The dynamics of oscillatory flames is relevant to acoustically coupled combustion instabilities arising in many practical engineering systems. This paper reviews fundamental studies that pertain to the combustion of single liquid fuel droplets in an acoustically resonant environment. This flow field is not only an idealized model for the study of the fundamental interaction of reactive, evaporative, acoustic, and other transport-based timescales, but it may also be used to identify relevant phenomena in more complex or practical geometries that require a focus for future combustion control efforts. The nature of these phenomena is discussed in detail, in addition to their implications for broader issues associated with combustion instabilities.

References

References
1.
Crocco
,
L.
, and
Cheng
,
S.-I.
,
1956
,
Theory of Combustion Instability in Liquid Propellant Rocket Motors (Agardograph)
,
Butterworth Scientific
,
London, UK
.
2.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
, “
Combustion Instabilities in Gas Turbine Engines (Operational Experience, Fundamental Mechanisms and Modeling)
,”
Progress in Astronautics and Aeronautics
, American Institute of Aeronautics and Astronautics, Reston, VA.
3.
Candel
,
S. M.
,
1992
, “
Combustion Instabilities Coupled by Pressure Waves and Their Active Control
,”
Proc. Combust. Inst.
,
24
(
1
), pp.
1277
1296
.
4.
Culick
,
F. E. C.
,
1994
, “
Some Recent Results for Nonlinear Acoustics in Combustion Chambers
,”
AIAA J.
,
32
(
1
), pp.
146
169
.
5.
Mongia
,
H. C.
,
Held
,
T. J.
,
Hsiao
,
G. C.
, and
Pandalai
,
R. P.
,
2003
, “
Challenges and Progress in Controlling Dynamics in Gas Turbine Combustors
,”
J. Propul. Power
19
(
5
), pp.
822
829
.
6.
McManus
,
K. R.
,
Poinsot
,
T.
, and
Candel
,
S. M.
,
1993
, “
A Review of Active Control of Combustion Instabilities
,”
Prog. Energy Combust. Sci.
,
19
(
1
), pp.
1
29
.
7.
Candel
,
S.
,
2002
, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1
28
.
8.
Oefelein
,
J. C.
, and
Yang
,
V.
,
1993
, “
Comprehensive Review of Liquid Propellant Combustion Instabilities in F-1 Engines
,”
Propul. Power
,
9
(
5
), pp.
657
677
.
9.
Culick
,
F. E. C.
, and
Yang
,
V.
,
1995
, “
Overview of Combustion Instabilities in Liquid-Propellant Rocket Engines
,”
Progress in Aeronautics and Astronautics: Liquid Rocket Engine Combustion Instability
,
W. E.
Anderson
, and
V.
Yang
, eds.,
AIAA
,
Washington, DC
.
10.
Sutton
,
G.
, and
Biblarz
,
O.
,
2010
,
Rocket Propulsion Elements
,
8th ed.
,
Wiley
,
New York
.
11.
Anderson
,
W. E.
, and
Yang
,
V.
,
1995
,
Progress in Aeronautics and Astronautics: Liquid Rocket Engine Combustion Instability
,
AIAA
,
Washington, DC
.
12.
Ducruix
,
S.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
Combustion Dynamics and Instabilities: Elementary Coupling and Driving Mechanisms
,”
J. Propul. Power
,
19
(
5
), pp.
722
734
.
13.
O'Connor
,
J.
,
Acharya
,
V.
, and
Lieuwen
,
T.
,
2015
, “
Transverse Combustion Instabilities: Acoustic, Fluid Mechanic, and Flame Processes
,”
Prog. Energy Combust. Sci.
,
49
, pp.
1
39
.
14.
Rayleigh
,
L.
,
1945
,
The Theory of Sound
,
Dover
, New York.
15.
Putnam
,
A.
,
1971
,
Combustion-Driven Oscillations in Industry
,
American Elsevier
, New York.
16.
Poinsot
,
T.
, and
Veynante
,
D.
,
2001
,
Theoretical and Numerical Combustion
,
R. T. Edwards
, Philadelphia, PA.
17.
