Bubble-induced vibration has become vital during recent investigation and advancement in the area of multiphase boiling. The induced vibration phenomenon can be understood with the help of proper and detailed understanding of vapor bubble formation, growth, collapse, and interaction with the surface. The growth mechanism for the formation of bubbles under nucleate boiling conditions is theoretically investigated. This paper also discusses the dynamics of vapor bubbles during flow in subcooled boiling conditions. In the part of the vapor bubble formation, the characteristics of a bubble emerged from the heated surface at a single nucleation site along with the flow boiling phenomena have been considered for analysis. The bubble is considered to be of spherical shape and detached from a heated surface due to the formation of a microlayer of liquid. The fluid is supposed to be static far away from a vapor bubble. Using well-known models of bubble formation and detachment, equations considering various forces acting over a single bubble have been derived. These equations monitor bubble characteristics in a definite manner according to the derived differential equation for energy conservation developed for the two-phase flow system. To illustrate this phenomenon, two bubble formation mechanisms, inertia-controlled and heat transfer-controlled growth have been considered. The present investigation discusses the governing equations for the bubble growth rate, bubble size and frequency, forces, and the well-known Rayleigh's equation. Also, the vibration characteristic has been reviewed, and the two phenomena, i.e., subcooled boiling induced vibration (SBIV) and flow-induced vibration (FIV) have been discussed in brief. The present review paper aims to reveal the latest evaluation done in the area of bubble-induced vibration and to ascertain the contributions made until now as well as the solution to the upcoming issues.

References

References
1.
Blackburn
,
J. K.
,
1997
,
The Laser Interferometer Gravitational-Wave Observatory Project LIGO
, Vol.
41
,
Banach Center Publications
,
Warsaw, Poland
, pp.
95
135
.
2.
Smallman
,
R. E.
, and
Bishop
,
R. J.
,
1999
,
Modern Physical Metallurgy and Materials Engineering
,
Butterworth-Heinemann
,
Oxford, UK
.
3.
Hemmingsen
,
E. A.
,
1975
, “
Cavitation in Gas-Supersaturated Solutions
,”
J. Appl. Phys.
,
46
, p.
213
.
4.
Gerth
,
W. A.
, and
Hemmingsen
,
E. A.
,
1976
, “
Gas Supersaturation Thresholds for Spontaneous Cavitation in Water With Gas Equilibration Pressures Upto 570 atm
,”
J. Phys. Sci. A
,
31
, pp.
1711
1716
.
5.
Hemmingsen
,
E. A.
,
1977
, “
Spontaneous Formation of Bubble in Gas Supersaturated Water
,”
Nature (London)
,
267
(
5607
), pp.
141
142
.
6.
Hemmingsen
,
E. A.
,
1978
, “
Effects of Surfactants and Electrolytes on the Nucleation of Bubbles in Gas-Supersaturated Solutions
,”
Z. Naturforsch.
,
33A
, pp.
164
171
.
7.
Cole
,
R.
,
1974
, “
Boiling Nucleation
,”
Adv. Heat Transfer
,
10
, pp.
85
–166.
8.
Blander
,
M.
,
1979
, “
Bubble Nucleation in Liquids
,”
Adv. Colloid Interface Sci.
,
10
(
1
), pp.
1
–32.
9.
Li
,
J.
,
Peterson
,
G. P.
, and
Cheng
,
P.
,
2005
, “
Mechanical Non-Equilibrium Considerations in Homogeneous Bubble Nucleation for Unsteady-State Boiling
,”
Int. J. Heat Mass Transfer
,
48
(
15
), pp.
3081
–3096.
10.
Oxtoby
,
D. W.
,
1992
, “
Homogeneous Nucleation: Theory and Experiment
,”
J. Phys.: Condens. Matter
,
4
(
38
), pp.
7626
7650
.
11.
Jones
,
S. F.
,
Evans
,
G. M.
, and
Galvin
,
K. P.
,
1999
, “
The Cycle of Bubble Production From a Gas Cavity in a Supersaturated Solution
,”
Adv. Colloid Interface Sci.
,
80
(
1
), pp.
51
–84.
12.
Bon
,
B.
,
Guan
,
C.-K.
, and
Klausner
,
J. F.
,
2011
, “
Heterogeneous Nucleation on Ultra-Smooth Surfaces
,”
Exp. Therm. Fluid Sci.
,
35
(
5
), pp.
746
752
.
13.
Gerth
,
W. A.
, and
Hemmingsen
,
E. A.
,
1980
, “
Heterogeneous Nucleation of Bubbles at Solid Surfaces in Gas-Supersaturated Aqueous Solutions
,”
J. Colloid Interface Sci.
,
74
(
1
), pp.
80
–89.
14.
Li
,
J.
, and
Cheng
,
P.
