Treelike structures abound in natural as well as man-made transport systems, which have fascinated multidisciplinary researchers to study the transport phenomena and properties and understand the transport mechanisms of treelike structures for decades. The fluid flow and heat transfer in treelike networks have received an increasing attention over the past decade as the highly efficient transport processes observed in natural treelike structures can provide useful hints for optimal solutions to many engineering and industrial problems. This review paper attempts to present the background and research progress made in recent years on the transport phenomenon in treelike networks as well as technological applications of treelike structures. The subtopics included are optimization of branching structures, scaling laws of treelike networks, and transport properties for laminar flow, turbulent flow, heat conduction, and heat convection in treelike networks. Analytical expressions for the effective transport properties have been derived based on deterministic treelike networks, and the effect of branching parameters on the transport properties of treelike networks has also been discussed. Furthermore, numerical simulation results for treelike microchannel networks are presented as well. The proposed transport properties may be beneficial to understand the transport mechanisms of branching structures and promote the applications of treelike networks in engineering and industry.

References

References
1.
Mandelbrot
,
B. B.
,
1982
,
The Fractal Geometry of Nature
, Freeman,
New York
.
2.
MacDonald
,
N.
,
1983
,
Trees and Networks in Biological Models
,
Wiley
,
Chichester, UK
.
3.
Bejan
,
A.
,
2000
,
Shape and Structure, From Engineering to Nature
,
Cambridge University Press
,
Cambridge, UK
.
4.
Bejan
,
A.
, and
Zane
,
J. P.
,
2012
,
Design in Nature
, Doubleday,
New York
.
5.
Takahashi
,
T.
,
2014
,
Microcirculation in Fractal Branching Networks
,
Springer
,
Tokyo, Japan
.
6.
Sherman
,
T. F.
,
1981
, “
On Connecting Large Vessels to Small. The Meaning of Murray's Law
,”
J. Gen. Physiol.
,
78
(
4
), pp.
431
453
.
7.
Banavar
,
J. R.
,
Maritan
,
A.
, and
Rinaldo
,
A.
,
1999
, “
Size and Form in Efficient Transportation Networks
,”
Nature
,
399
(
6732
), pp.
130
132
.
8.
Gafiychuk
,
V. V.
, and
Lubashevsky
,
I. A.
,
2001
, “
On the Principles of the Vascular Network Branching
,”
J. Theor. Biol.
,
212
(
1
), pp.
1
9
.
9.
Bejan
,
A.
,
2015
, “
Constructal Law: Optimization as Design Evolution
,”
ASME J. Heat Transfer
,
137
(
6
), p.
061003
.
10.
Albert
,
R.
, and
Barabási
,
A.-L.
,
2002
, “
Statistical Mechanics of Complex Networks
,”
Rev. Mod. Phys.
,
74
(
1
), pp.
47
97
.
11.
Chen
,
M.
,
Yu
,
B. M.
,
Xu
,
P.
, and
Chen
,
J.
,
2007
, “
A New Deterministic Complex Network Model With Hierarchical Structure
,”
Physica A
,
385
(
2
), pp.
707
717
.
12.
Wang
,
X. Q.
,
Mujumdar
,
A. S.
, and
Yap
,
C.
,
2010
,
New Approaches to Micro-Electronic Component Cooling
,
LAP Lambert Academic Publishing
,
Saarbrücken, Germany
.
13.
Bejan
,
A.
, and
Lorente
,
S.
,
2013
, “
Constructal Law of Design and Evolution: Physics, Biology, Technology, and Society
,”
J. Appl. Phys.
,
113
(
15
), p.
151301
.
14.
Yu
,
B. M.
,
Xu
,
P.
,
Zou
,
M.
,
Cai
,
J.
, and
Zheng
,
Q.
,
2014
,
Fractal Physical Transport in Porous Media
,
Science Press
,
Beijing, China
.
15.
Young
,
T.
,
1809
, “
On the Functions of the Heart and Arteries
,”
Philos. Trans. R. Soc. London
,
99
(
0
), pp.
1
31
.
16.
Hess
,
W. R.
,
1917
, “
Über die periphere Regulierung der Blutzirkulation
,”
Pflugers Arch. Eur. J. Phys.
,
168
(9), pp.
439
490
.
17.
Thompson
,
D. W.
,
1917
,
On Growth and Form
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
.
18.
Murray
,
C. D.
,
1926
, “
The Physiological Principle of Minimum Work—I: The Vascular System and the Cost of Blood Volume
,”
Proc. Natl. Acad. Sci. U.S.A.
,
12
(
3
), pp.
207
214
.
19.
Murray
,
C. D.
,
1926
, “
The Physiological Principle of Minimum Work Applied to the Angle of Branching of Arteries
,”
J. Gen. Physiol.
,
9
(
6
), pp.
835
841
.
20.
McDonald
,
D. A.
,
1974
,
Blood Flow in Arteries
,
2nd ed.
,
Edward Arnold
,
London, UK
.
21.
Zamir
,
M.
,
1976
, “
Optimality Principles in Arterial Branching
,”
J. Theor. Biol.
,
62
(
1
), pp.
227
251
.
22.
Uylings
,
H. B. M.
,
1977
, “
Optimization of Diameters and Bifurcation Angles in Lung and Vascular Tree Structures
,”
Bull. Math. Biol.
,
39
(
5
), pp.
509
520
.
23.
Zamir
,
M.
,
1978
, “
Nonsymmetrical Bifurcations in Arterial Branching
,”
J. Gen. Physiol.
,
72
(
6
), pp.
837
845
.
24.
Horsfield
,
K.
,
1978
, “
Morphometry of the Small Pulmonary Arteries in Man
,”
Circ. Res.
,
42
(
5
), pp.
593
597
.
25.
Roy
,
A. G.
, and
Woldenberg
,
M. J.
,
1982
, “
A Generalization of the Optimal Models of Arterial Branching
,”
Bull. Math. Biol.
,
44
(
3
), pp.
349
360
.
26.
Riva
,
C. E.
,
Grunwald
,
J. E.
,
Sinclair
,
S. H.
, and
Petrig
,
B. L.
,
1985
, “
Blood Velocity and Volumetric Flow Rate in Human Retinal Vessels
,”
Invest. Ophthalmol. Visual Sci.
,
26
(8), pp.
1124
1132
.
27.
Zhong
,
J.
, and
Nilsson
,
G.
,
1993
, “
An M-ary Fractal Tree Based Modeling of Microcirculation
,”
15th Annual International Conference of the
IEEE
, Piscataway, NJ, pp.
553
554
.
28.
Taber
,
L. A.
,
Ng
,
S.
,
Quesnel
,
A. M.
,
Whatman
,
J.
, and
Carmen
,
C. J.
,
2001
, “
Investigating Murray's Law in the Chick Embryo
,”
J. Biomech.
,
34
(
1
), pp.
