This review article is concerned with the design of linear reduced-order models and control laws for closed-loop control of instabilities in transitional flows. For oscillator flows, such as open-cavity flows, we suggest the use of optimal control techniques with Galerkin models based on unstable global modes and balanced modes. Particular attention has to be paid to stability–robustness properties of the control law. Specifically, we show that large delays and strong amplification between the control input and the estimation sensor may be detrimental both to performance and robustness. For amplifier flows, such as backward-facing step flow, the requirement to account for the upstream disturbance environment rules out Galerkin models. In this case, an upstream sensor is introduced to detect incoming perturbations, and identification methods are used to fit a model structure to available input–output data. Control laws, obtained by direct inversion of the input–output relations, are found to be robust when applied to the large-scale numerical simulation. All the concepts are presented in a step-by-step manner, and numerical codes are provided for the interested reader.

References

References
1.
Bewley
,
T.
,
2001
, “
Flow Control: New Challenges for a New Renaissance
,”
Prog. Aerosp. Sci.
,
37
(
1
), pp.
21
58
.
2.
Collis
,
S.
,
Joslin
,
R.
,
Seifert
,
A.
, and
Theofilis
,
V.
,
2004
, “
Issues in Active Flow Control: Theory, Control, Simulation, and Experiment
,”
Prog. Aerosp. Sci.
,
40
(
4
), pp.
237
289
.
3.
Kim
,
J.
, and
Bewley
,
T.
,
2007
, “
A Linear Systems Approach to Flow Control
,”
Ann. Rev. Fluid Mech.
,
39
(
1
), pp.
383
417
.
4.
Cattafesta
,
L.
,
Song
,
Q.
,
Williams
,
D.
,
Rowley
,
C.
, and
Alvi
,
F.
,
2008
, “
Active Control of Flow-Induced Cavity Oscillations
,”
Prog. Aerosp. Sci.
,
44
(
7
), pp.
479
502
.
5.
Sipp
,
D.
,
Marquet
,
O.
,
Meliga
,
P.
, and
Barbagallo
,
A.
,
2010
, “
Dynamics and Control of Global Instabilities in Open-Flows: A Linearized Approach
,”
ASME Appl. Mech. Rev.
,
63
(
3
), p.
030801
.
6.
Brunton
,
S.
, and
Noack
,
B.
,
2015
, “
Closed-Loop Turbulence Control: Progress and Challenges
,”
ASME Appl. Mech. Rev.
,
67
(
5
), p.
050801
.
7.
Gad-el Hak
,
M.
,
2001
,
The MEMS Handbook
,
CRC Press
, Boca Raton, FL.
8.
Rathnasingham
,
R.
, and
Breuer
,
K.
,
2003
, “
Active Control of Turbulent Boundary Layers
,”
J. Fluid Mech.
,
495
, pp.
209
233
.
9.
Erdmann
,
R.
,
Pätzold
,
A.
,
Engert
,
M.
,
Peltzer
,
I.
, and
Nitsche
,
W.
,
2011
, “
On Active Control of Laminar–Turbulent Transition on Two-Dimensional Wings
,”
Philos. Trans. R. Soc. London A
,
369
(
1940
), pp.
1382
1395
.
10.
Juillet
,
F.
,
McKeon
,
B.
, and
Schmid
,
P.
,
2014
, “
Experimental Control of Natural Perturbations in Channel Flow
,”
J. Fluid Mech.
,
752
, pp.
296
309
.
11.
Cattafesta
,
L.
,
Garg
,
S.
,
Choudhari
,
M.
, and
Li
,
F.
,
1997
, “
Active Control of Flow Induced Cavity Resonance
,”
AIAA
Paper No. 97-1804.
12.
Mongeau
,
L.
,
Kook
,
H.
, and
Franchek
,
M.
,
1998
, “
Active Control of Flow-Induced Cavity Resonance
,”
AIAA
/CEAS Paper No. 98-2349.
13.
Williams
,
D.
