In Mechanics, material properties are most often regarded as being given, and based on this, many technical solutions are usually conceived and constructed. However, nowadays manufacturing processes have advanced to the point that metamaterials having selected properties can be designed and fabricated. Three-dimensional printing, electrospinning, self-assembly, and many other advanced manufacturing techniques are raising a number of scientific questions which must be addressed if the potential of these new technologies is to be fully realized. In this work, we report on the status of modeling and analysis of metamaterials exhibiting a rich and varied macroscopic response conferred by complex microstructures and particularly focus on strongly interacting inextensible or nearly inextensible fibers. The principal aim is to furnish a framework in which the mechanics of 3D rapid prototyping of microstructured lattices and fabrics can be clearly understood and exploited. Moreover, several-related open questions will be identified and discussed, and some methodological considerations of general interest are provided.

References

1.
Russo
,
L.
,
2004
, “
The Forgotten Revolution. How Science Was Born in 300 BC and Why it Had to be Reinvented
,”
Übersetzung aus dem Italienischen von Silvio Levy
,
Springer
,
Berlin
.
2.
Germain
,
P.
,
1973
, “
The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure
,”
SIAM J. Appl. Math.
,
25
(
3
), pp.
556
575
.
3.
Maugin
,
G.
, and
Trimarco
,
C.
,
1992
, “
Pseudomomentum and Material Forces in Nonlinear Elasticity: Variational Formulations and Application to Brittle Fracture
,”
Acta Mech.
,
94
(
1–2
), pp.
1
28
.
4.
Maugin
,
G. A.
, and
Trimarco
,
C.
,
1992
, “
Note on a Mixed Variational Principle in Finite Elasticity
,”
Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend. Lincei, Mat. Appl.
,
3
(
1
), pp.
69
74
.
5.
Arnold
,
V. I.
,
1989
,
Mathematical Methods of Classical Mechanics
, Vol.
60
,
Springer Science & Business Media
,
New York
.
6.
Maugin
,
G.
,
1980
, “
The Method of Virtual Power in Continuum Mechanics: Application to Coupled Fields
,”
Acta Mech.
,
35
(
1–2
), pp.
1
70
.
7.
Toupin
,
R. A.
,
1965
, “
Saint-Venant's Principle
,”
Arch. Ration. Mech. Anal.
,
18
(
2
), pp.
83
96
.
8.
Mühlhaus
,
H.-B.
, and
Alfantis
,
E.
,
1991
, “
A Variational Principle for Gradient Plasticity
,”
Int. J. Solids Struct.
,
28
(
7
), pp.
845
857
.
9.
Edelen
,
D. G.
,
1969
, “
Non-Local Variational Mechanics Variational Imbedding, Adjoint Theorems and Existence
,”
Int. J. Eng. Sci.
,
7
(
4
), pp.
401
415
.
10.
dell'Isola
,
F.
, and
Placidi
,
L.
,
2012
, “
Variational Principles are a Powerful Tool Also for Formulating Field Theories
,”
Variational Models and Methods in Solid and Fluid Mechanics
,
Springer Science & Business Media
,
Vienna, Austria
.
11.
Kirchner
,
N.
, and
Steinmann
,
P.
,
2005
, “
A Unifying Treatise on Variational Principles for Gradient and Micromorphic Continua
,”
Philos. Mag.
,
85
(
33–35
), pp.
3875
3895
.
12.
Placidi
,
L.
, “
A Variational Approach for a Nonlinear One-Dimensional Damage-Elasto-Plastic Second-Gradient Continuum Model
,”
Continuum Mech. Thermodyn.
, epub.
13.
Placidi
,
L.
, “
A Variational Approach for a Nonlinear 1-Dimensional Second Gradient Continuum Damage Model
,”
Continuum Mech. Thermodyn.
,
27
(
4–5
), pp.
623
638
.
14.
Rahouadj
,
R.
,
Ganghoffer
,
J.-F.
, and
Cunat
,
C.
,
2003
, “
A Thermodynamic Approach With Internal Variables Using Lagrange Formalism. Part I: General Framework
,”
Mech. Res. Commun.
,
30
(
2
), pp.
109
117
.
15.
Eremeyev
,
V. A.
, and
Pietraszkiewicz
,
W.
,
2004
, “
The Nonlinear Theory of Elastic Shells With Phase Transitions
,”
J. Elasticity
,
74
(
1
), pp.
67
86
.
16.
Rahouadj
,
R.
,
Ganghoffer
,
J.-F.
, and
Cunat
,
C.
,
2003
, “
A Thermodynamic Approach With Internal Variables Using Lagrange Formalism. Part II. Continuous Symmetries in the Case of the Time–Temperature Equivalence
,”
Mech. Res. Commun.
,
30
(
2
), pp.
119
123
.
17.
Ganghoffer
,
J.
,
2012
, “
Extremum Principles for Biological Continuous Bodies Undergoing Volumetric and Surface Growth
,”
Bull. Pol. Acad. Sci.
,
60
(
2
), pp.
259
263
.
18.
Serrano
,
H.
,
2014
, “
A Variational Approach to the Homogenization of Laminate Metamaterials
,”
Nonlinear Anal.
,
18
, pp.
75
85
.
19.
Deü
,
J. F.
,
Larbi
,
W.
, and
Ohayon
,
R.
,
2008
, “
Piezoelectric Structural Acoustic Problems: Symmetric Variational Formulations and Finite Element Results
,”
Comp. Meth. Appl. Mech. Eng.