121
124
.
29.
Masters
,
B. R.
,
2004
, “
Fractal Analysis of the Vascular Tree in the Human Retina
,”
Annu. Rev. Biomed. Eng.
,
6
(
1
), pp.
427
452
.
30.
Buijs
,
J. O. D.
,
Bajzer
,
Z.
, and
Ritman
,
E. L.
,
2006
, “
Branching Morphology of the Rat Hepatic Portal Vein Tree: A Micro-CT Study
,”
Ann. Biomed. Eng.
,
34
(
9
), pp.
1420
1428
.
31.
Chandran
,
K. B.
,
Udaykumar
,
H. S.
, and
Reinhardt
,
J. M.
,
2011
,
Image-Based Computational Modeling of the Human Circulatory and Pulmonary Systems
,
Springer
,
New York
.
32.
Skoura
,
A.
,
Megalooikonomou
,
V.
,
Diamantopoulos
,
A.
,
Kagadis
,
G. C.
, and
Karnabatidis
,
D.
,
2012
, “
Classification of Tree and Network Topology Structures in Medical Images
,”
Data Mining for Biomarker Discovery
,
P. M.
Pardalos
,
P.
Xanthopoulos
, and
M.
Zervakis
, eds.,
Springer-Verlag
,
New York
, pp.
79
90
.
33.
Perdikaris
,
P.
,
Grinberg
,
L.
, and
Karniadakis
,
G. E.
,
2015
, “
An Effective Fractal-Tree Closure Model for Simulating Blood Flow in Large Arterial Networks
,”
Ann. Biomed. Eng.
,
43
(
6
), pp.
1432
1442
.
34.
Weibel
,
E. R.
,
1963
,
Morphometry of the Human Lung
,
Academic Press
,
New York
.
35.
Horsfield
,
K.
, and
Cumming
,
G.
,
1968
, “
Morphology of the Bronchial Tree in Man
,”
J. Appl. Physiol.
,
24
(3), pp.
373
383
.
36.
Hooper
,
G.
,
1977
, “
Diameters of Bronchi at Asymmetrical Divisions
,”
Respir. Physiol.
,
31
(
3
), pp.
291
294
.
37.
West
,
J. B.
,
1979
,
Respiratory Physiology—The Essentials
,
2nd ed.
,
Williams and Wilkins
,
Baltimore, MD
.
38.
Horsfield
,
K.
,
1990
, “
Diameters, Generations, and Orders of Branches in the Bronchial Tree
,”
J. Appl. Physiol.
,
68
(2), pp.
457
461
.
39.
Kitaoka
,
H.
, and
Suki
,
B.
,
1997
, “
Branching Design of the Bronchial Tree Based on a Diameter-Flow Relationship
,”
J. Appl. Physiol.
,
82
(3), pp.
968
976
.
40.
Mauroy
,
B.
,
Filoche
,
M.
,
Weibel
,
E. R.
, and
Sapoval
,
B.
,
2004
, “
An Optimal Bronchial Tree May Be Dangerous
,”
Nature
,
427
(
6975
), pp.
633
636
.
41.
Takaki
,
R.
,
2005
, “
Can Morphogenesis Be Understood in Terms of Physical Rules?
,”
J. Biosci.
,
30
(
1
), pp.
87
92
.
42.
Wang
,
Z.
,
Zhao
,
M.
, and
Yu
,
Q.-X.
,
2001
, “
Modeling of Branching Structures of Plants
,”
J. Theor. Biol.
,
209
(4), pp.
383
394
.
43.
McCulloh
,
K. A.
,
Sperry
,
J. S.
, and
Adler
,
F. R.
,
2003
, “
Water Transport in Plants Obeys Murray's Law
,”
Nature
,
421
(
6926
), pp.
939
942
.
44.
West
,
G. B.
,
Brown
,
J. H.
, and
Enquist
,
B. J.
,
1997
, “
A General Model for the Origin of Allometric Scaling Laws in Biology
,”
Science
,
276
(
5309
), pp.
122
126
.
45.
Enquist
,
B. J.
,
Brown
,
J. H.
, and
West
,
G. B.
,
1998
, “
Allometric Scaling of Plant Energetics and Population Density
,”
Nature
,
395
(
6698
), pp.
163
165
.
46.
West
,
G. B.
,
Brown
,
J. H.
, and
Enquist
,
B. J.
,
1999
, “
The Fourth Dimension of Life: Fractal Geometry and Allometric Scaling of Organisms
,”
Science
,
284
(
5420
), pp.
1677
1679
.
47.
Brown
,
J. H.
, and
West
,
G. B.
,
2000
,
Scaling in Biology
,
Oxford University
,
New York
.
48.
Bejan
,
A.
,
2001
, “
The Tree of Convective Heat Streams: Its Thermal Insulation Function and the Predicted 3/4-Power Relation Between Body Heat Loss and Body Size
,”
Int. J. Heat Mass Transfer
,
44
(
4
), pp.
699
704
.
49.
Dreyer
,
O.
,
2001
, “
Allometric Scaling and Central Source Systems
,”
Phys. Rev. Lett.
,
87
(
3
), p.
038101
.
50.
Rau
,
A. R. P.
,
2002
, “
Biological Scaling and Physics
,”
J. Biosci.
,
27
(
5
), pp.
475
478
.
51.
Santillán
,
M.
,
2003
, “
Allometric Scaling Law in a Simple Oxygen Exchanging Network: Possible Implications on the Biological Allometric Scaling Laws
,”
J. Theor. Biol.
,
223
(
2
), pp.
249
257
.
52.
Bejan
,
A.
,
2005
, “
The Constructal Law of Organization in Nature: Tree-Shaped Flows and Body Size
,”
J. Exp. Biol.
,
208
(
9
), pp.
1677
1686
.
53.
Chaui-Berlinck
,
J. G.
,
2006
, “
A Critical Understanding of the Fractal Model of Metabolic Scaling
,”
J. Exp. Biol.
,
209
(
16
), pp.
3045
3054
.
54.
Rinaldo
,
A.
,
Rodriguez-Iturbe
,
I.
,
Rigon
,
R.
,
Ijjasz-Vasquez
,
E. J.
, and
Bras
,
R. L.
,
1993
, “
Self-Organized Fractal River Networks
,”
Phys. Rev. Lett.
,
70
(
6
), pp.
822
825
.
55.
Sun
,
T.
,
Meakin
,
P.
, and
Jøssang
,
T.
,
1994
, “
Minimum Energy Dissipation Model for River Basin Geometry
,”
Phys. Rev. E
,
49
(
6
), pp.
4865
4872
.
56.
Buchanan
,
M.
,
2002
, “
Prediction: A Game of Chance
,”
Nature
,
419
(
6909
), p.
787
.
57.
Paik
,
K.
, and
Kumar
,
P.
