The objective of this contribution is to present a unifying review on strain-driven computational homogenization at finite strains, thereby elaborating on computational aspects of the finite element method. The underlying assumption of computational homogenization is separation of length scales, and hence, computing the material response at the macroscopic scale from averaging the microscopic behavior. In doing so, the energetic equivalence between the two scales, the Hill–Mandel condition, is guaranteed via imposing proper boundary conditions such as linear displacement, periodic displacement and antiperiodic traction, and constant traction boundary conditions. Focus is given on the finite element implementation of these boundary conditions and their influence on the overall response of the material. Computational frameworks for all canonical boundary conditions are briefly formulated in order to demonstrate similarities and differences among the various boundary conditions. Furthermore, we detail on the computational aspects of the classical Reuss' and Voigt's bounds and their extensions to finite strains. A concise and clear formulation for computing the macroscopic tangent necessary for FE2 calculations is presented. The performances of the proposed schemes are illustrated via a series of two- and three-dimensional numerical examples. The numerical examples provide enough details to serve as benchmarks.

References

References
1.
Broughton
,
J. Q.
,
Abraham
,
F. F.
,
Bernstein
,
N.
, and
Kaxiras
,
E.
,
1999
, “
Concurrent Coupling of Length Scales: Methodology and Application
,”
Phys. Rev. B
,
60
, pp.
2391
2403
.
2.
Oden
,
J. T.
,
Vemaganti
,
K.
, and
Moës
,
N.
,
1999
, “
Hierarchical Modeling of Heterogeneous Solids
,”
Comput. Methods Appl. Mech. Eng.
,
172
(1–4), pp.
3
25
.
3.
Takano
,
N.
,
Zako
,
M.
, and
Ishizono
,
M.
,
2000
, “
Multi-Scale Computational Method for Elastic Bodies With Global and Local Heterogeneity
,”
J. Comput.-Aided Mater. Des.
,
7
, pp.
111
132
.
4.
Ladevèze
,
P.
,
Loiseau
,
O.
, and
Dureisseix
,
D.
,
2001
, “
A Micro–Macro and Parallel Computational Strategy for Highly Heterogeneous Structures
,”
Int. J. Numer. Methods Eng.
,
52
(1–2), pp.
121
138
.
5.
Ghosh
,
S.
,
Lee
,
K.
, and
Raghavan
,
P.
,
2001
, “
A Multi-Level Computational Model for Multi-Scale Damage Analysis in Composite and Porous Materials
,”
Int. J. Solids Struct.
,
38
(14), pp.
2335
2385
.
6.
Ibrahimbegović
,
A.
, and
Markovič
,
D.
,
2003
, “
Strong Coupling Methods in Multi-Phase and Multi-Scale Modeling of Inelastic Behavior of Heterogeneous Structures
,”
Comput. Methods Appl. Mech. Eng.
,
192
(28–30), pp.
3089
3107, 2003
.
7.
Fish
,
J.
, and
Chen
,
W.
,
2004
, “
Discrete-To-Continuum Bridging Based on Multigrid Principles
,”
Comput. Methods Appl. Mech. Eng.
,
193
(17–20), pp.
1693
1711
.
8.
Markovic
,
D.
, and
Ibrahimbegovic
,
A.
,
2004
, “
On Micro–Macro Interface Conditions for Micro Scale Based FEM for Inelastic Behavior of Heterogeneous Materials
,”
Comput. Methods Appl. Mech. Eng.
,
193
(48–51), pp.
5503
5523
.
9.
Fish
,
J.
, and
Yuan
,
Z.
,
2005
, “
Multiscale Enrichment Based on Partition of Unity
,”
Int. J. Numer. Methods Eng.
,
62
(10), pp.
1341
1359
.
10.
Fish
,
J.
,
2006
, “
Bridging the Scales in Nano Engineering and Science
,”
J. Nanopart. Res.
,
8
(5), pp.
577
594
.
11.
Ghosh
,
S.
,
Bai
,
J.
, and
Raghavan
,
P.
,
2007
, “
Concurrent Multi-Level Model for Damage Evolution in Microstructurally Debonding Composites
,”
Mech. Mater.
39
(3), pp.
241
266
.
12.
Hund
,
A.
, and
Ramm
,
E.
,
2007
, “
Locality Constraints Within Multiscale Model for Non-Linear Material Behaviour
,”
Int. J. Numer. Methods Eng.
,
70
(13), pp.
1613
1632
.
13.
Mobasher Amini
,
A.
,
Dureisseix
,
D.
, and
Cartraud
,
P.
,
2009
, “
Multi-Scale Domain Decomposition Method for Large-Scale Structural Analysis With a Zooming Technique: Application to Plate Assembly
,”
Int. J. Numer. Methods Eng.
,
79
(4), pp.
417
443
.
14.
Larsson
,
F.
, and
Runesson
,
K.
,
2011
, “
On Two-Scale Adaptive FE Analysis of Micro-Heterogeneous Media With Seamless Scale-Bridging
,”
Comput. Methods Appl. Mech. Eng.
,
200
(31–40), pp.
2662
2674
.
15.
Temizer
,
İ.
, and
Wriggers
,
P.
,
2011
, “
An Adaptive Multiscale Resolution Strategy for the Finite Deformation Analysis of Microheterogeneous Structures
,”
Comput. Methods Appl. Mech. Eng.
,
200
(31–40), pp.
2639
2661
.
16.
Lloberas-Valls
,
O.
,
Rixen
,
D. J.
,
Simone
,
A.
, and
Sluys
,
L. J.
,
2012
, “
On Micro-To-Macro Connections in Domain Decomposition Multiscale Methods
,”
Comput. Methods Appl. Mech. Eng.
,
225–228
, pp.
177
196
.
17.
Zhang
,
H. W.
,
Wu
,
J. K.
, and
Lv
,
J.
,
2012
, “
A New Multiscale Computational Method for Elasto-Plastic Analysis of Heterogeneous Materials
,”
Comput. Mech.
,
49
(2), pp.
149
169
.
18.
Wellmann
,
C.
, and
Wriggers
,
P.
,
2012
, “
A Two-Scale Model of Granular Materials
,”
Comput. Methods Appl. Mech. Eng.
,
205–208
, pp.
46
58
(
2012
).
19.
Khoei
,
A. R.
,
Jahanbakhshi
,
F.
, and
Aramoon
,
A.
,
2015
, “
A Concurrent Multi-Scale Technique in Modeling Heterogeneous FCC Nano-Crystalline Structures
,”
Mech. Mater.
,
83
, pp.
40
65
.
20.
Bitencourt
,
L. A. G.
, Jr.
,
Manzoli
,
O. L.
,
Prazeres
,
P. G. C.
,
Rodrigues
,
E. A.
, and
Bittencourt
,
T. N.
,
2015
, “
A Coupling Technique for Non-Matching Finite Element Meshes
,”
Comput. Methods Appl. Mech. Eng.
,
290
, pp.
19
44
.
21.
Tadmor
,
E. B.
, and
Miller
,
R. E.
,
2011
,
Modeling Materials: Continuum, Atomistic and Multiscale Techniques
,
Cambridge University Press
, New York.
22.
Lu
,
G.
, and
Kaxiras
,
E.
,
2005
, “
Overview of Multiscale Simulations of Materials
,”
Handbook of Theoretical and Computational Nanotechnology
, Vol.
4
,
M.
Rieth
, and
W.
Schommers
, eds.,
American Scientific Publishers
, New York, Chap. 22.
23.
Sanchez-Palencia
,
E.
,
1974
, “
Comportements Local et Macroscopique d'un Type de Milieux Physiques Heterogenes
,”
Int. J. Eng. Sci.
,
12
(4), pp.
331
351
.
24.
Bensoussan
,
A.
,
Lions
,
J. L.
, and
Papanicolaou
,
G.
,
1978
,
Asymptotic Analysis for Periodic Structures
,
North-Holland
,
Amsterdam, The Netherlands
.
25.
Sanchez-Palencia
,
E.
,
1980
,
Non-Homogeneous Media and Vibration Theory
,
Springer
,
Berlin, Heidelberg
.
26.
Sanchez-Palencia
,
E.
,
1983
, “
Homogenization Method for the Study of Composite Media
,”
Asymptotic Analysis II
(Lecture Notes in Mathematics), Vol.
985
,
F.
Verhulst
, ed.,
Springer
,
Berlin, Heidelberg
, pp.
192
214
.
27.
Ene
,
H. I.
,
1983
, “
On Linear Thermoelasticity of Composite Materials
,”
Int. J. Eng. Sci.
,
21
(5), pp.
443
448
.
28.
Guedes
,
J. M.
, and
Kikuchi
,
N.
,
1990
, “
Preprocessing and Postprocessing for Materials Based on the Homogenization Method With Adaptive Finite Element Methods
,”
Comput. Methods Appl. Mech. Eng.
,
83
(2), pp.
143
198
.
29.
Terada
,
K.
, and
Kikuchi
,
N.
,
1996
, “
Microstructural Design of Composites Using the Homogenization Method and Digital Images
,”
J. Soc. Mater. Sci., Jpn.
,
45
(2), pp.
65
72
.
30.
Fish
,
J.
,
Shek
,
K.
,
Pandheeradi
,
M.
, and
Shephard
,
M. S.
,
1997
, “
Computational Plasticity for Composite Structures Based on Mathematical Homogenization: Theory and Practice
,”
Comput. Methods Appl. Mech. Eng.
,
148
(1–2), pp.
53
73
.
31.
Fish
,
J.
,
Yu
,
Q.
, and
Shek
,
K.
,
1999
, “
Computational Damage Mechanics for Composite Materials Based on Mathematical Homogenization
,”
Int. J. Numer. Methods Eng.
,
45
(11), pp.
1657
1679
.
32.
Chung
,
P. W.
,
Tamma
,
K. K.
, and
Namburu
,
R. R.
,
2001
, “
Asymptotic Expansion Homogenization for Heterogeneous Media, Computational Issues and Applications
,”
Composites Part A
,
32
(9), pp.
1291
1301
.
33.
Song
,
Y. S.
, and
Youn
,
J. R.
,
2006
, “
Modeling of Effective Elastic Properties for Polymer Based Carbon Nanotube Composites
,”
Polymer
,
47
(6), pp.
1741
1748
.
34.
Kalamkarov
,
A. L.
,
Andrianov
,
I. V.
, and
Danishevs'kyy
,
V. V.
,
2009
, “
Asymptotic Homogenization of Composite Materials and Structures
,”
ASME Appl. Mech. Rev.
,
62
(3), p.
030802
.
35.
Pinho-da Cruz
,
J.
,
Oliveira
,
J. A.
, and
Teixeira-Dias
,
F.
,
2009
, “
Asymptotic Homogenisation in Linear Elasticity. Part I: Mathematical Formulation and Finite Element Modelling
,”
Comput. Mater. Sci.
,
45
(4), pp.
1073
1080
.
36.
J-Dong
,
W.
, and
Feng
,
M.-L.
,
2010
, “
Asymptotic Expansion Homogenization for Simulating Progressive Damage of 3D Braided Composites
,”
Compos. Struct.
,
92
(4), pp.
873
882
.
37.
Vel
,
S. S.
, and
Goupee
,
A. J.
,
2010
, “
Multiscale Thermoelastic Analysis of Random Heterogeneous Materials. Part I: Microstructure Characterization and Homogenization of Material Properties
,”
Comput. Mater. Sci.
,
48
(1), pp.
22
38
.
38.
Angioni
,
S. L.
,
Meo
,
M.
, and
Foreman
,
A.
,
2011
, “
A Comparison of Homogenization Methods for 2-D Woven Composites
,”
Composites Part B
,
42
(2), pp.
181
189
.
39.
Chatzigeorgiou
,
G.
,
Efendiev
,
Y.
, and
Lagoudas
,
D. C.
,
2011
, “
Homogenization of Aligned ‘Fuzzy Fiber’ Composites
,”
Int. J. Solids Struct.
,
48
(19), pp.
2668
2680
.
40.
Chatzigeorgiou
,
G.
,
Efendiev
,
Y.
,
Charalambakis
,
N.
, and
Lagoudas
,
D. C.
,
2012
, “
Effective Thermoelastic Properties of Composites With Periodicity in Cylindrical Coordinates
,”
Int. J. Solids Struct.
,
49
(18), pp.
2590
2603
.
41.
Temizer
,
İ.
,
2012
, “
On the Asymptotic Expansion Treatment of Two-Scale Finite Thermoelasticity
,”
Int. J. Eng. Sci.
,
53
, pp.
74
84
.
42.
Kanouté
,
P.
,
Boso
,
D. P.
,
Chaboche
,
J. L.
, and
Schrefler
,
B. A.
,
2009
, “
Multiscale Methods for Composites: A Review
,”
Arch. Comput. Methods Eng.
,
16
(1), pp.
31
75
.
43.
Charalambakis
,
N.
,
2010
, “
Homogenization Techniques and Micromechanics. A Survey and Perspectives
,”
ASME Appl. Mech. Rev.
,
63
(3), p.
030803
.
44.
Ortolano
,
J. M.
,
Hernández
,
J. A.
, and
Oliver
,
J.
,
2013
, “
A Comparative Study on Homogenization Strategies for Multi-Scale Analysis of Materials
,” Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE).
45.
Chen
,
W.
, and
Fish
,
J.
,
2000
, “
A Dispersive Model for Wave Propagation in Periodic Heterogeneous Media Based on Homogenization With Multiple Spatial and Temporal Scales
,”
ASME J. Appl. Mech.
,
68
, pp.
153
161
.
46.
Yu
,
Q.
, and
Fish
,
J.
,
2002
, “
Temporal Homogenization of Viscoelastic and Viscoplastic Solids Subjected to Locally Periodic Loading
,”
Comput. Mech.
,
29
(3), pp.
199
211
.
47.
Ladevèze
,
P.
, and
Nouy
,
A.
,
2003
, “
On a Multiscale Computational Strategy With Time and Space Homogenization for Structural Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
192
(28–30), pp.
3061
3087
.
48.
Ladevèze
,
P.
,
2004
, “
Multiscale Modelling and Computational Strategies for Composites
,”
Int. J. Numer. Methods Eng.
,
60
(1), pp.
233
253
.
49.
Zhang
,
H. W.
,
Zhang
,
S.
,
Bi
,
J. Y.
, and
Schrefler
,
B. A.
,
2007
, “
Thermo-Mechanical Analysis of Periodic Multiphase Materials by a Multiscale Asymptotic Homogenization Approach
,”
Int. J. Numer. Methods Eng.
,
69
(1), pp.
87
113
.
50.
Crouch
,
R.
,
Oskay
,
C.
, and
Clay
,
S.
,
2013
, “
Multiple Spatio-Temporal Scale Modeling of Composites Subjected to Cyclic Loading
,”
Comput. Mech.
,
51
(1), pp.
93
107
.
51.
Pham
,
K.
,
Kouznetsova
,
V. G.
, and
Geers
,
M. G. D.
,
2013
, “
Transient Computational Homogenization for Heterogeneous Materials Under Dynamic Excitation
,”
J. Mech. Phys. Solids
,
61
(11), pp.
2125
2146
.
52.
Voigt
,
W.
,
1889
, “
Über die Beziehung zwischen den beiden Elastizitätskonstanten isotroper Körper
,”
Wied. Ann.
,
38
, pp.
573
587
.
53.
Reuss
,
A.
,
1929
, “
Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle
,”
ZAMM—J. Appl. Math. Mech.
,
9
(1), pp.
49
58
.
54.
Hill
,
R.
,
1952
, “
The Elastic Behaviour of a Crystalline Aggregate
,”
Proc. Phys. Soc. Sect. A
,
65
(4), pp.
349
354
.
55.
Babuška
,
I.
,
1976
, “
Homogenization Approach in Engineering
,”
Computing Methods in Applied Sciences and Engineering
(Lecture Notes in Economics and Mathematical Systems), Vol.
134
,
R.
Glowinski
, and
J. L.
Lions
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
137
153
.
56.
Taylor
,
G. I.
,
1938
, “
Plastic Strain in Metals
,”
J. Inst. Met.
,
62
, pp.
307
324
.
57.
Sachs
,
G.
,
1928
, “
Zur Ableitung einer Fließbedingung
,”
Z. Ver. Dtsch. Ing.
,
72
, pp.
734
736
.
58.
Bishop
,
J. F. W.
, and
Hill
,
R.
,
1951
, “
XLVI. A Theory of the Plastic Distortion of a Polycrystalline Aggregate Under Combined Stresses
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
42
(327), pp.
414
427
.
59.
Leffers
,
T.
,
1979
, “
A Modified Sachs Approach to the Plastic Deformation of Polycrystals as a Realistic Alternative to the Taylor Model
,”
Strength of Metals and Alloys
, Vol.