, and
Morrow
,
J.
,
2001
, “
Adaptive Control of Multiple Acoustic Modes in Cavities
,”
AIAA
Paper No. 2001-2769.
14.
Williams
,
D.
,
Rowley
,
C.
,
Colonius
,
T.
,
Murray
,
R.
,
MacMartin
,
D.
,
Fabris
,
D.
, and
Albertson
,
J.
,
2002
, “
Model-Based Control of Cavity Oscillations. Part I: Experiments
,”
AIAA
Paper No. 2002-0971.
15.
Kegerise
,
M.
,
Cattafesta
,
L.
, and
Ha
,
C.
,
2002
, “
Adaptive Identification and Control of Flow-Induced Cavity Oscillations
,”
AIAA
Paper No. 2002-3158.
16.
Cabell
,
R.
,
Kegerise
,
M.
,
Cox
,
D.
, and
Gibbs
,
G.
,
2006
, “
Experimental Feedback Control of Flow-Induced Cavity Tones
,”
AIAA J.
,
44
(
8
), pp.
1807
1816
.
17.
Samimy
,
M.
,
Debiasi
,
M.
,
Caraballo
,
E.
,
Serrani
,
A.
,
Yuan
,
X.
,
Little
,
J.
, and
Myatt
,
J.
,
2007
, “
Feedback Control of Subsonic Cavity Flows Using Reduced-Order Models
,”
J. Fluid Mech.
,
579
, pp.
315
346
.
18.
Becker
,
R.
,
Garwon
,
M.
,
Guknecht
,
C.
,
Barwolff
,
G.
, and
King
,
R.
,
2005
, “
Robust Control of Separated Shear Flows in Simulation and Experiment
,”
J Process Control
,
15
(
6
), pp.
691
700
.
19.
Henning
,
L.
, and
King
,
R.
,
2007
, “
Robust Multivariable Closed-Loop Control of a Turbulent Backward-Facing Step Flow
,”
J. Aircr.
,
44
(
1
), pp.
201
208
.
20.
Pastoor
,
M.
,
Henning
,
L.
,
Noack
,
B.
,
King
,
R.
, and
Tadmor
,
G.
,
2008
, “
Feedback Shear Layer Control for Bluff Body Drag Reduction
,”
J. Fluid Mech.
,
608
, pp.
161
196
.
21.
Gautier
,
N.
, and
Aider
,
J.-L.
,
2014
, “
Feed-Forward Control of a Perturbed Backward-Facing Step Flow
,”
J. Fluid Mech.
,
759
, pp.
181
196
.
22.
Gautier
,
N.
,
Aider
,
J.-L.
,
Duriez
,
T.
,
Noack
,
B.
,
Segond
,
M.
, and
Abel
,
M.
,
2015
, “
Closed-Loop Separation Control Using Machine Learning
,”
J. Fluid Mech.
,
770
, pp.
442
457
.
23.
Gharib
,
M.
,
1987
, “
Response of the Cavity Shear Layer Oscillations to External Forcing
,”
AIAA J.
,
25
(
1
), pp.
43
47
.
24.
Roussopoulos
,
K.
, and
Monkewitz
,
P.
,
1996
, “
Nonlinear Modelling of Vortex Shedding Control in Cylinder Wakes
,”
Physica D
,
97
(
1
), pp.
264
273
.
25.
Illingworth
,
S.
,
Naito
,
H.
, and
Fukagata
,
K.
,
2014
, “
Active Control of Vortex Shedding: An Explanation of the Gain Window
,”
Phys. Rev. E
,
90
(
4
), p.
043014
.
26.
Yan
,
P.
,
Debiasi
,
M.
,
Yuan
,
X.
,
Little
,
J.
,
Ozbay
,
H.
, and
Samimy
,
M.
,
2006
, “
Experimental Study of Linear Closed-Loop Control of Subsonic Cavity Flow
,”
AIAA J.
,
44
(
5
), pp.
929
938
.
27.
Kestens
,
T.