,
2008
, “
Emergence of Self-Similar Tree Network Organization
,”
Complexity
,
13
(
4
), pp.
30
37
.
58.
Bejan
,
A.
,
1997
, “
Constructal-Theory Network of Conducting Paths for Cooling a Heat Generating Volume
,”
Int. J. Heat Mass Transfer
,
40
(
4
), pp.
799
816
.
59.
Bejan
,
A.
,
1998
, “
Constructal Theory: From Thermodynamic and Geometric Optimization to Predicting Shape in Nature
,”
Energy Convers. Manage.
,
39
(16–18), pp.
1705
1718
.
60.
Bejan
,
A.
,
2000
, “
From Heat Transfer Principles to Shape and Structure in Nature: Constructal Theory
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
430
449
.
61.
Bejan
,
A.
, and
Lorente
,
S.
,
2004
, “
The Constructal Law and the Thermodynamics of Flow Systems With Configuration
,”
Int. J. Heat Mass Transfer
,
47
(14–16), pp.
3203
3214
.
62.
Bejan
,
A.
, and
Lorente
,
S.
,
2006
, “
Constructal Theory of Generation of Configuration in Nature and Engineering
,”
J. Appl. Phys.
,
100
(
4
), p.
041301
.
63.
Reis
,
A. H.
,
2006
, “
Constructal Theory: From Engineering to Physics, and How Flow Systems Develop Shape and Structure
,”
ASME Appl. Mech. Rev.
,
59
(
5
), pp.
269
282
.
64.
Bejan
,
A.
, and
Lorente
,
S.
,
2008
,
Design With Constructal Theory
,
Wiley
,
Hoboken, NJ
.
65.
Manjunath
,
K.
, and
Kaushik
,
S. C.
,
2014
, “
Second Law Thermodynamic Study of Heat Exchangers: A Review
,”
Renewable Sustainable Energy Rev.
,
40
, pp.
348
374
.
66.
Bejan
,
A.
, and
Errera
,
M. R.
,
2015
, “
Technology Evolution, From the Constructal Law: Heat Transfer Designs
,”
Int. J. Energy Res.
,
39
(
7
), pp.
919
928
.
67.
Kearney
,
M. M.
,
2000
, “
Engineered Fractals Enhance Process Applications
,”
Chem. Eng. Prog.
,
96
(12), pp.
61
68
.
68.
Tondeur
,
D.
, and
Luo
,
L.
,
2004
, “
Design and Scaling Laws of Ramified Fluid Distributors by Constructal Approach
,”
Chem. Eng. Sci.
,
59
(8–9), pp.
1799
1813
.
69.
Fan
,
Z.
,
Zhou
,
X.
,
Luo
,
L.
, and
Yuan
,
W.
,
2008
, “
Experimental Investigation of the Flow Distribution of a 2-Dimensional Constructal Distributor
,”
Exp. Therm. Fluid Sci.
,
33
(
1
), pp.
77
83
.
70.
Tondeur
,
D.
,
Fan
,
Y.
, and
Luo
,
L.
,
2009
, “
Constructal Optimization of Arborescent Structures With Flow Singularities
,”
Chem. Eng. Sci.
,
64
(
18
), pp.
3968
3982
.
71.
Wang
,
L.
,
Fan
,
Y.
, and
Luo
,
L.
,
2014
, “
Lattice Boltzmann Method for Shape Optimization of Fluid Distributor
,”
Comput. Fluids
,
94
, pp.
49
57
.
72.
Luo
,
L.
,
Fan
,
Y.
,
Zhang
,
W.
,
Yuan
,
X.
, and
Midoux
,
N.
,
2007
, “
Integration of Constructal Distributors to a Mini Crossflow Heat Exchanger and Their Assembly Configuration Optimization
,”
Chem. Eng. Sci.
,
62
(
13
), pp.
3605
3619
.
73.
Luo
,
L.
,
Tondeur
,
D.
,
Gall
,
H. L.
, and
Corbel
,
S.
,
2007
, “
Constructal Approach and Multi-Scale Components
,”
Appl. Therm. Eng.
,
27
(
10
), pp.
1708
1714
.
74.
Luo
,
L.
,
Fan
,
Z.
,
Gall
,
H. L.
,
Zhou
,
X.
, and
Yuan
,
W.
,
2008
, “
Experimental Study of Constructal Distributor for Flow Equidistribution in a Mini Crossflow Heat Exchanger (MCHE)
,”
Chem. Eng. Process.
,
47
(
2
), pp.
229
236
.
75.
Fan
,
Y.
,
Boichot
,
R.
,
Goldin
,
T.
, and
Luo
,
L.
,
2008
, “
Flow Distribution Property of the Constructal Distributor and Heat Transfer Intensification in s Mini Heat Exchanger
,”
AIChE J.
,
54
(
11
), pp.
2796
2808
.
76.
Lim
,
D.
,
Kamotani
,
Y.
,
Cho
,
B.
,
Mazumder
,
J.
, and
Takayama
,
S.
,
2003
, “
Fabrication of Microfluidic Mixers and Artificial Vasculatures Using a High-Brightness Diode-Pumped Nd: YAG Laser Direct Write Method
,”
Lab Chip
,
3
(
4
), pp.
318
323
.
77.
Emerson
,
D. R.
,
Cieślicki
,
K.
,
Gu
,
X.
, and
Barber
,
R. W.
,
2006
, “
Biomimetic Design of Microfluidic Manifolds Based on a Generalized Murray's Law
,”
Lab Chip
,
6
(
3
), pp.
447
454
.
78.
Barber
,
R. W.
, and
Emerson
,
D. R.
,
2008
, “
Optimal Design of Microfluidic Networks Using Biologically Inspired Principles
,”
Microfluid. Nanofluid.
,
4
(
3
), pp.
179
191
.
79.
Yue
,
J.
,
Boichot
,
R.
,
Luo
,
L.
,
Gonthier
,
Y.
,
Chen
,
G.
, and
Yuan
,
Q.
,
2010
, “
Flow Distribution and Mass Transfer in a Parallel Microchannel Contactor Integrated With Constructal Distributors
,”
AIChE J.
,
56
(2), pp.
298
317
.
80.
Tesař
,
V.
,
2011
, “
Bifurcating Channels Supplying ‘Numbered-Up’ Microreactors
,”
Chem. Eng. Res. Des.
,
89
(
12
), pp.
2507
2520
.
81.
Zhang
,
L.
,
Peng
,
D.
,
Lyu
,
W.
, and
Xin
,
F.
,
2015
, “
Uniformity of Gas and Liquid Two Phases Flowing Through Two Microchannels in Parallel
,”
Chem. Eng. J.
,
263
, pp.
452
460
.
82.
Su
,
Y.
,
Chen
,
G.
, and
Kenig
,
E. Y.
,
2015
, “
An Experimental Study on the Numbering-Up of Microchannels for Liquid Mixing
,”
Lab Chip
,
15
(
1
), pp.