2
,
P.
Haasen
,
V.
Gerold
, and
G.
Kostorz
, eds.,
Pergamon Press
, Oxford, UK, pp.
769
774
.
60.
Van Houtte
,
P.
,
1982
, “
On the Equivalence of the Relaxed Taylor Theory and the Bishop-Hill Theory for Partially Constrained Plastic Deformation of Crystals
,”
Mater. Sci. Eng.
,
55
(1), pp.
69
77
.
61.
Kocks
,
U. F.
, and
Chandra
,
H.
,
1982
, “
Slip Geometry in Partially Constrained Deformation
,”
Acta Metall.
,
30
(3), pp.
695
709
.
62.
Van Houtte
,
P.
,
Li
,
S.
,
Seefeldt
,
M.
, and
Delannay
,
L.
,
2005
, “
Deformation Texture Prediction: From the Taylor Model to the Advanced LAMEL Model
,”
Int. J. Plast.
,
21
(3), pp.
589
624
.
63.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1963
, “
A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials
,”
J. Mech. Phys. Solids
,
11
(2), pp.
127
140
.
64.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1962
, “
A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials
,”
J. Appl. Phys.
,
33
(10), pp.
3125
3131
.
65.
Walpole
,
L. J.
,
1966
, “
On Bounds for the Overall Elastic Moduli of Inhomogeneous Systems-II
,”
J. Mech. Phys. Solids
,
14
(5), pp.
289
301
.
66.
Milton
,
G. W.
, and
Kohn
,
R. V.
,
1988
, “
Variational Bounds on the Effective Moduli of Anisotropic Composites
,”
J. Mech. Phys. Solids
,
36
(6), pp.
597
629
.
67.
Zimmerman
,
R. W.
,
1992
, “
Hashin–Shtrikman Bounds on the Poisson Ratio of a Composite Material
,”
Mech. Res. Commun.
,
19
(6), pp.
563
569
.
68.
Beran
,
M. J.
, and
Molyneux
,
J.
,
1966
, “
Use of Classical Variational Principles to Determine Bounds for the Effective Bulk Modulus in Heterogeneous Media
,”
Q. Appl. Math.
,
24
, pp.
107
118
.
69.
Milton
,
G. W.
, and
Phan-Thien
,
N.
,
1982
, “
New Bounds on Effective Elastic Moduli of Two-Component Materials
,”
Proc. R. Soc. London: Ser. A
,
380
(1779), pp.
305
331
.
70.
Torquato
,
S.
,
1991
, “
Random Heterogeneous Media: Microstructure and Improved Bounds on Effective Propertie
,”
ASME Appl. Mech. Rev.
,
44
(2), pp.
37
76
.
71.
Rosen
,
B. W.
, and
Hashin
,
Z.
,
1970
, “
Effective Thermal Expansion Coefficients and Specific Heats of Composite Materials
,”
Int. J. Eng. Sci.
,
8
(2), pp.
157
173
.
72.
Gibiansky
,
L. V.
, and
Torquato
,
S.
,
1997
, “
Thermal Expansion of Isotropic Multiphase Composites and Polycrystals
,”
J. Mech. Phys. Solids
,
45
(7), pp.
1223
1252
.
73.
Bisegna
,
P.
, and
Luciano
,
R.
,
1996
, “
Variational Bounds for the Overall Properties of Piezoelectric Composites
,”
J. Mech. Phys. Solids
,
44
(4), pp.
583
602
.
74.
Bisegna
,
P.
, and
Luciano
,
R.
,
1997
, “
On Methods for Bounding the Overall Properties of Periodic Piezoelectric Fibrous Composites
,”
J. Mech. Phys. Solids
,
45
(8), pp.
1329
1356
.
75.
Hori
,
M.
, and
Nemat-Nasser
,
S.
,
1998
, “
Universal Bounds for Effective Piezoelectric Moduli
,”
Mech. Mater.
,
30
(1), pp.
1
19
.
76.
Ostoja-Starzewski
,
M.
,
2007
,
Microstructural Randomness and Scaling in Mechanics of Materials
,
Chapman and Hall/CRC
, Boca Raton, FL.
77.
Nemat-Nasser
,
S.
,
Yu
,
N.
, and
Hori
,
M.
,
1993
, “
Bounds and Estimates of Overall Moduli of Composites With Periodic Microstructure
,”
Mech. Mater.
,
15
(3), pp.
163
181
.
78.
Bornert
,
M.
,
Stolz
,
C.
, and
Zaoui
,
A.
,
1996
, “
Morphologically Representative Pattern-Based Bounding in Elasticity
,”
J. Mech. Phys. Solids
,
44
(3), pp.
307
331
.
79.
Li
,
J. Y.
, and
Dunn
,
M. L.
,
2001
, “
Variational Bounds for the Effective Moduli of Heterogeneous Piezoelectric Solids
,”
Philos. Mag. A
,
81
(4), pp.
903
926
.
80.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London A
,
241
(1226), pp.
376
396
.
81.
Rodin
,
G. J.
,
1996
, “
Eshelby's Inclusion Problem for Polygons and Polyhedra
,”
J. Mech. Phys. Solids
,
44
(12), pp.
1977
1995
.
82.
Mura
,
T.
,
1997
, “
The Determination of the Elastic Field of a Polygonal Star Shaped Inclusion
,”
Mech. Res. Commun.
,
24
(5), pp.
473
482
.
83.
Markenscoff
,
X.
,
1997
, “
On the Shape of the Eshelby Inclusions
,”
J. Elasticity
,
49
(2), pp.
163
166
.
84.
Lubarda
,
V. A.
, and
Markenscoff
,
X.
,
1998
, “
On the Absence of Eshelby Property for Non-Ellipsoidal Inclusions
,”
Int. J. Solids Struct.
,
35
(25), pp.
3405
3411
.
85.
Kang
,
H.
, and
Milton
,
G. W.
,
2008
, “
Solutions to the Pólya-Szegö Conjecture and the Weak Eshelby Conjecture
,”
Arch. Ration. Mech. Anal.
,
188
(1), pp.
93
116
.
86.
Liu
,
L. P.
,
2008
, “
Solutions to the Eshelby Conjectures
,”
Proc. R. Soc. London A
,
464
(2091), pp.
573
594
.
87.
Zou
,
W.
,
He
,
Q.
,
Huang
,
M.
, and
Zheng
,
Q.
,
2010
, “
Eshelby's Problem of Non-Elliptical Inclusions
,”
J. Mech. Phys. Solids
,
58
(3), pp.
346
372
.
88.
Zhou
,
K.
,
Hoh
,
H. J.
,
Wang
,
X.
,
Keer
,
L. M.
,
Pang
,
J. H. L.
,
Song
,
B.
, and
Wang
,
Q. J.
,
2013
, “
A Review of Recent Works on Inclusions
,”
Mech. Mater.
,
60
, pp.
144
158
.
89.
Zohdi
,
T. I.
, and
Wriggers
,
P.
,
2001
, “
Computational Micro–Macro Material Testing
,”
Arch. Comput. Methods Eng.
,
8
(2), pp.
131
228
.
90.
Mori
,
T.
, and
Tanaka
,
K.
,
1973
, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
,
21
(5), pp.
571
574
.
91.
Benveniste
,
Y.
,
1987
, “
A New Approach to the Application of Mori-Tanaka's Theory in Composite Materials
,”
Mech. Mater.
,
6
(2), pp.
147
157
.
92.
Luo
,
H. A.
, and
Weng
,
G. J.
,
1987
, “
On Eshelby's Inclusion Problem in a Three-Phase Spherically Concentric Solid, and a Modification of Mori-Tanaka's Method
,”
Mech. Mater.
,
6
(4), pp.
347
361
.
93.
Kröner
,
E.
,
1958
, “
Berechnung der Elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls
,”
Z. Phys.
,
151
(4), pp.
504
518
.
94.
Hill
,
R.
,
1965
, “
A Self-Consistent Mechanics of Composite Materials
,”
J. Mech. Phys. Solids
,
13
(4), pp.
213
222
.
95.
Budiansky
,
B.
,
1965
, “
On the Elastic Moduli of Some Heterogeneous Materials
,”
J. Mech. Phys. Solids
,
13
(4), pp.
223
227
.
96.
Walpole
,
L. J.
,
1969
, “
On the Overall Elastic Moduli of Composite Materials
,”
J. Mech. Phys. Solids
,
17
(4), pp.
235
251
.
97.
Laws
,
N.
,
1973
, “
On the Thermostatics of Composite Materials
,”
J. Mech. Phys. Solids
,
21
(1), pp.
9
17
.
98.
Willis
,
J. R.
,
1977
, “
Bounds and Self-Consistent Estimates for the Overall Properties of Anisotropic Composites
,”
J. Mech. Phys. Solids
,
25
(3), pp.
185
202
.
99.
Kerner
,
E. H.
,
1956
, “
The Elastic and Thermo-Elastic Properties of Composite Media
,”
Proc. Phys. Soc. Sect. B
,
69
, pp.
808
813
.
100.
Hermans
,
J. J.
,
1967
, “
The Elastic Properties of Fiber Reinforced Materials When the Fibers Are Aligned
,”
Proc. K. Ned. Akad. Wet.
,
70
, pp.
1
9
.
101.
Christensen
,
R. M.
, and
Lo
,
K. H.
,
1979
, “
Solution for Effective Shear Properties in Three Phase Sphere and Cylinder Models
,”
J. Mech. Phys. Solids
,
27
(4), pp.
315
330
.
102.
Huang
,
Y.
,
Hu
,
K. X.
,
Wei
,
X.
, and
Chandra
,
H.
,
1994
, “
A Generalized Self-Consistent Mechanics Method for Composite Materials With Multiphase Inclusions
,”
J. Mech. Phys. Solids
,
42
(3), pp.
491
504
.
103.
Chatzigeorgiou
,
G.
,
Seidel
,
G. D.
, and
Lagoudas
,
D. C.
,
2012
, “
Effective Mechanical Properties of “Fuzzy Fiber” Composites
,”
Composites Part B
,
43
(6), pp.
2577
2593
.
104.
McLaughlin
,
R.
,
1977
, “
A Study of the Differential Scheme for Composite Materials
,”
Int. J. Eng. Sci.
,
15
(4), pp.
237
244
.
105.
Norris
,
A. N.
,
1985
, “
A Differential Scheme for the Effective Moduli of Composites
,”
Mech. Mater.
,
4
(1), pp.
1
16
.
106.
Pierard
,
O.
,
Friebel
,
C.
, and
Doghri
,
I.
,
2004
, “
Mean-Field Homogenization of Multi-Phase Thermo-Elastic Composites: A General Framework and Its Validation
,”
Compos. Sci. Technol.
,
64
(10–11), pp.
1587
1603
.
107.
Dunn
,
M. L.
, and
Taya
,
M.
,
1993
, “
Micromechanics Predictions of the Effective Electroelastic Moduli of Piezoelectric Composites
,”
Int. J. Solids Struct.
,
30
(2), pp.
161
175
.
108.
Nemat-Nasser
,
S.
,
Iwakuma
,
T.
, and
Hejazi
,
M.
,
1982
, “
On Composites With Periodic Structure
,”
Mech. Mater.
,
1
(3), pp.
239
267
.
109.
Herve
,
E.
, and
Zaoui
,
A.
,
1993
, “
N-Layered Inclusion-Based Micromechanical Modelling
,”
Int. J. Eng. Sci.
,
31
(1), pp.
1
10
.
110.
Huang
,
Y.
, and
Hu
,
K. X.
,
1995
, “
A Generalized Self-Consistent Mechanics Method for Solids Containing Elliptical Inclusions
,”
ASME J. Appl. Mech.
,
62
(3), pp.
566
572
.
111.
Benveniste
,
Y.
, and
Milton
,
G. W.
,
2010
, “
The Effective Medium and the Average Field Approximation Vis-à-Vis the Hashin–Shtrikman Bounds. I. The Self-Consistent Scheme in Matrix-Based Composites
,”
J. Mech. Phys. Solids
,
58
(3), pp.
1026
1038
.
112.
Benveniste
,
Y.
, and
Milton
,
G. W.
,
2010
, “
The Effective Medium and the Average Field Approximation Vis-à-Vis the Hashin–Shtrikman Bounds. II. The Generalized Self-Consistent Scheme in Matrix-Based Composites
,”
J. Mech. Phys. Solids
,
58
(7), pp.
1039
1056
.
113.
Kanaun
,
S. K.
, and
Levin
,
V.
,
2008
,
Self-Consistent Methods for Composites-Vol.1: Static Problems
,
Springer
,
Dordrecht, The Netherlands
.
114.
Walpole
,
L. J.
,
1966
, “
On Bounds for the Overall Elastic Moduli of Inhomogeneous Systems-I
,”
J. Mech. Phys. Solids
,
14
(3), pp.
151
162
.
115.
Weng
,
G. J.
,
1990
, “
The Theoretical Connection Between Mori-Tanaka's Theory and the Hashin–Shtrikman–Walpole Bounds
,”
Int. J. Eng. Sci.
,
28
(11), pp.
1111
1120
.
116.
Riccardi
,
A.
, and
Montheillet
,
F.
,
1999
, “
A Generalized Self-Consistent Method for Solids Containing Randomly Oriented Spheroidal Inclusions
,”
Acta Mech.
,
133
(1), pp.
39
56
.
117.
Hill
,
R.
,
1964
, “
Theory of Mechanical Properties of Fibre-Strengthened Materials: I. Elastic Behaviour
,”
J. Mech. Phys. Solids
,
12
(4), pp.
199
212
.
118.
Halpin
,
J. C.
,
1969
, “
Stiffness and Expansion Estimates for Oriented Short Fiber Composites
,”
J. Compos. Mater.
,
3
, pp.
732
734
.
119.
Halpin
,
J. C.
, and
Kardos
,
J. L.
, “
The Halpin-Tsai Equations: A Review
,”
Polym. Eng. Sci.
,
16
, pp.
344
352
.
120.
Hori
,
M.
, and
Nemat-Nasser
,
S.
,
1993
, “
Double-Inclusion Model and Overall Moduli of Multi-Phase Composites
,”
Mech. Mater.
,
14
(3), pp.
189
206
.
121.
Hu
,
G. K.
, and
Weng
,
G. J.
,
2000
, “
The Connections Between the Double-Inclusion Model and the Ponte Castaneda-Willis, Mori-Tanaka, and Kuster-Toksoz Models
,”
Mech. Mater.
,
32
(8), pp.
495
503
.
122.
Aboutajeddine
,
A.
, and
Neale
,
K. W.
,
2005
, “
The Double-Inclusion Model: A New Formulation and New Estimates
,”
Mech. Mater.
,
37
(2–3), pp.
331
341
.
123.
Tucker
,
C. L.
, and
Liang
,
E.
,
1999
, “
Stiffness Predictions for Unidirectional Short-Fiber Composites: Review and Evaluation
,”
Compos. Sci. Technol.
,
59
(5), pp.
655
671
.
124.
Hill
,
R.
,
1972
, “
On Constitutive Macro-Variables for Heterogeneous Solids at Finite Strain
,”
Proc. R. Soc. London A
,
326
(1565), pp.
131
147
.
125.
Ogden
,
R. W.
,
1974
, “
On the Overall Moduli of Non-Linear Elastic Composite Materials
,”
J. Mech. Phys. Solids
,
22
(6), pp.
541
553
.
126.
Willis
,
J. R.
,
1986
, “
Variational Estimates for the Overall Response of an Inhomogeneous Nonlinear Dielectric
,”
Homogenization and Effective Moduli of Materials and Media
(The IMA Volumes in Mathematics and Its Applications), Vol.
1
,
J. L.
Ericksen
,
D.
Kinderlehrer
,
R.
Kohn
, and
J.-L.
Lions
, eds.,
Springer
,
New York
, pp.
247
263
.
127.
Ponte Castañeda
,
P.
, and
Willis
,
J. R.
,
1988
, “
On the Overall Properties of Nonlinearly Viscous Composites
,”
Proc. R. Soc. London A
,
416
(1850), pp.
217
244
.
128.
Suquet
,
P. M.
,
1993
, “
Overall Potentials and Extremal Surfaces of Power Law or Ideally Plastic Composites
,”
J. Mech. Phys. Solids
,
41
(6), pp.
981
1002
.
129.
Olson
,
T.
,
1994
, “
Improvements on Taylor's Upper Bound for Rigid-Plastic Composites
,”
Mater. Sci. Eng. A
,
175
(1–2), pp.
15
20
.
130.
Talbot
,
D. R. S.
, and
Willis
,
J. R.
,
1992
, “
Some Simple Explicit Bounds for the Overall Behaviour of Nonlinear Composites
,”
Int. J. Solids Struct.
,
29
(14–15), pp.
