Although there has been an upsurge of interest in research on women's sexual and reproductive health, most of the research has remained confined to the obstetrics and gynecology disciplines, without knowledge flow to the biomechanics community. Thus, the mechanics of the female reproductive system and the changes determined by pregnancy, age, obesity, and various medical conditions have not been thoroughly studied. In recent years, more investigators have been focusing their efforts on evaluating the mechanical properties of the reproductive organs and supportive connective tissues, but, despite the many advances, there is still a lot that remains to be done. This paper provides an overview of the research published over the past few decades on the mechanical characterization of the primary female reproductive organs and supporting connective tissues. For each organ and tissue, after a brief description of the function and structure, the testing methods and main mechanical results are presented. Constitutive equations are then reviewed for all organs/tissues together. The goal is to spark the interest of new investigators to this largely untapped but fast-evolving branch of soft tissue mechanics that will impact women's gynecologic, reproductive, and sexual health care.

References

References
1.
Wylie
,
L.
,
2005
,
Essential Anatomy and Physiology in Maternity Care
,
Elsevier
, Churchill Livingstone, London.
2.
MacLennan
,
A.
,
Taylor
,
A.
,
Wilson
,
D.
, and
Wilson
,
D.
,
2000
, “
The Prevalence of Pelvic Floor Disorders and Their Relationship to Gender, Age, Parity and Mode of Delivery
,”
Br. J. Obstet. Gynaecol.
,
107
(
12
), pp.
1460
1470
.
3.
Hendrix
,
S.
,
Clark
,
A.
,
Nygaard
,
I.
,
Aragaki
,
A.
,
Barnabei
,
V.
, and
McTiernan
,
A.
,
2002
, “
Pelvic Organ Prolapse in the Women's Health Initiative: Gravity and Gravidity
,”
Am. J. Obstet. Gynecol.
,
186
(
6
), pp.
1160
1166
.
4.
Nygaard
,
I.
,
Barber
,
M.
,
Burgio
,
K. L.
,
Kenton
,
K.
,
Meikle
,
S.
,
Schaffer
,
J.
,
Spino
,
C.
,
Whitehead
,
W. E.
,
Wu
,
J.
, and
Brody
,
D. J.
,
2008
, “
Prevalence of Symptomatic Pelvic Floor Disorders in U.S. Women
,”
JAMA
,
300
(
11
), pp.
1311
1316
.
5.
Wu
,
J.
,
Hundley
,
A.
,
Fulton
,
R.
, and
Myers
,
E.
,
2009
, “
Forecasting the Prevalence of Pelvic Floor Disorders in U.S. Women: 2010 to 2050
,”
Obstet. Gynecol.
,
114
(
6
), pp.
1278
1283
.
6.
Maher
,
C.
,
Baessler
,
K.
,
Glazener
,
C.
,
Adams
,
E. J.
, and
Hagen
,
S.
,
2008
, “
Surgical Management of Pelvic Organ Prolapse in Women: A Short Version Cochrane Review
,”
Neurourol. Urodyn.
,
27
(
1
), pp.
3
12
.
7.
Olsen
,
A. L.
,
Smith
,
V. J.
,
Bergstrom
,
J. O.
,
Colling
,
J. C.
, and
Clark
,
A. L.
,
1997
, “
Epidemiology of Surgically Managed Pelvic Organ Prolapse and Urinary Incontinence
,”
Obstet. Gynecol.
,
89
(
4
), pp.
501
506
.
8.
Cheon
,
C.
, and
Maher
,
C.
,
2013
, “
Economics of Pelvic Organ Prolapse Surgery
,”
Int. Urogynecology J.
,
24
(
11
), pp.
1873
1876
.
9.
Vink
,
J.
, and
Feltovich
,
H.
,
2016
, “
Cervical Etiology of Spontaneous Preterm Birth
,”
Semin. Fetal Neonat. Med.
,
21
(
2
), pp.
106
112
.
10.
Huddy
,
C. L. J.
,
Johnson
,
A.
, and
Hope
,
P. L.
,
2001
, “
Educational and Behavioural Problems in Babies of 32–35 Weeks Gestation
,”
Arch. Dis. Child.: Fetal Neonat. Ed.
,
85
(
1
), pp.
F23
F28
.
11.
Wang
,
M. L.
,
Dorer
,
D. J.
,
Fleming
,
M. P.
, and
Catlin
,
E. A.
,
2004
, “
Clinical Outcomes of Near-Term Infants
,”
Pediatrics
,
114
(
2
), pp.
372
376
.
12.
Beck
,
S.
,
Wojdyla
,
D.
,
Say
,
L.
,
Betran
,
A. P.
,
Merialdi
,
M.
,
Requejo
,
J. H.
,
Rubens
,
C.
,
Menon
,
R.
, and
Van Look
,
P. F. A.
,
2010
, “
The Worldwide Incidence of Preterm Birth: A Systematic Review of Maternal Mortality and Morbidity
,”
Bull. W. H. O.