,
2004
, “
Bubble Cavitation in a Microchannel
,”
Int. J. Heat Mass Transfer
,
47
(
12–13
), pp.
2689
–2698.
15.
Chung
,
J. N.
,
Chen
,
T.
, and
Maroo
,
S. C.
,
2011
, “
A Review of Recent Progress on Nano/Micro Scale Nucleate Boiling Fundamentals
,”
Front. Heat Mass Transfer
,
2
, p.
023004
.
16.
Tenner
,
A. G.
,
1963
Nucleation in Bubble Chambers
,”
Nucl. Instrum. Methods
,
22
, pp.
1
–42.
17.
Kwak
,
H.-Y.
, and
Oh
,
S.-D.
,
2004
, “
Gas–Vapor Bubble Nucleation—A Unified Approach
,”
J. Colloid Interface Sci.
,
278
(
2
), pp.
436
446
.
18.
Siedel
,
S.
,
Cioulachtjian
,
S.
, and
Bonjour
,
J.
,
2008
, “
Experimental Analysis of Bubble Growth, Departure and Interactions During Pool Boiling on Artificial Nucleation Sites
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1504
–1511.
19.
Han
,
C.-Y.
, and
Griffith
,
P.
,
1962
, “
The Mechanism of Heat Transfer in Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
8
(
6
), pp.
887
904
.
20.
Papadopoulou
,
V.
,
Tang
,
M.-X.
,
Balestra
,
C.
,
Eckersley
,
R. J.
, and
Karapantsios
,
T. D.
,
2014
, “
Circulatory Bubble Dynamics: From Physical to Biological Aspects
,”
Adv. Colloid Interface Sci.
,
206
, pp.
239
249
.
21.
Jiang
,
Y. Y.
,
Osada
,
H.
,
Inagaki
,
M.
, and
Horinouchi
,
N.
,
2013
, “
Dynamic Modeling on Bubble Growth, Detachment and Heat Transfer for Hybrid-Scheme Computations of Nucleate Boiling
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
640
652
.
22.
Prosperetti
,
A.
, and
Plesset
,
S. M.
,
1977
, “
Vapor-Bubble Growth in a Superheated Liquid
,”
Annu. Rev. Fluid Mech.
,
9
(
1
), pp.
145
185
.
23.
Haider
,
S. I.
, and
Webb
,
R. L.
,
1997
, “
A Transient Micro-Convection Model of Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
40
(
15
), pp.
3675
3688
.
24.
Dempster
,
W. M.
, and
Arebi
,
B.
,
2001
, “
Experimental Characteristics of Steam Bubble Growth at Orifices in Sub-Cooled Liquid
,”
Int. Commun. Heat Mass Transfer
,
28
(
4
), pp.
467
–477.
25.
Kandlikar
,
S. G.
,
2006
, “
Nucleation Characteristics and Stability Considerations During Flow Boiling in Microchannels
,”
Exp. Therm. Fluid Sci.
,
30
(
5
), pp.
441
–447.
26.
Mukherjee
,
A.
,
Kandlikar
,
S. G.
, and
Edel
,
Z. J.
,
2011
, “
Numerical Study of Bubble Growth and Wall Heat Transfer During Flow Boiling in a Microchannel
,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3702
–3718.
27.
Yin
,
L.
, and
Jia
,
L.
,
2016
, “
Confined Bubble Growth and Heat Transfer Characteristics During Flow Boiling in Microchannel
,”
Int. J. Heat Mass Transfer
,
98
(
2016
), pp.
114
123
.
28.
Yin
,
L.
, and
Jia
,
L.
,
2016
, “
Confined Characteristics of Bubble During Boiling in Microchannel
,”
Exp. Therm. Fluid Sci.
,
74
, pp.
247
256
.
29.
Markal
,
B.
,
Aydin
,
O.
, and
Avci
,
M.
,
2016
, “
An Experimental Investigation of Saturated Flow Boiling Heat Transfer and Pressure Drop in Square Microchannels
,”
Int. J. Refrig.
,
65
, pp.
1
11
.
30.
Markal
,
B.
,
Aydin
,
O.
, and
Avci
,
M.
,
2016
, “
Effect of Aspect Ratio on Saturated Flow Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
,
93
, pp.
130
143
.
31.
Pan
,
Z.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2016
, “
A Saturated-Interface-Volume Phase Change Model for Simulating Flow Boiling
,”
Int. J. Heat Mass Transfer
,
93
, pp.
945
956
.
32.
Jafari
,
R.
, and
Okutucu-Özyurt
,
T.
,
2015
, “
Phase-Field Modeling of Vapor Bubble Growth in a Microchannel
,”
J. Comput. Multiphase Flows
,
7
(
3
), pp.
143
158
.
33.
Bigham
,
S.
, and
Moghaddam
,
S.