,
197
(
19
), pp.
1715
1724
.
20.
Altenbach
,
H.
,
Eremeyev
,
V. A.
, and
Lebedev
,
L. P.
,
2010
, “
On the Existence of Solution in the Linear Elasticity With Surface Stresses
,”
J. Appl. Math. Mech./Z. Angew. Math. Mech.
,
90
(
3
), pp.
231
240
.
21.
Altenbach
,
H.
,
Eremeyev
,
V. A.
, and
Lebedev
,
L. P.
,
2011
, “
On the Spectrum and Stiffness of an Elastic Body With Surface Stresses
,”
J. Appl. Math. Mech./Z. Angew. Math. Mech.
,
91
(
9
), pp.
699
710
.
22.
Eremeyev
,
V. A.
, and
Lebedev
,
L. P.
,
2015
, “
Mathematical Study of Boundary-Value Problems Within the Framework of Steigmann–Ogden Model of Surface Elasticity
,”
Continuum Mech. Thermodyn.
, epub.
23.
Eremeyev
,
V. A.
, and
Lebedev
,
L. P.
,
2011
, “
Existence Theorems in the Linear Theory of Micropolar Shells
,”
J. Appl. Math. Mech./Z. Angew. Math. Mech.
,
91
(
6
), pp.
468
476
.
24.
Eremeyev
,
V. A.
, and
Lebedev
,
L. P.
,
2013
, “
Existence of Weak Solutions in Elasticity
,”
Math. Mech. Solids
,
18
(
2
), pp.
204
217
.
25.
Ortiz
,
M.
, and
Stainier
,
L.
,
1999
, “
The Variational Formulation of Viscoplastic Constitutive Updates
,”
Comput. Methods Appl. Mech. Eng.
,
171
(
3
), pp.
419
444
.
26.
Liu
,
C.
,
Li
,
F.
,
Ma
,
L.-P.
, and
Cheng
,
H.-M.
,
2010
, “
Advanced Materials for Energy Storage
,”
Adv. Mater.
,
22
(
8
), pp.
E28
E62
.
27.
Caruso
,
F.
,
2001
, “
Nanoengineering of Particle Surfaces
,”
Adv. Mater.
,
13
(
1
), pp.
11
22
.
28.
Coleman
,
J. N.
,
Khan
,
U.
, and
Gun'ko
,
Y. K.
,
2006
, “
Mechanical Reinforcement of Polymers Using Carbon Nanotubes
,”
Adv. Mater.
,
18
(
6
), pp.
689
706
.
29.
Hammond
,
P. T.
,
2004
, “
Form and Function in Multilayer Assembly: New Applications at the Nanoscale
,”
Adv. Mater.
,
16
(
15
), pp.
1271
1293
.
30.
Fleck
,
N.
,
Deshpande
,
V.
, and
Ashby
,
M.
,
2010
, “
Micro-Architectured Materials: Past, Present and Future
,”
Proc. R. Soc. London A
,
466
(
2121
), pp.
2495
2516
.
31.
Dunlop
,
J. W.
, and
Fratzl
,
P.
,
2013
, “
Multilevel Architectures in Natural Materials
,”
Scr. Mater.
,
68
(
1
), pp.
8
12
.
32.
Brechet
,
Y.
, and
Embury
,
J.
,
2013
, “
Architectured Materials: Expanding Materials Space
,”
Scr. Mater.
,
68
(
1
), pp.
1
3
.
33.
Bouaziz
,
O.
,
Brechet
,
Y.
, and
Embury
,
J.
,
2008
, “
Heterogeneous and Architectured Materials: A Possible Strategy for Design of Structural Materials
,”
Adv. Eng. Mater.
,
10
(
1–2
), pp.
24
36
.
34.
Bollen
,
P.
,
Quiévy
,
N.
,
Huynen
,
I.
,
Bailly
,
C.
,
Detrembleur
,
C.
,
Thomassin
,
J.-M.
, and
Pardoen
,
T.
,
2013
, “
Multifunctional Architectured Materials for Electromagnetic Absorption
,”
Scr. Mater.
,
68
(
1
), pp.
50
54
.
35.
Ashby
,
M.
,
2013
, “
Designing Architectured Materials
,”
Scr. Mater.
,
68
(
1
), pp.
4
7
.
36.
Ashby
,
M.
, and
Brechet
,
Y.
,
2003
, “
Designing Hybrid Materials
,”
Acta Mater.
,
51
(
19
), pp.
5801
5821
.
37.
Griesshaber
,
E.
,
Schmahl
,
W. W.
,
Neuser
,
R.
,
Pettke
,
T.
,
Blüm
,
M.
,
Mutterlose
,
J.
, and
Brand
,
U.
,
2007
, “
Crystallographic Texture and Microstructure of Terebratulide Brachiopod Shell Calcite: An Optimized Materials Design With Hierarchical Architecture
,”
Am. Mineral.
,
92
(
5–6
), pp.
722
734
.
38.
Bruchhaus
,
R.
,
Honal
,
M.
,
Symanczyk
,
R.
, and
Kund
,
M.
,
2009
, “
Selection of Optimized Materials for CBRAM Based on HT-XRD and Electrical Test Results
,”
J. Electrochem. Soc.
,
156
(
9
), pp.
H729
H733
.
39.
Vetterl
,
O.
,
Finger
,
F.
,
Carius
,
R.
,
Hapke
,
P.
,
Houben
,
L.
,
Kluth
,
O.