179
187
.
83.
Damiri
,
H. S.
, and
Bardaweel
,
H. K.
,
2015
, “
Numerical Design and Optimization of Hydraulic Resistance and Wall Shear Stress Inside Pressure-Driven Microfluidic Networks
,”
Lab Chip
,
15
(
21
), pp.
4187
4196
.
84.
Nasharudin
,
M. N.
,
Kamarudin
,
S. K.
,
Hasran
,
U. A.
, and
Masdar
,
M. S.
,
2014
, “
Mass Transfer and Performance of Membrane-Less Micro Fuel Cell: A Review
,”
Int. J. Hydrogen Energy
,
39
(2), pp.
1039
1055
.
85.
Tüber
,
K.
,
Oedegaard
,
A.
,
Hermann
,
M.
, and
Hebling
,
C.
,
2004
, “
Investigation of Fractal Flow-Fields in Portable Proton Exchange Membrane and Direct Methanol Fuel Cells
,”
J. Power Sources
,
131
(1–2), pp.
175
181
.
86.
Senn
,
S. M.
, and
Poulikakos
,
D.
,
2004
, “
Tree Network Channels as Fluid Distributors Constructing Double-Staircase Polymer Electrolyte Fuel Cells
,”
J. Appl. Phys.
,
96
(
1
), pp.
842
852
.
87.
Senn
,
S. M.
, and
Poulikakos
,
D.
,
2004
, “
Laminar Mixing, Heat Transfer and Pressure Drop in Tree-Like Microchannel Nets and Their Application for Thermal Management in Polymer Electrolyte Fuel Cells
,”
J. Power Sources
,
130
(1–2), pp.
178
191
.
88.
Senn
,
S. M.
, and
Poulikakos
,
D.
,
2006
, “
Pyramidal Direct Methanol Fuel Cells
,”
Int. J. Heat Mass Transfer
,
49
(7–8), pp.
1516
1528
.
89.
Li
,
P.
,
Coopamah
,
D.
, and
Ki
,
J.-P.
,
2008
, “
Uniform Distribution of Species in Fuel Cell Using a Multiple Flow Bifurcation Design
,”
ASME
Paper No. FuelCell2008-65106.
90.
Li
,
P.
,
Coopamah
,
D.
, and
Dhar
,
N.
,
2008
, “
Analysis and Optimization of Flow Distribution Channels for Uniform Flow in Fuel Cells
,”
ASME
Paper No. FEDSM2008-55180.
91.
Liu
,
H.
,
Li
,
P.
, and
Lew
,
J. V.
,
2010
, “
CFD Study on Flow Distribution Uniformity in Fuel Distributors Having Multiple Structural Bifurcations of Flow Channels
,”
Int. J. Hydrogen Energy
,
35
(
17
), pp.
9186
9198
.
92.
Kjelstrup
,
S.
,
Coppens
,
M.-O.
,
Pharoah
,
J. G.
, and
Pfeifer
,
P.
,
2010
, “
Nature-Inspired Energy- and Material-Efficient Design of a Polymer Electrolyte Membrane Fuel Cell
,”
Energy Fuels
,
24
(
9
), pp.
5097
5108
.
93.
Cheng
,
S. J.
,
Miao
,
J. M.
, and
Tai
,
C. H.
,
2012
, “
Numerical Simulation Applied to Study the Effects of Fractal Tree-Liked Network Channel Designs on PEMFC Performance
,”
Adv. Mater. Res.
,
488–489
, pp.
1219
1223
.
94.
Chen
,
Y. P.
,
Zhang
,
C.
,
Wu
,
R.
, and
Shi
,
M.
,
2011
, “
Methanol Steam Reforming in Microreactor With Constructal Tree-Shaped Network
,”
J. Power Sources
,
196
(
15
), pp.
6366
6373
.
95.
Chen
,
Y. P.
,
Yao
,
F.
, and
Huang
,
X.
,
2015
, “
Mass Transfer and Reaction in Methanol Steam Reforming Reactor With Fractal Tree-Like Microchannel Network
,”
Int. J. Heat Mass Transfer
,
87
, pp.
279
283
.
96.
Bejan
,
A.
, and
Almogbel
,
M.
,
2000
, “
Constructal T-Shaped Fins
,”
Int. J. Heat Mass Transfer
,
43
(
12
), pp.
2101
2115
.
97.
Rocha
,
L. A. O.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2002
, “
Constructal Design for Cooling a Disc-Shaped Area by Conduction
,”
Int. J. Heat Mass Transfer
,
45
(
8
), pp.
1643
1652
.
98.
Bonjour
,
J.
,
Rocha
,
L. A. O.
,
Bejan
,
A.
, and
Meunier
,
F.
,
2004
, “
Dendritic Fins Optimization for a Coaxial Two-Stream Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
47
(
1
), pp.
111
124
.
99.
Matos
,
R. S.
,
Laursen
,
T. A.
,
Vargas
,
J. V. C.
, and
Bejan
,
A.
,
2004
, “
Three-Dimensional Optimization of Staggered Finned Circular and Elliptic Tubes in Forced Convection
,”
Int. J. Therm. Sci.
,
43
(
5
), pp.
477
487
.
100.
Lorenzini
,
G.
, and
Rocha
,
L. A. O.
,
2006
, “
Constructal Design of Y-Shaped Assembly of Fins
,”
Int. J. Heat Mass Transfer
,
49
(23–24), pp.
4552
4557
.
101.
Biserni
,
C.
,
Rocha
,
L. A. O.
, and
Bejan
,
A.
,
2004
, “
Inverted Fins: Geometric Optimization of the Intrusion Into a Conducting Wall
,”
Int. J. Heat Mass Transfer
,
47
(12–13), pp.
2577
2586
.
102.
Rocha
,
L. A. O.
,
Lorenzini
,
E.
, and
Biserni
,
C.
,
2005
, “
Geometric Optimization of Shapes on the Basis of Bejan's Constructal Theory
,”
Int. Commun. Heat Mass Transfer
,
32
(
10
), pp.
1281
1288
.
103.
Biserni
,
C.
,
Rocha
,
L. A. O.
,
Stanescu
,
G.
, and
Lorenzini
,
E.
,
2007
, “
Constructal H-Shaped Cavities According to Bejan's Theory
,”
Int. J. Heat Mass Transfer
,
50
(11–12), pp.
2132
2138
.
104.
Xu
,
P.
,
Yu
,
B. M.
,
Yuan
,
M. J.
, and
Zou
,
M. Q.
,
2006
, “
Heat Conduction in Fractal Tree-Like Branched Networks
,”
Int. J. Heat Mass Transfer
,
49
(19–20), pp.
3746
3751
.
105.
Xu
,
P.
