, and
Vandepitte
,
D.
,
2012
, “
Stochastic Identification of Composite Material Properties From Limited Experimental Databases—Part II: Uncertainty Modelling
,”
Mech. Syst. Signal Process.
,
27
, pp.
484
498
.
280.
Noh
,
H.
, and
Park
,
T.
,
2011
, “
Response Variability of Laminate Composite Plates Due to Spatially Random Material Parameter
,”
Comput. Methods Appl. Mech. Eng.
,
200
(29–32), pp.
2397
2406
.
281.
Murray
,
R.
,
Doman
,
D.
, and
Pegg
,
M.
,
2015
, “
Finite Element Modeling and Effects of Material Uncertainties in a Composite Laminate With Bend-Twist Coupling
,”
Compos. Struct.
,
121
, pp.
362
376
.
282.
Young
,
Y.
, and
Motley
,
M.
,
2011
, “
Influence of Material and Loading Uncertainties on the Hydroelastic Performance of Advanced Material Propellers
,”
2nd International Symposium on Marine Propulsors
, Hamburg, Germany, June.
283.
Shiao
,
M.
,
Singhal
,
S.
, and
Chamis
,
C.
,
1992
, “
A Method for the Probabilistic Design Assessment of Composite Structures
,”
NASA Technical Memorandum No. 106384
.
284.
Mahadevan
,
S.
,
Liu
,
X.
, and
Xiao
,
Q.
,
1997
, “
A Probabilistic Progressive Failure Model of Composite Laminates
,”
J. Reinf. Plast. Compos.
,
16
(11), pp.
1020
1038
.
285.
Kam
,
T.
, and
Chang
,
E.
,
1997
, “
Reliability Formulation for Composite Laminates Subjected to First-Ply Failure
,”
Compos. Struct.
,
38
(1–4), pp.
447
452
.
286.
Nakayasu
,
H.
, and
Maekawa
,
Z.
,
1997
, “
A Comparative Study of Failure Criteria in Probabilistic Fields and Stochastic Failure Envelopes of Composite Materials
,”
Reliab. Eng. Syst. Saf.
,
56
(
3
), pp.
209
220
.
287.
Chen
,
N.
,
Sun
,
H.
, and
Guedes Soares
,
C.
,
2003
, “
Reliability Analysis of a Ship Hull in Composite Material
,”
Compos. Struct.
,
62
(
1
), pp.
59
66
.
288.
Onkar
,
A.
,
Upadhyay
,
C.
, and
Yadav
,
D.
,
2007
, “
Probabilistic Failure of Laminated Composite Plates Using the Stochastic Finite Element Method
,”
Compos. Struct.
,
77
(
1
), pp.
79
91
.
289.
Shaw
,
A.
,
Sriramula
,
S.
,
Goslin
,
P.
, and
Chryssanthopoulos
,
M.
,
2010
, “
A Critical Reliability Evaluation of Fibre Reinforced Composite Materials Based on Probabilistic Micro and Macro-Analysis
,”
Composites Part B
,
41
(
6
), pp.
446
453
.
290.
Whiteside
,
M.
,
Pinho
,
S.
, and
Robinson
,
P.
,
2012
, “
Stochastic Failure Modelling of Unidirectional Composite Ply Failure
,”
Reliab. Eng. Syst. Saf.
,
108
, pp.
1
9
.
291.
Toft
,
H.
,
Branner
,
K.
,
Mishnaevsky
,
L.
, and
Sorenson
,
J.
,
2013
, “
Uncertainty Modelling and Code Calibration for Composite Materials
,”
J. Compos. Mater.
,
47
(
14
), pp.
1729
1747
.
292.
Tserpes
,
K.
,
Papanikos
,
P.
,
Labeas
,
G.
, and
Pantelakis
,
S.
,
2004
, “
Fatigue Damage Accumulation and Residual Strength Assessment of CFRP Laminates
,”
Compos. Struct.
,
63
(
2
), pp.
219
230
.
293.
Cheng
,
H.
, and
Hwu
,
F.
,
2006
, “
Fatigue Reliability Analysis of Composites Based on Residual Strength
,”
Adv. Compos. Mater.
,
15
(
4
), pp.