1981
1987
.
131.
Ponte Castañeda
,
P.
,
1991
, “
The Effective Mechanical Properties of Nonlinear Isotropic Composites
,”
J. Mech. Phys. Solids
,
39
(1), pp.
45
71
.
132.
Ponte Castañeda
,
P.
,
1992
, “
New Variational Principles in Plasticity and Their Application to Composite Materials
,”
J. Mech. Phys. Solids
,
40
(8), pp.
1757
1788
.
133.
Ponte Castañeda
,
P.
,
deBotton
,
G.
, and
Li
,
G.
,
1992
, “
Effective Properties of Nonlinear Inhomogeneous Dielectrics
,”
Phys. Rev. B
,
46
(8), pp.
4387
4394
.
134.
deBotton
,
G.
, and
Ponte Castañeda
,
P.
,
1993
, “
Elastoplastic Constitutive Relations for Fiber-Reinforced Solids
,”
Int. J. Solids Struct.
,
30
(14), pp.
1865
1890
.
135.
Ponte Castañeda
,
P.
, and
Suquet
,
P.
,
1998
, “
Nonlinear Composites
,”
Adv. Appl. Mech.
,
34
, pp.
171
302
.
136.
Ponte Castañeda
,
P.
,
1996
, “
Exact Second-Order Estimates for the Effective Mechanical Properties of Nonlinear Composite Materials
,”
J. Mech. Phys. Solids
,
44
(6), pp.
827
862
.
137.
Lahellec
,
N.
,
Mazerolle
,
F.
, and
Michel
,
J. C.
,
2004
, “
Second-Order Estimate of the Macroscopic Behavior of Periodic Hyperelastic Composites: Theory and Experimental Validation
,”
J. Mech. Phys. Solids
,
52
(1), pp.
27
49
.
138.
Leroy
,
Y.
, and
Ponte Castañeda
,
P.
,
2001
, “
Bounds on the Self-Consistent Approximation for Nonlinear Media and Implications for the Second-Order Method
,”
Compt. R. Acad. des Sci.—Ser. IIB
,
329
, pp.
571
577
.
139.
Ponte Castañeda
,
P.
,
2002
, “
Second-Order Homogenization Estimates for Nonlinear Composites Incorporating Field Fluctuations: I-Theory
,”
J. Mech. Phys. Solids
,
50
(4), pp.
737
757
.
140.
Ponte Castañeda
,
P.
,
2002
, “
Second-Order Homogenization Estimates for Nonlinear Composites Incorporating Field Fluctuations: II-Application
,”
J. Mech. Phys. Solids
,
50
(4), pp.
759
782
.
141.
Lopez-Pamies
,
O.
, and
Ponte Castañeda
,
P.
,
2003
, “
Second-Order Estimates for the Large-Deformation Response of Particle-Reinforced Rubbers
,”
Compt. R. Mécanique
,
331
(1), pp.
1
8
.
142.
Danas
,
K.
,
Idiart
,
M. I.
, and
Ponte Castañeda
,
P.
,
2008
, “
A Homogenization-Based Constitutive Model for Isotropic Viscoplastic Porous Media
,”
Int. J. Solids Struct.
,
45
(11–12), pp.
3392
3409
.
143.
deBotton
,
G.
, and
Hariton
,
I.
,
2002
, “
High-Rank Nonlinear Sequentially Laminated Composites and Their Possible Tendency Towards Isotropic Behavior
,”
J. Mech. Phys. Solids
,
50
(12), pp.
2577
2595
.
144.
deBotton
,
G.
,
2005
, “
Transversely Isotropic Sequentially Laminated Composites in Finite Elasticity
,”
J. Mech. Phys. Solids
,
53
(6), pp.
1334
1361
.
145.
Brun
,
M.
,
Lopez-Pamies
,
O.
, and
Ponte Castañeda
,
P.
,
2007
, “
Homogenization Estimates for Fiber-Reinforced Elastomers With Periodic Microstructures
,”
Int. J. Solids Struct.
,
44
(18–19), pp.
5953
5979
.
146.
deBotton
,
G.
, and
Shmuel
,
G.
,
2009
, “
Mechanics of Composites With Two Families of Finitely Extensible Fibers Undergoing Large Deformations
,”
J. Mech. Phys. Solids
,
57
(8), pp.
1165
1181
.
147.
Rudykh
,
S.
, and
deBotton
,
G.
,
2012
Instabilities of Hyperelastic Fiber Composites: Micromechanical Versus Numerical Analyses
,”
J. Elasticity
,
106
(2), pp.
123
147
.
148.
deBotton
,
G.
, and
Oren
,
T.
,
2013
, “
Analytical and Numerical Analyses of the Micromechanics of Soft Fibrous Connective Tissues
,”
Biomech. Model. Mechanobiol.
,
12
(1), pp.
151
166
.
149.
Hashin
,
Z.
,
1990
, “
Thermoelastic Properties of Fiber Composites With Imperfect Interface
,”
Mech. Mater.
,
8
(4), pp.
333
348
.
150.
Hashin
,
Z.
,
1991
, “
The Spherical Inclusion With Imperfect Interface
,”
ASME J. Appl. Mech.
,
58
(2), pp.
444
449
.
151.
Qu
,
J.
,
1993
, “
The Effect of Slightly Weakened Interfaces on the Overall Elastic Properties of Composite Materials
,”
Mech. Mater.
,
14
(4), pp.
269
281
.
152.
Gao
,
Z.
,
1995
, “
A Circular Inclusion With Imperfect Interface: Eshelby's Tensor and Related Problems
,”
ASME J. Appl. Mech.
,
62
(4), pp.
860
866
.
153.
Torquato
,
S.
, and
Rintoul
,
M. D.
,
1995
, “
Effect of the Interface on the Properties of Composite Media
,”
Phys. Rev. Lett.
,
75
, pp.
4067
4070
.
154.
Miloh
,
T.
, and
Benveniste
,
Y.
,
1999
, “
On the Effective Conductivity of Composites With Ellipsoidal Inhomogeneities and Highly Conducting Interfaces
,”
Proc. R. Soc. London A
,
455
(1987), pp.
2687
2706
.
155.
Sharma
,
P.
, and
Ganti
,
S.
,
2004
, “
Size-Dependent Eshelby's Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies
,”
ASME J. Appl. Mech.
,
71
(5), pp.
663
671
.
156.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
,
2005
, “
Size-Dependent Effective Elastic Constants of Solids Containing Nano-Inhomogeneities With Interface Stress
,”
J. Mech. Phys. Solids
,
53
(7), pp.
1574
1596
.
157.
Duan
,
H. L.
,
Wang
,
J.
,
Karihaloo
,
B. L.
, and
Huang
,
Z. P.
,
2006
, “
Nanoporous Materials can be Made Stiffer Than Non-Porous Counterparts by Surface Modification
,”
Acta Mater.
,
54
(11), pp.
2983
2990
.
158.
Andrianov
,
I. V.
,
Bolshakov
,
V. I.
,
Danishevs'kyy
,
V. V.
, and
Weichert
,
D.
,
2007
, “
Asymptotic Simulation of Imperfect Bonding in Periodic Fibre-Reinforced Composite Materials Under Axial Shear
,”
Int. J. Mech. Sci.
,
49
(12), pp.
1344
1354
.
159.
Duan
,
H. L.
,
Yi
,
X.
,
Huang
,
Z. P.
, and
Wang
,
J.
,
2007
, “
A Unified Scheme for Prediction of Effective Moduli of Multiphase Composites With Interface Effects. Part I: Theoretical Framework
,”
Mech. Mater.
,
39
(12), pp.
81
93
.
160.
Tan
,
H.
,
Huang
,
Y.
,
Liu
,
C.
,
Ravichandran
,
G.
, and
Paulino
,
G. H.
,
2007
, “
Constitutive Behaviors of Composites With Interface Debonding: The Extended Mori-Tanaka Method for Uniaxial Tension
,”
Int. J. Fract.
,
146
(3), pp.
139
148
.
161.
Yanase
,
K.
, and
Ju
,
J. W.
,
2012
, “
Effective Elastic Moduli of Spherical Particle Reinforced Composites Containing Imperfect Interfaces
,”
Int. J. Damage Mech.
,
21
(1), pp.
97
127
.
162.
Buryachenko
,
V. A.
,
2013
, “
General Integral Equations of Thermoelasticity in Micromechanics of Composites With Imperfectly Bonded Interfaces
,”
Int. J. Solids Struct.
,
50
(20–21), pp.
3190
3206
.
163.
Chatzigeorgiou
,
G.
,
Javili
,
A.
, and
Steinmann
,
P.
,
2015
, “
Multiscale Modelling for Composites With Energetic Interface at the Micro- or Nanoscale
,”
Math. Mech. Solids
,
20
(9), pp.
1130
1145
.
164.
Hashin
,
Z.
, and
Rosen
,
B. W.
,
1964
, “
The Elastic Moduli of Reinforced-Reinforced Materials
,”
ASME J. Appl. Mech.
,
31
(2), pp.
223
232
.
165.
Jayaraman
,
K.
, and
Reifsnider
,
K. L.
,
1992
, “
Residual Stresses in a Composite With Continuously Varying Young's Modulus in the Fiber/Matrix Interphase
,”
J. Compos. Mater.
,
26
(6), pp.
770
791
.
166.
Cherkaoui
,
M.
,
Muller
,
D.
,
Sabar
,
H.
, and
Berveiller
,
M.
,
1996
, “
Thermoelastic Behavior of Composites With Coated Reinforcements: A Micromechanical Approach and Applications
,”
Comput. Mater. Sci.
,
5
(1–3), pp.
45
52
.
167.
Lutz
,
M. P.
,
Monteiro
,
P. J. M.
, and
Zimmerman
,
R. W.
,
1997
, “
Inhomogeneous Interfacial Transition Zone Model for the Bulk Modulus of Mortar
,”
Cem. Concr. Res.
,
27
(7), pp.
1113
1122
.
168.
Hashin
,
Z.
, and
Monteiro
,
P. J. M.
,
2002
, “
An Inverse Method to Determine the Elastic Properties of the Interphase Between the Aggregate and the Cement Paste
,”
Cem. Concr. Res.
,
32
(8), pp.
1291
1300
.
169.
Lutz
,
M. P.
, and
Zimmerman
,
R. W.
,
2005
, “
Effect of an Inhomogeneous Interphase Zone on the Bulk Modulus and Conductivity of a Particulate Composite
,”
Int. J. Solids Struct.
,
42
(2), pp.
429
437
.
170.
Shen
,
L.
, and
Li
,
J.
,
2005
, “
Homogenization of a Fibre/Sphere With an Inhomogeneous Interphase for the Effective Elastic Moduli of Composites
,”
Proc. R. Soc. London A
,
461
(2057), pp.
1475
1504
.
171.
Lipinski
,
P.
,
Barhdadi
,
E. H.
, and
Cherkaoui
,
M.
,
2006
, “
Micromechanical Modelling of an Arbitrary Ellipsoidal Multi-Coated Inclusion
,”
Philos. Mag.
,
86
(10), pp.
1305
1326
.
172.
Basaran
,
C.
, and
Nie
,
S.
,
2007
, “
A Thermodynamics Based Damage Mechanics Model for Particulate Composites
,”
Int. J. Solids Struct.
,
44
(3–4), pp.
1099
1114
.
173.
Kari
,
S.
,
Berger
,
H.
,
Gabbert
,
U.
,
Guinovart-Diaz
,
R.
,
Bravo-Castillero
,
J.
, and
Rodriguez-Ramos
,
R.
,
2008
, “
Evaluation of Influence of Interphase Material Parameters on Effective Material Properties of Three Phase Composites
,”
Compos. Sci. Technol.
,
68
(3–4), pp.
684
691
.
174.
Wang
,
X.
,
Zhang
,
J.
,
Wang
,
Z.
,
Zhou
,
S.
, and
Sun
,
X.
,
2011
, “
Effects of Interphase Properties in Unidirectional Fiber Reinforced Composite Materials
,”
Mater. Des.
,
32
(6), pp.
3486
3492
.
175.
Benveniste
,
Y.
,
2013
, “
Models of Thin Interphases and the Effective Medium Approximation in Composite Media With Curvilinearly Anisotropic Coated Inclusions
,”
Int. J. Eng. Sci.
,
72
, pp.
140
154
.
176.
Tran
,
B. V.
,
Pham
,
D. C.
, and
Nguyen
,
T. H. G.
,
2015
, “
Equivalent-Inclusion Approach and Effective Medium Approximations for Elastic Moduli of Compound-Inclusion Composites
,”
Arch. Appl. Mech.
,
85
(12), pp.
1983
1995
.
177.
Hashin
,
Z.
,
1983
, “
Analysis of Composite Materials—A Survey
,”
ASME J. Appl. Mech.
,
50
(3), pp.
481
505
.
178.
Mura
,
T.
,
1987
,
Micromechanics of Defects in Solids
,
Springer
,
Dordrecht, The Netherlands
.
179.
Christensen
,
R. M.
,
1990
, “
A Critical Evaluation for a Class of Micro-Mechanics Models
,”
J. Mech. Phys. Solids
,
38
(3), pp.
379
404
.
180.
Aboudi
,
J.
,
1992
,
Mechanics of Composite Materials: A Unified Micromechanical Approach
,
Elsevier
,
Amsterdam, Netherlands
.
181.
Dasgupta
,
A.
, and
Bhandarkar
,
S. M.
,
1992
, “
A Generalized Self-Consistent Mori-Tanaka Scheme for Fiber-Composites With Multiple Interphases
,”
Mech. Mater.
,
14
(1), pp.
67
82
.
182.
Mura
,
T.
,
Shodja
,
H. M.
, and
Hirose
,
Y.
,
1996
, “
Inclusion Problems
,”
ASME Appl. Mech. Rev.
,
49
, pp.
118
127
.
183.
Suquet
,
P.
,
1997
,
Continuum Micromechanics
,
CISM International Centre for Mechanical Sciences/Springer
, Vienna, Austria.
184.
Böhm
,
H. J.
,
1998
, “
A Short Introduction to Basic Aspects of Continuum Mechanics
,” Technical Report, Institute of Lightweight Design and Structural Biomechanics (ILSB), Vienna University of Technology, Wien, Austria, CDL-FMD Report No. 3.
185.
Nemat-Nasser
,
S.
, and
Hori
,
M.
,
1999
,
Micromechanics: Overall Properties of Heterogeneous Materials
,
Elsevier
, Amsterdam, The Netherlands.
186.
Gilormini
,
P.
, and
Bréchet
,
Y.
,
1999
, “
Syntheses: Mechanical Properties of Heterogeneous Media: Which Material for Which Model? Which Model for Which Material?
,”
Modell. Simul. Mater. Sci. Eng.
,
7
, pp.
805
816
.
187.
Willis
,
J. R.
,
2000
, “
The Overall Response of Nonlinear Composite Media
,”
Eur. J. Mech.—A/Solids
,
19
, pp.
165
184
.
188.
Zaoui
,
A.
,
2002
, “
Continuum Micromechanics: Survey
,”
J. Eng. Mech.
,
128
(8), pp.
808
816
.
189.
Milton
,
G. W.
,
2002
,
The Theory of Composites
(Cambridge Monographs on Applied and Computational Mathematics)
Cambridge University Press
, Cambridge, UK.
190.
Li
,
L. X.
, and
Wang
,
T. J.
,
2005
, “
A Unified Approach to Predict Overall Properties of Composite Materials
,”
Mater. Charact.
,
54
(1), pp.
49
62
.
191.
Zohdi
,
T. I.
, and
Wriggers
,
P.
,
2005
,
Introduction to Computational Micromechanics
,
Springer-Verlag
,
Berlin
.
192.
Mercier
,
S.
,
Molinari
,
A.
,
Berbenni
,
S.
, and
Berveiller
,
M.
,
2012
, “
Comparison of Different Homogenization Approaches for Elastic-Viscoplastic Materials
,”
Modell. Simul. Mater. Sci. Eng.
,
20
(2), p.
024004
.
193.
Klusemann
,
B.
,
Böhm
,
H. J.
, and
Svendsen
,
B.
,
2012
, “
Homogenization Methods for Multi-Phase Elastic Composites With Non-elliptical Reinforcements: Comparisons and Benchmarks
,”
Eur. J. Mech.—A/Solids
,
34
, pp.
21
37
.
194.
Dvorak
,
G.
,
2013
,
Micromechanics of Composite Materials
,
Springer
, Dordrecht, The Netherlands.
195.
Jöchen
,
K.
,
2013
,
Homogenization of the Linear and Non-Linear Mechanical Behavior of Polycrystals
(Schriftenreihe Kontinuumsmechanik im Maschinenbau/Karlsruher Institut für Technologie, Institut für Technische Mechanik-Bereich Kontinuumsmechanik), Vol.