, and
Yu
,
B. M.
,
2006
, “
The Scaling Laws of Transport Properties for Fractal-Like Tree Networks
,”
J. Appl. Phys.
,
100
(
10
), p.
104906
.
106.
Yu
,
B. M.
, and
Li
,
B. W.
,
2006
, “
Fractal-Like Tree Networks Reducing the Thermal Conductivity
,”
Phys. Rev. E
,
73
(
6
), p.
066302
.
107.
Kou
,
J.-L.
,
Lu
,
H.-J.
,
Wu
,
F.-M.
, and
Xu
,
Y.-S.
,
2009
, “
Analysis of Thermal Conductivity in Tree-Like Branched Networks
,”
Chin. Phys. B
,
18
(4), pp.
1553
1559
.
108.
Mazloomi
,
A.
,
Sharifi
,
F.
,
Salimpour
,
M. R.
, and
Moosavi
,
A.
,
2012
, “
Optimization of Highly Conductive Insert Architecture for Cooling a Rectangular Chip
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1265
1271
.
109.
Calamas
,
D.
, and
Baker
,
J.
,
2013
, “
Tree-Like Branching Fins: Performance and Natural Convective Heat Transfer Behavior
,”
Int. J. Heat Mass Transfer
,
62
, pp.
350
361
.
110.
Calamas
,
D.
, and
Baker
,
J.
,
2013
, “
Behavior of Thermally Radiating Tree-Like Fins
,”
ASME J. Heat Transfer
,
135
(
8
), p.
082701
.
111.
Dannelley
,
D.
, and
Baker
,
J.
,
2013
, “
Natural Convection Heat Transfer From Fractal-Like Fins
,”
J. Thermophys. Heat Transfer
,
27
(
4
), pp.
692
699
.
112.
Park
,
K. T.
,
Kim
,
H. J.
, and
Kim
,
D.-K.
,
2014
, “
Experimental Study of Natural Convection From Vertical Cylinders With Branched Fins
,”
Exp. Therm. Fluid Sci.
,
54
(4), pp.
29
37
.
113.
Daneshi
,
M.
,
Shirani
,
E.
, and
Salimpour
,
M. R.
,
2012
, “
Constructal Nano-Scale Heat Trees Used for Electronics Cooling
,”
4th International Symposium on Heat Transfer and Energy Conservation
, Guangzhou, China, pp.
142
146
.
114.
Daneshi
,
M.
,
Zare
,
M.
, and
Salimpour
,
M. R.
,
2013
, “
Micro- and Nanoscale Conductive Tree-Structures for Cooling a Disk-Shaped Electronic Piece
,”
ASME J. Heat Transfer
,
135
(
3
), p.
031401
.
115.
Flik
,
M. I.
, and
Tien
,
C. L.
,
1990
, “
Size Effect on the Thermal Conductivity of High-Tc Thin-Film Superconductors
,”
ASME J. Heat Transfer
,
112
(
4
), pp.
872
881
.
116.
Chen
,
L.
,
Feng
,
H.
,
Xie
,
Z.
, and
Sun
,
F.
,
2013
, “
Constructal Optimization for
,”Disc-Point” Heat Conduction at Micro and Nanoscales,”
Int. J. Heat Mass Transfer
,
67
, pp.
704
711
.
117.
Feng
,
H.
,
Chen
,
L.
,
Xie
,
Z.
, and
Sun
,
F.
,
2015
, “
Constructal Entransy Dissipation Rate Minimization for Triangular Heat Trees at Micro and Nanoscales
,”
Int. J. Heat Mass Transfer
,
84
, pp.
848
855
.
118.
Bejan
,
A.
, and
Errera
,
M. R.
,
1997
, “
Deterministic Tree Networks for Fluid Flow: Geometry for Minimal Flow Resistance Between a Volume and One Point
,”
Fractals
,
5
(
04
), pp.
685
695
.
119.
Wechsatol
,
W.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2003
, “
Dendritic Heat Convection on a Disc
,”
Int. J. Heat Mass Transfer
,
46
(
23
), pp.
4381
4391
.
120.
Zimparov
,
V. D.
,
da Silva
,
A. K.
, and
Bejan
,
A.
,
2006
, “
Constructal Tree-Shaped Parallel Flow Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
49
(23–24), pp.
4558
4566
.
121.
Bello-Ochende
,
T.
,
Liebenberg
,
L.
, and
Meyer
,
J. P.
,
2007
, “
Constructal Cooling Channels for Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
50
(21–22), pp.
4141
4150
.
122.
Salimpour
,
M. R.
,
Sharifhasan
,
M.
, and
Shirani
,
E.
,
2013
, “
Constructal Optimization of Microchannel Heat Sinks With Noncircular Cross Sections
,”
Heat Transfer Eng.
,
34
(
10
), pp.
863
874
.
123.
Feng
,
H. J.
,
Chen
,
L. G.
,
Xie
,
Z.
, and
Sun
,
F. R.
,
2013
Constructal Optimization of a Disc-Shaped Body With Cooling Channels for Specified Power Pumping
,”
Int. J. Low-Carbon Technol.
,
10
(3), pp.
229
237
.
124.
Stocks
,
M. D.
,
Bello-Ochende
,
T.
, and
Meyer
,
J. P.
,
2014
, “
Maximum Thermal Conductance for a Micro-Channel, Utilizing Newtonian and Non-Newtonian Fluid
,”
Heat Mass Transfer
,
50
(
6
), pp.
865
875
.
125.
Salimpour
,
M. R.
, and
Menbari
,
A.
,
2015
, “
Analytical Optimization of Constructal Channels Used for Cooling a Ring Shaped Body Based on Minimum Flow and Thermal Resistances
,”
Energy
,
81
(2), pp.
645
651
.
126.
Pence
,
D. V.
,
2000
, “
Improved Thermal Efficiency and Temperature Uniformity Using Fractal-Like Branching Channel Networks
,”
International Conference on Heat Transfer and Transport Phenomena in Micro Scale
, Banff, AB, pp.
142
148
.
127.
Pence
,
D. V.
,
2002
, “
Reduced Pumping Power and Wall Temperature in Microchannel Heat Sinks With Fractal-Like Branching Channel Networks
,”
Microscale Thermophys. Eng.
,
6
(4), pp.
319
330
.
128.
Alharbi
,
A. Y.
,
Pence
,
D. V.
, and
Cullion
,
R. N.
,
2003
, “
Fluid Flow Through Microscale Fractal-Like Branching Channel Networks
,”
ASME J. Fluids Eng.
,
125
(
6
), pp.
1051
1057
.
129.
Alharbi
,
A. Y.
,
Pence
,
D. V.
, and
Cullion
,
R. N.
,
2004
, “
Thermal Characteristics of Microscale Fractal-Like Branching Channels
,”
ASME J. Heat Transfer
,
126
(
5
), pp.
744
752
.
130.