,
88
(
1
), pp.
31
38
.
13.
Goldenberg
,
R. L.
,
Culhane
,
J. F.
,
Iams
,
J. D.
, and
Romero
,
R.
,
2008
, “
Epidemiology and Causes of Preterm Birth
,”
Lancet
,
371
(
9606
), pp.
75
84
.
14.
Chatterjee
,
J.
,
Gullam
,
J.
,
Vatish
,
M.
, and
Thornton
,
S.
,
2007
, “
The Management of Preterm Labour
,”
Arch. Dis. Child.: Fetal Neonat. Ed.
,
92
(
2
), pp.
F88
F93
.
15.
March of Dimes
,
2006
, “
Cost of Preterm Birth—United States
,” The March of Dimes Foundation, White Plains, NY.
16.
Chanda
,
A.
,
Unnikrishnan
,
V.
,
Roy
,
S.
, and
Richter
,
H. E.
,
2015
, “
Computational Modeling of the Female Pelvic Support Structures and Organs to Understand the Mechanism of Pelvic Organ Prolapse: A Review
,”
ASME Appl. Mech. Rev.
,
67
(
4
), p.
040801
.
17.
Daftary
,
S.
, and
Chakravarti
,
S.
,
2011
,
Manual of Obstetrics
,
Elsevier Reed
, India.
18.
Metaxa-Mariatou
,
V.
,
McGavigan
,
C.
,
Robertson
,
K.
,
Stewart
,
C.
,
Cameron
,
I.
, and
Campbell
,
S.
,
2002
, “
Elastin Distribution in the Myometrial and Vascular Smooth Muscle of the Human Uterus
,”
Mol. Hum. Reprod.
,
8
(
6
), pp.
559
565
.
19.
Leppert
,
P. C.
, and
Yu
,
S. Y.
,
1991
, “
Three-Dimensional Structures of Uterine Elastic Fibers: Scanning Electron Microscopic Studies
,”
Connect. Tissue Res.
,
27
(
1
), pp.
15
31
.
20.
Weiss
,
S.
,
Jaermann
,
T.
,
Schmid
,
P.
,
Staempfli
,
P.
,
Boesiger
,
P.
,
Niederer
,
P.
,
Caduff
,
R.
, and
Bajka
,
M.
,
2006
, “
Three-Dimensional Fiber Architecture of the Nonpregnant Human Uterus Determined Ex Vivo Using Magnetic Resonance Diffusion Tensor Imaging
,”
Anat. Rec., Part A
,
288
, pp.
84
90
.
21.
Schwalm
,
H.
, and
Dubrauszky
,
V.
,
1966
, “
The Structure of the Musculature of the Human Uterus—Muscles and Connective Tissue
,”
Am. J. Obstet. Gynecol.
,
94
(
3
), pp.
391
404
.
22.
Conrad
,
J.
,
Johnson
,
W.
,
Kuhn
,
W.
, and
Hunter
,
C.
,
1966
, “
Passive Stretch Relationships in Human Uterine Muscle
,”
Am. J. Obstet. Gynecol.
,
96
(
8
), pp.
1055
1059
.
23.
Pearsall
,
G.
, and
Roberts
,
V.
,
1978
, “
Passive Mechanical Properties of Uterine Muscle (Myometrium) Tested In Vitro
,”
J. Biomech.
,
11
(
4
), pp.
167
176
.
24.
Manoogian
,
S.
,
Bisplinghoff
,
J.
,
Kemper
,
A.
, and
Duma
,
S.
,
2012
, “
Dynamic Material Properties of the Pregnant Human Uterus
,”
J. Biomech.
,
45
(
9
), pp.
1724
1727
.
25.
Mondragon
,
E.
,
Yoshida
,
K.
, and
Myers
,
K.
,
2013
, “
Characterizing the Biomechanical and Biochemical Properties of Mouse Uterine Tissue
,”
Columbia Undergrad. Sci. J.
,
7
(1), pp. 10–17.
26.
Kauer
,
M.
,
Vuskovic
,
V.
,
Dual
,
J.
,
Székely
,
G.
, and
Bajka
,
M.
,
2002
, “
Inverse Finite Element Characterization of Soft Tissues
,”
Med. Image Anal.
,
6
(
3
), pp.
275
287
.
27.
Manoogian
,
S.
,
McNally
,
C.
,
Stitzel
,
J.
, and
Duma
,
S.
,
2008
, “
Dynamic Biaxial Tissue Properties of Pregnant Porcine Uterine Tissue
,”
Stapp Car Crash J.
,
52
, pp.
167
185
.
28.
Mizrahi
,
J.
,
Karni
,
Z.
, and
Polishuk
,
W.
,
1980
, “
Isotropy and Anisotropy of Uterine Muscle During Labor Contraction
,”
J. Biomech.
,
13
(
3
), pp.
211
218
.
29.
Danforth
,
D. N.
,
1983
, “
The Morphology of the Human Cervix
,”
Clin. Obstet. Gynecol.