Ghoniem
,
A. F.
,
Soteriou
,
M. C.
,
Knio
,
O. M.
, and
Cetegen
,
B. M.
,
1992
, “
Effect of Steady and Periodic Strain on Unsteady Flamelet Combustion
,”
Proc. Combust. Inst.
,
24
(
1
), pp.
223
230
.
18.
Egolfopoulos
,
F. N.
, and
Campbell
,
C. S.
,
1996
, “
Unsteady Counterflowing Strained Diffusion Flames: Diffusion-Limited Frequency Response
,”
J. Fluid Mech.
,
318
, pp.
1
29
.
19.
Selerland
,
T.
, and
Karagozian
,
A. R.
,
1998
, “
Ignition, Burning, and Extinction of a Strained Fuel Strip With Complex Kinetics
,”
Combust. Sci. Technol.
,
131
(1–6), pp.
251
276
.
20.
Sevilla-Esparza
,
C. I.
,
Wegener
,
J. L.
,
Teshome
,
S.
,
Rodriguez
,
J. I.
,
Smith
,
O. I.
, and
Karagozian
,
A. R.
,
2014
, “
Droplet Combustion in the Presence of Acoustic Excitation
,”
Combust. Flame
,
161
(
6
), pp.
1604
1619
.
21.
Sirignano
,
W. A.
,
1983
, “
Fuel Droplet Vaporization and Spray Combustion Theory
,”
Prog. Energy Combust. Sci.
,
9
(
4
), pp.
291
322
.
22.
Godsave
,
G. A. E.
,
1953
, “
Burning of Fuel Droplets
,”
Combust. Flame
, pp.
818
830
.
23.
Faeth
,
G. M.
,
1977
, “
Current Status of Droplet and Liquid Combustion
,”
Prog. Energy Combust. Sci.
,
3
(
4
), pp.
191
224
.
24.
Juniper
,
M.
,
Tripathi
,
A.
,
Scouflaire
,
P.
,
Rolon
,
J.
, and
Candel
,
S.
,
2000
, “
Structure of Cryogenic Flames at Elevated Pressures
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
1103
1109
.
25.
Candel
,
S.
,
Juniper
,
M.
,
Singla
,
G.
,
Scouflaire
,
P.
, and
Rolon
,
C.
,
2006
, “
Structure and Dynamics of Cryogenic Flames at Supercritical Pressure
,”
Combust. Sci. Technol.
,
178
(
1–3
), pp.
161
192
.
26.
Chehroudi
,
B.
,
Davis
,
D. W.
, and
Talley
,
D.
,
2004
, “
The Effects of Pressure and Acoustic Field on a Cryogenic Coaxial Jet
,”
AIAA
Paper No. 2004-1330.
27.
Leyva
,
I.
,
Rodriguez
,
J. I.
,
Chehroudi
,
B.
, and
Talley
,
D.
,
2008
, “
Preliminary Results on Coaxial Jet Spread Angles and the Effects of Variable Phase Transverse Acoustic Fields
,”
AIAA
Paper No. 2008-950.
28.
Rodriguez
,
J. I.
,
Leyva
,
I.
,
Chehroudi
,
B.
, and
Talley
,
D.
,
2008
, “
Effects of a Variable-Phase Transverse Acoustic Field on a Coaxial Injector at Subcritical and Near-Critical Conditions
,”
ILASS Americas, 21st Annual Conference on Liquid Atomization and Spray Systems
.
29.
Teshome
,
S.
,
Leyva
,
I.
,
Talley
,
D.
, and
Karagozian
,
A. R.
,
2012
, “
Cryogenic High-Pressure Shear-Coaxial Jets Exposed to Transverse Acoustic Forcing
,”
AIAA
Paper No. 2012-1265.
30.
Forliti
,
D. J.
,
Badakhshan
,
A.
,
Wegener
,
J. L.
,
Leyva
,
I.
, and
Talley
,
D. G.
,
2015
, “
The Response of Cryogenic H2/O2 Coaxial Jet Flames to Acoustic Disturbances
,”
AIAA
Paper No. 2015-1607.
31.
Law
,
C. K.
, and
Faeth
,
G. M.
,
1994
, “
Opportunities and Challenges of Combustion in Microgravity
,”
Prog. Energy Combust. Sci.