Chen
,
Y. P.
, and
Cheng
,
P.
,
2002
, “
Heat Transfer and Pressure Drop in Fractal Tree-Like Microchannel Nets
,”
Int. J. Heat Mass Transfer
,
45
(
13
), pp.
2643
2648
.
131.
Chen
,
Y. P.
, and
Cheng
,
P.
,
2005
, “
An Experimental Investigation on the Thermal Efficiency of Fractal Tree-Like Microchannel Nets
,”
Int. Commun. Heat Mass Transfer
,
32
(
7
), pp.
931
938
.
132.
Chen
,
Y. P.
,
Zhang
,
C. B.
,
Shi
,
M. H.
, and
Yang
,
Y.
,
2010
, “
Thermal and Hydrodynamic Characteristics of Constructal Tree-Shaped Minichannel Heat Sink
,”
AIChE J.
,
56
(8), pp.
2018
2029
.
133.
Chen
,
Y. P.
, and
Deng
,
Z.
,
2015
, “
Gas Flow in Micro Tree-Shaped Hierarchical Network
,”
Int. J. Heat Mass Transfer
,
80
, pp.
163
169
.
134.
Hong
,
F. J.
,
Cheng
,
P.
,
Ge
,
H.
, and
Joo
,
G. T.
,
2007
, “
Conjugate Heat Transfer in Fractal-Shaped Microchannel Network Heat Sink for Integrated Microelectronic Cooling Application
,”
Int. J. Heat Mass Transfer
,
50
(25–26), pp.
4986
4998
.
135.
Wang
,
X. Q.
,
Mujumdar
,
A. S.
, and
Yap
,
C.
,
2006
, “
Thermal Characteristics of Tree-Shaped Microchannel Nets for Cooling of a Rectangular Heat Sink
,”
Int. J. Therm. Sci.
,
45
(
11
), pp.
1103
1112
.
136.
Wang
,
X. Q.
,
Yap
,
C.
, and
Mujumdar
,
A. S.
,
2006
, “
Numerical Analysis of Blockage and Optimization of Heat Transfer Performance of Fractal-Like Microchannel Nets
,”
ASME J. Electron. Packag.
,
128
(
1
), pp.
38
45
.
137.
Wang
,
X. Q.
,
Mujumdar
,
A. S.
, and
Yap
,
C.
,
2006
, “
Laminar Heat Transfer in Constructal Microchannel Networks With Loops
,”
ASME J. Electron. Packag.
,
128
(
3
), pp.
273
280
.
138.
Wang
,
X. Q.
,
Mujumdar
,
A. S.
, and
Yap
,
C.
,
2007
, “
Effect of Bifurcation Angle in Tree-Shaped Microchannel Networks
,”
J. Appl. Phys.
,
102
(
7
), p.
073530
.
139.
Xu
,
P.
,
Wang
,
X. Q.
,
Mujumdar
,
A. S.
, and
Yap
,
C.
,
2009
, “
Thermal Characteristics of Tree-Shaped Microchannel Nets With/Without Loops
,”
Int. J. Therm. Sci.
,
48
(
11
), pp.
2139
2147
.
140.
Wang
,
X. Q.
,
Xu
,
P.
,
Mujumdar
,
A. S.
, and
Yap
,
C.
,
2010
, “
Flow and Thermal Characteristics of Offset Branching Network
,”
Int. J. Therm. Sci.
,
49
(
2
), pp.
272
280
.
141.
Ghaedamini
,
H.
,
Salimpour
,
M. R.
, and
Mujumdar
,
A. S.
,
2011
, “
The Effect of Svelteness on the Bifurcation Angles Role in Pressure Drop and Flow Uniformity of Tree-Shaped Microchannels
,”
Appl. Therm. Eng.
,
31
(
5
), pp.
708
716
.
142.
Ghaedamini
,
H.
,
Salimpour
,
M. R.
, and
Campo
,
A.
,
2011
, “
Constructal Design of Reverting Microchannels for Convective Cooling of a Circular Disc
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
1051
1061
.
143.
Hart
,
R. A.
, and
Silva
,
A. K.
,
2011
, “
Experimental Thermal-Hydraulic Evaluation of Constructal Microfluidic Structures Under Fully Constrained Conditions
,”
Int. J. Heat Mass Transfer
,
54
(15–16), pp.
3661
3671
.
144.
Hart
,
R. A.
,
Ponkala
,
M. J. V.
, and
Silva
,
A. K.
,
2011
, “
Development and Testing of a Constructal Microchannel Flow System With Dynamically Controlled Complexity
,”
Int. J. Heat Mass Transfer
,
54
(25–26), pp.
5470
5480
.
145.
Xu
,
S.
,
Qin
,
J.
,
Guo
,
W.
, and
Fang
,
K.
,
2013
, “
The Design of an Asymmetric Bionic Branching Channel for Electronic Chips Cooling
,”
Heat Mass Transfer
,
49
(
6
), pp.
827
834
.
146.
Xie
,
G.
,
Zhang
,
F.
,
Sundén
,
B.
, and
Zhang
,
W.
,
2014
, “
Constructal Design and Thermal Analysis of Microchannel Heat Sinks With Multistage Bifurcations in Single-Phase Liquid Flow
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
791
802
.
147.
Li
,
Y.
,
Zhang
,
F.
,
Sunden
,
B.
, and
Xie
,
G.
,
2014
, “
Laminar Thermal Performance of Microchannel Heat Sinks With Constructal Vertical Y-Shaped Bifurcation Plates
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
185
195
.
148.
Xie
,
G.
,
Shen
,
H.
, and
Wang
,
C.-C.
,
2015
, “
Parametric Study on Thermal Performance of Microchannel Heat Sinks With Internal Vertical Y-Shaped Bifurcations
,”
Int. J. Heat Mass Transfer
,
90
, pp.
948
958
.
149.
Calamas
,
D.
, and
Baker
,
J.
,
2015
, “
Experimental Performance of a Solid Heat Exchanger With Tree-Like Flow Passages
,”
Exp. Heat Transfer
,
28
(
3
), pp.
205
221
.
150.
Miguel
,
A. F.
,
2016
, “
A Study of Entropy Generation in Tree-Shaped Flow Structures
,”
Int. J. Heat Mass Transfer
,
92
, pp.
349
359
.
151.
Ghodoossi
,
L.
,
2005
, “
Thermal and Hydrodynamic Analysis of a Fractal Microchannel Network
,”
Energy Convers. Manage.
,
46
(
5
), pp.
771
788
.
152.
Escher
,
W.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2009
, “
Efficiency of Optimized Bifurcating Tree-Like and Parallel Microchannel Networks in the Cooling of Electronics
,”
Int. J. Heat Mass Transfer
,
52
(5–6), pp.
1421
1430
.
153.
Camburn
,
B.
,
Wood
,
K.
, and
Crawford
,
R.