, and
Nicoud
,
F.
,
1998
, “
Active Control of an Unsteady Flow Over a Rectangular Cavity
,”
AIAA
Paper No. 98-2348.
28.
Fabbiane
,
N.
,
Semeraro
,
O.
,
Bagheri
,
S.
, and
Henningson
,
D.
,
2014
, “
Adaptive and Model-Based Control Theory Applied to Convectively Unstable Flows
,”
ASME Appl. Mech. Rev.
,
66
(
6
), p.
060801
.
29.
Fabbiane
,
N.
,
Simon
,
B.
,
Fischer
,
F.
,
Grundmann
,
S.
,
Bagheri
,
S.
, and
Henningson
,
D.
,
2015
, “
On the Role of Adaptivity for Robust Laminar Flow Control
,”
J. Fluid Mech.
,
767
, pp.
R1
R2
.
30.
Gunzburger
,
M.
,
2003
,
Perspectives in Flow Control and Optimization
, Vol.
5
,
SIAM
, Philadelphia, PA.
31.
Skogestad
,
S.
, and
Postlethwaite
,
I.
,
2007
,
Multivariable Feedback Control: Analysis and Design
, Vol.
2
,
Wiley
,
New York
.
32.
Joshi
,
S.
,
Speyer
,
J.
, and
Kim
,
J.
,
1997
, “
A Systems Theory Approach to the Feedback Stabilization of Infinitesimal and Finite-Amplitude Disturbances in Plane Poiseuille Flow
,”
J. Fluid Mech.
,
332
, pp.
157
184
.
33.
Bewley
,
T.
, and
Liu
,
S.
,
1998
, “
Optimal and Robust Control and Estimation of Linear Paths to Transition
,”
J. Fluid Mech.
,
365
, pp.
305
349
.
34.
Cortelezzi
,
L.
,
Speyer
,
J.
,
Lee
,
K.
, and
Kim
,
J.
,
1998
, “
Robust Reduced-Order Control of Turbulent Channel Flows Via Distributed Sensors and Actuators
,”
37th IEEE Conference on Decision and Control
(
CDC
), Tampa, FL, Dec. 16–18, Vol.
2
, pp.
1906
1911
.
35.
Lee
,
K.
,
Cortelezzi
,
L.
,
Kim
,
J.
, and
Speyer
,
J.
,
2001
, “
Application of Reduced-Order Controller to Turbulent Flows for Drag Reduction
,”
Phys. Fluids
,
13
(
5
), pp.
1321
1330
.
36.
Lauga
,
E.
, and
Bewley
,
T.
,
2004
, “
Performance of a Linear Robust Control Strategy on a Nonlinear Model of Spatially Developing Flows
,”
J. Fluid Mech.
,
512
, pp.
343
374
.
37.
Gavarini
,
M.
,
Bottaro
,
A.
, and
Nieuwstadt
,
F.
,
2005
, “
Optimal and Robust Control of Streaks in Pipe Flow
,”
J. Fluid Mech.
,
537
, pp.
187
219
.
38.
Laub
,
A.
,
Heath
,
M.
,
Paige
,
C.
, and
Ward
,
R.
,
1987
, “
Computation of System Balancing Transformations and Other Applications of Simultaneous Diagonalization Algorithms
,”
IEEE Trans. Autom. Control
,
32
(
2
), pp.
115
122
.
39.
Willcox
,
K.
, and
Peraire
,
J.
,
2002
, “
Balanced Model Reduction Via the Proper Orthogonal Decomposition
,”
AIAA J.
,
40
(
11
), pp.
2323
2330
.
40.
Rowley
,
C.
,
2005
, “
Model Reduction for Fluids, Using Balanced Proper Orthogonal Decomposition
,”
Int. J. Bifurcation Chaos
,
15
(
3
), pp.
997
1013
.
41.
Ilak
,
M.
, and
Rowley
,
C.
,
2008
, “
Modeling of Transitional Channel Flow Using Balanced Proper Orthogonal Decomposition
,”
Phys. Fluids
,
20
(
3
), p.