,
Lambertz
,
A.
,
Mück
,
A.
,
Rech
,
B.
, and
Wagner
,
H.
,
2000
, “
Intrinsic Microcrystalline Silicon: A New Material for Photovoltaics
,”
Sol. Energy Mater. Sol. Cells
,
62
(
1
), pp.
97
108
.
40.
Zheludev
,
N. I.
,
2010
, “
The Road Ahead for Metamaterials
,”
Science
,
328
(
5978
), pp.
582
583
.
41.
Ju
,
J.
,
Summers
,
J. D.
,
Ziegert
,
J.
, and
Fadel
,
G.
,
2009
, “
Design of Honeycomb Meta-Materials for High Shear Flexure
,”
ASME
Paper No. DETC2009-87730.
42.
Engheta
,
N.
, and
Ziolkowski
,
R. W.
,
2006
,
Metamaterials: Physics and Engineering Explorations
,
Wiley
,
Hoboken, NJ
.
43.
Del Vescovo
,
D.
, and
Giorgio
,
I.
,
2014
, “
Dynamic Problems for Metamaterials: Review of Existing Models and Ideas for Further Research
,”
Int. J. Eng. Sci.
,
80
(
SI
), pp.
153
172
.
44.
Milton
,
G.
, and
Seppecher
,
P.
,
2012
, “
A Metamaterial Having a Frequency Dependent Elasticity Tensor and a Zero Effective Mass Density
,”
Phys. Status Solidi (B)
,
249
(
7
), pp.
1412
1414
.
45.
Kang
,
I.
,
Heung
,
Y. Y.
,
Kim
,
J. H.
,
Lee
,
J. W.
,
Gollapudi
,
R.
,
Subramaniam
,
S.
,
Narasimhadevara
,
S.
,
Hurd
,
D.
,
Kirikera
,
G. R.
,
Shanov
,
V.
,
Schulz
,
M. J.
,
Shi
,
D.
,
Boerio
,
J.
,
Mall
,
S.
, and
Ruggles-Wren
,
M.
,
2006
, “
Introduction to Carbon Nanotube and Nanofiber Smart Materials
,”
Composites, Part B
,
37
(
6
), pp.
382
394
.
46.
Wang
,
Z. L.
,
1998
,
Functional and Smart Materials
,
Wiley Online Library
,
Hoboken, NJ
.
47.
Giurgiutiu
,
V.
,
2000
, “
Review of Smart-Materials Actuation Solutions for Aeroelastic and Vibration Control
,”
J. Intell. Mater. Syst. Struct.
,
11
(
7
), pp.
525
544
.
48.
Song
,
Y.
,
Wei
,
W.
, and
Qu
,
X.
,
2011
, “
Colorimetric Biosensing Using Smart Materials
,”
Adv. Mater.
,
23
(
37
), pp.
4215
4236
.
49.
Chopra
,
I.
,
2002
, “
Review of State of Art of Smart Structures and Integrated Systems
,”
AIAA J.
,
40
(
11
), pp.
2145
2187
.
50.
Vernerey
,
F.
,
Liu
,
W. K.
, and
Moran
,
B.
,
2007
, “
Multi-Scale Micromorphic Theory for Hierarchical Materials
,”
J. Mech. Phys. Solids
,
55
(
12
), pp.
2603
2651
.
51.
Nicot
,
F.
,
Darve
,
F.
, and
Group
,
R.
,
2005
, “
A Multi-Scale Approach to Granular Materials
,”
Mech. Mater.
,
37
(
9
), pp.
980
1006
.
52.
Bentz
,
D.
,
2000
, “
Influence of Silica Fume on Diffusivity in Cement-Based Materials: II. Multi-Scale Modeling of Concrete Diffusivity
,”
Cem. Concr. Res.
,
30
(
7
), pp.
1121
1129
.
53.
Fast
,
T.
,
Niezgoda
,
S. R.
, and
Kalidindi
,
S. R.
,
2011
, “
A New Framework for Computationally Efficient Structure–Structure Evolution Linkages to Facilitate High-Fidelity Scale Bridging in Multi-Scale Materials Models
,”
Acta Mater.
,
59
(
2
), pp.
699
707
.
54.
Hao
,
S.
,
Moran
,
B.
,
Liu
,
W. K.
, and
Olson
,
G. B.
,
2003
, “
A Hierarchical Multi-Physics Model for Design of High Toughness Steels
,”
J. Comput. Aided Mater. Des.
,
10
(
2
), pp.
99
142
.
55.
de Borst
,
R.
,
2008
, “
Challenges in Computational Materials Science: Multiple Scales, Multi-Physics and Evolving Discontinuities
,”
Comput. Mater. Sci.
,
43
(
1
), pp.
1
15
.
56.
Hamilton
,
R.
,
MacKenzie
,
D.
, and
Li
,
H.
,
2010
, “
Multi-Physics Simulation of Friction Stir Welding Process
,”
Eng. Comput.
,
27
(
8
), pp.
967
985
.
57.
Eremeyev
,
V.
, and
Pietraszkiewicz
,
W.
,
2009
, “
Phase Transitions in Thermoelastic and Thermoviscoelastic Shells
,”
Arch. Mech.
,
61
(
1
), pp.
41
67
.
58.
Eremeyev
,
V.
, and
Pietraszkiewicz
,
W.
,
2011
, “
Thermomechanics of Shells Undergoing Phase Transition
,”
J. Mech. Phys. Solids
,
59
(
7
), pp.
1395
1412
.