,
2012
, “
Novel Topological Approach to Designing Flow Channels
,”
14th International Design Engineering Technical Conference
, Chicago, IL, Aug. 12–15, p.
71448
.
154.
Reddy
,
B. V. K.
,
Ramana
,
P. V.
, and
Narasimhan
,
A.
,
2008
, “
Steady and Transient Thermo-Hydraulic Performance of Disc With Tree-Shaped Micro-Channel Networks With and Without Radial Inclination
,”
Int. J. Therm. Sci.
,
47
(
11
), pp.
1482
1489
.
155.
Kim
,
S.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2009
, “
Transient Behavior of Vascularized Walls Exposed to Sudden Heating
,”
Int. J. Therm. Sci.
,
48
(
11
), pp.
2046
2052
.
156.
Cho
,
K.-H.
, and
Kim
,
M.-H.
,
2012
, “
Transient Thermal-Fluid Characteristics of Vascular Networks
,”
Int. J. Heat Mass Transfer
,
55
(13–14), pp.
3533
3540
.
157.
Zamfirescu
,
C.
, and
Bejan
,
A.
,
2003
, “
Constructal Tree-Shaped Two-Phase Flow for Cooling a Surface
,”
Int. J. Heat Mass Transfer
,
46
(
15
), pp.
2785
2797
.
158.
Daniels
,
B. J.
,
Liburdy
,
J. A.
, and
Pence
,
D. V.
,
2007
, “
Adiabatic Flow Boiling in Fractal-Like Microchannels
,”
Heat Transfer Eng.
,
28
(
10
), pp.
817
825
.
159.
Kwak
,
Y.
,
Pence
,
D.
,
Liburdy
,
J.
, and
Narayanan
,
V.
,
2009
, “
Gas–Liquid Flows in a Microscale Fractal-Like Branching Flow Network
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
868
876
.
160.
Daguenet-Frick
,
X.
,
Bonjour
,
J.
, and
Revellin
,
R.
,
2010
, “
Constructal Microchannel Network for Flow Boiling in a Disc-Shaped Body
,”
IEEE Trans. Compon. Packag. Technol.
,
33
(
1
), pp.
115
126
.
161.
Zhang
,
C. B.
,
Chen
,
Y. P.
,
Wu
,
R.
, and
Shi
,
M. H.
,
2011
, “
Flow Boiling in Constructal Tree-Shaped Minichannel Network
,”
Int. J. Heat Mass Transfer
,
54
(1–3), pp.
202
209
.
162.
Sarkar
,
A.
,
2014
, “
Analysis of Constructal Two Phase Micro-Channel Heat Exchanger With Water and R 134a
,”
Int. J. Eng. Res. Technol.
,
3
(6), pp.
809
819
.
163.
Lorente
,
S.
, and
Bejan
,
A.
,
2006
, “
Heterogeneous Porous Media as Multiscale Structures for Maximum Flow Access
,”
J. Appl. Phys.
,
100
(
11
), p.
114909
.
164.
Xu
,
P.
,
Yu
,
B. M.
,
Feng
,
Y. J.
, and
Liu
,
Y. J.
,
2006
, “
Analysis of Permeability for the Fractal-Like Tree Network by Parallel and Series Models
,”
Physica A
,
369
(
2
), pp.
884
894
.
165.
Xu
,
P.
,
Yu
,
B. M.
,
Feng
,
Y. J.
, and
Zou
,
M. Q.
,
2006
, “
Permeability of the Fractal Disk-Shaped Branched Network With Tortuosity Effect
,”
Phys. Fluids
,
18
(
7
), p.
078103
.
166.
Ronayne
,
M. J.
, and
Gorelick
,
S. M.
,
2006
, “
Effective Permeability of Porous Media Containing Branching Channel Networks
,”
Phys. Rev. E
,
73
(
2
), p.
026305
.
167.
Xu
,
P.
,
Yu
,
B. M.
,
Qiu
,
S. X.
, and
Cai
,
J. C.
,
2008
, “
An Analysis of the Radial Flow in the Heterogeneous Porous Media Based on Fractal and Constructal Tree Networks
,”
Physica A
,
387
(
26
), pp.
6471
6483
.
168.
Tan
,
X.-H.
, and
Li
,
X.-P.
,
2014
, “
Transient Flow Model and Pressure Dynamic Features of Tree-Shaped Fractal Reservoirs
,”
J. Hydrodyn.
,
26
(
4
), pp.
654
663
.
169.
Fan
,
J. T.
,
Sarkar
,
M. K.
,
Szeto
,
Y. C.
, and
Tao
,
X. M.
,
2007
, “
Plant Structured Textile Fabrics
,”
Mater. Lett.
,
61
(
2
), pp.
561
565
.
170.
Sarkar
,
M. K.
,
Fan
,
J. T.
,
Szeto
,
Y. C.
, and
Tao
,
X. M.
,
2009
, “
Development and Characterization of Light Weight Plant Structured Fabrics
,”
Fibers. Polym.
,
10
(
3
), pp.
343
350
.
171.
Chen
,
Q.
,
Fan
,
J. T.
, and
Sarkar
,
M. K.
,
2012
, “
Biomimetics of Branching Structure in Warp Knitted Fabrics to Improve Water Transport Properties for Comfort
,”
Text. Res. J.
,
82
(
11
), pp.
1131
1142
.
172.
Doumanidis
,
C. C.
,
2009
, “
Nanomanufacturing of Random Branching Material Architectures
,”
Microelectron. Eng.
,
86
(4–6), pp.
467
478
.
173.
Xu
,
Z.
, and
Buehler
,
M. J.
,
2009
, “
Hierarchical Nanostructures Are Crucial to Mitigate Ultrasmall Thermal Point Loads
,”
Nano Lett.
,
9
(
5
), pp.
2065
2072
.
174.
Darbari
,
S.
,
Abdi
,
Y.
,
Mohajerzadeh
,
S.
, and
Soleimani
,
E. A.
,
2010
, “
High Electron Emission From Branched Tree-Like Carbon Nanotubes Suitable for Field Emission Applications
,”
Carbon
,
48
(
9
), pp.
2493
2500
.
175.
Kou
,
J.
,
Qian
,
H.
,
Lu
,
H.
,
Liu
,
Y.
,
Xu
,
Y.
,
Wu
,
F.
, and
Fan
,
J.
,
2011
, “
Optimizing the Design of Nanostructures for Improved Thermal Conduction Within Confined Spaces
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
422
.
176.
Huang
,
H.-F.
,
Chu
,
Q.-X.
, and
Xiao
,
J.-K.
,
2010
, “
Fractal Power Network Based on Plant Vein for Power Integrity
,”
IEEE Trans. Electromagn. Compat.
,
52
(
3
), pp.
759
762
.
177.
Huang
,
H.-F.
,
Liu
,
S.-Y.
, and
Guo
,
W.