4
,
KIT Scientific Publishing
, Karlsruhe, Germany.
196.
Ghossein
,
E.
, and
Lévesque
,
M.
,
2014
, “
A Comprehensive Validation of Analytical Homogenization Models: The Case of Ellipsoidal Particles Reinforced Composites
,”
Mech. Mater.
,
75
, pp.
135
150
.
197.
Geers
,
M. G. D.
,
Kouznetsova
,
V. G.
, and
Brekelmans
,
W. A. M.
,
2010
, “
Multi-Scale Computational Homogenization: Trends and Challenges
,”
J. Comput. Appl. Math.
,
234
(7), pp.
2175
2182
.
198.
Nguyen
,
V. P.
,
Stroeven
,
M.
, and
Sluys
,
L. J.
,
2011
, “
Multiscale Continuous And Discontinuous Modelling of Heterogeneous Materials: A Review on Recent Developments
,”
J. Multiscale Modell.
,
3
(4), pp.
229
270
.
199.
Christman
,
T.
,
Needleman
,
A.
, and
Suresh
,
S.
,
1989
, “
An Experimental and Numerical Study of Deformation in Metal-Ceramic Composites
,”
Acta Metall.
,
37
(1), pp.
3029
3050
.
200.
Tvergaard
,
V.
,
1990
, “
Analysis of Tensile Properties for a Whisker-Reinforced Metal-Matrix Composite
,”
Acta Metall. Mater.
,
38
(2), pp.
185
194
.
201.
Bao
,
G.
,
Hutchinson
,
J. W.
, and
McMeeking
,
R. M.
,
1991
Particle Reinforcement of Ductile Matrices Against Plastic Flow and Creep
,”
Acta Metall. Mater.
,
39
(8), pp.
1871
1882
.
202.
Smit
,
R. J. M.
,
Brekelmans
,
W. A. M.
, and
Meijer
,
H. E. H.
,
1999
, “
Prediction of the Large-Strain Mechanical Response of Heterogeneous Polymer Systems: Local and Global Deformation Behaviour of a Representative Volume Element of Voided Polycarbonate
,”
J. Mech. Phys. Solids
,
47
(2), pp.
201
221
.
203.
van der Sluis
,
O.
,
Schreurs
,
P. J. G.
, and
Meijer
,
H. E. H.
,
1999
, “
Effective Properties of a Viscoplastic Constitutive Model Obtained by Homogenisation
,”
Mech. Mater.
,
31
(11), pp.
743
759
.
204.
Mandel
,
J.
,
1972
,
Plasticité Classique, Viscoplasticité
(CISM Courses and Lectures), Vol.
97
,
Springer-Verlag
,
New York
.
205.
Molinari
,
A.
, and
Mercier
,
S.
,
2001
, “
Micromechanical Modelling of Porous Materials Under Dynamic Loading
,”
J. Mech. Phys. Solids
,
49
(7), pp.
1497
1516
.
206.
Costanzo
,
F.
,
Gray
,
G. L.
, and
Andia
,
P. C.
,
2005
, “
On the Definitions of Effective Stress and Deformation Gradient for Use in MD: Hill's Macro-Homogeneity and the Virial Theorem
,”
Int. J. Eng. Sci.
,
43
(7), pp.
533
555
.
207.
Ricker
,
S.
,
Mergheim
,
J.
, and
Steinmann
,
P.
,
2009
, “
On the Multiscale Computation of Defect Driving Forces
,”
Int. J. Multiscale Comput. Eng.
,
7
(5), pp.
457
474
.
208.
Reina
,
C.
,
2011
, “
Multiscale Modeling and Simulation of Damage by Void Nucleation and Growth
,” Ph.D. thesis, California Institute of Technology, Pasadena, CA.
209.
Jacques
,
N.
,
Mercier
,
S.
, and
Molinari
,
A.
,
2012
, “
Effects of Microscale Inertia on Dynamic Ductile Crack Growth
,”
J. Mech. Phys. Solids
,
60
(4), pp.
665
690
.
210.
de Souza Neto
,
E. A.
,
Blanco
,
P. J.
,
Sánchez
,
P. J.
, and
Feijóo
,
R. A.
,
2015
, “
An RVE-Based Multiscale Theory of Solids With Micro-Scale Inertia and Body Force Effects
,”
Mech. Mater.
,
80(Part A)
, pp.
136
144
.
211.
Yue
,
X.
, and
Weinan
,
E.
,
2007
, “
The Local Microscale Problem in the Multiscale Modeling of Strongly Heterogeneous Media: Effects of Boundary Conditions and Cell Size
,”
J. Comput. Phys.
,
222
(2), pp.
556
572
.
212.
W. E.
,
Ming
,
P.
, and
Zhang
,
P.
,
2005
, “
Analysis of the Heterogeneous Multiscale Method for Elliptic Homogenization Problems
,”
J. Am. Math. Soc.
,
18
, pp.
121
156
.
213.
Weinan
,
E.
,
Engquist
,
B.
,
Li
,
X.
,
Ren
,
W.
, and
Vanden-Eijnden
,
E.
,
2007
, “
The Heterogeneous Multiscale Method: A Review
,”
Commun. Comput. Phys.
,
2
, pp.
367
450
.
214.
Wongsto
,
A.
, and
Li
,
S.
,
2005
, “
Micromechanical FE Analysis of UD Fibre-Reinforced Composites With Fibres Distributed at Random Over the Transverse Cross-Section
,”
Composites Part A
,
36
(9), pp.
1246
1266
.
215.
Suquet
,
P.
,
1987
, “
Elements of Homogenization for Inelastic Solid Mechanics
,”
Homogenization Techniques for Composite Media
,
E.
Sanchez-Palencia
, and
A.
Zaoui
, eds.,
Springer-Verlag
,
Berlin
, pp.
193
287
.
216.
Huet
,
C.
,
1990
, “
Application of Variational Concepts to Size Effects in Elastic Heterogeneous Bodies
,”
J. Mech. Phys. Solids
,
38
(6), pp.
813
841
.
217.
Hollister
,
S. J.
, and
Kikuchi
,
N.
,
1992
, “
A Comparison of Homogenization and Standard Mechanic Analyses for Periodic Porous Composites
,”
Comput. Mech.
,
10
(2), pp.
73
95
.
218.
Nemat-Nasser
,
S.
, and
Hori
,
M.
,
1995
, “
Universal Bounds for Overall Properties of Linear and Nonlinear Heterogeneous Solids
,”
J. Eng. Mater. Technol.
,
117
(4), pp.
412
432
.
219.
Hori
,
M.
, and
Nemat-Nasser
,
S.
,
1999
, “
On Two Micromechanics Theories for Determining Micro–Macro Relations in Heterogeneous Solids
,”
Mech. Mater.
,
31
(10), pp.
667
682
.
220.
van der Sluis
,
O.
,
Schreurs
,
P. J. G.
,
Brekelmans
,
W. A. M.
, and
Meijer
,
H. E. H.
,
2000
, “
Overall Behaviour of Heterogeneous Elastoviscoplastic Materials: Effect of Microstructural Modelling
,”
Mech. Mater.
,
32
(8), pp.
449
462
.
221.
Terada
,
K.
,
Hori
,
M.
,
Kyoya
,
T.
, and
Kikuchi
,
N.
,
2000
, “
Simulation of the Multi-Scale Convergence in Computational Homogenization Approaches
,”
Int. J. Solids Struct.
,
37
(16), pp.
2285
2311
.
222.
Miehe
,
C.
,
2002
, “
Strain-Driven Homogenization of Inelastic Microstructures and Composites Based on an Incremental Variational Formulation
,”
Int. J. Numer. Methods Eng.
,
55
(11), pp.
1285
1322
.
223.
Kanit
,
T.
,
Forest
,
S.
,
Galliet
,
I.
,
Mounoury
,
V.
, and
Jeulin
,
D.
,
2003
, “
Determination of the Size of the Representative Volume Element for Random Composites: Statistical and Numerical Approach
,”
Int. J. Solids Struct.
,
40
(13–14), pp.
3647
3679
.
224.
Perić
,
D.
,
de Souza Neto
,
E. A.
,
Feijóo
,
R. A.
,
Partovi
,
M.
, and
Carneiro Molina
,
A. J.
,
2011
, “
On Micro-To-Macro Transitions for Multi-Scale Analysis of Non-Linear Heterogeneous Materials: Unified Variational Basis and Finite Element Implementation
,”
Int. J. Numer. Methods Eng.
,
87
(1–5), pp.
149
170
.
225.
Kaczmarczyk
,
L.
,
Pearce
,
C. J.
, and
Bićanić
,
N.
,
2008
, “
Scale Transition and Enforcement of RVE Boundary Conditions in Second-Order Computational Homogenization
,”
Int. J. Numer. Methods Eng.
,
74
(3), pp.
506
522
.
226.
Shen
,
H.
, and
Brinson
,
L. C.
,
2006
, “
A Numerical Investigation of the Effect of Boundary Conditions and Representative Volume Element Size for Porous Titanium
,”
J. Mech. Mater. Struct.
,
1
(7), pp.
1179
1204
.
227.
Drago
,
A.
, and
Pindera
,
M.-J.
,
2007
, “
Micro-Macromechanical Analysis of Heterogeneous Materials: Macroscopically Homogeneous vs Periodic Microstructures
,”
Compos. Sci. Technol.
,
67
(6), pp.
1243
1263
.
228.
Mercer
,
B. S.
,
Mandadapu
,
K. K.
, and
Papadopoulos
,
P.
,
2015
, “
Novel Formulations of Microscopic Boundary-Value Problems in Continuous Multiscale Finite Element Methods
,”
Comput. Methods Appl. Mech. Eng.
,
286
, pp.
268
292
.
229.
Pecullan
,
S.
,
Gibiansky
,
L. V.
, and
Torquato
,
S.
,
1999
, “
Scale Effects on the Elastic Behavior of Periodic and Hierarchical Two-Dimensional Composites
,”
J. Mech. Phys. Solids
,
47
(7), pp.
1509
1542
.
230.
Jiang
,
M.
,
Alzebdeh
,
K.
,
Jasiuk
,
I.
, and
Ostoja-Starzewski
,
M.
,
2001
, “
Scale and Boundary Conditions Effects in Elastic Properties of Random Composites
,”
Acta Mech.
,
148
(1), pp.
63
78
.
231.
Ostoja-Starzewski
,
M.
,
2006
, “
Material Spatial Randomness: From Statistical to Representative Volume Element
,”
Probab. Eng. Mech.
,
21
(2), pp.
112
132
.
232.
Larsson
,
F.
, and
Runesson
,
K.
,
2007
, “
RVE Computations With Error Control and Adaptivity: The Power of Duality
,”
Comput. Mech.
,
39
(5), pp.
647
661
.
233.
Saroukhani
,
S.
,
Vafadari
,
R.
,
Andersson
,
R.
,
Larsson
,
F.
, and
Runesson
,
K.
,
2015
, “
On Statistical Strain and Stress Energy Bounds From Homogenization and Virtual Testing
,”
Eur. J. Mech.—A/Solids
,
51
, pp.
77
95
.
234.
Xia
,
Z.
,
Zhang
,
Y.
, and
Ellyin
,
F.
,
2003
, “
A Unified Periodical Boundary Conditions for Representative Volume Elements of Composites and Applications
,”
Int. J. Solids Struct.
,
40
(8), pp.
1907
1921
.
235.
Hazanov
,
S.
, and
Huet
,
C.
,
1994
, “
Order Relationships for Boundary Conditions Effect in Heterogeneous Bodies Smaller Than the Representative Volume
,”
J. Mech. Phys. Solids
,
42
(12), pp.
1995
2011
.
236.
Hazanov
,
S.
, and
Amieur
,
M.
,
1995
, ““
On Overall Properties of Elastic Heterogeneous Bodies Smaller Than the Representative Volume
,”
Int. J. Eng. Sci.
,
33
(9), pp.
1289
1301
.
237.
Pahr
,
D. H.
, and
Zysset
,
P. K.
,
2008
, “
Influence of Boundary Conditions on Computed Apparent Elastic Properties of Cancellous Bone
,”
Biomech. Model. Mechanobiol.
,
7
(6), pp.
463
476
.
238.
Mesarovic
,
S. D.
, and
Padbidri
,
J.
,
2005
, “
Minimal Kinematic Boundary Conditions for Simulations of Disordered Microstructures
,”
Philos. Mag.
,
85
(1), pp.
65
78
.
239.
Coenen
,
E. W. C.
,
Kouznetsova
,
V. G.
, and
Geers
,
M. G. D.
,
2012
, “
Novel Boundary Conditions for Strain Localization Analyses in Microstructural Volume Elements
,”
Int. J. Numer. Methods Eng.
,
90
(1), pp.
1
21
.
240.
Inglis
,
H. M.
,
Geubelle
,
P. H.
, and
Matouš
,
K.
,
2008
, “
Boundary Condition Effects on Multiscale Analysis of Damage Localization
,”
Philos. Mag.
,
88
(16), pp.
2373
2397
.
241.
Larsson
,
F.
,
Runesson
,
K.
,
Saroukhani
,
S.
, and
Vafadari
,
R.
,
2011
, “
Computational Homogenization Based on a Weak Format of Micro-Periodicity for RVE-Problems
,”
Comput. Methods Appl. Mech. Eng.
,
200
(1–4), pp.
11
26
.
242.
Tyrus
,
J. M.
,
Gosz
,
M.
, and
DeSantiago
,
E.
,
2007
, “
A Local Finite Element Implementation for Imposing Periodic Boundary Conditions on Composite Micromechanical Models
,”
Int. J. Solids Struct.
,
44
(9), pp.
2972
2989
.
243.
Glüge
,
R.
,
2013
, “
Generalized Boundary Conditions on Representative Volume Elements And Their Use in Determining the Effective Material Properties
,”
Comput. Mater. Sci.
,
79
, pp.
408
416
.
244.
Fritzen
,
F.
, and
Böhlke
,
T.
,
2010
, “
Influence of the Type of Boundary Conditions on the Numerical Properties of Unit Cell Problems
,”
Tech. Mech.
,
30
, pp.
354
363
.
245.
Drugan
,
W. J.
, and
Willis
,
J. R.
,
1996
, “
A Micromechanics-Based Nonlocal Constitutive Equation and Estimates of Representative Volume Element Size for Elastic Composites
,”
J. Mech. Phys. Solids
,
44
(4), pp.
497
524
.
246.
Kouznetsova
,
V. G.
,
Geers
,
M. G. D.
, and
Brekelmans
,
W. A. M.
,
2002
, “
Multi-Scale Constitutive Modelling of Heterogeneous Materials With a Gradient-Enhanced Computational Homogenization Scheme
,”
Int. J. Numer. Methods Eng.
,
54
(8), pp.
1235
1260
.
247.
Kouznetsova
,
V. G.
,
Geers
,
M. G. D.
, and
Brekelmans
,
W. A. M.
,
2004
, “
Multi-Scale Second-Order Computational Homogenization of Multi-Phase Materials: A Nested Finite Element Solution Strategy
,”
Comput. Methods Appl. Mech. Eng.
,
193
(48–51), pp.
5525
5550
.
248.
Gitman
,
I. M.
,
Askes
,
H.
, and
Aifantis
,
E. C.
,
2005
, “
The Representative Volume Size in Static and Dynamic Micro–Macro Transitions
,”
Int. J. Fract.
,
135
(1), pp.
L3
L9
.
249.
Geers
,
M. G. D.
,
Coenen
,
E. W. C.
, and
Kouznetsova
,
V. G.
,
2007
, “
Multi-Scale Computational Homogenization of Structured Thin Sheets
,”
Modell. Simul. Mater. Sci. Eng.
,
15
, pp.
393
404
.
250.
Nguyen
,
V.-D.
,
Becker
,
G.
, and
Noels
,
L.
,
2013
, “
Multiscale Computational Homogenization Methods With a Gradient Enhanced Scheme Based on the Discontinuous Galerkin Formulation
,”
Comput. Methods Appl. Mech. Eng.
,
260
, pp.
63
77
.
251.
Javili
,
A.
,
McBride
,
A.
,
Mergheim
,
J.
,
Steinmann
,
P.
, and
Schmidt
,
U.
,
2013
, “
Micro-To-Macro Transitions for Continua With Surface Structure at the Microscale
,”
Int. J. Solids Struct.
,
50
(16–17), pp.
2561
2572
.
252.
Javili
,
A.
,
Chatzigeorgiou
,
G.
,
McBride
,
A.
,
Steinmann
,
P.
, and
Linder
,
C.
,
2015
, “
Computational Homogenization of Nano-Materials Accounting for Size Effects Via Surface Elasticity
,”
GAMM Mitt.
,
38
(2), pp.