,
2015
, “
Role of Bubble Growth Dynamics on Microscale Heat Transfer Events in Microchannel Flow Boiling Process
,”
Appl. Phys. Lett.
,
107
(
24
), p.
244103
.
34.
Bigham
,
S.
, and
Moghaddam
,
S.
,
2015
, “
Microscale Study of Mechanisms of Heat Transfer During Flow Boiling in a Microchannel
,”
Int. J. Heat Mass Transfer
,
88
, pp.
111
121
.
35.
Maurus
,
R.
,
Ilchenko
,
V.
, and
Sattelmayer
,
T.
,
2002
, “
Study of the Bubble Characteristics and the Local Void Fraction in Subcooled Flow Boiling Using Digital Imaging and Analyzing Techniques
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
147
–155.
36.
Baltis
,
C. H. M.
, and
Vander Geld
,
C. W. M.
,
2015
, “
Heat Transfer Mechanisms of a Vapor Bubble Growing at a Wall in Saturated Upward Flow
,”
J. Fluid Mech.
,
771
, pp.
264
302
.
37.
Zudin
,
Y. B.
,
2015
, “
Binary Schemes of Vapor Bubble Growth
,”
J. Eng. Phys. Thermophys.
,
88
(
3
), pp.
575
586
.
38.
Lord Rayleigh
,
1917
, “
On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity
,”
Philos. Mag.
,
34
(
200
), pp.
94
98
.
39.
Haosheng
,
C.
,
Jiang
,
L.
,
Fengbin
,
L.
,
Chen
,
D.
, and
Jiadao
,
W.
,
2008
, “
Experimental Study of Cavitation Damage on Hydrogen-Terminated and Oxygen-Terminated Diamond Film Surfaces
,”
Wear
,
264
(
1–2
), pp.
146
151
.
40.
Hewitt
,
H. C.
, and
Parker
,
J. D.
,
1968
, “
Bubble Growth and Collapse in Liquid Nitrogen
,”
ASME J. Heat Transfer
,
90
(
1
), pp.
22
26
.
41.
Fu
,
X.
,
Zhang
,
P.
,
Huang
,
C. J.
, and
Wang
,
R. Z.
,
2010
, “
Bubble Growth, Departure and the Following Flow Pattern Evolution During Flow Boiling in a Mini-Tube
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4819
–4831.
42.
Li
,
X.
, and
Yortsos
,
Y. C.
,
1995
, “
Theory of Multiple Bubble Growth in Porous Media by Solute Diffusion
,”
Chem. Eng. Sci.
,
50
(
8
), pp.
1247
–1271.
43.
Hsu
,
Y. Y.
,
1962
, “
On the Size Range of Active Nucleation Cavities on Heating Surface
,”
ASME J. Heat Transfer
,
84
(
3
), pp.
207
216
.
44.
Kenning
,
D. B. R.
,
2011
, “
Nucleate Boiling
,”
Thermopedia
, epub.
45.
Best
,
R.
,
Burow
,
P.
, and
Beer
,
H.
,
1975
, “
The Warmeubertrangung on Boiling Under the Influence Hydrodynamic Shear Precedent
,”
Int. J. Heat Mass Transfer
,
18
(
9
), pp.
1037
1047
.
46.
Lesage
,
F. J.
,
Siedel
,
S.
,
Cotton
,
J. S.
, and
Robinson
,
A. J.
,
2014
, “
A Mathematical Model for Predicting Bubble Growth for Low Bond and Jakob Number Nucleate Boiling
,”
Chem. Eng. Sci.
,
112
, pp.
35
–46.
47.
Kim
,
J.
, and
Hwan
,
K. M.
,
2006
, “
On the Departure Behaviors of Bubble at Nucleate Pool Boiling
,”
Int. J. Multiphase Flow
,
32
(
10–11
), pp.
1269
–1286.
48.
Lee
,
H. S.
, and
Merte
,
H.
, Jr.
,
1996
, “
Spherical Vapor Bubble Growth in Uniformly Superheated Liquids
,”
Int. J. Heat Mass Transfer
,
39
(
12
), pp.
2427
–2447.
49.
Divinis
,
N.
,
Kostoglou
,
M.
,
Karapantsios
,
T. D.
, and
Bontozoglou
,
V.
,
2005
, “
Self-Similar Growth of a Gas Bubble Induced by Localized Heating: The Effect of Temperature-Dependent Transport Properties
,”
Chem. Eng. Sci.
,
60
(
6
), pp.
1673
1683
.
50.
Divinis
,
N.
,
Karapantsios
,
T. D.
,
de Bruijn
,
R.
,
Kostoglou Bontozoglou
,
M. V.
, and
Legros
,
J. C.
,
2006
, “
Bubble Dynamics During Degassing of Liquids at Microgravity Conditions
,”
AIChE J.
,
52
(
9
), pp.
3029
3040
.
51.