,
26
(
1
), pp.
7
13
.
30.
DeLancey
,
J.
,
1992
, “
Anatomie Aspects of Vaginal Eversion After Hysterectomy
,”
Am. J. Obstet. Gynecol.
,
166
(
6
), pp.
1717
1728
.
31.
Leppert
,
P. C.
,
1995
, “
Anatomy and Physiology of Cervical Ripening
,”
Clin. Obstet. Gynecol.
,
38
(
2
), pp.
267
279
.
32.
Word
,
R. A.
,
Li
,
X. H.
,
Hnat
,
M.
, and
Carrick
,
K.
,
2007
, “
Dynamics of Cervical Remodeling During Pregnancy and Parturition: Mechanisms and Current Concepts
,”
Semin. Reprod. Med.
,
25
(
1
), pp.
69
79
.
33.
Read
,
C. P.
,
Word
,
R. A.
,
Ruscheinsky
,
M. A.
,
Timmons
,
B. C.
, and
Mahendroo
,
M. S.
,
2007
, “
Cervical Remodeling During Pregnancy and Parturition: Molecular Characterization of the Softening Phase in Mice
,”
Reproduction
,
134
(
2
), pp.
327
340
.
34.
Aspden
,
R. M.
,
1988
, “
Collagen Organisation in the Cervix and Its Relation to Mechanical Function
,”
Collagen Relat. Res.
,
8
(
2
), pp.
103
112
.
35.
Kadler
,
K. E.
,
Holmes
,
D. F.
,
Trotter
,
J. A.
, and
Chapman
,
J. A.
,
1996
, “
Collagen Fibril Formation
,”
Biochem. J.
,
316
(
1
), pp.
1
11
.
36.
Myers
,
K. M.
,
Socrate
,
S.
,
Paskaleva
,
A.
, and
House
,
M.
,
2010
, “
A Study of the Anisotropy and Tension/Compression Behavior of Human Cervical Tissue
,”
ASME J. Biomech. Eng.
,
132
(
2
), p.
021003
.
37.
Danforth
,
D. N.
,
Veis
,
A.
,
Breen
,
M.
,
Weinstein
,
H. G.
,
Buckingham
,
J. C.
, and
Manalo
,
P.
,
1974
, “
The Effect of Pregnancy and Labor on the Human Cervix: Changes in Collagen, Glycoproteins, and Glycosaminoglycans
,”
Am. J. Obstet. Gynecol.
,
120
(
5
), pp.
641
651
.
38.
Timmons
,
B.
,
Akins
,
M.
, and
Mahendroo
,
M.
,
2010
, “
Cervical Remodeling During Pregnancy and Parturition
,”
Trends Endocrinol. Metab.
,
21
(
6
), pp.
353
361
.
39.
Akins
,
M. L.
,
Luby-Phelps
,
K.
, and
Mahendroo
,
M.
,
2010
, “
Second Harmonic Generation Imaging as a Potential Tool for Staging Pregnancy and Predicting Preterm Birth
,”
J. Biomed. Opt.
,
15
(
2
), p.
026020
.
40.
Myers
,
K. M.
,
Paskaleva
,
A. P.
,
House
,
M.
, and
Socrate
,
S.
,
2008
, “
Mechanical and Biochemical Properties of Human Cervical Tissue
,”
Acta Biomater.
,
4
(
1
), pp.
104
116
.
41.
Byers
,
B. D.
,
Bytautiene
,
E.
,
Costantine
,
M. M.
,
Buhimschi
,
C. S.
,
Buhimschi
,
I.
,
Saade
,
G. R.
, and
Goharkhay
,
N.
,
2010
, “
Hyaluronidase Modifies the Biomechanical Properties of the Rat Cervix and Shortens the Duration of Labor Independent of Myometrial Contractility
,”
Am. J. Obstet. Gynecol.
,
203
(
6
), pp.
596.e1
596.e5
.
42.
Akins
,
M. L.
,
Luby-Phelps
,
K.
,
Bank
,
R. A.
, and
Mahendroo
,
M.
,
2011
, “
Cervical Softening During Pregnancy: Regulated Changes in Collagen Cross-Linking and Composition of Matricellular Proteins in the Mouse
,”
Biol. Reprod.
,
84
(
5
), pp.
1053
1062
.
43.
Myers
,
K. M.
,
Feltovich
,
H.
,
Mazza
,
E.
,
Vink
,
J.
,
Bajka
,
M.
,
Wapner
,
R. J.
,
Hall
,
T. J.
, and
House
,
M.
,
2015
, “
The Mechanical Role of the Cervix in Pregnancy
,”
J. Biomech.
,
48
(9), pp. 1511–1523.
44.
Poellmann
,
M. J.
,
Chien
,
E. K.
,
McFarlin
,
B. L.
, and
Johnson
,
A. J. W.
,
2013
, “
Mechanical and Structural Changes of the Rat Cervix in Late-Stage Pregnancy
,”
J. Mech. Behav. Biomed. Mater.
,
17
, pp.