285
312
.
253.
Mindlin
,
R. D.
,
1965
, “
Second Gradient of Strain and Surface-Tension in Linear Elasticity
,”
Int. J. Solids Struct.
,
1
(4), pp.
417
438
.
254.
Cordero
,
N. M.
,
Forest
,
S.
, and
Busso
,
E. P.
,
2015
, “
Second Strain Gradient Elasticity of Nano-Objects
,”
J. Mech. Phys. Solids
(in press).
255.
Davydov
,
D.
,
Javili
,
A.
, and
Steinmann
,
P.
,
2013
, “
On Molecular Statics and Surface-Enhanced Continuum Modeling of Nano-Structures
,”
Comput. Mater. Sci.
,
69
, pp.
510
519
.
256.
Larsson
,
F.
,
Runesson
,
K.
, and
Su
,
F.
,
2010
, “
Variationally Consistent Computational Homogenization of Transient Heat Flow
,”
Int. J. Numer. Methods Eng.
,
81
, pp.
1659
1686
.
257.
Sab
,
K.
,
1992
, “
On the Homogenization and the Simulation of Random Materials
,”
Eur. J. Mech.—A/Solids
,
11
, pp.
585
607
.
258.
Ostoja-Starzewski
,
M.
,
1998
, “
Random Field Models of Heterogeneous Materials
,”
Int. J. Solids Struct.
,
35
(19), pp.
2429
2455
.
259.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
,
11
(5), pp.
357
372
.
260.
Huet
,
C.
,
1999
, “
Coupled Size and Boundary-Condition Effects in Viscoelastic Heterogeneous and Composite Bodies
,”
Mech. Mater.
,
31
(12), pp.
787
829
.
261.
Temizer
,
İ.
, and
Zohdi
,
T. I.
,
2007
, “
A Numerical Method for Homogenization in Non-Linear Elasticity
,”
Comput. Mech.
,
40
(2), pp.
281
298
.
262.
El Houdaigui
,
F.
,
Forest
,
S.
,
Gourgues
,
A.-F.
, and
Jeulin
,
D.
,
2007
, “
On the Size of the Representative Volume Element for Isotropic Elastic Polycrystalline Copper
,”
IUTAM Symposium on Mechanical Behavior and Micro-Mechanics of Nanostructured Materials
(Solid Mechanics and Its Applications), Vol.
144
,
Y. L.
Bai
,
Q. S.
Zheng
, and
Y. G.
Wei
, eds.,
Springer
,
Dordrecht, The Netherlands
, pp.
171
180
.
263.
Gusev
,
A. A.
,
1997
, “
Representative Volume Element Size for Elastic Composites: A Numerical Study
,”
J. Mech. Phys. Solids
,
45
(9), pp.
1449
1459
.
264.
Shan
,
Z.
, and
Gokhale
,
A. M.
,
2002
, “
Representative Volume Element for Non-Uniform Micro-Structure
,”
Comput. Mater. Sci.
,
24
(3), pp.
361
379
.
265.
Dirrenberger
,
J.
,
Forest
,
S.
, and
Jeulin
,
D.
,
2014
, “
Towards Gigantic RVE Sizes for 3D Stochastic Fibrous Networks
,”
Int. J. Solids Struct.
,
51
(2), pp.
359
376
.
266.
Harper
,
L. T.
,
Qian
,
C.
,
Turner
,
T. A.
,
Li
,
S.
, and
Warrior
,
N. A.
,
2012
, “
Representative Volume Elements for Discontinuous Carbon Fibre Composites—Part 2: Determining the Critical Size
,”
Compos. Sci. Technol.
,
72
(2), pp.
204
210
.
267.
Jafari
,
A.
,
Afaghi Khatibi
,
A.
, and
Mosavi Mashhadi
,
M.
,
2011
, “
Comprehensive Investigation on Hierarchical Multiscale Homogenization Using Representative Volume Element for Piezoelectric Nanocomposites
,”
Composites: Part B
,
42
(3), pp.
553
561
.
268.
Galli
,
M.
,
Cugnoni
,
J.
, and
Botsis
,
J.
,
2012
, “
Numerical and Statistical Estimates of the Representative Volume Element of Elastoplastic Random Composites
,”
Eur. J. Mech.—A/Solids
,
33
, pp.
31
38
.
269.
Trias
,
D.
,
Costa
,
J.
,
Turon
,
A.
, and
Hurtado
,
J. E.
,
2006
, “
Determination of the Critical Size of a Statistical Representative Volume Element (SRVE) for Carbon Reinforced Polymers
,”
Acta Mater.
,
54
(13), pp.
3471
3484
.
270.
Gitman
,
I. M.
,
Askes
,
H.
, and
Sluys
,
L. J.
,
2007
, “
Representative Volume: Existence and Size Determination
,”
Eng. Fract. Mech.
,
74
(16), pp.
2518
2534
.
271.
Böhm
,
H. J.
, and
Han
,
W.
,
2001
, “
Comparisons Between Three-Dimensional and Two-Dimensional Multi-Particle Unit Cell Models for Particle Reinforced Metal Matrix Composites
,”
Model. Simul. Mater. Sci. Eng.
,
9
(2), pp.
47
65
.
272.
Pelissou
,
C.
,
Baccou
,
J.
,
Monerie
,
Y.
, and
Perales
,
F.
,
2009
, “
Determination of the Size of the Representative Volume Element for Random Quasi-Brittle Composites
,”
Int. J. Solids Struct.
,
46
(14–15), pp.
2842
2855
.
273.
Hoang
,
T. H.
,
Guerich
,
M.
, and
Yvonnet
,
J.
,
2016
, “
Determining the Size of RVE for Nonlinear Random Composites in an Incremental Computational Homogenization Framework
,”
J. Eng. Mech.
,
142
(5), p.
04016018
.
274.
Stroeven
,
M.
,
Askes
,
H.
, and
Sluys
,
L. J.
,
2004
, “
Numerical Determination of Representative Volumes for Granular Materials
,”
Comput. Methods Appl. Mech. Eng.
,
193
(30–32), pp.
3221
3238
.
275.
Thomas
,
M.
,
Boyard
,
N.
,
Perez
,
L.
,
Jarny
,
Y.
, and
Delaunay
,
D.
,
2008
, “
Representative Volume Element of Anisotropic Unidirectional Carbon-Epoxy Composite With High-Fibre Volume Fraction
,”
Compos. Sci. Technol.
,
68
(15–16), pp.
3184
3192
.
276.
Khisaeva
,
Z. F.
, and
Ostoja-Starzewski
,
M.
,
2006
, “
On the Size of RVE in Finite Elasticity of Random Composites
,”
J. Elasticity
,
85
, pp.
153
173
.
277.
Temizer
,
İ.
,
Wu
,
T.
, and
Wriggers
,
P.
,
2013
, “
On the Optimality of the Window Method in Computational Homogenization
,”
Int. J. Eng. Sci.
,
64
, pp.
66
73
.
278.
Salmi
,
M.
,
Auslender
,
F.
,
Bornert
,
M.
, and
Fogli
,
M.
,
2012
, “
Apparent and Effective Mechanical Properties of Linear Matrix-Inclusion Random Composites: Improved Bounds for the Effective Behavior
,”
Int. J. Solids Struct.
,
49
(10), pp.
1195
1211
.
279.
Glüge
,
R.
,
Weber
,
M.
, and
Bertram
,
A.
,
2012
, “
Comparison of Spherical and Cubical Statistical Volume Elements With Respect to Convergence, Anisotropy, and Localization Behavior
,”
Comput. Mater. Sci.
,
63
, pp.
91
104
.
280.
Talebi
,
H.
,
Zi
,
G.
,
Silani
,
M.
,
Samaniego
,
E.
, and
Rabczuk
,
T.
,
2012
, “
A Simple Circular Cell Method for Multilevel Finite Element Analysis
,”
J. Appl. Math.
,
2012
, p.
526846
.
281.
Meier
,
H. A.
,
Steinmann
,
P.
, and
Kuhl
,
E.
,
2008
, “
Towards Multiscale Computation of Confined Granular Media: Contact Forces, Stresses and Tangent Operators
,”
Tech. Mech.
,
28
, pp.
32
42
.
282.
Balzani
,
D.
,
Scheunemann
,
L.
,
Brands
,
D.
, and
Schröder
,
J.
,
2014
, “
Construction of Two- and Three-Dimensional Statistically Similar RVEs for Coupled Micro–Macro Simulations
,”
Comput. Mech.
,
54
(5), pp.
1269
1284
.
283.
Scheunemann
,
L.
,
Balzani
,
D.
,
Brands
,
D.
, and
Schröder
,
J.
,
2015
, “
Design of 3D Statistically Similar Representative Volume Elements Based on Minkowski Functionals
,”
Mech. Mater.
,
90
, pp.
185
201
.
284.
Swaminathan
,
S.
, and
Ghosh
,
S.
,
2006
, “
Statistically Equivalent Representative Volume Elements for Unidirectional Composite Microstructures: Part I—Without Damage
,”
J. Compos. Mater.
,
40
, pp.
583
604
.
285.
Swaminathan
,
S.
, and
Ghosh
,
S.
,
2006
, “
Statistically Equivalent Representative Volume Elements for Unidirectional Composite Microstructures: Part II—With Interfacial Debonding
,”
J. Compos. Mater.
,
40
, pp.
605
621
.
286.
Zeman
,
J.
, and
Šejnoha
,
M.
,
2001
, “
Numerical Evaluation of Effective Elastic Proper Ties of Graphite Fiber Tow Impregnated by Polymer Matrix
,”
J. Mech. Phys. Solids
,
49
(1), pp.
69
90
.
287.
Ren
,
Z.-Y.
, and
Zheng
,
Q.-S.
,
2002
, “
A Quantitative Study of Minimum Sizes of Representative Volume Elements of Cubic Polycrystals-Numerical Experiments
,”
J. Mech. Phys. Solids
,
50
(4), pp.
881
893
.
288.
Ren
,
Z.-Y.
, and
Zheng
,
Q.-S.
,
2004
, “
Effects of Grain Sizes, Shapes, and Distribution on Minimum Sizes of Representative Volume Elements of Cubic Polycrystals
,”
Mech. Mater.
,
36
(12), pp.
1217
1229
.
289.
Moussaddy
,
H.
,
Therriault
,
D.
, and
Lévesque
,
M.
,
2013
, “
Assessment of Existing and Introduction of a New and Robust Efficient Definition of the Representative Volume Element
,”
Int. J. Solids Struct.
,
50
(24), pp.
3817
3828
.
290.
Chow
,
T. S.
,
1980
, “
The Effect of Particle Shape on the Mechanical Properties of Filled Polymers
,”
J. Mater. Sci.
,
15
(8), pp.
1873
1888
.
291.
Lee
,
B. J.
, and
Mear
,
M. E.
,
1991
, “
Effect of Inclusion Shape on the Stiffness of Nonlinear Two-Phase Composites
,”
J. Mech. Phys. Solids
,
39
(5), pp.
627
649
.
292.
Llorca
,
J.
,
Needleman
,
A.
, and
Suresh
,
S.
,
1991
, “
An Analysis of the Effects of Matrix Void Growth on Deformation and Ductility in Metal-Ceramic Composites
,”
Acta Metall. Mater.
,
39
(10), pp.
2317
2335
.
293.
Wang
,
Y. M.
, and
Weng
,
G. J.
,
1992
, “
The Influence of Inclusion Shape on the Overall Viscoelastic Behavior of Composites
,”
ASME J. Appl. Mech.
,
59
(3), pp.
510
518
.
294.
Böhm
,
H. J.
,
Rammerstorfer
,
F. G.
,
Fischer
,
F. D.
, and
Siegmund
,
T.
,
1994
, “
Microscale Arrangement Effects on the Thermomechanical Behavior of Advanced Two-Phase Materials
,”
J. Eng. Mater. Technol.
,
116
(3), pp.
268
273
.
295.
Monette
,
L.
,
Anderson
,
M. P.
, and
Grest
,
G. S.
,
1994
, “
Effect of Volume Fraction and Morphology of Reinforcing Phases in Composites
,”
J. Appl. Phys.
,
75
, pp.
1155
1170
.
296.
Ju
,
J. W.
, and
Chen
,
T. M.
,
1994
, “
Micromechanics and Effective Moduli of Elastic Composites Containing Randomly Dispersed Ellipsoidal Inhomogeneities
,”
Acta Mech.
,
103
(1), pp.
103
121
.
297.
Ponte Castañeda
,
P.
, and
Willis
,
J. R.
,
1995
, “
The Effect of Spatial Distribution on the Effective Behavior of Composite Materials and Cracked Media
,”
J. Mech. Phys. Solids
,
43
(12), pp.
1919
1951
.
298.
Shen
,
Y.-L.
,
Finot
,
M.
,
Needleman
,
A.
, and
Suresh
,
S.
,
1994
, “
Effective Elastic Response of Two-Phase Composites
,”
Acta Metall. Mater.
,
42
, pp.
77
97
.
299.
Ghosh
,
S.
,
Nowak
,
Z.
, and
Lee
,
K.
,
1997
, “
Quantitative Characterization and Modeling of Composite Microstructures by Voronoi Cells
,”
Acta Mater.
,
45
(1), pp.
2215
2234
.
300.
Deve
,
H. E.
,
1999
, “
Effect of Fiber Spatial Arrangement on the Transverse Strength of Titanium Matrix Composites
,”
Metall. Mater. Trans. A
,
30
(9), pp.
2513
2522
.
301.
Ohno
,
N.
,
Wu
,
X.
, and
Matsuda
,
T.
,
2000
, “
Homogenized Properties of Elastic-Viscoplastic Composites With Periodic Internal Structures
,”
Int. J. Mech. Sci.
,
42
(8), pp.
1519
1536
.
302.
Segurado
,
J.
,
González
,
C.
, and
Llorca
,
J.
,
2003
, “
A Numerical Investigation of the Effect of Particle Clustering on the Mechanical Properties of Composites
,”
Acta Mater.
,
51
(8), pp.
2355
2369
.
303.
Stora
,
E.
,
He
,
Q.-C.
, and
Bary
,
B.
,
2006
, “
Influence of Inclusion Shapes on the Effective Linear Elastic Properties of Hardened Cement Pastes
,”
Cem. Concr. Res.
,
36
(7), pp.
1330
1344
.
304.
Terada
,
K.
,
Watanabe
,
I.
, and
Akiyama
,
M.
,
2006
, “
Effects of Shape and Size of Crystal Grains on the Strengths of Polycrystalline Metals
,”
Int. J. Multiscale Comput. Eng.
,
4
(4), pp.
445
460
.
305.
Romanova
,
V. A.
,
Balokhonov
,
R. R.
, and
Schmauder
,
S.
,
2009
, “
The Influence of the Reinforcing Particle Shape and Interface Strength on the Fracture Behavior of a Metal Matrix Composite
,”
Acta Mater.
,
57
(1), pp.
97
107
.
306.
Ayyar
,
A.
,
Crawford
,
G. A.
,
Williams
,
J. J.
, and
Chawla
,
N.
,
2008
, “
Numerical Simulation of the Effect of Particle Spatial Distribution and Strength on Tensile Behavior of Particle Reinforced Composites
,”
Comput. Mater. Sci.
,
44
(2), pp.
496
506
.
307.
Marcos-Gómez
,
D.
,
Ching-Lloyd
,
J.
,
Elizalde
,
M. R.
,
Clegg
,
W. J.
, and
Molina-Aldareguia
,
J. M.
,
2010
, “
Predicting the Thermal Conductivity of Composite Materials With Imperfect Interfaces
,”
Compos. Sci. Technol.
,
70
(16), pp.
2276
2283
.
308.
Williams
,
J. J.
,
Segurado
,
J.
,
Llorca
,
J.
, and
Chawla
,
N.
,
2012
, “
Three Dimensional (3D) Microstructure-Based Modeling of Interfacial Decohesion in Particle Reinforced Metal Matrix Composites
,”
Mater. Sci. Eng.: A
,
557
(16), pp.
113
118
.
309.
Mikdam
,
A.
,
Makradi
,
A.
,
Koutsawa
,
Y.
, and
Belouettar
,
S.
,
2013
, “
Microstructure Effect on the Mechanical Properties of Heterogeneous Composite Materials
,”
Composites: Part B
,
44
(1), pp.
714
721
.
310.
Mortazavi
,
B.
,
Bardon
,
J.
, and
Ahzi
,
S.
,
2013
, “
Interphase Effect on the Elastic and Thermal Conductivity Response of Polymer Nanocomposite Materials: 3D Finite Element Study
,”
Comput. Mater. Sci.
,
69
, pp.
100
106
.
311.
Savvas
,
D.
,
Stefanou
,
G.
,
Papadrakakis
,
M.