Haustein
,
H. D.
,
Gany
,
A.
,
Dietze
,
G. F.
,
Elias
,
E.
, and
Kneer
,
R.
,
2013
, “
The Dynamics of Bubble Growth at Medium-High Superheat: Boiling in an Infinite Medium and on a Wall
,”
ASME J. Heat Transfer
,
135
(
7
), p.
071501
.
52.
Robinson
,
A. J.
, and
Judd
,
R. L.
,
2001
, “
Bubble Growth in a Uniform and Spatially Distributed Temperature Field
,”
Int. J. Heat Mass Transfer
,
44
(
14
), pp.
2699
–2710.
53.
Plesset
,
M. S.
, and
Zwick
,
S. A.
,
1954
, “
The Growth of Vapor Bubble in Superheated Liquid
,”
J. Appl. Phys.
,
25
(
4
), pp.
493
500
.
54.
Dergarabedian
,
P.
,
1953
, “
The Rate of Growth of Vapor Bubbles in Superheated Water
,”
ASME J. Appl. Mech.
,
20
, pp.
537
545
.
55.
Forster
,
H. K.
, and
Zuber
,
N.
,
1954
, “
Growth of a Vapor Bubble in a Superheated Liquid
,”
J. Appl. Phys.
25
(
4
), pp.
474
478
.
56.
Birkhoff
,
G.
,
Margulies
,
R. S.
, and
Homing
,
W. A.
,
1958
, “
Spherical Bubble Growth
,”
Phys. Fluid
,
1
(
3
), pp.
201
204
.
57.
Scriven
,
L. E.
,
1959
, “
On the Dynamics of Phase Growth
,”
Chem. Eng. Sci.
,
10
(
1–2
), pp.
1
13
.
58.
Kosky
,
P. G.
,
1968
, “
Bubble Growth Measurements in Uniformly Superheated Liquids
,”
Numer. Enyny Sci.
,
23
(
7
), pp.
695
706
.
59.
Florschuetz
,
L. W.
,
Henry
,
C. L.
, and
Rashid
,
K. A.
,
1969
, “
Growth Rates of Free Vapor Bubbles in Liquids at Uniform Superheats Under Normal and Zero Gravity Conditions
,”
Int. J. Heat Mass Transfer
,
12
(
11
), pp.
1465
1489
.
60.
Mikic
,
B. B.
,
Rohsenow
,
W. M.
, and
Grittith
,
P.
,
1970
, “
On Bubble Growth Rate
,”
Int. J. Heat Mass Transfer
,
13
(
4
), pp.
657
666
.
61.
Lien
,
Y. C.
,
1969
, “
Bubble Growth Rates at Reduced Pressure
,” D.Sc. thesis, MIT,
Cambridge, MA
.
62.
Bongue-Boma
,
M.
, and
Brocato
,
M.
,
2008
, “
Liquids With Vapor Bubbles
,”
Int. J. Comput. Math. Appl.
,
55
(
2
), pp.
268
–284.
63.
Collier
,
J. G.
,
1972
,
Convective Boiling and Condensation
,
McGraw-Hill
,
New York
.
64.
Van Stralen
,
S. J. D.
,
1968
, “
The Growth Rate of Vapor Bubbles in Superheated Pure Liquids and Binary Mixtures
,”
Int. J. Heat Mass Transfer
,
11
(
10
), pp.
1467
1489
.
65.
Luke
,
A.
,
2011
, “
Interactions Between Bubble Formation and Heating Surface in Nucleate Boiling
,”
Exp. Therm. Fluid Sci.
,
35
(
5
), pp.
753
–761.
66.
Zijl
,
W.
,
Moalem
,
D.
, and
Van Stralen
,
S. J. D.
,
1977
, “
Inertia and Diffusion Controlled Bubble Growth and Implosion in Initially Uniform Pure and Binary Systems
,”
Lett. Heat Mass Transfer
,
4
(
5
), pp.
331
339
.
67.
Kim
,
J.
,
2009
, “
Review of Nucleate Pool Boiling Bubble Heat Transfer Mechanisms
,”
Int. J. Multiphase Flow
,
35
(
12
), pp.
1067
–1076.
68.
Yoon
,
H. Y.
,
Koshizuka
,
S.
, and
Oka
,
Y.
,
2001
, “
Direct Calculation of Bubble Growth, Departure, and Rise in Nucleate Pool Boiling
,”
Int. J. Multiphase Flow
,
27
(
2
), pp.
277
298
.
69.
Fritz
,
W.
,
1935
, “
Maximum Volume of Vapor Bubbles
,”
Phys. Z.
,
36
, pp.
379
384
.
70.
Colombo
,
M.
, and
Fairweather
,
M.
,
2015
, “
Prediction of Bubble Departure in Forced Convection Boiling: A Mechanistic Model
,”
Int. J. Heat Mass Transfer
,
85
, pp.