385
402
.
294.
Philippidis
,
T.
, and
Passipoularidis
,
V.
,
2007
, “
Residual Strength After Fatigue in Composites: Theory vs. Experiment
,”
Int. J. Fatigue
,
29
(
12
), pp.
2104
2116
.
295.
Kang
,
K.
,
Lim
,
D.
, and
Kim
,
J.
,
2008
, “
Probabilistic Analysis for the Fatigue Life of Carbon/Epoxy Laminates
,”
Compos. Struct.
,
85
(
3
), pp.
258
264
.
296.
Post
,
N.
,
Case
,
S.
, and
Lesko
,
J.
,
2008
, “
Modeling the Variable Amplitude Fatigue of Composite Materials: A Review and Evaluation of the State of the Art for Spectrum Loading
,”
Int. J. Fatigue
,
30
(
12
), pp.
2064
2086
.
297.
Post
,
N.
,
Cain
,
J.
,
McDonald
,
K.
,
Case
,
S.
, and
Lesko
,
J.
,
2008
, “
Residual Strength Prediction of Composite Materials: Random Spectrum Loading
,”
Eng. Fract. Mech.
,
75
(
9
), pp.
2707
2724
.
298.
Blake
,
J.
,
Shenoi
,
R.
,
Das
,
P.
, and
Yang
,
N.
,
2009
, “
The Application of Reliability Methods in the Design of Stiffened FRP Composite Panels for Marine Vessels
,”
J. Ships Offshore Struct.
,
4
(
3
), pp.
287
297
.
299.
Saito
,
H.
, and
Kimpara
,
I.
,
2009
, “
Damage Evolution Behavior of CFRP Laminates Under Post-Impact Fatigue With Water Absorption Environment
,”
Compos. Sci. Technol.
,
69
(
6
), pp.
847
855
.
300.
Siriruk
,
A.
,
Weitsman
,
Y.
, and
Penumadu
,
D.
,
2009
, “
Polymeric Foams and Sandwich Composites: Material Properties, Environmental Effects, and Shear-Lag Modeling
,”
Compos. Sci. Technol.
,
69
(
6
), pp.
814
820
.
301.
Siriruk
,
A.
,
Penumadu
,
D.
, and
Weitsman
,
Y.
,
2009
, “
Effect of Sea Environment on Interfacial Delamination Behavior of Polymeric Sandwich Structures
,”
Compos. Sci. Technol.
,
69
(
6
), pp.
821
828
.
302.
Singh
,
A.
, and
Davidson
,
B.
,
2010
, “
Effects of Temperature, Seawater, and Impact on Strength, Stiffness, and Life of a Sandwich Composite
,”
J. Reinf. Plast. Compos.
,
30
(3), pp.
269
277
.
303.
Zenkert
,
D.
,
2010
, “
Damage Tolerance of Naval Sandwich Panels
,”
Major Accomplishments in Composite Materials and Sandwich Structures
, Springer, New York, pp.
279
303
.
304.
Chiachio
,
M.
,
Chiachio
,
J.
, and
Rus
,
G.
,
2012
, “
Reliability in Composites: A Selective Review and Survey of Current Development
,”
Composites Part B
,
43
(
3
), pp.
902
913
.
305.
Frangopol
,
D.
, and
Maute
,
K.
,
2005
, “
Reliability-Based Optimization of Civil and Aerospace Structural Systems
,”
Engineering Design Reliability Handbook
, CRC Press, Boca Raton, FL, Chap. 24.
306.
Allen
,
M.
, and
Maute
,
K.
,
2005
, “
Reliability-Based Shape Optimization of Structures Undergoing Fluid-Structure Interaction Phenomena
,”
Comput. Methods Appl. Mech. Eng.
,
194
(30–33), pp.
3472
3495
.
307.
Chamis
,
C.
,
2004
, “
Design of Smart Composite Structures in the Presence of Uncertainties
,”
J. Chin. Inst. Eng.
,
27
(
6
), pp.
771
781
.
308.
Lekou
,
D.
, and
Philippidis
,
T.
,
2008
, “
Mechanical Property Variability in FRP Laminates and Its Effect on Failure Prediction
,”
Composites Part B
,
39
(7–8), pp.