034103
.
42.
Bagheri
,
S.
,
Henningson
,
D.
,
Hoepffner
,
J.
, and
Schmid
,
P.
,
2009
, “
Input-Output Analysis and Control Design Applied to a Linear Model of Spatially Developing Flows
,”
ASME Appl. Mech. Rev.
,
62
(
2
), p.
020803
.
43.
Barbagallo
,
A.
,
Sipp
,
D.
, and
Schmid
,
P.
,
2009
, “
Closed-Loop Control of an Open Cavity Flow Using Reduced-Order Models
,”
J. Fluid Mech.
,
641
(
1
), pp.
1
50
.
44.
Ahuja
,
S.
, and
Rowley
,
C.
,
2010
, “
Feedback Control of Unstable Steady States of Flow Past a Flat Plate Using Reduced-Order Estimators
,”
J. Fluid Mech.
,
645
, pp.
447
478
.
45.
Van Dooren
,
P.
,
Gallivan
,
K.
, and
Absil
,
P.-A.
,
2008
, “
H2-Optimal Model Reduction of MIMO Systems
,”
Appl. Math. Lett.
,
21
(
12
), pp.
1267
1273
.
46.
Gugercin
,
S.
,
Antoulas
,
A.
, and
Beattie
,
C.
,
2008
, “
H2 Model Reduction for Large-Scale Linear Dynamical Systems
,”
SIAM J. Matrix Anal. Appl.
,
30
(
2
), pp.
609
638
.
47.
Juang
,
J.
, and
Pappa
,
R.
,
1985
, “
An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction
,”
J. Guid. Control Dyn.
,
8
(
5
), pp.
620
627
.
48.
Guzmán Iñigo
,
J.
,
2015
, “
Estimation and Control of Noise Amplifier Flows Using Data-Based Approaches
,” Ph.D. thesis, Ecole Polytechnique, Palaiseau, France.
49.
Van Overschee
,
P.
, and
De Moor
,
B.
,
1996
,
Subspace Identification for Linear Systems
,
Kluwer Academic Publishers
,
Dordrecht, the Netherlands
.
50.
Guzmán Iñigo
,
J.
,
Sipp
,
D.
, and
Schmid
,
P.
,
2014
, “
A Dynamic Observer to Capture and Control Perturbation Energy in Noise Amplifiers
,”
J. Fluid Mech.
,
758
, pp.
728
753
.
51.
Ljung
,
L.
,
1999
,
System Identification: Theory for the User
,
Prentice Hall
, Upper Saddle River, NJ.
52.
Ma
,
Z.
,
Ahuja
,
S.
, and
Rowley
,
C.
,
2011
, “
Reduced-Order Models for Control of Fluids Using the Eigensystem Realization Algorithm
,”
Theor. Comput. Fluid Dyn.
,
25
(
1–4
), pp.
233
247
.
53.
Belson
,
B.
,
Semeraro
,
O.
,
Rowley
,
C.
, and
Henningson
,
D.
,
2013
, “
Feedback Control of Instabilities in the Two-Dimensional Blasius Boundary Layer: The Role of Sensors and Actuators
,”
Phys. Fluids
,
25
(
5
), p.
054106
.
54.
Huang
,
S.-C.
, and
Kim
,
J.
,
2008
, “
Control and System Identification of a Separated Flow
,”
Phys. Fluids
,
20
(
10
), p.
101509
.
55.
Hervé
,
A.
,
Sipp
,
D.
,
Schmid
,
P.
, and
Samuelides
,
M.
,
2012
, “
A Physics-Based Approach to Flow Control Using System Identification
,”
J. Fluid Mech.
,
702
, pp.
26
58
.
56.
Dovetta
,
N.
,
Schmid
,
P.
, and
Sipp
,
D.
,
2016
, “
Uncertainty Propagation in Model Extraction by System Identification and Its Implication for Control Design
,”
J. Fluid Mech.
,
791
, pp.