,
20
(
1
), pp.
65
113
.
32.
Blaszczyk
,
J.
,
1991
, “
Acoustically Disturbed Fuel Droplet Combustion
,”
Fuel
,
70
(
9
), pp.
1023
1025
.
33.
Kumagai
,
S.
, and
Isoda
,
H.
,
1955
, “
Combustion of Fuel Droplets in a Vibrating Air Field
,”
Proc. Combust. Inst.
,
5
(
1
), pp.
129
132
.
34.
Law
,
C. K.
,
1982
, “
Recent Advances in Droplet Vaporization and Combustion
,”
Prog. Energy Combust. Sci.
,
8
(
3
), pp.
171
201
.
35.
Turns
,
S. R.
,
2000
,
An Introduction to Combustion
,
McGraw Hill
, New York.
36.
Struk
,
P. M.
,
Ackerman
,
M.
,
Nayagam
,
V.
, and
Dietrich
,
D. L.
,
1998
, “
On Calculating Burning Rates During Fibre Supported Droplet Combustion
,”
Microgravity Sci. Technol.
,
11
(4), pp.
144
151
.
37.
Dembia
,
C. L.
,
Liu
,
Y. C.
, and
Avedisian
,
C. T.
,
2012
, “
Automated Data Analysis for Consecutive Images From Droplet Combustion Experiments
,”
Image Anal. Stereol.
,
31
(
3
), pp.
137
148
.
38.
Liu
,
Y. C.
, and
Avedisian
,
C. T.
,
2012
, “
A Comparison of the Spherical Flame Characteristics of Sub-Millimeter Droplets of Binary Mixtures of n-Heptane/Iso-Octane and n-Heptane/Toluene With a Commercial Unleaded Gasoline
,”
Combust. Flame
,
159
(
2
), pp.
770
783
.
39.
Cho
,
S. Y.
,
Choi
,
M. Y.
, and
Dryer
,
F. L.
,
1990
, “
Extinction of a Free Methanol Droplet in Microgravity
,”
Proc. Combust. Inst.
,
23
(1), pp.
1611
1617
.
40.
Marchese
,
A.
,
Dryer
,
F.
,
Nayagam
,
V.
, and
Colantino
,
R.
,
1996
, “
Hydroxyl Radical Chemiluminescence Imaging and the Structure of Microgravity Droplet Flames
,”
Proc. Combust. Inst.
,
26
(
1
), pp.
1219
1226
.
41.
Marchese
,
A.
,
Dryer
,
F.
,
Colantino
,
R.
, and
Nayagam
,
V.
,
1996
, “
Microgravity Combustion of Methanol and Methanol/Water Droplets: Drop Tower Experiments and Model Predictions
,”
Proc. Combust. Inst.
,
26
(
1
), pp.
1209
1217
.
42.
Liu
,
Y. C.
,
Farouk
,
T.
,
Savas
,
A. J.
,
Dryer
,
F. L.
, and
Avedisian
,
C. T.
,
2013
, “
On the Spherically Symmetrical Combustion of Methyl Decanoate Droplets and Comparisons With Detailed Numerical Modeling
,”
Combust. Flame
,
160
(
3
), pp.
641
655
.
43.
Dattarajan
,
S.
,
Lutomirski
,
A.
,
Lobbia
,
R.
,
Smith
,
O. I.
, and
Karagozian
,
A. R.
,
2006
, “
Acoustic Excitation of Droplet Combustion in Microgravity and Normal Gravity
,”
Combust. Flame
,
144
(1–2), pp.
299
317
.
44.
Dattarajan
,
S.
,
2004
, “
Acoustically Excited Droplet Combustion in Normal Gravity and Microgravity
,” Ph.D. thesis, UCLA, Los Angeles, CA.
45.
Erbschloe
,
D.
,
2012
, “
Air Force Alternative Fuels Process Paves Way to Future
,” Air Force Air Mobility Command, Sapphire Energy Report.
46.
Wegener
,
J. L.
,
2014
, “
Multi-Phase Combustion Under the Influence of Acoustic Excitation
,” Ph.D. thesis, UCLA, Los Angeles, CA.
47.
Smith
,
A.
, and
Graves
,
C.