1247
1256
.
309.
Sanchez-Heres
,
L.
,
Ringsberg
,
J.
, and
Johnson
,
E.
,
2013
, “
Study on the Possibility of Increasing the Maximum Allowable Stresses in Fibre-Reinforced Plastics
,”
J. Compos. Mater.
,
47
(
16
), pp.
1931
1941
.
310.
Sutherland
,
L.
, and
Soares
,
C.
,
2007
, “
Scaling of Impact on Low Fibre-Volume Glass-Polyester Laminates
,”
Composites Part A
,
38
(
2
), pp.
307
317
.
311.
Hunt
,
G.
,
1973
, “
Similarity Requirements for Aeroelastic Models for Helicopter Rotors
,” Structures Department, Royal Aircraft Establishment, Farnborough, London, UK, Aeronautical Research Council Current Papers C.P. No. 1245.
312.
Friedmann
,
P. P.
,
2004
, “
Aeroelastic Scaling for Rotary-Wing Aircraft With Applications
,”
J. Fluids Struct.
,
19
(
5
), pp.
635
650
.
313.
Young
,
Y. L.
,
2010
, “
Dynamic Hydroelastic Scaling of Self-Adaptive Composite Marine Rotors
,”
Compos. Struct.
,
92
(
1
), pp.
97
106
.
314.
Motley
,
M. R.
, and
Young
,
Y. L.
,
2012
, “
Scaling of the Transient Hydroelastic Response and Failure Mechanisms of Self-Adaptive Composite Marine Propellers
,”
Int. J. Rotating Mach.
2012
, p. 632856.
315.
Baker
,
W. E.
,
Westine
,
P. S.
, and
Dodge
,
F. T.
,
1973
,
Similarity Methods and Engineering Dynamics: Theory and Practice of Scale Modeling
,
Elsevier
, New York.
316.
Schuring
,
D.
,
1977
,
Scale Models in Engineering—Fundamentals and Application
,
Pergamon Press
, New York.
317.
Ashby
,
M.
,
Gibson
,
L.
,
Wegst
,
U.
, and
Olive
,
R.
,
1995
, “
The Mechanical Properties of Natural Materials—I: Material Property Charts
,”
Proc. R. Soc. London A
,
450
(
1938
), pp.
123
140
.
318.
Ashby
,
M.
,
2009
,
The CES EduPack Resource Booklet 2: Material and Process Charts
,
Cambridge University
, Cambridge, UK.
319.
Shen
,
Y.
, and
Hess
,
D.
,
2010
, “
An Experimental Method to Satisfy Dynamic Similarity Requirements for Model Submarine Maneuvers
,”
J. Ship Res.
,
54
(
3
), pp.
149
160
.
320.
Young
,
D. F.
,
Munson
,
B. R.
,
Okiishi
,
T.
, and
Huebsch
,
W. W.
,
2010
,
A Brief Introduction to Fluid Mechanics
,
Wiley
, Hoboken, NJ.
321.
Jackson
,
K.
, and
Kellas
,
S.
,
1992
, “
Scale Effects in the Response and Failure of Fiber Reinforced Composite Laminates Loaded in Tension and in Flexure
,”
J. Compos Mater.
,
26
(
18
), pp.
2674
2705
.
322.
Garg
,
N.
,
Kenway
,
G. K.
,
Lyu
,
Z.
,
Martins
,
J. R.
, and
Young
,
Y. L.
,
2015
, “
High-Fidelity Hydrodynamic Shape Optimization of a 3-D Hydrofoil
,”
J. Ship Res.
,
59
(
4
), pp.
209
226
.
323.
Hwang
,
J. T.
,
2015
, “
A Modular Approach to Large-Scale Design Optimization of Aerospace Systems
,”
Ph.D. thesis
, University of Michigan, Ann Arbor, MI.
324.
Kraft
,
D.
,
1988
, “
A Software Package for Sequential Quadratic Programming
,” DLR German Aerospace Center, Institute for Flight Mechanics, Koln, Germany,
Technical Report DFVLR-FB 88-28
.
325.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
,
2002
, “
SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
,”
SIAM J. Optim.