135
146
.
71.
Van Helden
,
W. G. J.
,
Van Der Geld
,
C. W. M.
, and
Boot
,
P. G. M.
,
1995
, “
Forces on Bubbles Growing and Detaching in Flow Along a Vertical Wall
,”
Int. J. Heat Mass Transfer
,
38
(
11
), pp.
2075
–2088.
72.
Kandilikar
,
S. G.
,
Dhir
,
V. K.
, and
Shoji
,
M.
,
1999
,
Handbook of Phase Change: Boiling and Condensation
,
Taylor and Francis
,
Philadelphia, PA
.
73.
Ivey
,
H. J.
,
1967
, “
Relationship Between Bubble Frequency, Departure Diameter and Rise Velocity in Nucleate Boiling
,”
Int. J. Heat Mass Transfer
,
10
(
8
), pp.
1023
1040
.
74.
Malenkov
,
I. G.
,
1971
, “
The Frequency of Vapor Bubble Separation as Function of Bubble Size
,”
Fluid Mech. Sov. Res.
,
1
, pp.
36
42
.
75.
Situ
,
R.
,
Ishii
,
M.
,
Hibiki
,
T.
,
Tu
,
J. Y.
,
Yeoh
,
G. H.
, and
Mori
,
M.
,
2008
, “
Bubble Departure Frequency in Forced Convective Subcooled Boiling Flow
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6268
–6282.
76.
Hazi
,
G.
, and
Markus
,
A.
,
2009
, “
On the Bubble Departure Diameter and Release Frequency Based on Numerical Simulation Results
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1472
–1480.
77.
Jin
,
T.
,
Zhang
,
S. Y.
,
Tang
,
K.
, and
Huang
,
Y. Z.
,
2011
, “
Observation and Analysis of the Detachment Frequency of Coalesced Bubbles in Pool Boiling Liquid Nitrogen
,”
Cryogenics
,
51
(
9
), pp.
516
–520.
78.
McFadden
,
P. W.
, and
Grassmann
,
P.
,
1962
, “
The Relation Between Bubble Frequency and Diameter During Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
5
(
3–4
), pp.
169
–173.
79.
Buyevich
,
Y. A.
, and
Webbon
,
B. W.
,
1996
, “
Bubble Formation at a Submerged Orifice in Reduced Gravity
,”
Chem. Eng. Sci.
,
51
(
21
), pp.
4843
4857
.
80.
Lucas
,
D.
,
Krepper
,
E.
, and
Prasser
,
H. M.
,
2007
, “
Use of Models for Lift, Wall and Turbulent Dispersion Forces Acting on Bubbles for Poly-Disperse Flows
,”
Chem. Eng. Sci.
,
62
(
15
), pp.
4146
–4157.
81.
Kurose
,
R.
,
Misumi
,
R.
, and
Komori
,
S.
,
2001
, “
Drag and Lift Forces Acting on a Spherical Bubble in a Linear Shear Flow
,”
Int. J. Multiphase Flow
,
27
(
7
), pp.
1247
–1258.
82.
Klausner
,
J. F.
,
Mei
,
R.
,
Bernhard
,
D. M.
, and
Zheng
,
L. Z.
,
1993
, “
Vapor Bubble Departure in Forced Convection Boiling
,”
Int. J. Heat Mass Transfer
,
36
(
3
), pp.
651
662
.
83.
Sugioka
,
K.
, and
Tsukada
,
T.
,
2015
, “
Direct Numerical Simulations of Drag and Lift Forces Acting on a Spherical Bubble Near a Plane Wall
,”
Int. J. Multiphase Flow
,
71
, pp.
32
37
.
84.
Dijkhuizen
,
W.
,
Van den Hengel
,
E. I. V.
,
Deen
,
N. G.
,
Van Sint Annaland
,
M.
, and
Kuipers
,
J. A. M.
,
2005
, “
Numerical Investigation of Closures for Interface Forces Acting on Single Air-Bubbles in Water Using Volume of Fluid and Front Tracking Models
,”
Chem. Eng. Sci.
,
60
(
22
), pp.
6169
–6175.
85.
Sugrue
,
R. M.
, and
Buongiorno
,
J.
,
2013
, “
A Modified Force-Balance Model for Predicting Bubble Departure Diameter in Subcooled Flow Boiling
,”
15th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics
, Pisa, Italy, May 12–17.
86.
Yun
,
B. J.
,
Splawski
,
A.
,
Lo
,
S.
, and
Song
,
C. H.
,
2012
, “
Prediction of a Subcooled Boiling Flow With Advanced Two-Phase Flow Models
,”
Nucl. Eng. Des.
,
253
, pp.
351
359
.
87.