66
75
.
45.
Yoshida
,
K.
,
Mahendroo
,
M.
,
Vink
,
J.
,
Wapner
,
R.
, and
Myers
,
K.
,
2016
, “
Material Properties of Mouse Cervical Tissue in Normal Gestation
,”
Acta Biomater.
,
36
, pp.
195
209
.
46.
Barone
,
W. R.
,
Feola
,
A. J.
,
Moalli
,
P. A.
, and
Abramowitch
,
S. D.
,
2012
, “
The Effect of Pregnancy and Postpartum Recovery on the Viscoelastic Behavior of the Rat Cervix
,”
J. Mech. Med. Biol.
,
12
(
01
), p.
1250009
.
47.
Mazza
,
E.
,
Nava
,
A.
,
Bauer
,
M.
,
Winter
,
R.
,
Bajka
,
M.
, and
Holzapfel
,
G. A.
,
2006
, “
Mechanical Properties of the Human Uterine Cervix: An In Vivo Study
,”
Med. Image Anal.
,
10
(
2
), pp.
125
136
.
48.
Yao
,
W.
,
Yoshida
,
K.
,
Fernandez
,
M.
,
Vink
,
J.
,
Wapner
,
R. J.
,
Ananth
,
C. V.
,
Oyen
,
M. L.
, and
Myers
,
K. M.
,
2014
, “
Measuring the Compressive Viscoelastic Mechanical Properties of Human Cervical Tissue Using Indentation
,”
J. Mech. Behav. Biomed. Mater.
,
34
, pp.
18
26
.
49.
Bauer
,
M.
,
Mazza
,
E.
,
Jabareen
,
M.
,
Sultan
,
L.
,
Bajka
,
M.
,
Lang
,
U.
,
Zimmermann
,
R.
, and
Holzapfel
,
G. A.
,
2009
, “
Assessment of the In Vivo Biomechanical Properties of the Human Uterine Cervix in Pregnancy Using the Aspiration Test: A Feasibility Study
,”
Eur. J. Obstet. Gynecol. Reprod. Biol.
,
144
, pp.
S77
S81
.
50.
Badir
,
S.
,
Bajka
,
M.
, and
Mazza
,
E.
,
2013
, “
A Novel Procedure for the Mechanical Characterization of the Uterine Cervix During Pregnancy
,”
J. Mech. Behav. Biomed. Mater.
,
27
, pp.
143
153
.
51.
Hee
,
L.
,
Liao
,
D.
,
Sandager
,
P.
,
Gregersen
,
H.
, and
Uldbjerg
,
N.
,
2014
, “
Cervical Stiffness Evaluated In Vivo by Endoflip in Pregnant Women
,”
PLoS One
,
9
, p. e91121.
52.
Liao
,
D.
,
Hee
,
L.
,
Sandager
,
P.
,
Uldbjerg
,
N.
, and
Gregersen
,
H.
,
2014
, “
Identification of Biomechanical Properties In Vivo in Human Uterine Cervix
,”
J. Mech. Behav. Biomed. Mater.
,
39
, pp.
27
37
.
53.
Molina
,
F. S.
,
Gomez
,
L. F.
,
Florido
,
J.
,
Padilla
,
M. C.
, and
Nicolaides
,
K. H.
,
2012
, “
Quantification of Cervical Elastography: A Reproducibility Study
,”
Ultrasound Obstet. Gynecol.
,
39
(
6
), pp.
685
689
.
54.
Carlson
,
L. C.
,
Romero
,
S. T.
,
Palmeri
,
M. L.
,
Muñoz del Rio
,
A.
,
Esplin
,
S. M.
,
Rotemberg
,
V. M.
,
Hall
,
T. J.
, and
Feltovich
,
H.
,
2014
, “
Changes in Shear Wave Speed Pre and Post Induction of Labor: A Feasibility Study
,”
Ultrasound Obstet. Gynecol.
,
46
(1), pp. 93–98.
55.
Hernandez-Andrade
,
E.
,
Romero
,
R.
,
Korzeniewski
,
S. J.
,
Ahn
,
H.
,
Aurioles-Garibay
,
A.
,
Garcia
,
M.
,
Schwartz
,
A. G.
,
Yeo
,
L.
,
Chaiworapongsa
,
T.
, and
Hassan
,
S. S.
,
2014
, “
Cervical Strain Determined by Ultrasound Elastography and Its Association With Spontaneous Preterm Delivery
,”
J. Perinat. Med.
,
42
(2), pp.
159
169
.
56.
Maurer
,
M. M.
,
Badir
,
S.
,
Pensalfini
,
M.
,
Bajka
,
M.
,
Abitabile
,
P.
,
Zimmermann
,
R.
, and
Mazza
,
E.