,
12
(
4
), pp.
979
1006
.
326.
Jansen
,
P. W.
, and
Perez
,
R. E.
,
2011
, “
Constrained Structural Design Optimization Via a Parallel Augmented Lagrangian Particle Swarm Optimization Approach
,”
Comput. Struct.
,
89
(
13
), pp.
1352
1366
.
327.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
328.
Garg
,
N.
,
Kenway
,
G. K. W.
,
Martins
,
J. R. R. A.
, and
Young
,
Y. L.
,
2016
, “
High-Fidelity Hydrostructural Optimization of a 3-D Hydrofoil
,”
International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, Apr. 10–15.
329.
Garg
,
N.
,
Kenway
,
G. K. W.
,
Martins
,
J. R. R. A.
, and
Young
,
Y. L.
,
2016
, “
High-Fidelity Multipoint Hydrostructural Optimization of a 3-D Hydrofoil
,”
J. Fluids Struct.
(submitted).
330.
Kolonay
,
R. M.
, and
Yang
,
H. T. Y.
,
1998
, “
Unsteady Aeroelastic Optimization in the Transonic Regime
,”
J. Aircr.
,
35
(
1
), pp.
60
68
.
331.
Stanford
,
B.
, and
Beran
,
P.
,
2013
, “
Direct Flutter and Limit Cycle Computations of Highly Flexible Wings for Efficient Analysis and Optimization
,”
J. Fluids Struct.
,
36
, pp.
111
123
.
332.
Kennedy
,
G.
,
Kenway
,
G.
, and
Martins
,
J.
,
2014
, “
Towards Gradient-Based Design Optimization of Flexible Transport Aircraft With Flutter Constraints
,” 15th
AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference
, Atlanta, GA, June 16–20, pp.
16
20
.
333.
Kenway
,
G. K. W.
, and
Martins
,
J. R. R. A.
,
2016
, “
A Separation-Based Constraint for High Fidelity Aerodynamic Shape Optimization
,”
AIAA Science and Technology Forum and Exposition (SciTech)
, San Diego, CA, Jan. 4–8.
334.
Chopra
,
I.
,
2002
, “
Review of State of Art of Smart Structures and Integrated Systems
,”
AIAA J.
,
40
(
11
), pp.
2145
2187
.
335.
Ye
,
L.
,
Lu
,
Y.
,
Su
,
Z.
, and
Meng
,
G.
,
2005
, “
Functionalized Composite Structures for New Generation Airframes: A Review
,”
Compos. Sci. Technol.
,
65
(
9
), pp.
1436
1446
.
336.
Baur
,
J.
, and
Silverman
,
E.
,
2007
, “
Challenges and Opportunities in Multifunctional Nanocomposite Structures for Aerospace Applications
,”
MRS Bull.
,
32
(
04
), pp.
328
334
.
337.
Collis
,
S.
,
Joslin
,
R.
,
Seifert
,
A.
, and
Theofilis
,
V.
,
2004
, “
Issues in Active Flow Control: Theory, Control, Simulation, and Experiment
,”
Prog. Aerosp. Sci.
,
40
(4–5), pp.
237
289
.
338.
Joslin
,
R.
,
Thomas
,
R.
, and
Choudhari
,
M.
,
2005
, “
Synergism of Flow and Noise Control Technologies
,”
Prog. Aerosp. Sci.
,
41
(
5
), pp.
363
417
.
339.
Kela
,
L.
, and
Vähäoja
,
P.
,
2009
, “
Recent Studies of Adaptive Tuned Vibration Absorbers/Neutralizers
,”
ASME Appl. Mech. Rev.
,
62
(
6
), p.
060801
.
340.
Barbarino
,
S.
,
Bilgen
,
O.
,
Ajaj
,
R.
,
Friswell
,
M.
, and
Inman
,
D.
,
2011
, “
A Review of Morphing Aircraft
,”
J. Intell. Mater. Syst. Struct.
,
22
(
9
), pp.
823
877
.
341.
Weisshaar
,
T.
,
2013
, “
Morphing Aircraft Systems: Historical Perspectives and Future Directions
,”
J. Aircr.
,
50
(
2
), pp.
337
353
.