, and
Deodatis
,
G.
,
2014
, “
Homogenization of Random Heterogeneous Media With Inclusions of Arbitrary Shape Modeled by XFEM
,”
Comput. Mech.
,
54
(5), pp.
1221
1235
.
312.
Altendorf
,
H.
,
Jeulin
,
D.
, and
Willot
,
F.
,
2014
, “
Influence of the Fiber Geometry on the Macroscopic Elastic and Thermal Properties
,”
Int. J. Solids Struct.
,
51
(23–24), pp.
3807
3822
.
313.
El Moumen
,
A.
,
Kanit
,
T.
,
Imad
,
A.
, and
El Minor
,
H.
,
2015
, “
Effect of Reinforcement Shape on Physical Properties and Representative Volume Element of Particles-Reinforced Composites: Statistical and Numerical Approaches
,”
Mech. Mater.
,
83
, pp.
1
16
.
314.
El Moumen
,
A.
,
Kanit
,
T.
,
Imad
,
A.
, and
El Minor
,
H.
,
2015
, “
Computational Thermal Conductivity in Porous Materials Using Homogenization Techniques: Numerical and Statistical Approaches
,”
Comput. Mater. Sci.
,
97
, pp.
148
158
.
315.
Brockenbrough
,
J. R.
,
Suresh
,
S.
, and
Wienecke
,
H. A.
,
1991
, “
Deformation of Metal-Matrix Composites With Continuous Fibers: Geometrical Effects of Fiber Distribution and Shape
,”
Acta Metall. Mater.
,
39
(5), pp.
735
752
.
316.
Kouznetsova
,
V. G.
,
Brekelmans
,
W. A. M.
, and
Baaijens
,
F. P. T.
,
2001
, “
An Approach to Micro–Macro Modeling of Heterogeneous Materials
,”
Comput. Mech.
,
27
(1), pp.
37
48
.
317.
Trias
,
D.
,
Costa
,
J.
,
Mayugo
,
J. A.
, and
Hurtado
,
J. E.
,
2006
, “
Random Models Versus Periodic Models for Fibre Reinforced Composites
,”
Comput. Mater. Sci.
,
38
(2), pp.
316
324
.
318.
Segurado
,
J.
, and
Llorca
,
J.
,
2006
, “
Computational Micromechanics of Composites: The Effect of Particle Spatial Distribution
,”
Mech. Mater.
,
38
(8–10), pp.
873
883
.
319.
Kari
,
S.
,
Berger
,
H.
,
Rodriguez-Ramos
,
R.
, and
Gabbert
,
U.
,
2007
, “
Computational Evaluation of Effective Material Properties of Composites Reinforced by Randomly Distributed Spherical Particles
,”
Compos. Struct.
,
77
(2), pp.
223
231
.
320.
Tan
,
H.
,
Huang
,
Y.
,
Liu
,
C.
,
Ravichandran
,
G.
,
Inglis
,
H. M.
, and
Geubelle
,
P. H.
,
2007
, “
The Uniaxial Tension of Particulate Composite Materials With Nonlinear Interface Debonding
,”
Int. J. Solids Struct.
,
44
(6), pp.
1809
1822
.
321.
Chawla
,
N.
,
Sidhu
,
R. S.
, and
Ganesh
,
V. V.
,
2006
, “
Three-Dimensional Visualization and Microstructure-Based Modeling of Deformation in Particle-Reinforced Composites
,”
Acta Mater.
,
54
(6), pp.
1541
1548
.
322.
Li
,
Y.
,
Waas
,
A. M.
, and
Arruda
,
E. M.
,
2011
, “
A Closed-Form, Hierarchical, Multi-Interphase Model for Composites—Derivation, Verification and Application to Nanocomposites
,”
J. Mech. Phys. Solids
,
59
(1), pp.
43
63
.
323.
Mortazavi
,
B.
,
Baniassadi
,
M.
,
Bardon
,
J.
, and
Ahzi
,
S.
,
2013
, “
Modeling of Two-Phase Random Composite Materials by Finite Element, Mori-Tanaka and Strong Contrast Methods
,”
Composites Part B
,
45
(1), pp.
1117
1125
.
324.
Kochmann
,
D. M.
, and
Venturini
,
G. N.
,
2013
, “
Homogenized Mechanical Properties of Auxetic Composite Materials in Finite-Strain Elasticity
,”
Smart Mater. Struct.
,
22
(8), p.
084004
.
325.
Kulkarni
,
M. G.
,
Geubelle
,
P. H.
, and
Matouš
,
K.
,
2009
, “
Multi-Scale Modeling of Heterogeneous Adhesives: Effect of Particle Decohesion
,”
Mech. Mater.
,
41
(5), pp.
573
583
.
326.
Matouš
,
K.
,
Kulkarni
,
M. G.
, and
Geubelle
,
P. H.
,
2008
, “
Multiscale Cohesive Failure Modeling of Heterogeneous Adhesives
,”
J. Mech. Phys. Solids
,
56
(4), pp.
1511
1533
.
327.
McBride
,
A.
,
Mergheim
,
J.
,
Javili
,
A.
,
Steinmann
,
P.
, and
Bargmann
,
S.
,
2012
, “
Micro-to-Macro Transitions for Heterogeneous Material Layers Accounting for In-Plane Stretch
,”
J. Mech. Phys. Solids
,
60
(6), pp.
1221
1239
.
328.
Ghosh
,
S.
, and
Moorthy
,
S.
,
1995
, “
Elastic-Plastic Analysis of Arbitrary Heterogeneous Materials With the Voronoi Cell Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
121
(1–4), pp.
373
409
.
329.
Ghosh
,
S.
,
Lee
,
K.
, and
Moorthy
,
S.
,
1995
, “
Multiple Scale Analysis of Heterogeneous Elastic Structures Using Homogenization Theory and Voronoi Cell Finite Element Method
,”
Int. J. Solids Struct.
,
32
(1), pp.
27
62
.
330.
Moorthy
,
S.
, and
Ghosh
,
S.
,
1996
, “
A Model for Analysis of Arbitrary Composite and Porous Microstructures With Voronoi Cell Finite Elements
,”
Int. J. Numer. Methods Eng.
,
39
(14), pp.
2363
2398
.
331.
Moulinec
,
H.
, and
Suquet
,
P.
,
1998
, “
A Numerical Method for Computing the Overall Response of Nonlinear Composites With Complex Microstructure
,”
Comput. Methods Appl. Mech. Eng.
,
157
(1–2), pp.
69
94
.
332.
Lebensohn
,
R. A.
,
2001
, “
N-site modeling of a 3D Viscoplastic Polycrystal Using Fast Fourier Transform
,”
Acta Mater.
,
49
(14), pp.
2723
2737
.
333.
Vinogradov
,
V.
, and
Milton
,
G. W.
, “
An Accelerated FFT Algorithm for Thermoelastic and Non-Linear Composites
,”
Int. J. Numer. Methods Eng.
,
76
(11), pp.
1678
1695
.
334.
Lee
,
S.-B.
,
Lebensohn
,
R. A.
, and
Rollett
,
A. D.
,
2011
, “
Modeling the Viscoplastic Micromechanical Response of Two-Phase Materials Using Fast Fourier Transforms
,”
Int. J. Plast.
,
27
(5), pp.
707
727
.
335.
Escoda
,
J.
,
Willot
,
F.
,
Jeulin
,
D.
,
Sanahuja
,
J.
, and
Toulemonde
,
C.
,
2011
, “
Estimation of Local Stresses and Elastic Properties of a Mortar Sample by FFT Computation of Fields on a 3D Image
,”
Cem. Concr. Res.
,
41
(5), pp.
542
556
.
336.
Moulinec
,
H.
, and
Silva
,
F.
,
2014
, “
Comparison of Three Accelerated FFT-Based Schemes for Computing the Mechanical Response of Composite Materials
,”
Int. J. Numer. Methods Eng.
,
97
(13), pp.
960
985
.
337.
Spahn
,
J.
,
Andrä
,
H.
,
Kabel
,
M.
, and
Müller
,
R.
,
2014
, “
A Multiscale Approach for Modeling Progressive Damage of Composite Materials Using Fast Fourier Transforms
,”
Comput. Methods Appl. Mech. Eng.
,
268
, pp.
871
883
.
338.
Kabel
,
M.
,
Merkert
,
D.
, and
Schneider
,
M.
,
2015
, “
Use of Composite Voxels in FFT-Based Homogenization
,”
Comput. Methods Appl. Mech. Eng.
,
294
, pp.
168
188
.
339.
Michel
,
J. C.
,
Moulinec
,
H.
, and
Suquet
,
P.
,
1999
, “
Effective Properties of Composite Materials With Periodic Microstructure: A Computational Approach
,”
Comput. Methods Appl. Mech. Eng.
,
172
(1–4), pp.
109
143
.
340.
Monchiet
,
V.
, and
Bonnet
,
G.
,
2012
, “
A Polarization Based FFT Iterative Scheme for Computing the Effective Properties of Elastic Composites With Arbitrary Contrast
,”
Int. J. Numer. Methods Eng.
,
89
(11), pp.
1419
1436
.
341.
Michel
,
J. C.
,
Moulinec
,
H.
, and
Suquet
,
P.
,
2000
, “
A Computational Method Based on Augmented Lagrangians and Fast Fourier Transforms for Composites With High Contrast
,”
Comput. Model. Eng. Sci.
,
1
, pp.
79
88
.
342.
Michel
,
J. C.
,
Moulinec
,
H.
, and
Suquet
,
P.
,
2001
, “
A Computational Scheme for Linear and Non-Linear Composites With Arbitrary Phase Contrast
,”
Int. J. Numer. Methods Eng.
,
52
(1–2), pp.
139
160
.
343.
Brisard
,
S.
, and
Dormieux
,
L.
,
2010
, “
FFT-Based Methods for the Mechanics of Composites: A General Variational Framework
,”
Comput. Mater. Sci.
,
49
(3), pp.
663
671
.
344.
Willot
,
F.
,
Abdallah
,
B.
, and
Pellegrini
,
Y.-P.
,
2014
, “
Fourier-Based Schemes With Modified Green Operator for Computing the Electrical Response of Heterogeneous Media With Accurate Local Fields
,”
Int. J. Numer. Methods Eng.
,
98
(7), pp.
518
533
.
345.
Miehe
,
C.
, and
Dettmar
,
J.
,
2004
, “
A Framework for Micro–Macro Transitions in Periodic Particle Aggregates of Granular Materials
,”
Comput. Methods Appl. Mech. Eng.
,
193
(3–5), pp.
225
256
.
346.
Nguyen
,
T. K.
,
Combe
,
G.
,
Caillerie
,
D.
, and
Desrues
,
J.
,
2014
, “
FEM x DEM Modelling of Cohesive Granular Materials: Numerical Homogenisation and Multi-Scale Simulations
,”
Acta Geophys.
,
62
, pp.
1109
1126
.
347.
Guo
,
N.
, and
Zhao
,
J.
,
2014
, “
A Coupled FEM/DEM Approach for Hierarchical Multiscale Modelling of Granular Media
,”
Int. J. Numer. Methods Eng.
,
99
(11), pp.
789
818
.
348.
Kamiński
,
M.
,
1999
, “
Boundary Element Method Homogenization of the Periodic Linear Elastic Fiber Composites
,”
Eng. Anal. Boundary Elem.
,
23
(10), pp.
815
823
.
349.
Okada
,
H.
,
Fukui
,
Y.
, and
Kumazawa
,
N.
,
2001
, ”
Homogenization Method for Heterogeneous Material Based on Boundary Element Method
,”
Comput. Struct.
,
79
(20–21), pp.
1987
2007
.
350.
Procházka
,
P.
,
2001
, “
Homogenization of Linear and of Debonding Composites Using the BEM
,”
Eng. Anal. Boundary Elem.
,
25
(9), pp.
753
769
.
351.
Renard
,
J.
, and
Marmonier
,
M. F.
,
1987
, “
Etude de l'initiation de l'endommagement dans la Matrice d'un matériau Composite par une Méthode d'homogénisation
,”
Aerosp. Sci. Technol.
,
6
, pp.
37
51
.
352.
Takano
,
N.
,
Ohnishi
,
Y.
,
Zako
,
M.
, and
Nishiyabu
,
K.
,
2000
, “
The Formulation of Homogenization Method Applied to Large Deformation Problem for Composite Materials
,”
Int. J. Solids Struct.
,
37
(44), pp.
6517
6535
.
353.
Feyel
,
F.
, and
Chaboche
,
J.-L.
,
2000
, “
FE2 Multiscale Approach for Modelling the Elastoviscoplastic Behaviour of Long Fibre SiC/Ti Composite Materials
,”
Comput. Methods Appl. Mech. Eng.
,
183
(3–4), pp.
309
330
.
354.
Feyel
,
F.
,
2003
, “
A Multilevel Finite Element Method (FE2) to Describe the Response of Highly Non-Linear Structures Using Generalized Continua
,”
Comput. Methods Appl. Mech. Eng.
,
192
(28–30), pp.
3233
3244
.
355.
Terada
,
K.
, and
Kikuchi
,
N.
,
2001
, “
A Class of General Algorithms for Multi-Scale Analyses of Heterogeneous Media
,”
Comput. Methods Appl. Mech. Eng.
,
190
(40–41), pp.
5427
5464
.
356.
Miehe
,
C.
,
Schröder
,
J.
, and
Schotte
,
J.
,
1999
, “
Computational Homogenization Analysis in Finite Plasticity Simulation of Texture Development in Polycrystalline Materials
,”
Comput. Methods Appl. Mech. Eng.
,
171
(3–4), pp.
387
418
.
357.
Miehe
,
C.
, and
Koch
,
A.
,
2002
, “
Computational Micro-To-Macro Transitions of Discretized Microstructures Undergoing Small Strains
,”
Arch. Appl. Mech.
,
72
(4), pp.
300
317
.
358.
Miehe
,
C.
,
Schröder
,
J.
, and
Bayreuther
,
C.
,
2002
, “
On the Homogenization Analysis of Composite Materials Based on Discretized Fluctuations on the Micro-Structure
,”
Acta Mech.
,
155
(1), pp.
1
16
.
359.
Smit
,
R. J. M.
,
Brekelmans
,
W. A. M.
, and
Meijer
,
H. E. H.
,
1998
, “
Prediction of the Mechanical Behavior of Nonlinear Heterogeneous Systems by Multi-Level Finite Element Modeling
,”
Comput. Methods Appl. Mech. Eng.
,
155
(1–2), pp.
181
192
.
360.
Segurado
,
J.
, and
Llorca
,
J.
,
2002
, “
A Numerical Approximation to the Elastic Properties of Sphere-Reinforced Composites
,”
J. Mech. Phys. Solids
,
50
(10), pp.
2107
2121
.
361.
Terada
,
K.
,
Saiki
,
I.
,
Matsui
,
K.
, and
Yamakawa
,
Y.
,
2003
, “
Two-Scale Kinematics and Linearization for Simultaneous Two-Scale Analysis of Periodic Heterogeneous Solids at Finite Strain
,”
Comput. Methods Appl. Mech. Eng.
,
192
(31–32), pp.
3531
3563
.
362.
Klinge
,
S.
, and
Hackl
,
K.
,
2012
, “
Application of the Multiscale FEM to the Modeling of Nonlinear Composites With a Random Microstructure
,”
Int. J. Multiscale Comput. Eng.
,
10
(3), pp.
213
227
.
363.
Schröder
,
J.
,
2014
, “
A Numerical Two-Scale Homogenization Scheme: The FE2-Method
,”
Plasticity and Beyond
(CISM Int. Centre for Mechanical Sciences), Vol.
550
,
J.
Schröder
, and
K.
Hackl
, eds.,
Springer Vienna
,
Berlin
, pp.
1
64
.
364.
Moës
,
N.
,
Cloirec
,
M.
,
Cartraud
,
P.
, and
Remacle
,
J.-F.
,
2003
, “
A Computational Approach to Handle Complex Microstructure Geometries
,”
Comput. Methods Appl. Mech. Eng.
,
192
(28–30), pp.
3163
3177
.
365.
Bouhala
,
L.
,
Koutsawa
,
Y.
,
Makradi
,
A.
, and
Belouettar
,
S.
,
2014
, “
An Advanced Numerical Method for Predicting Effective Elastic Properties of Heterogeneous Composite Materials
,”
Compos. Struct.
,
117
, pp.
114
123
.
366.
Feyel
,
F.
,
1998
, “
Application du Calcul Parallèle aux Modèles à Grand Nombre De Variables Internes
,” Ph.D. thesis, Ecole des Mines de Paris, Paris, France.
367.
Feyel
,
F.
,
1999
, “
Multiscale FE2 oviscoplastic Analysis of Composite Structures
,”
Comput. Mater. Sci.