,
2015
, “
Challenging the In-Vivo Assessment of Biomechanical Properties of the Uterine Cervix: A Critical Analysis of Ultrasound Based Quasi-Static Procedures
,”
J. Biomech.
,
48
(9), pp. 1541–1548.
57.
Peralta
,
L.
,
Rus
,
G.
,
Bochud
,
N.
, and
Molina
,
F. S.
,
2015
, “
Assessing Viscoelasticity of Shear Wave Propagation in Cervical Tissue by Multiscale Computational Simulation
,”
J. Biomech.
,
48
(9), pp. 1549–1556.
58.
Dutta
,
D. A.
, and
Konar
,
H.
,
2014
,
Textbook of Gynecology
,
6th ed.
,
Jaypee Brothers Medical Publishers
, New Delhi, India.
59.
Feola
,
A.
,
Moalli
,
P.
,
Alperin
,
M.
,
Duerr
,
R.
,
Gandley
,
R. E.
, and
Abramowitch
,
S.
,
2011
, “
Impact of Pregnancy and Vaginal Delivery on the Passive and Active Mechanics of the Rat Vagina
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
549
558
.
60.
Meijerink
,
A. M.
,
Van Rijssel
,
R. H.
, and
Van Der Linden
,
P. J. Q.
,
2013
, “
Tissue Composition of the Vaginal Wall in Women With Pelvic Organ Prolapse
,”
Gynecol. Obstet. Invest.
,
75
(
1
), pp.
21
27
.
61.
Martins
,
P.
,
Peña
,
E.
,
Calvo
,
B.
,
Doblaré
,
M.
,
Mascarenhas
,
T.
,
Natal Jorge
,
R.
, and
Ferreira
,
A.
,
2010
, “
Prediction of Nonlinear Elastic Behaviour of Vaginal Tissue: Experimental Results and Model Formulation
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
3
), pp.
327
337
.
62.
Badiou
,
W.
,
Granier
,
G.
,
Bousquet
,
P.
,
Monrozies
,
X.
,
Mares
,
P.
, and
de Tayrac
,
R.
,
2008
, “
Comparative Histological Analysis of Anterior Vaginal Wall in Women With Pelvic Organ Prolapse or Control Subjects. A Pilot Study
,”
Int. Urogynecology J.
,
19
(
5
), pp.
723
729
.
63.
Feola
,
A.
,
Abramowitch
,
S.
,
Jones
,
K.
,
Stein
,
S.
, and
Moalli
,
P.
,
2010
, “
Parity Negatively Impacts Vaginal Mechanical Properties and Collagen Structure in Rhesus Macaques
,”
Am. J. Obstet. Gynecol.
,
203
(
6
), pp.
595.e1
595.e8
.
64.
Downing
,
K. T.
,
Billah
,
M.
,
Raparia
,
E.
,
Shah
,
A.
,
Silverstein
,
M. C.
,
Ahmad
,
A.
, and
Boutis
,
G. S.
,
2014
, “
The Role of Mode of Delivery on Elastic Fiber Architecture and Vaginal Vault Elasticity: A Rodent Model Study
,”
J. Mech. Behav. Biomed. Mater.
,
29
, pp.
190
198
.
65.
Rubod
,
C.
,
Boukerrou
,
M.
,
Brieu
,
M.
,
Dubois
,
P.
, and
Cosson
,
M.
,
2007
, “
Biomechanical Properties of Vaginal Tissue. Part 1: New Experimental Protocol
,”
J. Urol.
,
178
(
1
), pp.
320
325
.
66.
Rubod
,
C.
,
Boukerrou
,
M.
,
Brieu
,
M.
,
Jean-Charles
,
C.
,
Dubois
,
P.
, and
Cosson
,
M.
,
2008
, “
Biomechanical Properties of Vaginal Tissue: Preliminary Results
,”
Int. Urogynecology J.
,
19
(
6
), pp.
811
816
.
67.
Ettema
,
G. J. C.
,
Goh
,
J. T. W.
, and
Forwood
,
M. R.
,
1998
, “
A New Method to Measure Elastic Properties of Plastic-Viscoelastic Connective Tissue
,”
Med. Eng. Phys.
,
20
(
4
), pp.
308
314
.
68.
Rahn
,
D. D.
,
Ruff
,
M. D.
,
Brown
,
S. A.
,
Tibbals
,
H. F.
, and
Word
,
R. A.
,
2008
, “
Biomechanical Properties of the Vaginal Wall: Effect of Pregnancy, Elastic Fiber Deficiency, and Pelvic Organ Prolapse
,”
Am. J. Obstet. Gynecol.
,
198
(
5
), pp.
590.e1
590.e6
.
69.
Jean-Charles
,
C.
,
Rubod
,
C.
,
Brieu
,
M.
,
Boukerrou
,
M.
,
Fasel
,
J.
, and
Cosson
,
M.
,
2010
, “
Biomechanical Properties of Prolapsed or Non-Prolapsed Vaginal Tissue: Impact on Genital Prolapse Surgery
,”
Int. Urogynecology J.