,
1957
, “
Drop Burning Rates of Hydrocarbon and Nonhydrocarbon Fuels
,”
NACA RME 57
, p.
F11
.
48.
Vielle
,
B.
,
Chauveau
,
C.
,
Chesneau
,
X.
,
Odeide
,
A.
, and
Gokalp
,
I.
,
1996
, “
High Pressure Droplet Burning Experiments in Microgravity
,”
Proc. Combust. Inst.
,
26
(
1
), pp.
1259
1265
.
49.
Wood
,
B. J.
, and
Wise
,
H.
,
1957
, “
Measurements of the Burning Constant of a Fuel Drop
,”
J. Appl. Phys.
,
28
(
9
), p.
1068
.
50.
Okai
,
K.
,
Moriue
,
O.
,
Araki
,
M.
,
Tsue
,
M.
,
Kono
,
M.
,
Sato
,
J.
,
Dietrich
,
D. L.
, and
Williams
,
F. A.
,
2000
, “
Combustion of Single Droplets and Droplet Pairs in a vibrating Field Under Microgravity
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
977
983
.
51.
Saito
,
M.
,
Sato
,
M.
, and
Suzuki
,
I.
,
1994
, “
Evaporation and Combustion of a Single Fuel Droplet in Acoustic Fields
,”
Fuel
,
73
(
3
), pp.
349
353
.
52.
Sujith
,
R. I.
,
Waldherr
,
G. A.
,
Jagoda
,
J. I.
, and
Zinn
,
B. T.
,
2000
, “
Experimental Investigation of the Evaporation of Droplets in Axial Acoustic Fields
,”
J. Propul. Power
,
16
(
2
), pp.
278
285
.
53.
Saito
,
M.
,
Hoshikawa
,
M.
, and
Sato
,
M.
,
1996
, “
Enhancement of Evaporation/Combustion Rate Coefficient of a Single Fuel Droplet by Acoustic Oscillation
,”
Fuel
,
75
(
6
), pp.
669
674
.
54.
Miglani
,
A.
,
Basu
,
S.
, and
Kumari
,
R.
,
2014
, “
Insight Into Instabilities in Burning Droplets
,”
Phys. Fluids
,
26
(
3
), p.
032101
.
55.
Basu
,
S.
, and
Miglani
,
A.
,
2016
, “
Combustion and Heat Transfer Characteristics of Nanofluid Fuel Droplets: A Short Review
,”
Int. J. Heat Mass Transfer
,
96
, pp.
482
503
.
56.
Miglani
,
A.
,
Basu
,
S.
, and
Kumar
,
R.
,
2014
, “
Suppression of Instabilities in Burning Droplets Using Preferential Acoustic Perturbations
,”
Combust. Flame
,
161
(
12
), pp.
3181
3190
.
57.
Tanabe
,
M.
,
Morita
,
T.
,
Aoki
,
K.
,
Satoh
,
K.
,
Fujimori
,
T.
, and
Sato
,
J.
,
2000
, “
Influence of Standing Sound Waves on Droplet Combustion
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
1007
1013
.
58.
Tanabe
,
M.
,
Kuwahara
,
T.
,
Satoh
,
K.
,
Fujimori
,
T.
,
Sato
,
J.
, and
Kono
,
M.
,
2005
, “
Droplet Combustion in Standing Sound Waves
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
1957
1964
.
59.
Jangi
,
M.
,
Sakurai
,
S.
,
Ogami
,
Y.
, and
Kobayashi
,
H.
,
2009
, “
On the Validity of Quasi-Steady Assumption in Transient Droplet Combustion
,”
Combust. Flame
,
156
(
1
), pp.
99
105
.
60.
Tanabe
,
M.
,
2010
, “
Drop Tower Experiments and Numerical Modeling on the Combustion-Induced Secondary Flow in Standing Acoustic Fields
,”
Microgravity Sci. Technol.
,
22
(
4
), pp.
507
515
.
61.
Gor'kov
,
L.
,
1962
, “
On the Forces Acting on a Small Particle in an Acoustical Field in an Ideal Fluid
,”
Sov. Phys.-Dokl.
,
6
(
9
), pp.
773
775
.
62.