59.
Pietraszkiewicz
,
W.
,
Eremeyev
,
V.
, and
Konopińska
,
V.
,
2007
, “
Extended Non-Linear Relations of Elastic Shells Undergoing Phase Transitions
,”
Z. Angew. Math. Mech.
,
87
(
2
), pp.
150
159
.
60.
Piccardo
,
G.
, and
Solari
,
G.
,
2000
, “
3D Wind-Excited Response of Slender Structures: Closed-Form Solution
,”
J. Struct. Eng.
,
126
(
8
), pp.
936
943
.
61.
Piccardo
,
G.
,
1993
, “
A Methodology for the Study of Coupled Aeroelastic Phenomena
,”
J. Wind Eng. Ind. Aerodyn.
,
48
(
2
), pp.
241
252
.
62.
de Villoria
,
R. G.
,
Yamamoto
,
N.
,
Miravete
,
A.
, and
Wardle
,
B. L.
,
2011
, “
Multi-Physics Damage Sensing in Nano-Engineered Structural Composites
,”
Nanotechnology
,
22
(
18
), p.
185502
.
63.
Alessandroni
,
S.
,
Andreaus
,
U.
,
dell'Isola
,
F.
, and
Porfiri
,
M.
,
2004
, “
Piezo-Electromechanical (PEM) Kirchhoff–Love Plates
,”
Eur. J. Mech. A
,
23
(
4
), pp.
689
702
.
64.
Placidi
,
L.
, and
Hutter
,
K.
,
2006
, “
Thermodynamics of Polycrystalline Materials Treated by the Theory of Mixtures With Continuous Diversity
,”
Continuum Mech. Thermodyn.
,
17
(
6
), pp.
409
451
.
65.
Andreaus
,
U.
, and
Porfiri
,
M.
,
2007
, “
Effect of Electrical Uncertainties on Resonant Piezoelectric Shunting
,”
J. Intell. Mater. Syst. Struct.
,
18
(
5
), pp.
477
485
.
66.
Kim
,
D.-H.
,
Song
,
J.
,
Choi
,
W. M.
,
Kim
,
H.-S.
,
Kim
,
R.-H.
,
Liu
,
Z.
,
Huang
,
Y. Y.
,
Hwang
,
K.-C.
,
Zhang
,
Y.-w.
, and
Rogers
,
J. A.
,
2008
, “
Materials and Noncoplanar Mesh Designs for Integrated Circuits With Linear Elastic Responses to Extreme Mechanical Deformations
,”
Proc. Natl. Acad. Sci.
,
105
(
48
), pp.
18675
18680
.
67.
Mannsfeld
,
S. C.
,
Tee
,
B. C.
,
Stoltenberg
,
R. M.
,
Chen
,
C. V. H.
,
Barman
,
S.
,
Muir
,
B. V.
,
Sokolov
,
A. N.
,
Reese
,
C.
, and
Bao
,
Z.
,
2010
, “
Highly Sensitive Flexible Pressure Sensors With Microstructured Rubber Dielectric Layers
,”
Nat. Mater.
,
9
(
10
), pp.
859
864
.
68.
Maurini
,
C.
,
Pouget
,
J.
, and
dell'Isola
,
F.
,
2004
, “
On a Model of Layered Piezoelectric Beams Including Transverse Stress Effect
,”
Int. J. Solids Struct.
,
41
(
16
), pp.
4473
4502
.
69.
Lakes
,
R.
,
1993
, “
Advances in Negative Poisson's Ratio Materials
,”
Adv. Mater.
,
5
(
4
), pp.
293
296
.
70.
Lakes
,
R.
, and
Drugan
,
W.
,
2002
, “
Dramatically Stiffer Elastic Composite Materials Due to a Negative Stiffness Phase?
J. Mech. Phys. Solids
,
50
(
5
), pp.
979
1009
.
71.
Jaglinski
,
T.
,
Kochmann
,
D.
,
Stone
,
D.
, and
Lakes
,
R.
,
2007
, “
Composite Materials With Viscoelastic Stiffness Greater Than Diamond
,”
Science
,
315
(
5812
), pp.
620
622
.
72.
Bertoldi
,
K.
,
Reis
,
P. M.
,
Willshaw
,
S.
, and
Mullin
,
T.
,
2010
, “
Negative Poisson's Ratio Behavior Induced by an Elastic Instability
,”
Adv. Mat.
,
22
(
3
), pp.
361
366
.
73.
Kashdan
,
L.
,
Conner Seepersad
,
C.
,
Haberman
,
M.
, and
Wilson
,
P. S.
,
2012
, “
Design, Fabrication, and Evaluation of Negative Stiffness Elements Using SLS
,”
Rapid Prototyping J.
,
18
(
3
), pp.
194
200
.
74.
Milton
,
G. W.
,
2002
, “
The Theory of Composites
,”
Cambridge Monographs on Applied and Computational Mathematics
,
Cambridge University Press
,
Cambridge, UK
.
75.
Nikopour
,
H.
, and
Selvadurai
,
A.
,
2013
, “
Torsion of a Layered Composite Strip
,”
Compos. Struct.
,
95
, pp.
1
4
.
76.
Nikopour
,
H.
, and
Selvadurai
,
A.
,
2014
, “
Concentrated Loading of a Fibre-Reinforced Composite Plate: Experimental and Computational Modeling of Boundary Fixity
,”
Composites, Part B
,
60
, pp.
297
305
.
77.
Placidi
,
L.