,
16
(1–4), pp.
344
354
.
368.
Unger
,
J. F.
,
2013
, “
An FE2-X1 approach for Multiscale Localization Phenomena
,”
J. Mech. Phys. Solids
,
61
(4), pp.
928
948
.
369.
Mosby
,
M.
, and
Matouš
,
K.
,
2015
, “
Hierarchically Parallel Coupled Finite Strain Multiscale Solver for Modeling Heterogeneous Layers
,”
Int. J. Numer. Methods Eng.
,
102
(3–4), pp.
748
765
.
370.
Šolinc
,
U.
, and
Korelc
,
J.
,
2015
, “
A Simple Way to Improved Formulation of FE2 Analysis
,”
Comput. Mech.
,
56
(5), pp.
905
915
.
371.
Matsui
,
K.
,
Terada
,
K.
, and
Yuge
,
K.
,
2004
, “
Two-Scale Finite Element Analysis of Heterogeneous Solids With Periodic Microstructures
,”
Comput. Struct.
,
82
(7–8), pp.
593
606
.
372.
Somer
,
D. D.
,
de Souza Neto
,
E. A.
,
Dettmer
,
W. G.
, and
Perić
,
D.
,
2009
, “
A Sub-Stepping Scheme for Multi-Scale Analysis of Solids
,”
Comput. Methods Appl. Mech. Eng.
,
198
(9–12), pp.
1006
1016
.
373.
Abdulle
,
A.
, and
Bai
,
Y.
,
2012
, “
Reduced Basis Finite Element Heterogeneous Multiscale Method for High-Order Discretizations of Elliptic Homogenization Problems
,”
J. Comput. Phys.
,
231
(21), pp.
7014
7036
.
374.
Yadegari
,
S.
,
Turteltaub
,
S.
, and
Suiker
,
A. S. J.
,
2015
, “
Generalized Grain Cluster Method for Multiscale Response of Multiphase Materials
,”
Comput. Mech.
,
56
(2), pp.
193
219
.
375.
Otero
,
F.
,
Martinez
,
X.
,
Oller
,
S.
, and
Salomón
,
O.
,
2015
, “
An Efficient Multi-Scale Method for Non-Linear Analysis of Composite Structures
,”
Compos. Struct.
,
131
, pp.
707
719
.
376.
Zohdi
,
T. I.
,
Oden
,
J. T.
, and
Rodin
,
G. J.
,
1996
, “
Hierarchical Modeling of Heterogeneous Bodies
,”
Comput. Methods Appl. Mech. Eng.
,
138
(1–4), pp.
273
298
.
377.
Zohdi
,
T. I.
, and
Wriggers
,
P.
,
1999
, “
A Domain Decomposition Method for Bodies With Heterogeneous Microstructure Based on Material Regularization
,”
Int. J. Solids Struct.
,
36
(17), pp.
2507
2525
.
378.
Kulkarni
,
M. G.
,
Matouš
,
K.
, and
Geubelle
,
P. H.
,
2010
, “
Coupled Multi-Scale Cohesive Modeling of Failure in Heterogeneous Adhesives
,”
Int. J. Numer. Methods Eng.
,
84
(8), pp.
916
946
.
379.
Temizer
,
İ.
, and
Wriggers
,
P.
,
2007
, “
An Adaptive Method for Homogenization in Orthotropic Nonlinear Elasticity
,”
Comput. Methods Appl. Mech. Eng.
,
196
(35–36), pp.
3409
3423
.
380.
Yvonnet
,
J.
,
Gonzalez
,
D.
, and
He
,
Q.-C.
,
2009
, “
Numerically Explicit Potentials for the Homogenization of Nonlinear Elastic Heterogeneous Materials
,”
Comput. Methods Appl. Mech. Eng.
,
198
(33–36), pp.
2723
2737
.
381.
Tran
,
A. B.
,
Yvonnet
,
J.
,
He
,
Q.-C.
,
Toulemonde
,
C.
, and
Sanahuja
,
J.
,
2011
, “
A Simple Computational Homogenization Method for Structures Made of Linear Heterogeneous Viscoelastic Materials
,”
Comput. Methods Appl. Mech. Eng.
,
200
(45–46), pp.
2956
2970
.
382.
Yvonnet
,
J.
,
Monteiro
,
E.
, and
He
,
Q.-C.
,
2013
, “
Computational Homogenization Method and Reduced Database Model for Hyperelastic Heterogeneous Structures
,”
Int. J. Multiscale Comput. Eng.
,
11
, pp.
201
225
.
383.
Le
,
B. A.
,
Yvonnet
,
J.
, and
He
,
Q.-C.
,
2015
, “
Computational Homogenization of Nonlinear Elastic Materials Using Neural Networks
,”
Int. J. Numer. Methods Eng.
,
104
(12), pp.
1061
1084
.
384.
Dvorak
,
G. J.
, and
Benveniste
,
Y.
,
1992
, “
On Transformation Strains and Uniform Fields in Multiphase Elastic Media
,”
Proc. R. Soc. London A
,
437
(1900), pp.
291
310
.
385.
Michel
,
J. C.
, and
Suquet
,
P.
,
2003
, “
Nonuniform Transformation Field Analysis
,”
Int. J. Solids Struct.
,
40
(5), pp.
6937
6955
.
386.
Oskay
,
C.
, and
Fish
,
J.
,
2007
, “
Eigendeformation-Based Reduced Order Homogenization for Failure Analysis of Heterogeneous Materials
,”
Comput. Methods Appl. Mech. Eng.
,
196
(7), pp.
1216
1243
.
387.
Sepe
,
V.
,
Marfia
,
S.
, and
Sacco
,
E.
,
2013
, “
A Nonuniform TFA Homogenization Technique Based on Piecewise Interpolation Functions of the Inelastic Field
,”
Int. J. Solids Struct.
,
50
(5), pp.
725
742
.
388.
Fritzen
,
F.
, and
Leuschner
,
M.
,
2013
, “
Reduced Basis Hybrid Computational Homogenization Based on a Mixed Incremental Formulation
,”
Comput. Methods Appl. Mech. Eng.
,
260
, pp.
143
154
.
389.
Fritzen
,
F.
, and
Böhlke
,
T.
,
2013
, “
Reduced Basis Homogenization of Viscoelastic Composites
,”
Compos. Sci. Technol.
,
76
, pp.
84
91
.
390.
Fritzen
,
F.
,
Marfia
,
S.
, and
Sepe
,
V.
,
2015
, “
Reduced Order Modeling in Nonlinear Homogenization: A Comparative Study
,”
Comput. Struct.
,
157
, pp.
114
131
.
391.
Yvonnet
,
J.
, and
He
,
Q.-C.
,
2007
, “
The Reduced Model Multiscale Method (R3M) for the Non-Linear Homogenization of Hyperelastic Media at Finite Strains
,”
J. Comput. Phys.
,
223
(1), pp.
341
368
.
392.
Yvonnet
,
J.
,
Zahrouni
,
H.
, and
Potier-Ferry
,
M.
,
2007
, “
A Model Reduction Method for the Post-Buckling Analysis of Cellular Microstructures
,”
Comput. Methods Appl. Mech. Eng.
,
197
(1–4), pp.
265
280
.
393.
Chinesta
,
F.
,
Ammar
,
A.
,
Lemarchand
,
F.
,
Beauchene
,
P.
, and
Boust
,
F.
, “
Alleviating Mesh Constraints: Model Reduction, Parallel Time Integration and High Resolution Homogenization
,”
Comput. Methods Appl. Mech. Eng.
,
197
(5), pp.
400
413
.
394.
Lamari
,
H.
,
Ammar
,
A.
,
Cartraud
,
P.
,
Legrain
,
G.
,
Chinesta
,
F.
, and
Jacquemin
,
F.
,
2010
, “
Routes for Efficient Computational Homogenization of Nonlinear Materials Using the Proper Generalized Decompositions
,”
Arch. Comput. Methods Eng.
,
17
(4), pp.
373
391
.
395.
Néron
,
D.
, and
Ladevèze
,
P.
,
2010
, “
Proper Generalized Decomposition for Multiscale and Multiphysics Problems
,”
Arch. Comput. Methods Eng.
,
17
(4), pp.
351
372
.
396.
Ladevèze
,
P.
,
Passieux
,
J.-C.
, and
Néron
,
D.
,
2010
, “
The LATIN Multiscale Computational Method and the Proper Generalized Decomposition
,”
Comput. Methods Appl. Mech. Eng.
,
199
(21–22), pp.
1287
1296
.
397.
Hernández
,
J. A.
,
Oliver
,
J.
,
Huespe
,
A. E.
,
Caicedo
,
M. A.
, and
Cante
,
J. C.
,
2014
, “
High-Performance Model Reduction Techniques in Computational Multiscale Homogenization
,”
Comput. Methods Appl. Mech. Eng.
,
276
, pp.
149
189
.
398.
Francfort
,
G. A.
,
1983
, “
Homogenization and Linear Thermoelasticity
,”
SIAM J. Math. Anal.
,
14
(4), pp.
696
708
.
399.
Turteltaub
,
S.
, and
Suiker
,
A. S. J.
,
2006
, “
A Multiscale Thermomechanical Model for Cubic to Tetragonal Martensitic Phase Transformations
,”
Int. J. Solids Struct.
,
43
(14–15), pp.
4509
4545
.
400.
Özdemir
,
I.
,
Brekelmans
,
W. A. M.
, and
Geers
,
M. G. D.
,
2008
, “
FE2 Computational Homogenization for the Thermo-Mechanical Analysis of Heterogeneous Solids
,”
Comput. Methods Appl. Mech. Eng.
,
198
(3–4), pp.
602
613
.
401.
Terada
,
K.
,
Kurumatani
,
M.
,
Ushida
,
T.
, and
Kikuchi
,
N.
,
2010
, “
A Method of Two-Scale Thermo-Mechanical Analysis for Porous Solids With Micro-Scale Heat Transfer
,”
Comput. Mech.
,
46
(2), pp.
269
285
.
402.
Temizer
,
İ.
, and
Wriggers
,
P.
,
2011
, “
Homogenization in Finite Thermoelasticity
,”
J. Mech. Phys. Solids
,
59
(2), pp.
344
372
.
403.
Mandadapu
,
K. K.
,
Sengupta
,
A.
, and
Papadopoulos
,
P.
,
2012
, “
A Homogenization Method for Thermomechanical Continua Using Extensive Physical Quantities
,”
Proc. R. Soc. London A
,
468
(2142), pp.
1696
1715
.
404.
Sengupta
,
A.
,
Papadopoulos
,
P.
, and
Taylor
,
R. L.
,
2012
, “
A Multiscale Finite Element Method for Modeling Fully Coupled Thermomechanical Problems in Solids
,”
Int. J. Numer. Methods Eng.
,
91
(13), pp.
1386
1405
.
405.
Blanco
,
P. J.
, and
Giusti
,
S. M.
,
2014
, “
Thermomechanical Multiscale Constitutive Modeling: Accounting for Microstructural Thermal Effects
,”
J. Elasticity
,
115
(1), pp.
27
46
.
406.
Javili
,
A.
,
Chatzigeorgiou
,
G.
, and
Steinmann
,
P.
,
2013
, “
Computational Homogenization in Magneto-Mechanics
,”
Int. J. Solids Struct.
,
50
(25–26), pp.
4197
4216
.
407.
Spieler
,
C.
,
Kästner
,
M.
,
Goldmann
,
J.
,
Brummund
,
J.
, and
Ulbricht
,
V.
,
2013
, “
XFEM Modeling and Homogenization of Magnetoactive Composites
,”
Acta Mech.
,
224
(11), pp.
2453
2469
.
408.
Chatzigeorgiou
,
G.
,
Javili
,
A.
, and
Steinmann
,
P.
,
2014
, “
Unified Magnetomechanical Homogenization Framework With Application to Magnetorheological Elastomers
,”
Math. Mech. Solids
,
19
(2), pp.
193
211
.
409.
Miehe
,
C.
,
Vallicotti
,
D.
, and
Teichtmeister
,
S.
,
2015
, “
Homogenization and Multiscale Stability Analysis in Finite Magneto-Electro-Elasticity
,”
GAMM Mitt.
,
38
(2), pp.
313
343
.
410.
Pettermann
,
H. E.
, and
Suresh
,
S.
,
2000
, “
A Comprehensive Unit Cell Model: A Study of Coupled Effects in Piezoelectric 1-3 Composites
,”
Int. J. Solids Struct.
,
37
(39), pp.
5447
5464
.
411.
Schröder
,
J.
,
2009
, “
Derivation of the Localization and Homogenization Conditions for Electro-Mechanically Coupled Problems
,”
Comput. Mater. Sci.
,
46
(3), pp.
595
599
.
412.
Schröder
,
J.
, and
Keip
,
M.-A.
,
2010
, “
A Framework for the Two-Scale Homogenization of Electro-Mechanically Coupled Boundary Value Problems
,”
Computer Methods in Mechanics
(Advanced Structured Materials), Vol.
1
,
M.
Kuczma
, and
K.
Wilmanski
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
311
329
.
413.
Zäh
,
D.
, and
Miehe
,
C.
,
2013
, “
Computational Homogenization in Dissipative Electro-Mechanics of Functional Materials
,”
Comput. Methods Appl. Mech. Eng.
,
267
, pp.
487
510
.
414.
Keip
,
M.-A.
,
Steinmann
,
P.
, and
Schröder
,
J.
,
2014
, “
Two-Scale Computational Homogenization of Electro-Elasticity at Finite Strains
,”
Comput. Methods Appl. Mech. Eng.
,
278
, pp.
62
79
.
415.
Miehe
,
C.
,
Vallicotti
,
D.
, and
Teichtmeister
,
S.
,
2016
, “
Homogenization and Multiscale Stability Analysis in Finite Magneto-Electro-Elasticity. Application to Soft Matter EE, ME and MEE Composites
,”
Comput. Methods Appl. Mech. Eng.
,
300
, pp.
294
346
.
416.
Chatzigeorgiou
,
G.
,
Javili
,
A.
, and
Steinmann
,
P.
,
2015
, “
Interface Properties Influence the Effective Dielectric Constant of Composites
,”
Philos. Mag.
,
95
(28–30), pp.
3402
3412
.
417.
Frey
,
J.
,
Chambon
,
R.
, and
Dascalu
,
C.
,
2013
, “
A Two-Scale Poromechanical Model for Cohesive Rocks
,”
Acta Geotech.
,
8
(2), pp.
107
124
.
418.
van den Eijnden
,
B.
,
Collin
,
F.
,
Bésuelle
,
P.
, and
Chambon
,
R.
,
2015
, “
A FE2 Model for Hydro-Mechanical Coupling
,”
Bifurcation and Degradation of Geomaterials in the New Millennium
(Springer Series in Geomechanics and Geoengineering),
K. T.
Chau
, and
J.
Zhao
, eds.,
Springer International Publishing
, pp.
53
59
.
419.
Terada
,
K.
,
Ito
,
T.
, and
Kikuchi
,
N.
,
1998
, “
Characterization of the Mechanical Behaviors of Solid-Fluid Mixture by the Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
153
(3–4), pp.
223
257
.
420.
Sandström
,
C.
,
Larsson
,
F.
,
Runesson
,
K.
, and
Johansson
,
H.
,
2013
, “
A Two-Scale Finite Element Formulation of Stokes Flow in Porous Media
,”
Comput. Methods Appl. Mech. Eng.
,
261–262
, pp.
96
104
.
421.
Lee
,
K.
,
Moorthy
,
S.
, and
Ghosh
,
S.
,
1999
, “
Multiple Scale Computational Model for Damage in Composite Materials
,”
Comput. Methods Appl. Mech. Eng.
,
172
(1–4), pp.
175
201
.
422.
Oskay
,
C.
, and
Fish
,
J.
,
2004
, “
Multiscale Modeling of Fatigue for Ductile Materials
,”
Int. J. Multiscale Comput. Eng.
,
2
, pp.
1
25
.
423.
Fish
,
J.
, and
Oskay
,
C.
,
2005
, “
A Nonlocal Multiscale Fatigue Model
,”
Mech. Adv. Mater. Struct.
,
12
(6), pp.
485
500
.
424.
Wriggers
,
P.
, and
Moftah
,
S. O.
,
2006
, “
Mesoscale Models for Concrete: Homogenisation and Damage Behaviour
,”
Finite Elem. Anal. Des.
,
42
(7), pp.
623
636
.
425.
González
,
C.
, and
Llorca
,
J.
,
2006
, “
Multiscale Modeling of Fracture in Fiber-Reinforced Composites
,”
Acta Mater.
,
54
(16), pp.
4171
4181
.
426.
Guidault
,
P. A.
,
Allix
,
O.
,
Champaney
,
L.