Sugrue
,
R. M.
,
2012
, “
The Effects of Orientation Angle, Subcooling, Heat Flux, Mass Flux, and Pressure on Bubble Growth and Detachment in Subcooled Flow Boiling
,” M.S. thesis, Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA.
88.
Nematollahi
,
M. R.
,
Toda
,
S.
, and
Hashizume
,
H.
,
1998
, “
Characteristic Phenomena of Subcooled Flow Boiling Instability
,”
Sixth International Conference on Nuclear Engineering (ICONE6)
, San Diego, CA, May 10–14, Paper No. 6403.
89.
Nematollahi
,
M. R.
,
Toda
,
S.
, and
Hashizume
,
H.
,
1998
, “
Vibration Characteristic of Subcooled Flow Boiling Instability
,”
First European–Japanese Two-Phase Flow Group Meeting and 36th European Two Phase Flow Group Meeting
, Portoroz, Slovenia, June 1–5.
90.
Nematollahi
,
M. R.
,
Toda
,
S.
,
Hashizume
,
H.
, and
Yuki
,
K.
,
1999
, “
Vibration Characteristic of Heated Rod Induced by Subcooled Flow Boiling
,”
J. Nucl. Sci. Technol.
,
36
(
7
), pp.
575
583
.
91.
Bergles
,
A. E.
,
1964
, “
In Influence of Flow Vibration on Forced Convection Heat Transfer
,”
ASME J. Heat Transfer
,
86
(
4
), pp.
559
560
.
92.
Takahashi
,
K.
, and
Endoh
,
K.
,
1990
, “
A New Correlation Method for the Effect of Vibration on Forced-Convection Heat Transfer
,”
J. Chem. Eng. Jpn.
,
23
(
1
), pp.
45
50
.
93.
Collier
,
J. G.
, and
Thome
,
J. R.
,
1994
,
Convective Boiling and Condensation
,
3rd ed.
,
Oxford University Press
,
New York
, pp.
99
280
.
94.
Smirnov
,
H. F.
,
Zrodnikov
,
V. V.
, and
Boshkova
,
I. L.
,
1997
, “
Thermoacoustic Phenomena at Boiling Subcooled Liquid in Channels
,”
Int. J. Heat Mass Transfer
,
40
(
8
), pp.
1977
1983
.
95.
Zhang
,
P.
,
Murakami
,
M.
,
Wang
,
R. Z.
, and
Inaba
,
H.
,
1999
, “
Study of Film Boiling in He II by Pressure and Temperature Oscillation Measurements
,”
Cryogenics
,
39
(
7
), pp.
609
615
.
96.
Leonard
,
A. C.
,
1970
, “
Helium-2 Noisy Film Boiling and Silent Film Boiling Heat Transfer Coefficient Values
,” Third International Cryogenic Engineering Conference (ICEC3), West Berlin, Germany, May 25–27, Vol.
3
, pp.
109
114
.
97.
Bussieres
,
P.
, and
Leonard
,
A. C.
,
1966
, “
Noise Associated With Heat Transfer to Liquid Helium II
,”
Pure & Applied Cryogenics
, Vol. 6, Pergamon Press, London, pp.
61
84
.
98.
Coulter
,
D. M.
,
Leonard
,
A. C.
, and
Pike
,
J. G.
,
1968
, “
Heat Transport Visualization in Helium II Using Focused Shadowgraph and Schlieren Techniques
,”
Adv. Cryog. Eng.
,
13
, pp.
640
644
.
99.
Eisinger
,
F. L.
,
Francis
,
J. T.
, and
Sullivan
,
R. T.
,
1996
, “
Prediction of Acoustic Vibration in Steam Generator and Heat Exchanger Tube Banks
,”
ASME J. Pressure Vessel Technol.
,
118
(
2
), pp.
221
236
.
100.
Blevins
,
R. D.
,
1977
,
Flow-Induced Vibration
,
2nd ed.
,
Van Nostrand Reinhold Press
,
New York
.
101.
Paidoussis
,
M. P.
,
1980
, “
Flow-Induced Vibrations in Nuclear Reactors and Heat Exchangers: Practical Experiences and State of Knowledge
,”
Practical Experiences With Flow-Induced Vibrations
,
Springer-Verlag
,
Berlin
, pp.
1
81
.
102.
Hara
,
F.
,
1975
, “
A Theory on the Two-Phase Flow-Induced Vibrations in Piping Systems
,”
Third International Conference on Structural Mechanics in Reactor Technology
, London, UK, Sept. 1–5, Paper No. D2/4.
103.
Liu
,
Y.
,
Miwa
,
S.
,
Hibiki
,
T.
,
Ishii
,
M.
,
Kondo
,
Y.
,
Morita
,
H.
, and
Tanimoto
,
K.
,
2012
, “
Experimental Study of Internal Two-Phase Flow Induced Fluctuating Force on a 90° Elbow
,”
Chem. Eng. Sci.
,
76
, pp.