, and
Hutter
,
K.
,
2005
, “
An Anisotropic Flow Law for Incompressible Polycrystalline Materials
,”
Z. Angew. Math. Phys.
,
57
(
1
), pp.
160
181
.
78.
Selvadurai
,
A.
, and
Nikopour
,
H.
,
2012
, “
Transverse Elasticity of a Unidirectionally Reinforced Composite With an Irregular Fibre Arrangement: Experiments, Theory and Computations
,”
Compos. Struct.
,
94
(
6
), pp.
1973
1981
.
79.
Arnold
,
C. B.
,
Serra
,
P.
, and
Piqué
,
A.
,
2007
, “
Laser Direct-Write Techniques for Printing of Complex Materials
,”
MRS Bull.
,
32
(
1
), pp.
23
31
.
80.
Pershin
,
Y. V.
, and
Di Ventra
,
M.
,
2011
, “
Memory Effects in Complex Materials and Nanoscale Systems
,”
Adv. Phys.
,
60
(
2
), pp.
145
227
.
81.
Proffen
,
T.
,
Billinge
,
S.
,
Egami
,
T.
, and
Louca
,
D.
,
2003
, “
Structural Analysis of Complex Materials Using the Atomic Pair Distribution Function—A Practical Guide
,”
Z. Kristallogr./Int. J. Struct. Phys. Chem. Aspects Cryst. Mater.
,
218
(
2
), pp.
132
143
.
82.
Grillo
,
A.
,
Federico
,
S.
, and
Wittum
,
G.
,
2012
, “
Growth, Mass Transfer, and Remodeling in Fiber-Reinforced, Multi-Constituent Materials
,”
Int. J. Nonlinear Mech.
,
47
(
2
), pp.
388
401
.
83.
Grillo
,
A.
,
Federico
,
S.
,
Wittum
,
G.
,
Imatani
,
S.
,
Giaquinta
,
G.
, and
Mićunović
,
M. V.
,
2009
, “
Evolution of a Fibre-Reinforced Growing Mixture
,”
Nuovo Cimento C
,
32C
(
1
), pp.
97
119
.
84.
Grillo
,
A.
, and
Wittum
,
G.
,
2010
, “
Growth and Mass Transfer in Multi-Constituent Biological Materials
,”
AIP Conf. Proc.
,
1281
(
1
), pp.
355
358
.
85.
Seddik
,
H.
,
Greve
,
R.
,
Zwinger
,
T.
, and
Placidi
,
L.
,
2011
, “
A Full Stokes Ice Flow Model for the Vicinity of Dome Fuji, Antarctica, With Induced Anisotropy and Fabric Evolution
,”
Cryosphere
,
5
(
2
), pp.
495
508
.
86.
Porubov
,
A. V.
,
Aero
,
E. L.
, and
Andrievsky
,
B.
,
2010
, “
Dynamic Properties of Essentially Nonlinear Generalized Continua
,”
Mechanics of Generalized Continua
,
Springer
,
New York
, pp.
161
168
.
87.
Forest
,
S.
,
1998
, “
Mechanics of Generalized Continua: Construction by Homogenization
,”
J. Phys. IV
,
8
(
PR4
), pp.
PR4
PR39
.
88.
Maugin
,
G. A.
, and
Metrikine
,
A. V.
,
2010
, “
Mechanics of Generalized Continua
,”
Advances in Mechanics and Mathematics
, Vol.
21
,
Springer
,
New York
.
89.
Tekoğlu
,
C.
, and
Onck
,
P. R.
,
2008
, “
Size Effects in Two-Dimensional Voronoi Foams: A Comparison Between Generalized Continua and Discrete Models
,”
J. Mech. Phys. Solids
,
56
(
12
), pp.
3541
3564
.
90.
Forest
,
S.
, and
Trinh
,
D. K.
,
2011
, “
Generalized Continua and Non-Homogeneous Boundary Conditions in Homogenisation Methods
,”
ZAMM
,
91
(
2
), pp.
90
109
.
91.
Boutin
,
C.
,
Hans
,
S.
, and
Chesnais
,
C.
,
2010
, “
Generalized Beams and Continua. Dynamics of Reticulated Structures
,”
Mechanics of Generalized Continua
,
Springer
,
New York
, pp.
131
141
.
92.
Feyel
,
F.
,
2003
, “
A Multilevel Finite Element Method (FE 2) to Describe the Response of Highly Non-Linear Structures Using Generalized Continua
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
28
), pp.
3233
3244
.
93.
Forest
, S.
, and
Sievert
,
R.
,
2003
, “
Elastoviscoplastic Constitutive Frameworks for Generalized Continua
,”
Acta Mechanica
160
(
1–2
), pp.
71
111
.
94.
Green
,
A.
, and
Naghdi
,
P.
,
1995
, “
A Unified Procedure for Construction of Theories of Deformable Media. II. Generalized Continua
,”
Proc. R. Soc. London A
,
448
(
1934
), pp.
357
377
.
95.
Eringen
,
A. C.
,
1965
, “
Theory of Micropolar Fluids
,” DTIC Document, Technical Report No. 27.
96.
Eringen
,
A. C.
, and
Suhubi
,
E.
,
1964
, “
Nonlinear Theory of Simple Micro-Elastic Solidsi
,”
Int. J. Eng. Sci.
,
2
(
2
), pp.
189
203
.
97.
Eringen
,
A. C.
,
1999
, “
Theory of Micropolar Elasticity
,”
Microcontinuum Field Theories
,
Springer
,
New York
, pp.