, and
Navarro
,
J. P.
,
2007
, “
A Two-Scale Approach With Homogenization for the Computation of Cracked Structures
,”
Comput. Struct.
,
85
(17–18), pp.
1360
1371
.
427.
Loehnert
,
S.
, and
Belytschko
,
T.
,
2007
, “
A Multiscale Projection Method for Macro/Microcrack Simulations
,”
Int. J. Numer. Methods Eng.
,
71
(12), pp.
1466
1482
.
428.
Massart
,
T. J.
,
Peerlings
,
R. H. J.
, and
Geers
,
M. G. D.
,
2007
, “
An Enhanced Multi-Scale Approach for Masonry Wall Computations With Localization of Damage
,”
Int. J. Numer. Methods Eng.
,
69
(5), pp.
1022
1059
.
429.
Dascalu
,
C.
,
Bilbie
,
G.
, and
Agiasofitou
,
E. K.
,
2008
, “
Damage and Size Effects in Elastic Solids: A Homogenization Approach
,”
Int. J. Solids Struct.
,
45
(2), pp.
409
430
.
430.
Belytschko
,
T.
,
Loehnert
,
S.
, and
Song
,
J.-H.
,
2008
, “
Multiscale Aggregating Discontinuities: A Method for Circumventing Loss of Material Stability
,”
Int. J. Numer. Methods Eng.
,
73
(6), pp.
869
894
.
431.
Hain
,
M.
, and
Wriggers
,
P.
,
2008
, “
Computational Homogenization of Micro-Structural Damage Due to Frost in Hardened Cement Paste
,”
Finite Elem. Anal. Des.
,
44
(5), pp.
233
244
.
432.
Song
,
J.-H.
, and
Belytschko
,
T.
,
2009
, “
Multiscale Aggregating Discontinuities Method for Micro–Macro Failure of Composites
,”
Composites Part B
,
40
(6), pp.
417
426
.
433.
Souza
,
F. V.
, and
Allen
,
D. H.
,
2010
, “
Multiscale Modeling of Impact on Heterogeneous Viscoelastic Solids Containing Evolving Microcracks
,”
Int. J. Numer. Methods Eng.
,
82
, pp.
464
504
.
434.
Mergheim
,
J.
,
2009
, “
A Variational Multiscale Method to Model Crack Propagation at Finite Strains
,”
Int. J. Numer. Methods Eng.
,
80
(3), pp.
269
289
.
435.
Verhoosel
,
C. V.
,
Remmers
,
J. J. C.
,
Guti
,
Mérrez
,
A.
, and
de Borst
,
R.
,
2010
, “
Computational Homogenization for Adhesive and Cohesive Failure in Quasi-Brittle Solids
,”
Int. J. Numer. Methods Eng.
,
83
(8–9), pp.
1155
1179
.
436.
Kaczmarczyk
,
L.
,
Pearce
,
C. J.
,
Bićanić
,
N.
, and
de Souza Neto
,
E.
,
2010
, “
Numerical Multiscale Solution Strategy for Fracturing Heterogeneous Materials
,”
Comput. Methods Appl. Mech. Eng.
,
199
(17–20), pp.
1100
1113
.
437.
Cid Alfaro
,
M. V.
,
Suiker
,
A. S. J.
,
Verhoosel
,
C. V.
, and
de Borst
,
R.
,
2010
, “
Numerical Homogenization of Cracking Processes in Thin Fibre-Epoxy Layers
,”
Eur. J. Mech.—A/Solids
,
29
(2), pp.
119
131
.
438.
Mercatoris
,
B. C. N.
, and
Massart
,
T. J.
,
2011
, “
A Coupled Two-Scale Computational Scheme for the Failure of Periodic Quasi-Brittle Thin Planar Shells and Its Application to Masonry
,”
Int. J. Numer. Methods Eng.
,
85
(9), pp.
1177
1206
.
439.
Nguyen
,
V. P.
,
Lloberas-Valls
,
O.
,
Stroeven
,
M.
, and
Sluys
,
L. J.
,
2011
, “
Homogenization-Based Multiscale Crack Modeling: From Micro-Diffusive Damage to Macro-Cracks
,”
Comput. Methods Appl. Mech. Eng.
,
200
(9–12), pp.
1220
1236
.
440.
Unger
,
J. F.
, and
Eckardt
,
S.
,
2011
, “
Multiscale Modeling of Concrete
,”
Arch. Comput. Methods Eng.
,
18
, pp.
341
393
.
441.
Coenen
,
E. W. C.
,
Kouznetsova
,
V. G.
,
Bosco
,
E.
, and
Geers
,
M. G. D.
,
2012
, “
A Multi-Scale Approach to Bridge Microscale Damage and Macroscale Failure: A Nested Computational Homogenization-Localization Framework
,”
Int. J. Fract.
,
178
(1), pp.
157
178
.
442.
Nguyen
,
V. P.
,
Stroeven
,
M.
, and
Sluys
,
L. J.
,
2012
, “
Multiscale Failure Modeling of Concrete: Micromechanical Modeling, Discontinuous Homogenization and Parallel Computations
,”
Comput. Methods Appl. Mech. Eng.
,
201–204
, pp.
139
156
.
443.
Greco
,
F.
,
Leonetti
,
L.
, and
Lonetti
,
P.
,
2013
, “
A Two-Scale Failure Analysis of Composite Materials in Presence of Fiber/Matrix Crack Initiation and Propagation
,”
Compos. Struct.
,
95
, pp.
582
597
.
444.
Toro
,
S.
,
Sánchez
,
P. J.
,
Huespe
,
A. E.
,
Giusti
,
S. M.
,
Blanco
,
P. J.
, and
Feijóo
,
R. A.
,
2014
, “
A Two-Scale Failure Model for Heterogeneous Materials: Numerical Implementation Based on the Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
97
(5), pp.
313
351
.
445.
Talebi
,
H.
,
Silani
,
M.
,
Bordas
,
S. P. A.
,
Kerfriden
,
P.
, and
Rabczuk
,
T.
,
2014
, “
A Computational Library for Multiscale Modeling of Material Failure
,”
Comput. Mech.
,
53
(5), pp.
1047
1071
.
446.
Bosco
,
E.
,
Kouznetsova
,
V. G.
, and
Geers
,
M. G. D.
,
2015
, “
Multi-Scale Computational Homogenization-Localization for Propagating Discontinuities Using X-FEM
,”
Int. J. Numer. Methods Eng.
,
102
(3–4), pp.
496
527
.
447.
Geymonat
,
G.
,
Müller
,
S.
, and
Triantafyllidis
,
N.
,
1993
, “
Homogenization of Nonlinearly Elastic Materials, Microscopic Bifurcation and Macroscopic Loss of Rank-One Convexity
,”
Arch. Ration. Mech. Anal.
,
122
(3), pp.
231
290
.
448.
Miehe
,
C.
,
Schröder
,
J.
, and
Becker
,
M.
,
2002
, “
Computational Homogenization Analysis in Finite Elasticity: Material and Structural Instabilities on the Micro- and Macro-Scales of Periodic Composites and Their Interaction
,”
Comput. Methods Appl. Mech. Eng.
,
191
(44), pp.
4971
5005
.
449.
Triantafyllidis
,
N.
,
Nestorović
,
M. D.
, and
Schraad
,
M. W.
,
2005
, “
Failure Surfaces for Finitely Strained Two-Phase Periodic Solids Under General In-Plane Loading
,”
ASME J. Appl. Mech.
,
73
(3), pp.
505
515
.
450.
Michel
,
J. C.
,
Lopez-Pamies
,
O.
,
Ponte Castañeda
,
P.
, and
Triantafyllidis
,
N.
,
2007
, “
Microscopic and Macroscopic Instabilities in Finitely Strained Porous Elastomers
,”
J. Mech. Phys. Solids
,
55
(5), pp.
900
938
.
451.
Nezamabadi
,
S.
,
Yvonnet
,
J.
,
Zahrouni
,
H.
, and
Potier-Ferry
,
M.
,
2009
, “
A Multilevel Computational Strategy for Handling Microscopic and Macroscopic Instabilities
,”
Comput. Methods Appl. Mech. Eng.
,
198
(27–29), pp.
2099
2110
.
452.
Martinez
,
X.
, and
Oller
,
S.
,
2009
,”
Numerical Simulation of Matrix Reinforced Composite Materials Subjected to Compression Loads
,”
Arch. Comput. Methods Eng.
,
16
, pp.
357
397
.
453.
Belytschko
,
T.
, and
Song
,
J.-H.
,
2010
, “
Coarse-Graining of Multiscale Crack Propagation
,”
Int. J. Numer. Methods Eng.
,
81
, pp.
537
563
.
454.
Nguyen
,
V.-D.
, and
Noels
,
L.
,
2014
, “
Computational Homogenization of Cellular Materials
,”
Int. J. Solids Struct.
,
51
(11–12), pp.
2183
2203
.
455.
Fritzen
,
F.
, and
Kochmann
,
D. M.
,
2014
, “
Material Instability-Induced Extreme Damping in Composites: A Computational Study
,”
Int. J. Solids Struct.
,
51
(23–24), pp.
4101
4112
.
456.
Cong
,
Y.
,
Nezamabadi
,
S.
,
Zahrouni
,
H.
, and
Yvonnet
,
J.
,
2015
, “
Multiscale Computational Homogenization of Heterogeneous Shells at Small Strains With Extensions to Finite Displacements and Buckling
,”
Int. J. Numer. Methods Eng.
,
104
(4), pp.
235
259
.
457.
Swan
,
C. C.
,
1994
, “
Techniques for Stress- and Strain-Controlled Homogenization of Inelastic Periodic Composites
,”
Comput. Methods Appl. Mech. Eng.
,
117
(3–4), pp.
249
267
.
458.
Temizer
,
İ.
, and
Wriggers
,
P.
,
2008
, “
On a Mass Conservation Criterion in Micro-To-Macro Transitions
,”
ASME J. Appl. Mech.
,
75
(5), p.
054503
.
459.
Grytz
,
R.
, and
Meschke
,
G.
,
2008
, “
Consistent Micro–Macro Transitions at Large Objective Strains in Curvilinear Convective Coordinates
,”
Int. J. Numer. Methods Eng.
,
73
(6), pp.
805
824
.
460.
van Dijk
,
N. P.
,
2016
, “
Formulation and Implementation of Stress-Driven and/or Strain-Driven Computational Homogenization for Finite Strain
,”
Int. J. Numer. Methods Eng.
,
107
(12), pp.
1009
1028
.
461.
Pindera
,
M.-J.
,
Khatam
,
H.
,
Drago
,
A. S.
, and
Yogesh
,
B.
,
2009
, “
Micromechanics of Spatially Uniform Heterogeneous Media: A Critical Review and Emerging Approaches
,”
Composites Part B
,
40
(5), pp.
349
378
.
462.
Miehe
,
C.
,
2003
, “
Computational Micro-To-Macro Transitions for Discretized Micro-Structures of Heterogeneous Materials at Finite Strains Based on the Minimization of Averaged Incremental Energy
,”
Comput. Methods Appl. Mech. Eng.
,
192
(5–6), pp.
559
591
.
463.
Temizer
,
İ.
, and
Wriggers
,
P.
,
2008
, “
On the Computation of the Macroscopic Tangent for Multiscale Volumetric Homogenization Problems
,”
Comput. Methods Appl. Mech. Eng.
,
198
(3–4), pp.
495
510
.
464.
Yuan
,
Z.
, and
Fish
,
J.
,
2008
, “
Toward Realization of Computational Homogenization in Practice
,”
Int. J. Numer. Methods Eng.
,
73
(3), pp.
361
380
.
465.
Nguyen
,
V.-D.
,
Béchet
,
E.
,
Geuzaine
,
C.
, and
Noels
,
L.
,
2012
, “
Imposing Periodic Boundary Condition on Arbitrary Meshes by Polynomial Interpolation
,”
Comput. Mater. Sci.
,
55
, pp.
390
406
.
466.
Felippa
,
C. A.
, and
Park
,
K. C.
,
2002
, “
The Construction of Free-Free Flexibility Matrices for Multilevel Structural Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
191
(19–20), pp.
2139
2168
.
467.
Fish
,
J.
, and
Fan
,
R.
,
2008
, “
Mathematical Homogenization of Nonperiodic Heterogeneous Media Subjected to Large Deformation Transient Loading
,”
Int. J. Numer. Methods Eng.
,
76
(7), pp.
1044
1064
.
468.
Wang
,
Z. M.
,
Kwan
,
A. K. H.
, and
Chan
,
H. C.
,
1999
, “
Mesoscopic Study of Concrete I: Generation of Random Aggregate Structure and Finite Element Mesh
,”
Comput. Struct.
,
70
(5), pp.
533
544
.
469.
Torquato
,
S.
,
2002
,
Random Heterogeneous Materials: Microstructure and Macroscopic Properties
,
Springer-Verlag
,
New York
.
470.
Böhm
,
H. J.
,
Eckschlager
,
A.
, and
Han
,
W.
,
2002
, “
Multi-Inclusion Unit Cell Models for Metal Matrix Composites With Randomly Oriented Discontinuous Reinforcements
,”
Comput. Mater. Sci.
,
25
(1–2), pp.
42
53
.
471.
Cailletaud
,
G.
,
Forest
,
S.
,
Jeulin
,
D.
,
Feyel
,
F.
,
Galliet
,
I.
,
Mounoury
,
V.
, and
Quilici
,
S.
,
2003
, “
Some Elements of Microstructural Mechanics
,”
Comput. Mater. Sci.
,
27
(3), pp.
351
374
.
472.
Mishnaevsky
,
L. L.
, Jr.
,
2004
, “
Three-Dimensional Numerical Testing of Microstructures of Particle Reinforced Composites
,”
Acta Mater.
,
52
(14), pp.
4177
4188
.
473.
Häfner
,
S.
,
Eckardt
,
S.
,
Luther
,
T.
, and
Könke
,
C.
,
2006
, “
Mesoscale Modeling of Concrete: Geometry and Numerics
,”
Comput. Struct.
,
84
(7), pp.
450
461
.
474.
Musienko
,
A.
,
Tatschl
,
A.
,
Schmidegg
,
K.
,
Kolednik
,
O.
,
Pippan
,
R.
, and
Cailletaud
,
G.
,
2007
, “
Three-Dimensional Finite Element Simulation of a Polycrystalline Copper Specimen
,”
Acta Mater.
,
55
(12), pp.
4121
4136
.
475.
Galli
,
M.
,
Botsis
,
J.
, and
Janczak-Rusch
,
J.
,
2008
, “
An Elastoplastic Three-Dimensional Homogenization Model for Particle Reinforced Composites
,”
Comput. Mater. Sci.
,
41
(3), pp.
312
321
.
476.
Lee
,
K. M.
, and
Park
,
J. H.
,
2008
, “
A Numerical Model for Elastic Modulus of Concrete Considering Interfacial Transition Zone
,”
Cem. Concr. Res.
,
38
(3), pp.
396
402
.
477.
Reid
,
A. C. E.
,
Langer
,
S. A.
,
Lua
,
R. C.
,
Coffman
,
V. R.
,
Haan
,
S.
, and
García
,
R. E.
,
2008
, “
Image-Based Finite Element Mesh Construction for Material Microstructures
,”
Comput. Mater. Sci.
,
43
(4), pp.
989
999
.
478.
Yu
,
Y.
,
Cui
,
J.
, and
Han
,
F.
,
2008
, “
An Effective Computer Generation Method for the Composites With Random Distribution of Large Numbers of Heterogeneous Grains
,”
Compos. Sci. Technol.
,
68
(12), pp.
2543
2550
.
479.
He
,
H.
,
2010
, “
Computational Modelling of Particle Packing in Concrete
,” Ph.D. thesis, TU Delft, Delft University of Technology, Delft, Netherlands.
480.
Fritzen
,
F.
,
2011
, “
Microstructural Modeling and Computational Homogenization of the Physically Linear and Nonlinear Constitutive Behavior of Micro-Heterogeneous Materials
,” Ph.D. thesis, Karlsruher Institut für Technologie, Karlsruhe, Germany.
481.
Sonon
,
B.
,
Francois
,
B.
, and
Massart
,
T. J.
,
2012
, “
A Unified Level Set Based Methodology for Fast Generation of Complex Microstructural Multi-Phase RVEs
,”
Comput. Methods Appl. Mech. Eng.
,
223–224
, pp.
103
122
.
482.
Öhman
,
M.
,
Larsson
,
F.
, and
Runesson
,
K.
,
2013
, “
Computational Homogenization of Liquid-Phase Sintering With Seamless Transition From Macroscopic Compressibility to Incompressibility
,”
Comput. Methods Appl. Mech. Eng.
,
266
, pp.
219
228
.
You do not currently have access to this content.