214
236
.
57.
Juang
,
J.
,
1994
,
Applied System Identification
,
Prentice Hall
, Upper Saddle River, NJ.
58.
Brunton
,
S.
,
Dawson
,
S.
, and
Rowley
,
C.
,
2014
, “
State-Space Model Identification and Feedback Control of Unsteady Aerodynamic Forces
,”
J. Fluids Struct.
,
50
, pp.
253
270
.
59.
Juillet
,
F.
,
Schmid
,
P.
, and
Huerre
,
P.
,
2013
, “
Control of Amplifier Flows Using Subspace Identification Techniques
,”
J. Fluid Mech.
,
725
, pp.
522
565
.
60.
Illingworth
,
S.
,
Morgans
,
A.
, and
Rowley
,
C.
,
2011
, “
Feedback Control of Flow Resonances Using Balanced Reduced-Order Models
,”
J. Sound Vib.
,
330
(
8
), pp.
1567
1581
.
61.
Illingworth
,
S.
,
Morgans
,
A.
, and
Rowley
,
C.
,
2012
, “
Feedback Control of Cavity Flow Oscillations Using Simple Linear Models
,”
J. Fluid Mech.
,
709
, pp.
223
248
.
62.
Dahan
,
J.
,
Morgans
,
A.
, and
Lardeau
,
S.
,
2012
, “
Feedback Control for Form-Drag Reduction on a Bluff Body With a Blunt Trailing Edge
,”
J. Fluid Mech.
,
704
, pp.
360
387
.
63.
Gelb
,
A.
, and
Vander-Velde
,
W.
,
1968
,
Multiple-Input Describing Functions and Nonlinear System Design
,
McGraw-Hill
, New York.
64.
Ionita
,
A.
, and
Antoulas
,
A.
,
2014
, “
Data-Driven Parametrized Model Reduction in the Loewner Framework
,”
SIAM J. Sci. Comput.
,
36
(
3
), pp.
A984
A1007
.
65.
Rowley
,
C.
,
Williams
,
D.
,
Colonius
,
T.
,
Murray
,
R.
,
MacMartin
,
D.
, and
Fabris
,
D.
,
2002
, “
Model-Based Control of Cavity Oscillations. Part II: System Identification and Analysis
,”
AIAA
Paper No. 2002-972.
66.
Rowley
,
C.
,
Williams
,
D.
,
Colonius
,
T.
,
Murray
,
R.
, and
MacMynowski
,
D.
,
2006
, “
Linear Models for Control of Cavity Flow Oscillations
,”
J. Fluid Mech.
,
547
, pp.
317
330
.
67.
Poussot-Vassal
,
C.
, and
Sipp
,
D.
,
2015
, “
Parametric Reduced Order Dynamical Model Construction of a Fluid Flow Control Problem
,”
IFAC
,
48
(
26
), pp.
133
138
.
68.
Bewley
,
T.
,
Temam
,
R.
, and
Ziane
,
M.
,
2000
, “
A General Framework for Robust Control in Fluid Mechanics
,”
Physica D
,
138
(
3
), pp.
360
392
.
69.
Bewley
,
T.
,
Moin
,
P.
, and
Temam
,
R.
,
2001
, “
DNS-Based Predictive Control of Turbulence: An Optimal Benchmark for Feedback Algorithms
,”
J. Fluid Mech.
,
447
, pp.
179
225
.
70.
Wei
,
M.
, and
Freund
,
J.
,
2006
, “
A Noise-Controlled Free Shear Flow
,”
J. Fluid Mech.
,
546
, pp.
123
152
.
71.
Cherubini
,
S.
,
Robinet
,
J.-C.
, and
De Palma
,
P.
,
2013
, “
Nonlinear Control of Unsteady Finite-Amplitude Perturbations in the Blasius Boundary-Layer Flow
,”
J. Fluid Mech.
,
737
, pp.
440
465
.
72.
Zuccher
,
S.