101
248
.
98.
Mindlin
,
R. D.
,
1964
, “
Micro-Structure in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
,
16
(
1
), pp.
51
78
.
99.
Eringen
,
A. C.
,
2012
,
Microcontinuum Field Theories: I. Foundations and Solids
.
Springer Science & Business Media
,
New York
.
100.
Neff
,
P.
,
Ghiba
,
I.-D.
,
Madeo
,
A.
,
Placidi
,
L.
, and
Rosi
,
G.
,
2013
, “
A Unifying Perspective: The Relaxed Linear Micromorphic Continuum
,”
Continuum Mech. Thermodyn.
,
26
(
5
), pp.
639
681
.
101.
Neff
,
P.
,
2004
, “
On Material Constants for Micromorphic Continua
,”
Trends in Applications of Mathematics to Mechanics
, XIVth International Symposium on Trends in Applications of Mathematics to Mechanics (STAMM'2004), Seeheim, Germany, Aug. 22–28, pp.
337
348
.
102.
Misra
,
A.
, and
Singh
,
V.
,
2013
, “
Micromechanical Model for Viscoelastic-Materials Undergoing Damage
,”
Continuum Mech. Thermodyn.
,
25
(
2
), pp.
1
16
.
103.
Misra
,
A.
, and
Yang
,
Y.
,
2010
, “
Micromechanical Model for Cohesive Materials Based Upon Pseudo-Granular Structure
,”
Int. J. Solids Struct.
,
47
(
21
), pp.
2970
2981
.
104.
Contrafatto
,
L.
,
Cuomo
,
M.
, and
Fazio
,
F.
,
2012
, “
An Enriched Finite Element for Crack Opening and Rebar Slip in Reinforced Concrete Members
,”
Int. J. Fract.
,
178
(
1–2
), pp.
33
50
.
105.
Scerrato
,
D.
,
Giorgio
,
I.
,
Della Corte
,
A.
,
Madeo
,
A.
, and
Limam
,
A.
,
2015
, “
A Micro-Structural Model for Dissipation Phenomena in the Concrete
,”
Int. J. Numer. Anal. Methods Geomech.
,
39
(
18
), pp.
2037
2052
.
106.
Scerrato
,
D.
,
Giorgio
,
I.
,
Madeo
,
A.
,
Limam
,
A.
, and
Darve
,
F.
,
2014
, “
A Simple Non-Linear Model for Internal Friction in Modified Concrete
,”
Int. J. Eng. Sci.
,
80
(
SI
), pp.
136
152
.
107.
Boutin
,
C.
,
1996
, “
Microstructural Effects in Elastic Composites
,”
Int. J. Solids Struct.
,
33
(
7
), pp.
1023
1051
.
108.
Eringen
,
A. C.
,
1968
,
Mechanics of Micromorphic Continua
,
Springer
,
Berlin
.
109.
Bréchet
,
Y.
,
2000
,
Microstructures, Mechanical Properties and Processes
,
Wiley-VCH
,
Weinheim, Germany
.
110.
Leismann
,
T.
, and
Mahnken
,
R.
,
2015
, “
Comparison of Micromorphic, Micropolar and Microstrain Continua
,”
Book of Abstracts–Extract
, 86th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2015), Lecce, Italy, Mar. 23–27, Università del Salento, Lecce, Italy, p.
58
.
111.
Kim
,
D.
,
Brunski
,
J.
, and
Nicolella
,
D.
,
2005
, “
Microstrain Fields for Cortical Bone in Uniaxial Tension: Optical Analysis Method
,”
Proc. Inst. Mech. Eng., Part H
,
219
(
2
), pp.
119
128
.
112.
Yang
,
Y.
, and
Misra
,
A.
,
2012
, “
Micromechanics Based Second Gradient Continuum Theory for Shear Band Modeling in Cohesive Granular Materials Following Damage Elasticity
,”
Int. J. Solids Struct.
,
49
(
18
), pp.
2500
2514
.
113.
Yang
,
Y.
,
Ching
,
W.
, and
Misra
,
A.
,
2011
, “
Higher-Order Continuum Theory Applied to Fracture Simulation of Nanoscale Intergranular Glassy Film
,”
J. Nanomech. Micromech.
,
1
(
2
), pp.
60
71
.
114.
Seppecher
,
P.
,
2002
, “
Second-Gradient Theory: Application to Cahn–Hilliard Fluids
,”
Continuum Thermomechanics
,
Springer
,
New York
, pp.
379
388
.
115.
Alibert
,
J.-J.
,
Seppecher
,
P.
, and
dell'Isola
,
F.
,
2003
, “
Truss Modular Beams With Deformation Energy Depending on Higher Displacement Gradients
,”
Math. Mech. Solids
,
8
(
1
), pp.
51
73
.
116.
Neff
,
P.
,
Chełmiński
,
K.
, and
Alber
,
H.-D.
,
2009
, “
Notes on Strain Gradient Plasticity: Finite Strain Covariant Modelling and Global Existence in the Infinitesimal Rate-Independent Case
,”
Math. Models Methods Appl. Sci.
,
19
(
2
), pp.
307
346
.
117.
Placidi
,
L.
,
Rosi
,
G.
,
Giorgio
,
I.
, and
Madeo
,
A.
,
2014
, “
Reflection and Transmission of Plane Waves at Surfaces Carrying Material Properties and Embedded in Second-Gradient Materials
,”
Math. Mech. Solids
,
19
(
5
), pp.