,
21
(
12
), pp.
1535
1538
.
70.
Gilchrist
,
A. S.
,
Gupta
,
A.
,
Eberhart
,
R. C.
, and
Zimmern
,
P. E.
,
2010
, “
Do Biomechanical Properties of Anterior Vaginal Wall Prolapse Tissue Predict Outcome of Surgical Repair?
,”
J. Urol.
,
183
(
3
), pp.
1069
1073
.
71.
Peña
,
E.
,
Calvo
,
B.
,
Martinez
,
M. A.
,
Martins
,
P.
,
Mascarenhas
,
T.
,
Jorge
,
R. M. N.
,
Ferreira
,
A.
, and
Doblaré
,
M.
,
2010
, “
Experimental Study and Constitutive Modeling of the Viscoelastic Mechanical Properties of the Human Prolapsed Vaginal Tissue
,”
Biomech. Model. Mechanobiol.
,
9
(
1
), pp.
35
44
.
72.
Goh
,
J. T. W.
,
2002
, “
Biomechanical Properties of Prolapsed Vaginal Tissue in Pre- and Postmenopausal Women
,”
Int. Urogynecology J.
,
13
(
2
), pp.
76
79
.
73.
Lei
,
L.
,
Song
,
Y.
, and
Chen
,
R.
,
2007
, “
Biomechanical Properties of Prolapsed Vaginal Tissue in Pre- and Postmenopausal Women
,”
Int. Urogynecology J.
,
18
(
6
), pp.
603
607
.
74.
Peña
,
E.
,
Martins
,
P.
,
Mascarenhas
,
T.
,
Jorge
,
R. M. N.
,
Ferreira
,
A.
,
Doblaré
,
M.
, and
Calvo
,
B.
,
2011
, “
Mechanical Characterization of the Softening Behavior of Human Vaginal Tissue
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
3
), pp.
275
283
.
75.
Feola
,
A.
,
Duerr
,
R.
,
Moalli
,
P.
, and
Abramowitch
,
S.
,
2013
, “
Changes in the Rheological Behavior of the Vagina in Women With Pelvic Organ Prolapse
,”
Int. Urogynecology J.
,
24
(
7
), pp.
1221
1227
.
76.
Chantereau
,
P.
,
Brieu
,
M.
,
Kammal
,
M.
,
Farthmann
,
J.
,
Gabriel
,
B.
, and
Cosson
,
M.
,
2014
, “
Mechanical Properties of Pelvic Soft Tissue of Young Women and Impact of Aging
,”
Int. Urogynecology J.
,
25
(
11
), pp.
1547
1553
.
77.
Rubod
,
C.
,
Brieu
,
M.
,
Cosson
,
M.
,
Rivaux
,
G.
,
Clay
,
J.
,
de Landsheere
,
L.
, and
Gabriel
,
B.
,
2012
, “
Biomechanical Properties of Human Pelvic Organs
,”
Urology
,
79
(4), pp.
968.e17
968.e22
.
78.
Rivaux
,
G.
,
Rubod
,
C.
,
Dedet
,
B.
,
Brieu
,
M.
,
Gabriel
,
B.
, and
Cosson
,
M.
,
2013
, “
Comparative Analysis of Pelvic Ligaments: A Biomechanics Study
,”
Int. Urogynecology J.
,
24
(
1
), pp.
135
139
.
79.
Lopez
,
S. O.
,
Eberhart
,
R. C.
,
Zimmern
,
P. E.
, and
Chuong
,
C. J.
,
2015
, “
Influence of Body Mass Index on the Biomechanical Properties of the Human Prolapsed Anterior Vaginal Wall
,”
Int. Urogynecology J.
,
26
(
4
), pp.
519
525
.
80.
Knight
,
K. M.
,
Moalli
,
P. A.
,
Nolfi
,
A.
,
Palcsey
,
S.
,
Barone
,
W. R.
, and
Abramowitch
,
S. D.
,
2016
, “
Impact of Parity on Ewe Vaginal Mechanical Properties Relative to the Nonhuman Primate and Rodent
,”
Int. Urogynecology J.
,
27
(8), pp. 1255–1263.
81.
Epstein
,
L. B.
,
Graham
,
C. A.
, and
Heit
,
M. H.
,
2007
, “
Systemic and Vaginal Biomechanical Properties of Women With Normal Vaginal Support and Pelvic Organ Prolapse
,”
Am. J. Obstet. Gynecol.
,
197
(
2
), pp.
165-e1
165-e6
.
82.
Epstein
,
L. B.
,
Graham
,
C. A.
, and
Heit
,
M. H.
,
2008
, “
Correlation Between Vaginal Stiffness Index and Pelvic Floor Disorder Quality-of-Life Scales
,”
Int. Urogynecology J.
,
19
(
7
), pp.
1013
1018
.
83.
Chuong
,
C.
,
Ma
,
M.
,
Eberhart
,
R. C.
, and
Zimmern
,
P.