,
Luchini
,
P.
, and
Bottaro
,
A.
,
2004
, “
Algebraic Growth in a Blasius Boundary Layer: Optimal and Robust Control by Mean Suction in the Nonlinear Regime
,”
J. Fluid Mech.
,
513
, pp.
135
160
.
73.
Aubry
,
N.
,
Holmes
,
P.
,
Lumley
,
J.
, and
Stone
,
E.
,
1988
, “
The Dynamics of Coherent Structures in the Wall Region of a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
192
, pp.
115
173
.
74.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Ann. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.
75.
Noack
,
B.
,
Afanasiev
,
K.
,
Morzynski
,
M.
,
Tadmor
,
G.
, and
Thiele
,
F.
,
2003
, “
A Hierarchy of Low-Dimensional Models for the Transient and Post-Transient Cylinder Wake
,”
J. Fluid Mech.
,
497
, pp.
335
363
.
76.
King
,
R.
,
Seibold
,
M.
,
Lehmann
,
O.
,
Noack
,
B.
,
Morzyński
,
M.
, and
Tadmor
,
G.
,
2005
, “
Nonlinear Flow Control Based on a Low Dimensional Model of Fluid Flow
,”
Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems
,
Springer
,
Berlin
, pp.
369
386
.
77.
Couplet
,
M.
,
Basdevant
,
C.
, and
Sagaut
,
P.
,
2005
, “
Calibrated Reduced-Order POD-Galerkin System for Fluid Flow Modelling
,”
J. Comput. Phys.
,
207
(
1
), pp.
192
220
.
78.
Bergmann
,
M.
,
Cordier
,
L.
, and
Brancher
,
J.
,
2005
, “
Optimal Rotary Control of the Cylinder Wake Using Proper Orthogonal Decomposition Reduced-Order Model
,”
Phys. Fluids
,
17
(
9
), p.
097101
.
79.
Bergmann
,
M.
, and
Cordier
,
L.
,
2008
, “
Optimal Control of the Cylinder Wake in the Laminar Regime by Trust-Region Methods and POD Reduced-Order Models
,”
J. Comput. Phys.
,
227
(
16
), pp.
7813
7840
.
80.
Bergmann
,
M.
,
Bruneau
,
C.-H.
, and
Iollo
,
A.
,
2009
, “
Enablers for Robust POD models
,”
J. Comput. Phys.
,
228
(
2
), pp.
516
538
.
81.
Gillies
,
E.
,
1998
, “
Low-Dimensional Control of the Circular Cylinder Wake
,”
J. Fluid Mech.
,
371
(
1
), pp.
157
178
.
82.
Cordier
,
L.
,
Noack
,
B.
,
Tissot
,
G.
,
Lehnasch
,
G.
,
Delville
,
J.
,
Balajewicz
,
M.
,
Daviller
,
G.
, and
Niven
,
R.
,
2013
, “
Identification Strategies for Model-Based Control
,”
Exp. Fluids
,
54
(
8
), pp.
1
21
.
83.
Chaturantabut
,
S.
, and
Sorensen
,
D.
,
2010
, “
Nonlinear Model Reduction Via Discrete Empirical Interpolation
,”
SIAM J. Sci. Comput.
,
32
(
5
), pp.
2737
2764
.
84.
Fosas de Pando
,
M.
,
Schmid
,
P.
, and
Sipp
,
D.
,
2013
, “
Nonlinear Model-Order Reduction for Oscillator Flows Using POD-DEIM
,”
66th Annual Meeting of the APS Division of Fluid Dynamics
, Pittsburgh, PA, Nov. 24–26, Paper No. M25.00006.
85.
Ştefănescu
,
R.
,
Sandu
,
A.
, and
Navon
,
I.
,
2015
, “
POD/DEIM Reduced-Order Strategies for Efficient Four Dimensional Variational Data Assimilation
,”
J. Comput. Phys.
,
295
, pp.
569
595
.
86.
Dandois
,
J.
, and
Pamart
,
P.