555
578
.
118.
Askes
,
H.
,
Suiker
,
A.
, and
Sluys
,
L.
,
2002
, “
A Classification of Higher-Order Strain-Gradient Models—Linear Analysis
,”
Arch. Appl. Mech.
,
72
(
2–3
), pp.
171
188
.
119.
Rinaldi
,
A.
, and
Placidi
,
L.
,
2013
, “
A Microscale Second Gradient Approximation of the Damage Parameter of Quasi-Brittle Heterogeneous Lattices
,”
Z. Angew. Math. Mech./J. Appl. Math. Mech.
,
94
(
10
), pp.
862
877
.
120.
Iordache
,
M.-M.
, and
Willam
,
K.
,
1998
, “
Localized Failure Analysis in Elastoplastic Cosserat Continua
,”
Comput. Methods Appl. Mech. Eng.
,
151
(
3
), pp.
559
586
.
121.
Perić
,
D.
,
Yu
,
J.
, and
Owen
,
D.
,
1994
, “
On Error Estimates and Adaptivity in Elastoplastic Solids: Applications to the Numerical Simulation of Strain Localization in Classical and Cosserat Continua
,”
Int. J. Numer. Methods Eng.
,
37
(
8
), pp.
1351
1379
.
122.
Ehlers
,
W.
,
Ramm
,
E.
,
Diebels
,
S.
, and
dAddetta
,
G.
,
2003
, “
From Particle Ensembles to Cosserat Continua: Homogenization of Contact Forces Towards Stresses and Couple Stresses
,”
Int. J. Solids Struct.
,
40
(
24
), pp.
6681
6702
.
123.
Neuber
,
H.
,
1966
, “
On the General Solution of Linear-Elastic Problems in Isotropic and Anisotropic Cosserat Continua
,”
Applied Mechanics
,
Springer
,
Berlin
, pp.
153
158
.
124.
Dietsche
,
A.
, and
Willam
,
K.
,
1997
, “
Boundary Effects in Elasto-Plastic Cosserat Continua
,”
Int. J. Solids Struct.
,
34
(
7
), pp.
877
893
.
125.
Ieşan
,
D.
,
2007
, “
A Theory of Thermoviscoelastic Composites Modelled as Interacting Cosserat Continua
,”
J. Therm. Stresses
,
30
(
12
), pp.
1269
1289
.
126.
Pietraszkiewicz
,
W.
, and
Eremeyev
,
V.
,
2009
, “
On Vectorially Parameterized Natural Strain Measures of the Non-Linear Cosserat Continuum
,”
Int. J. Solids Struct.
,
46
(
11
), pp.
2477
2480
.
127.
Altenbach
,
J.
,
Altenbach
,
H.
, and
Eremeyev
,
V. A.
,
2010
, “
On Generalized Cosserat-Type Theories of Plates and Shells: A Short Review and Bibliography
,”
Arch. Appl. Mech.
,
80
(
1
), pp.
73
92
.
128.
Steinmann
,
P.
, and
Stein
,
E.
,
1997
, “
A Unifying Treatise of Variational Principles for Two Types of Micropolar Continua
,”
Acta Mech.
,
121
(
1–4
), pp.
215
232
.
129.
Eremeyev
,
V. A.
, and
Pietraszkiewicz
,
W.
, “
Material Symmetry Group and Constitutive Equations of Micropolar Anisotropic Elastic Solids
,”
Math. Mech. Solids
, epub.
130.
Eremeyev
,
V. A.
, and
Pietraszkiewicz
,
W.
,
2012
, “
Material Symmetry Group of the Non-Linear Polar-Elastic Continuum
,”
Int. J. Solids Struct.
,
49
(
14
), pp.
1993
2005
.
131.
Pietraszkiewicz
,
W.
, and
Eremeyev
,
V.
,
2009
, “
On Natural Strain Measures of the Non-Linear Micropolar Continuum
,”
Int. J. Solids Struct.
,
46
(
3
), pp.
774
787
.
132.
Jänicke
,
R.
,
Diebels
,
S.
,
Sehlhorst
,
H.-G.
, and
Düster
,
A.
,
2009
, “
Two-Scale Modelling of Micromorphic Continua
,”
Continuum Mech. Thermodyn.
,
21
(
4
), pp.
297
315
.
133.
Forest
,
S.
, and
Sievert
,
R.
,
2006
, “
Nonlinear Microstrain Theories
,”
Int. J. Solids Struct.
,
43
(
24
), pp.
7224
7245
.
134.
dell'Isola
,
F.
,
Andreaus
,
U.
, and
Placidi
,
L.
,
2014
, “
At the Origins and in the Vanguard of Peridynamics, Non-Local and Higher-Gradient Continuum Mechanics: An Underestimated and Still Topical Contribution of Gabrio Piola
,”
Math. Mech. Solids
,
20
(
8
), pp.
887
928
.
135.
Carcaterra
,
A.
,
dell'Isola
,
F.
,
Esposito
,
R.
, and
Pulvirenti
,
M.
,
2015
, “
Macroscopic Description of Microscopically Strongly Inhomogeneous Systems: A Mathematical Basis for the Synthesis of Higher Gradients Metamaterials
,”
Arch. Ration. Mech. Anal.
,
218
(
3
), pp.
1239
1262
.
136.
Alibert
,
J. J.
, and
Corte
,
A. D.
,
2015
, “
Second-Gradient Continua as Homogenized Limit of Pantographic Microstructured Plates: A Rigorous Proof
,”
Z. Angew. Math. Phys.
,
66
(
5
), pp.