Nyborg
,
W. L.
,
1967
, “
Radiation Pressure on a Small Rigid Sphere
,”
J. Acoust. Soc. Am.
,
42
(
5
), pp.
947
952
.
63.
Leung
,
E. W.
, and
Wang
,
T.
,
1985
, “
Force on a Heated Sphere in a Horizontal Plane Acoustic Standing Wave
,”
J. Acoust. Soc. Am.
,
77
(
5
), pp.
1686
1691
.
64.
Diederichsen
,
J.
, and
Gould
,
R.
,
1965
, “
Combustion Instability: Radiation From Premixed Flames of Variable Burning Velocity
,”
Combust. Flame
,
9
(
1
), pp.
25
31
.
65.
Anders
,
H.
,
Christensen
,
M.
,
Johansson
,
B.
,
Franke
,
A.
,
Richter
,
M.
, and
Alden
,
M.
,
1999
, “
A Study of the Homogeneous Charge Compression Ignition Combustion Process by Chemiluminescence Imaging
,”
SAE
Technical Paper No. 99-01-3680.
66.
Lawn
,
C.
,
2000
, “
Distributions of Instantaneous Heat Release by the Cross-Correlation of Chemiluminescent Emissions
,”
Combust. Flame
,
123
(
1
), pp.
227
240
.
67.
Haber
,
L.
,
Vandsburger
,
U.
,
Saunders
,
W.
, and
Khanna
,
V.
,
2000
, “
An Experimental Examination of the Relationship Between Chemiluminescent Light Emissions and Heat-Release Rate Under Non-Adiabatic Conditions
,”
International Gas Turbine Institute
, Munich, Germany, May 8–11, Paper 2000-GT-0121.
68.
Timmerman
,
B.
, and
Bryanston-Cross
,
P.
,
2007
, “
Optical Investigation of Heat Release and NOx Production in Combustion
,”
J. Phys. Conf. Ser.
,
85
, p.
012007
.
69.
Leo
,
M. D.
,
Saveliev
,
A.
,
Kennedy
,
L.
, and
Zelepouga
,
S.
,
2007
, “
OH* and CH* Luminescence in Opposed Flow Methane Oxy-Flames
,”
Combust. Flame
,
149
(
4
), pp.
435
447
.
70.
Gopalakrishnan
,
P.
,
Bobba
,
M.
, and
Seitzman
,
J.
,
2007
, “
Controlling Mechanisms for Low NOx Emissions in a Non-Premixed Stagnation Point Reverse Flow Combustor
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3401
3408
.
71.
Sliphorst
,
M.
,
Knapp
,
B.
,
Groening
,
S.
, and
Oschwald
,
M.
,
2012
, “
Combustion Instability-Coupling Mechanisms Between Liquid Oxygen/Methane Spray Flames and Acoustics
,”
J. Propul. Power
,
28
(
6
), pp.
1339
1350
.
72.
Jangi
,
M.
, and
Kobayashi
,
H.
,
2010
, “
Droplet Combustion in Presence of Airstream Oscillation: Mechanisms of Enhancement and Hysteresis of Burning Rate in Microgravity at Elevated Pressure
,”
Combust. Flame
,
157
(
1
), pp.
91
105
.
73.
Sevilla-Esparza
,
C. I.
,
2013
, “
Oscillatory Flame Response in Acoustically Coupled Fuel Droplet Combustion
,”
M.S. thesis
, UCLA, Los Angeles, CA.
74.
Valentini
,
D.
,
Tran
,
P. H.
,
Lopez
,
B.
,
Ekmekji
,
A.
,
Smith
,
O. I.
, and
Karagozian
,
A. R.
,
2014
, “
Partial Extinction and the Rayleigh Index in Acoustically Driven Fuel Droplet Combustion
,”
Bull. Am. Phys. Soc.
,
59
(
16
), pp. 486–487.
75.
Kistler
,
J.
,
Sung
,
C.
,
Kreut
,
T.
,
Law
,
C.
, and
Nishioka
,
M.
,
1996
, “
Extinction of Counterflow Diffusion Flames Under Velocity Oscillations
,”
Symp. (Int.) Combust.
,
26
(
1
), pp.
113
120
.
You do not currently have access to this content.