342.
Marques
,
P.
,
2014
, “
A Review of Active Blade Twist Technology—Part I: Actuation Concepts
,”
Int. J. Unmanned Syst. Eng.
,
2
(
2
), pp.
16
25
.
343.
Kota
,
S.
,
2014
, “
Shape-Shifting Things to Come
,”
Sci. Am.
,
310
(
5
), pp.
58
65
.
344.
Rediniotis
,
O.
,
Lagoudas
,
D.
,
Garner
,
L.
, and
Wilson
,
N.
,
1998
, “
Experiments and Analysis of an Active Hydrofoil With SMA Actuators
,”
AIAA
Paper No. 98-0102.
345.
Wang
,
Z.
,
Hang
,
G.
,
Wang
,
Y.
,
Li
,
J.
, and
Du
,
W.
,
2008
, “
Embedded SMA Wire Actuated Biomimetic Fin: A Module for Biomimetic Underwater Propulsion
,”
J. Smart Mater. Struct.
,
17
(
2
), p.
025039
.
346.
Yeom
,
S.
, and
Oh
,
I.
,
2009
, “
A Biomimetic Jellyfish Robot Based on Ionic Polymer Metal Composite Actuators
,”
J. Smart Mater. Struct.
,
18
(8), pp.
1
16
.
347.
Guo
,
S.
,
Shi
,
L.
,
Xiao
,
N.
, and
Asaka
,
K.
,
2012
, “
A Biomimetic Underwater Microrotor With Multifunctional Locomotion
,”
Rob. Auton. Syst.
,
60
(
12
), pp.
1472
1483
.
348.
Jbaily
,
A.
, and
Yeung
,
R.
,
2015
, “
Piezoelectric Devices for Ocean Energy: A Brief Survey
,”
J. Ocean Eng. Mar. Energy
,
1
(
1
), pp.
101
118
.
349.
Li
,
C.
,
Chae
,
E.
,
Young
,
Y.
,
Wang
,
X.
, and
Alben
,
S.
,
2015
, “
Passive Vibration Control of Flexible Hydrofoils Using Piezoelectric Material
,”
Fourth International Symposium on Marine Propulsors
, Austin, TX, June.
350.
Caverly
,
R.
,
Li
,
C.
,
Chae
,
E.
,
Forbes
,
J.
, and
Young
,
Y.
,
2016
, “
Modeling and Control of Flow-Induced Vibrations of a Flexible Hydrofoil in Viscous Flow
,”
Smart Mater. Struct.
,
25
(
6
), p.
065007
.
351.
Wang
,
X.
,
Alben
,
S.
,
Li
,
C.
, and
Young
,
Y. L.
,
2016
, “
Stability and Scaling of Piezoelectric Flags
,”
Phys. Fluids
,
28
(
2
), p.
023601
.
352.
Majumder
,
M.
,
Gangopadhyay
,
T.
,
Chakraborty
,
A.
,
Dasgupta
,
K.
, and
Bhattacharya
,
D.
,
2008
, “
Fibre Bragg Gratings in Structural Health Monitoring—Present Status and Applications
,”
Sens. Actuators A
,
147
(
1
), pp.
150
164
.
353.
Silva-Muñoz
,
R.
, and
Lopez-Anido
,
R.
,
2009
, “
Structural Health Monitoring of Marine Composite Structural Joints Using Embedded Fiber Bragg Grating Strain Sensors
,”
Compos. Struct.
,
89
(
2
), pp.
224
234
.
354.
Heckman
,
A.
,
Rovey
,
J.
,
Chandrashekhara
,
K.
,
Watkins
,
S.
,
Mishra
,
R.
, and
Stutts
,
D.
,
2012
, “
Ultrasonic Underwater Transmission of Composite Turbine Blade Structural Health
,”
Proc. SPIE
,
8343
, p. 834300.
355.
Robison
,
K.
,
Watkins
,
S.
,
Nichols
,
J.
,
Chandrashekhara
,
K.
, and
Rovey
,
J.
,
2012
, “
Instrumented Composite Turbine Blade for Health Monitoring
,”
Proc. SPIE
,
8347
, p. 83472J.
You do not currently have access to this content.