173
187
.
104.
Miwa
,
S.
,
Liu
,
Y.
,
Hibiki
,
T.
,
Ishii
,
M.
,
Kondo
,
Y.
,
Morita
,
H.
, and
Tanimoto
,
K.
,
2014
, “
Study of Unsteady Gas-Liquid Two-Phase Flow Induced Force Fluctuation (Part 2: Horizontal-Downward Two-Phase Flow)
,”
Trans. JSME
,
80
(
811
), p.
TEP0046
(in Japanese).
105.
Pettigrew
,
M. J.
, and
Knowles
,
G. D.
,
1997
, “
Some Aspects of Heat Exchanger Tube Damping in Two-Phase Mixture
,”
J. Fluids Struct.
,
11
(
8
), pp.
929
945
.
106.
Axisa
,
F.
,
Antunes
,
J.
, and
Villard
,
B.
,
1990
, “
Random Excitation of Heat Exchanger Tubes by Cross-Flows
,”
J. Fluids Struct.
,
4
(
3
), pp.
321
341
.
107.
Zhang
,
C.
,
Pettigrew
,
M. J.
, and
Mureithi
,
N. W.
,
2008
, “
Correlation Between Vibration Excitation Forces and the Dynamic Characteristics of Two-Phase Cross Flow in a Rotated Triangular Tube Bundle
,”
ASME J. Pressure Vessel Technol.
,
130
(
1
), p.
011301
.
108.
Zhang
,
C.
,
Mureithi
,
N. W.
, and
Pettigrew
,
M. J.
,
2008
, “
Development of Models Correlating Vibration Excitation Forces to Dynamic Characteristics of Two-Phase Flow in a Tube Bundle
,”
Int. J. Multiphase Flow
,
34
(
11
), pp.
1048
1057
.
109.
Akagawa
,
K.
,
1974
,
Gas-Liquid Two-Phase Flow
,
Corona Press
,
Tokyo, Japan
.
110.
Ishii
,
M.
,
1977
, “
One-Dimensional Drift-Flux Model and Constitutive Equations for Relative Motion Between Phases in Various Two-Phase Flow Regimes
,”
Argonne National Laboratory
, Lemont, IL, Report No. ANL-77-47.
111.
Ishii
,
M.
, and
Hibiki
,
T.
,
2011
,
Thermo-Fluid Dynamics of Two-Phase Flow
,
Springer
,
Berlin, Germany
.
112.
Wallis
,
G.
,
1969
,
One-Dimensional Two-Phase Flow
,
McGraw-Hill
,
New York
.
113.
Rennels
,
D. C.
, and
Hudson
,
H. M.
,
2012
,
Pipe Flow: A Practical and Comprehensive Guide
,
Wiley
,
New York
.
114.
Charreton
,
C.
,
Béguin
,
C.
,
Ross
,
A.
,
Étienne
,
S.
, and
Pettigrew
,
M. J.
,
2015
, “
Two-Phase Damping for Internal Flow: Physical Mechanism and Effect of Excitation Parameters
,”
J. Fluids Struct.
,
56
, pp.
56
74
.
115.
An
,
M.
,
Liu
,
M.
,
Ma
,
Y.
, and
Xu
,
Y.
,
2016
, “
Multi-Scale Vibration Behavior of a Graphite Tube With an Internal Vapor-Liquid-Solid Boiling Flow
,”
Powder Technol.
,
291
, pp.
201
213
.
116.
Goyder
,
H. G. D.
,
2002
, “
Flow-Induced Vibration in Heat Exchangers
,”
Chem. Eng. Res. Design
,
80
(
3
), pp.
226
232
.
117.
Pettigrew
,
M. J.
, and
Taylor
,
C. E.
,
1994
, “
Two-Phase Flow-Induced Vibration: An Overview
,”
ASME J. Pressure Vessel Technol.
,
116
(
3
), pp.
233
253
.
118.
Pettigrew
,
M. J.
,
Zhang
,
C.
,
Mureithi
,
N. W.
, and
Pamfil
,
D.
,
2005
, “
Detailed Flow and Force Measurements in a Rotated Triangular Tube Bundle Subjected to Two-Phase Cross-Flow
,”
J. Fluids Struct.
,
20
(
4
), pp.
567
575
.
119.
Nakamura
,
T.
,
Fujita
,
K.
,
Kowanishi
,
N.
,
Yamaguchi
,
N.
, and
Tsuge
,
A.
,
1995
, “
Study on the Vibration Characteristics of a Tube Array Caused by Two-Phase Flow, Part 1: Random Vibration
,”
J. Fluids Struct.
,
9
(
5
), pp.
519
538
.
120.
Zhang
,
C.