,
2013
, “
NARX Modeling and Extremum-Seeking Control of a Separation
,”
Aerosp. Lab J.
,
6
, epub.
87.
Burl
,
J.
,
1999
,
Linear Optimal Control
,
Addison-Wesley Longman
, Menlo Park, CA.
88.
Cortelezzi
,
L.
,
Lee
,
K.
,
Kim
,
J.
, and
Speyer
,
J.
,
1998
, “
Skin-Friction Drag Reduction Via Robust Reduced-Order Linear Feedback Control
,”
Int. J. Comput. Fluid Dyn.
,
11
(1–2), pp.
79
92
.
89.
Bagheri
,
S.
,
Brandt
,
L.
, and
Henningson
,
D.
,
2009
, “
Input–Output Analysis, Model Reduction and Control of the Flat-Plate Boundary Layer
,”
J. Fluid Mech.
,
620
(
1
), pp.
263
298
.
90.
Barbagallo
,
A.
,
Dergham
,
G.
,
Sipp
,
D.
,
Schmid
,
P.
, and
Robinet
,
J.-C.
,
2012
. “
Closed-Loop Control of Unsteadiness Over a Rounded Backward-Facing Step
,”
J. Fluid Mech.
,
703
, pp.
326
362
.
91.
Zhao
,
H.
, and
Bau
,
H.
,
2006
, “
Limitations of Linear Control of Thermal Convection in a Porous Medium
,”
Phys. Fluids
,
18
(
7
), p.
074109
.
92.
Horowitz
,
I.
,
1993
,
Quantitative Feedback Design
.
QFT Publications, Boulder
, CO.
93.
Vinnicombe
,
G.
,
2001
.
Uncertainty and Feedback: H∞ Loop-Shaping and the ν-Gap Metric
,
World Scientific
, Singapore.
94.
Kook
,
H.
,
Mongeau
,
L.
, and
Franchek
,
M.
,
2002
, “
Active Control of Pressure Fluctuations Due to Flow Over Helmholtz Resonators
,”
J. Sound Vib.
,
255
(
1
), pp.
61
76
.
95.
Doyle
,
J.
,
1978
, “
Guaranteed Margins for LQG Regulators
,”
IEEE Trans. Autom. Control
,
23
(
4
), pp.
756
757
.
96.
Zames
,
G.
,
1981
, “
Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverses
,”
IEEE Trans. Autom. Control
,
26
(
2
), pp.
301
320
.
97.
Zhou
,
K.
,
Doyle
,
J.
, and
Glover
,
K.
,
1996
,
Robust and Optimal Control
, Vol.
40
,
Prentice Hall, Upper Saddle River
, NJ.
98.
Apkarian
,
P.
, and
Noll
,
D.
,
2006
, “
Nonsmooth H∞ Synthesis
,”
IEEE Trans. Autom. Control
,
51
(
2
), pp.
382
.
99.
Petersen
,
I.
, and
Tempo
,
R.
,
2014
, “
Robust Control of Uncertain Systems: Classical Results and Recent Developments
,”
Automatica
,
50
(
5
), pp.
1315
1335
.
100.
Jones
,
B.
,
Heins
,
P.
,
Kerrigan
,
E.
,
Morrison
,
J.
, and
Sharma
,
A.
,
2015
, “
Modelling for Robust Feedback Control of Fluid Flows
,”
J. Fluid Mech.
,
769
, pp.
687
722
.
101.
Aleksić-Roeßner
,
K.
,
King
,
R.
,
Lehmann
,
O.
,
Tadmor
,
G.
, and
Morzyński
,
M.
,
2014
, “
On the Need of Nonlinear Control for Efficient Model-Based Wake Stabilization
,”
Theor. Comput. Fluid Dyn.
,
28
(
1
), pp.
23
49
.
102.
Tachim Medjo
,
T.
,
2001
, “
Robust Control Problems in Fluid Mechanics
,”
Physica D
,
149
(
4
), pp.
278
292
.