,
2014
, “
Viscoelastic Properties Measurement of the Prolapsed Anterior Vaginal Wall: A Patient-Directed Methodology
,”
Eur. J. Obstet. Gynecol. Reprod. Biol.
,
173
, pp.
106
112
.
84.
Ozdegirmenci
,
O.
,
Karslioglu
,
Y.
,
Dede
,
S.
,
Karadeniz
,
S.
,
Haberal
,
A.
,
Gunhan
,
O.
, and
Celasun
,
B.
,
2005
, “
Smooth Muscle Fraction of the Round Ligament in Women With Pelvic Organ Prolapse: A Computer-Based Morphometric Analysis
,”
Int. Urogynecology J.
,
16
(
1
), pp.
39
43
.
85.
Brar
,
P. S.
,
Saigal
,
R. P.
,
Sharma
,
R. D.
, and
Nanda
,
A. S.
,
2008
, “
Histology and Histochemistry of Broad Ligaments in Buffaloes
,”
Indian J. Anim. Sci.
,
78
, pp.
464
467
.
86.
Ramanah
,
R.
,
Berger
,
M. B.
,
Parratte
,
B. M.
, and
DeLancey
,
J. O. L.
,
2012
, “
Anatomy and Histology of Apical Support: A Literature Review Concerning Cardinal and Uterosacral Ligaments
,”
Int. Urogynecology J.
,
23
(
11
), pp.
1483
1494
.
87.
Tan
,
T.
,
Davis
,
F. M.
,
Gruber
,
D. D.
,
Massengill
,
J. C.
,
Robertson
,
J. L.
, and
De Vita
,
R.
,
2015
, “
Histo-Mechanical Properties of the Swine Cardinal and Uterosacral Ligaments
,”
J. Mech. Behav. Biomed. Mater.
,
42
, pp.
129
137
.
88.
Samaan
,
A.
,
Vu
,
D.
,
Haylen
,
B. T.
, and
Tse
,
K.
,
2014
, “
Cardinal Ligament Surgical Anatomy: Cardinal Points at Hysterectomy
,”
Int. Urogynecology J.
,
25
(
2
), pp.
189
195
.
89.
Foshager
,
M. C.
, and
Walsh
,
J. W.
,
1994
, “
CT Anatomy of the Female Pelvis: A Second Look
,”
Radiographics
,
14
(
1
), pp.
51
64
.
90.
Salman
,
M. C.
,
Ozyuncu
,
O.
,
Sargon
,
M. F.
,
Kucukali
,
T.
, and
Durukan
,
T.
,
2010
, “
Light and Electron Microscopic Evaluation of Cardinal Ligaments in Women With or Without Uterine Prolapse
,”
Int. Urogynecology J.
,
21
(
2
), pp.
235
239
.
91.
Reisenauer
,
C.
,
Shiozawa
,
T.
,
Oppitz
,
M.
,
Busch
,
C.
,
Kirschniak
,
A.
,
Fehm
,
T.
, and
Drews
,
U.
,
2008
, “
The Role of Smooth Muscle in the Pathogenesis of Pelvic Organ Prolapse an Immunohistochemical and Morphometric Analysis of the Cervical Third of the Uterosacral Ligament
,”
Int. Urogynecology J.
,
19
(
3
), pp.
383
389
.
92.
Reay Jones
,
N. H.
,
Healy
,
J. C.
,
King
,
L. J.
,
Saini
,
S.
,
Shousha
,
S.
, and
Allen-Mersh
,
T. G.
,
2003
, “
Pelvic Connective Tissue Resilience Decreases With Vaginal Delivery, Menopause and Uterine Prolapse
,”
Br. J. Surg.
,
90
(
4
), pp.
466
472
.
93.
Moalli
,
P. A.
,
Howden
,
N. S.
,
Lowder
,
J. L.
,
Navarro
,
J.
,
Debes
,
K. M.
,
Abramowitch
,
S. D.
, and
Woo
,
S. L. Y.
,
2005
, “
A Rat Model to Study the Structural Properties of the Vagina and Its Supportive Tissues
,”
Am. J. Obstet. Gynecol.
,
192
(
1
), pp.
80
88
.
94.
Vardy
,
M. D.
,
Gardner
,
T. R.
,
Cosman
,
F.
,
Scotti
,
R. J.
,
Mikhail
,
M. S.
,
Preiss-Bloom
,
A. O.
,
Williams
,
J. K.
,
Cline
,
J. M.
, and
Lindsay
,
R.
,
2005
, “
The Effects of Hormone Replacement on the Biomechanical Properties of the Uterosacral and Round Ligaments in the Monkey Model
,”
Am. J. Obstet. Gynecol.
,
192
(
5
), pp.
1741
1751
.
95.
Martins
,
P.
,
Silva-Filho
,
A. L.
,
Fonseca
,
A. M. R. M.
,
Santos
,
A.
,
Santos
,
L.
,
Mascarenhas
,
T.