,
2012
, “
A Hierarchical Tree Shaped Power Distribution Network Based on Constructal Theory for EBG Structure Power Plane
,”
Prog. Electromagn. Res. B
,
36
, pp.
173
191
.
178.
Vandewalle
,
N.
, and
Ausloos
,
M.
,
1997
, “
Construction and Properties of Fractal Trees With Tunable Dimension: The Interplay of Geometry and Physics
,”
Phys. Rev. E
,
55
(
1
), pp.
94
98
.
179.
Bejan
,
A.
, and
Lorente
,
S.
,
2011
, “
The Constructal Law Origin of the Logistics S Curve
,”
J. Appl. Phys.
,
110
(
2
), p.
024901
.
180.
Bejan
,
A.
, and
Lorente
,
S.
,
2012
, “
The Physics of Spreading Ideas
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
802
807
.
181.
Zamir
,
M.
,
1976
, “
The Role of Shear Forces in Arterial Branching
,”
J. Gen. Physiol.
,
67
(
2
), pp.
213
222
.
182.
Woldenberg
,
M. J.
, and
Horsfield
,
K.
,
1986
, “
Relation of Branching Angles to Optimality for Four Cost Principles
,”
J. Theor. Biol.
,
122
(
2
), pp.
187
204
.
183.
Woldenberg
,
M. J.
, and
Horsfield
,
K.
,
1983
, “
Finding the Optimal Lengths for Three Branches at a Junction
,”
J. Theor. Biol.
,
104
(
2
), pp.
301
318
.
184.
Metzger
,
R. J.
, and
Krasnow
,
M. A.
,
1999
, “
Genetic Control of Branching Morphogenesis
,”
Science
,
284
(
5420
), pp.
1635
1639
.
185.
Jones
,
E. A. V.
,
Noble
,
F.
, and
Eichmann
,
A.
,
2006
, “
What Determines Blood Vessel Structure? Genetic Prespecification vs. Hemodynamics
,”
Physiology
,
21
(
6
), pp.
388
395
.
186.
Bejan
,
A.
,
Rocha
,
L. A. O.
, and
Lorente
,
S.
,
2000
, “
Thermodynamic Optimization of Geometry: T- and Y-Shaped Constructs of Fluid Streams
,”
Int. J. Therm. Sci.
,
39
(9–11), pp.
949
960
.
187.
Cieślicki
,
K.
,
1999
, “
Resistance to the Blood Flow of a Vascular Tree: A Model Study
,”
Pol. J. Med. Phys. Eng.
,
5
, pp.
161
172
.
188.
Durand
,
M.
,
2006
, “
Architecture of Optimal Transport Networks
,”
Phys. Rev. E
,
73
(
1
), p.
016116
.
189.
Liu
,
Y.
, and
Kassab
,
G. S.
,
2007
, “
Vascular Metabolic Dissipation in Murray's Law
,”
Am. J. Physiol. Heart Circ. Physiol.
,
292
(3), pp.
H1336
H1339
.
190.
Luo
,
L.
,
Yu
,
B. M.
,
Cai
,
J. C.
, and
Mei
,
M. F.
,
2010
, “
Symmetry Is Not Always Prefect
,”
Int. J. Heat Mass Transfer
,
53
(21–22), pp.
5022
5024
.
191.
Kou
,
J.
,
Chen
,
Y.
,
Zhou
,
X.
,
Lu
,
H.
,
Wu
,
F.
, and
Fan
,
J.
,
2014
, “
Optimal Structure of Tree-Like Branching Networks for Fluid Flow
,”
Physica A
,
393
(1), pp.
527
534
.
192.
Bejan
,
A.
, and
Lorente
,
S.
,
2011
, “
The Constructal Law and Evolution of Design in Nature
,”
Phys. Life Rev.
,
8
(
3
), pp.
209
240
.
193.
Womersley
,
J. R.
,
1955
, “
Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient is Known
,”
J. Physiol.
,
127
(
3
), pp.
553
563
.
194.
Loudon
,
C.
, and
Tordesillas
,
A.
,
1998
, “
The Use of the Dimensionless Womersley Number to Characterize the Unsteady Nature of Internal Flow
,”
J. Theor. Biol.
,
191
(
1
), pp.
63
78
.
195.
West
,
B. J.
,
1990
,
Fractal Physiology and Chaos in Medicine
,
World Scientific
,
Singapore
.
196.
Shlesinger
,
M. F.
, and
West
,
B. J.
,
1991
, “
Complex Fractal Dimension of the Bronchial Tree
,”
Phys. Rev. Lett.
,
67
(
15
), pp.
2106
2108
.
197.
Majumdar
,
A.
,
1992
, “
Role of Fractal Geometry in the Study of Thermal Phenomena
,”
Annual Review of Heat Transfer
,
C. L.
Tien
, ed.,
Hemisphere Publishing
,
New York
, pp.
51
110
.
198.
Kalda
,
J.
,
1999
, “
On the Fractality of the Biological Tree-Like Structures
,”
Discrete Dyn. Nat. Soc.
,
3
(
4
), pp.
297
306
.
199.
Kamiya
,
A.
, and
Takahashi
,
T.
,
2007
, “
Quantitative Assessments of Morphological and Functional Properties of Biological Trees Based on Their Fractal Nature
,”
J. Appl. Physiol.
,
102
(
6
), pp.
2315
2323
.
200.
Aguirre
,
J.
,
Viana
,
R. L.
, and
Sanjuán
,
M. A. F.
,
2009
, “
Fractal Structures in Nonlinear Dynamics
,”
Rev. Mod. Phys.
,
81
(
1
), pp.
333
386
.
201.
Min
,
K.
,
Hosoi
,
K.
,
Kinoshita
,
Y.
,
Hara
,
S.
,
Degami
,
H.
,
Takada
,
T.
, and
Nakamura
,
T.
,
2012
, “
Use of Fractal Geometry to Propose a New Mechanism of Airway-Parenchymal Interdependence
,”
Open J. Mol. Integr. Physiol.
,
2
(
01
), pp.
14
20
.
202.
Rian
,
I. M.
, and
Sassone
,
M.
,
2014
, “
Tree-Inspired Dendriforms and Fractal-Like Branching Structures in Architecture: A Brief Historical Overview
,”
Front. Archit. Civ. Eng. China
,
3
(3), pp.
298
323
.
203.
Longo
,
G.
, and
Montévil
,
M.
,
2014
,
Perspectives on Organisms: Biological Time, Symmetries and Singularities
,
Springer
,
New York
, pp.
38
41
.
204.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron. Devices Lett.
,
2
(
5
), pp.
126
129
.
205.
Wechsatol
,
W.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2005
, “
Tree-Shaped Networks With Loops
,”
Int. J. Heat Mass Transfer
,
48
(3–4), pp.
573
583
.
You do not currently have access to this content.