103.
Hu
,
C.
, and
Temam
,
R.
,
2001
, “
Robust Boundary Control for the Kuramoto-Sivashinsky Equation
,”
Conference on Optimal Control and Partial Differential Equation
, Paris, Dec. 4, 2000, pp.
353
362
.
104.
Tachim Medjo
,
T.
, and
Tcheugoue Tebou
,
L.
,
2004
, “
Adjoint-Based Iterative Method for Robust Control Problems in Fluid Mechanics
,”
SIAM J. Numer. Anal.
,
42
(
1
), pp.
302
325
.
105.
Tachim Medjo
,
T.
, and
Tchegoue Tebou
,
L.
,
2005
, “
Robust Control Problems in Fluid Flows
,”
Discrete Control Dyn. Syst.
,
12
(3), pp.
437
463
.
106.
Huerre
,
P.
, and
Rossi
,
M.
,
1998
, “
Hydrodynamic Instabilities in Open Flows
,”
Collection Alea Saclay Monographs and Texts in Statistical Physics
, Cambridge University Press, Cambridge, UK, pp.
81
294
.
107.
Schmid
,
P.
,
2007
, “
Nonmodal Stability Theory
,”
Ann. Rev. Fluid Mech.
,
39
(
1
), pp.
129
162
.
108.
Sipp
,
D.
, and
Lebedev
,
A.
,
2007
, “
Global Stability of Base and Mean Flows: A General Approach and Its Applications to Cylinder and Open Cavity Flows
,”
J. Fluid Mech.
,
593
, pp.
333
358
.
109.
Blackburn
,
H.
,
Barkley
,
D.
, and
Sherwin
,
S.
,
2008
, “
Convective Instability and Transient Growth in Flow Over a Backward-Facing Step
,”
J. Fluid Mech.
,
603
, pp.
271
304
.
110.
Barbagallo
,
A.
,
Sipp
,
D.
, and
Schmid
,
P.
,
2011
, “
Input–Output Measures for Model Reduction and Closed-Loop Control: Application to Global Modes
,”
J. Fluid Mech.
,
685
, pp.
23
53
.
111.
Matsumoto
,
J.
, and
Kawahara
,
M.
,
2000
, “
Stable Shape Identification for Fluid-Structure Interaction Problem Using MINI Element
,”
ASME J. Appl. Mech.
,
3
, pp.
263
274
.
112.
Amestoy
,
P.
,
Duff
,
I.
,
L'Excellent
,
J.-Y.
, and
Koster
,
J.
,
2001
, “
A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling
,”
SIAM J. Matrix Anal. Appl.
,
23
(
1
), pp.
15
41
.
113.
Lehoucq
,
R.
,
Sorensen
,
D.
, and
Yang
,
C.
,
1998
,
ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems With Implicitly Restarted Arnoldi Methods
, Vol.
6
,
SIAM
, Philadelphia, PA.
114.
Antoulas
,
A.
,
2005
,
Approximation of Large-Scale Dynamical Systems
,
SIAM
, Philadelphia, PA.
115.
Kwakernaak
,
H.
, and
Sivan
,
R.
,
1972
, “
The Maximally Achievable Accuracy of Linear Optimal Regulators and Linear Optimal Filters
,”
IEEE Trans. Autom. Control
,
17
(
1
), pp.
79
86
.
116.
Chen
,
K.
, and
Rowley
,
C.
,
2011
, “
H2 Optimal Actuator and Sensor Placement in the Linearised Complex Ginzburg-Landau System
,”
J. Fluid Mech.
,
681
, pp.
241
260
.
117.
Dreyfus
,
G.
,
Martinez
,
J.-M.
,
Samuelides
,
M.
,
Gordon
,
M.
,
Badran
,
F.
, and
Thiria
,
S.
,
2011
,
Apprentissage statistique: Réseaux de neurones-Cartes topologiques-Machines à vecteurs Supports
,
Eyrolles
, Paris.
You do not currently have access to this content.