,
Jorge
,
R. M. N.
, and
Ferreira
,
A. M.
,
2013
, “
Strength of Round and Uterosacral Ligaments: A Biomechanical Study
,”
Arch. Gynecol. Obstet.
,
287
(
2
), pp.
313
318
.
96.
Becker
,
W. R.
, and
De Vita
,
R.
,
2014
, “
Biaxial Mechanical Properties of Swine Uterosacral and Cardinal Ligaments
,”
Biomech. Model. Mechanobiol.
,
14
, pp.
549
560
.
97.
Tan
,
T.
,
Cholewa
,
N. M.
,
Case
,
S. W.
, and
De Vita
,
R.
,
2016
, “
Micro-Structural and Biaxial Creep Properties of the Swine Uterosacral–Cardinal Ligament Complex
,”
Ann. Biomed. Eng.
,
2016
, pp.
1
13
.
98.
Smith
,
T. M.
,
Luo
,
J.
,
Hsu
,
Y.
,
Ashton-Miller
,
J.
, and
Delancey
,
J. O.
,
2013
, “
A Novel Technique to Measure In Vivo Uterine Suspensory Ligament Stiffness
,”
Am. J. Obstet. Gynecol.
,
209
(
5
), pp.
484.e1
484.e7
.
99.
Luo
,
J.
,
Smith
,
T. M.
,
Ashton-Miller
,
J. A.
, and
DeLancey
,
J. O. L.
,
2014
, “
In Vivo Properties of Uterine Suspensory Tissue in Pelvic Organ Prolapse
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021016
.
100.
Rice
,
D. A.
, and
Yang
,
T. Y.
,
1976
, “
A Nonlinear Viscoelastic Membrane Model Applied to the Human Cervix
,”
J. Biomech.
,
9
(
4
), pp.
201
210
.
101.
Myers
,
K. M.
,
Hendon
,
C. P.
,
Gan
,
Y.
,
Yao
,
W.
,
Yoshida
,
K.
,
Fernandez
,
M.
,
Vink
,
J.
, and
Wapner
,
R. J.
,
2015
, “
A Continuous Fiber Distribution Material Model for Human Cervical Tissue
,”
J. Biomech.
,
48
(9), pp. 1533–1540.
102.
Bauer
,
M.
,
Mazza
,
E.
,
Nava
,
A.
,
Zeck
,
W.
,
Eder
,
M.
,
Bajka
,
M.
,
Cacho
,
F.
,
Lang
,
U.
, and
Holzapfel
,
G. A.
,
2007
, “
In Vivo Characterization of the Mechanics of Human Uterine Cervices
,”
Ann. N. Y. Acad. Sci.
,
1101
(
1
), pp.
186
202
.
103.
Tokar
,
S.
,
Feola
,
A.
,
Moalli
,
P. A.
, and
Abramowitch
,
S.
,
2010
, “
Characterizing the Biaxial Mechanical Properties of Vaginal Maternal Adaptations During Pregnancy
,”
ASME
Paper No. SBC2010-19394.
104.
Peralta
,
L.
,
Rus
,
G.
,
Bochud
,
N.
, and
Molina
,
F. S.
,
2015
, “
Mechanical Assessment of Cervical Remodelling in Pregnancy: Insight From a Synthetic Model
,”
J. Biomech.
,
48
(9), pp. 1557–1565.
105.
Iwanaga
,
R.
,
Orlicky
,
D. J.
,
Arnett
,
J.
,
Guess
,
M. K.
,
Hurt
,
K. J.
, and
Connell
,
K. A.
,
2016
, “
Comparative Histology of Mouse, Rat, and Human Pelvic Ligaments
,”
Int. Urogynecology J.
,
2016
, pp.
1
8
.
106.
Couri
,
B. M.
,
Lenis
,
A. T.
,
Borazjani
,
A.
,
Paraiso
,
M. F. R.
, and
Damaser
,
M. S.
,
2012
, “
Animal Models of Female Pelvic Organ Prolapse: Lessons Learned
,”
Expert Rev. Obstet. Gynecol.
,
7
(
3
), pp.
249
260
.
107.
Humphrey
,
J.
, and
Rajagopal
,
K. R.
,
2002
, “
A Constrained Mixture Model for Growth and Remodeling of Soft Tissues
,”
Math. Models Methods Appl. Sci.
,
12
(
03
), pp.
407
430
.
108.
Vink
,
J. Y.
,
Qin
,
S.
,
Brock
,
C. O.
,
Zork
,
N. M.
,
Feltovich
,
H. M.
,
Chen
,
X.
,
Urie
,
P.
,
Myers
,
K. M.
,
Hall
,
T. J.
,
Wapner
,
R.
,
Kitajewski
,
J. K.
,
Shawber
,
C. J.
, and
Gallos
,
G.
,
2016
, “
A New Paradigm for the Role of Smooth Muscle Cells in the Human Cervix
,”
Am. J. Obstet. Gynecol.
(in press).
You do not currently have access to this content.