,
Pettigrew
,
M. J.
, and
Mureithi
,
N. W.
,
2006
, “
Quasi-Periodic Vibration Excitation Mechanism Due to Two-Phase Cross Flow in Steam Generator Tube Bundles
,”
Fifth CNS International Steam Generator Conference
, Toronto, ON, Canada, Nov. 26–29.
121.
Zhang
,
C.
,
Pettigrew
,
M. J.
, and
Mureithi
,
N. W.
,
2007
, “
Vibration Excitation Force Measurements in a Rotated Triangular Tube Bundle Subjected to Two-Phase Cross Flow
,”
ASME J. Pressure Vessel Technol.
,
129
(
1
), pp.
21
27
.
122.
Feng
,
C. C.
,
1968
, “
The Measurement of Vortex-Induced Effects in Flow Past Stationary and Oscillating Circular and D-Section Cylinders
,” M.S. thesis, University of British Columbia, Vancouver, BC, Canada.
123.
Cagney
,
N.
, and
Balabani
,
S.
,
2013
, “
Wake Modes of a Cylinder Undergoing Free Streamwise Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
38
, pp.
127
145
.
124.
Bearman
,
P. W.
,
2012
, “
Circular Cylinder Wakes and Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
27
(
5–6
), pp.
648
658
.
125.
Wu
,
X. D.
, and
Hong
,
Y.
,
2012
, “
A Review of Recent Studies on Vortex-Induced Vibrations of Long Slender Cylinders
,”
J. Fluids Struct.
,
28
, pp.
292
308
.
126.
Shin
,
Y. S.
, and
Wambsganss
,
M. W.
,
1977
, “
Flow-Induced Vibration in LMFBR Steam Generators: A State-of-the-Art Review
,”
Nucl. Eng. Des.
,
40
(
2
), pp.
235
284
.
127.
Lienhard
,
J. H.
,
1966
,
Synopsis of Lift, Drag, and Vortex Frequency Data for Rigid Circular Cylinders
,
Technical Extension Service, Washington State University
,
Pullman, WA
.
128.
Hartlen
,
R. T.
, and
Currie
,
I. G.
,
1970
, “
Lift-Oscillator Model of Vortex-Induced Vibration
,”
ASCE J. Eng. Mech. Div.
,
96
(
5
), pp.
577
591
.
129.
Kim
,
S.
, and
Mahbub
,
A. Md.
,
2015
, “
Characteristics and Suppression of Flow-Induced Vibrations of Two Side-By-Side Circular Cylinders
,”
J. Fluids Struct.
,
54
, pp.
629
642
.
130.
Owen
,
P. R.
,
1965
, “
Buffeting Excitation of Boiler Tube Vibration
,”
J. Mech. Eng. Sci.
,
7
(
4
), pp.
431
439
.
131.
Roberts
,
B. W.
,
1962
, “
Low Frequency, Self-Excited Vibration in a Row of Circular Cylinders Mounted in an Airstream
,” Ph.D. dissertation,
University of Cambridge
,
Cambridge, UK
.
132.
Roberts
,
B. W.
,
1966
,
Low Frequency, Aeroelastic Vibrations in a Cascade of Circular Cylinders
,
Institution of Mechanical Engineers
,
London, UK
.
133.
Paidoussis
,
M. P.
,
1983
, “
A Review of Flow-Induced Vibrations in Reactors and Reactor Components
,”
Nucl. Eng. Des.
,
74
(
1
), pp.
31
60
.
134.
Connors
,
H. J.
,
1970
, “
Fluid Elastic Vibration of Tube Arrays Excited by Cross Flow
,”
ASME
Symposium on Flow-Induced Vibration in Heat Exchangers, Winter Annual Meeting, New York, Nov. 29–Dec. 3, pp.
42
56
.
135.
Takai
,
M.
,
Iwase
,
T.
,
Uwagawa
,
S.
,
Nakamura
,
T.
,
Hirota
,
K.
,
Suzuta
,
T.
, and
Tomomatsu
,
K.
,
2000
, “
Flow-Induced Vibration Test of U-Bend Tube Bundle Subjected to Freon Two-Phase Flow. Part 1: Test Equipment and Partial Measured Results
,”
Eighth International Conference on Nuclear Engineering
(ICONE 8), Baltimore, MD, Apr. 2–6, Paper No. ICONE-8090.
136.
Takai
,
M.
,
Iwase
,
T.
,
Uwagawa
,
S.
,
Hirao
,
Y.
,
Suzuta
,
T.
,
Ueno
,
T.
,
Kasahara
,
J.
,
Kodama
,
J.
, and
Tomomatsu
,
K.
,
2000
, “
Thermal Hydraulic Test and Verification of Thermal Hydraulic Computer Code for Two-Phase Flow in U-Bend Tube
,”
Eighth International Conference on Nuclear Engineering
(ICONE 8), Baltimore, MD, Apr. 2–6, Paper No. ICONE-8653.
You do not currently have access to this content.