2855
2870
.
137.
Giorgio
,
I.
,
Galantucci
,
L.
,
Della Corte
,
A.
, and
Del Vescovo
,
D.
,
2015
, “
Piezo-Electromechanical Smart Materials With Distributed Arrays of Piezoelectric Transducers: Current and Upcoming Applications
,”
Int. J. Appl. Electromagn. Mech.
,
47
(
4
), pp.
1051
1084
.
138.
Trinh
,
D. K.
,
Janicke
,
R.
,
Auffray
,
N.
,
Diebels
,
S.
, and
Forest
,
S.
,
2012
, “
Evaluation of Generalized Continuum Substitution Models for Heterogeneous Materials
,”
Int. J. Multiscale Comput. Eng.
,
10
(
6
), pp.
527
549
.
139.
Ashby
,
M. F.
, and
Cebon
,
D.
,
1993
, “
Materials Selection in Mechanical Design
,”
J. Phys. IV
,
3
(
C7
), pp.
C7-1
C7-9
.
140.
Elanchezhian
,
C.
, and
Sundar
,
G. S.
,
2007
,
Computer Aided Manufacturing
,
Firewall Media
,
New Delhi, India
.
141.
Auffray
,
N.
,
dellIsola
,
F.
,
Eremeyev
,
V.
,
Madeo
,
A.
, and
Rosi
,
G.
,
2015
, “
Analytical Continuum Mechanics à la Hamilton–Piola Least Action Principle for Second Gradient Continua and Capillary Fluids
,”
Math. Mech. Solids
,
20
(
4
), pp.
375
417
.
142.
Milton
,
G. W.
, and
Willis
,
J. R.
,
2007
, “
On Modifications of Newton's Second Law and Linear Continuum Elastodynamics
,”
Proc. R. Soc. London A
,
463
(
2079
), pp.
855
880
.
143.
Metropolis
,
N.
,
1987
, “
The Beginning of the Monte Carlo Method
,”
Los Alamos Sci.
,
Special Issue
, pp.
125
130
.
144.
Happ
,
H. H.
, and
Kron
,
G.
,
1973
,
Gabriel Kron and Systems Theory
,
Union College Press
,
Schenectady, NY
.
145.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
,
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
1977
,
The Finite Element Method
, Vol.
3
,
McGraw-Hill
,
London, UK
.
146.
Greco
,
L.
,
Impollonia
,
N.
, and
Cuomo
,
M.
,
2014
, “
A Procedure for the Static Analysis of Cable Structures Following Elastic Catenary Theory
,”
Int. J. Solids Struct.
,
51
(
7
), pp.
1521
1533
.
147.
Greco
,
L.
, and
Cuomo
,
M.
,
2012
, “
On the Force Density Method for Slack Cable Nets
,”
Int. J. Solids Struct.
,
49
(
13
), pp.
1526
1540
.
148.
Garusi
,
E.
,
Tralli
,
A.
, and
Cazzani
,
A.
,
2004
, “
An Unsymmetric Stress Formulation for Reissner–Mindlin Plates: A Simple and Locking-Free Rectangular Element
,”
Int. J. Comput. Eng. Sci.
,
5
(
3
), pp.
589
618
.
149.
Reccia
,
E.
,
Cazzani
,
A.
, and
Cecchi
,
A.
,
2012
, “
FEM–DEM Modeling for Out-of-Plane Loaded Masonry Panels: A Limit Analysis Approach
,”
Open Civil Eng. J.
,
6
(
1
), pp.
231
238
.
150.
Greco
,
L.
, and
Cuomo
,
M.
,
2014
, “
Consistent Tangent Operator for an Exact Kirchhoff Rod Model
,”
Continuum Mech. Thermodyn.
,
27
(
4–5
), pp.
861
877
.
151.
Carassale
,
L.
, and
Piccardo
,
G.
,
2010
, “
Non-Linear Discrete Models for the Stochastic Analysis of Cables in Turbulent Wind
,”
Int. J. Nonlinear Mech.
,
45
(
3
), pp.
219
231
.
152.
Javili
,
A.
, and
Steinmann
,
P.
,
2009
, “
A Finite Element Framework for Continua With Boundary Energies. Part I: The Two-Dimensional Case
,”
Comput. Meth. Appl. Mech. Eng.
,
198
(
27
), pp.
2198
2208
.
153.
Javili
,
A.
, and
Steinmann
,
P.
,
2010
, “
A Finite Element Framework for Continua With Boundary Energies. Part II: The Three-Dimensional Case
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
9
), pp.
755
765
.
154.
Turco
,
E.
, and
Caracciolo
,
P.
,
2000
, “
Elasto-Plastic Analysis of Kirchhoff Plates by High Simplicity Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
5–7
), pp.
691
706
.
155.
Ciancio
,
D.
,
Carol
,
I.
, and
Cuomo
,
M.
,
2007
, “
Crack Opening Conditions at ‘Corner Nodes' in FE Analysis With Cracking Along Mesh Lines
,”
Eng. Fracture Mech.
,
74
(
13
), pp.
1963
1982
.
156.
Ciancio
,
D.
,
Carol
,
I.
, and
Cuomo
,
M.
,
2006
, “
On Inter-Element Forces in the FEM-Displacement Formulation, and Implications for Stress Recovery
,”
Int. J. Numer. Methods Eng.
,
66
(
3
), pp.
502
528
.
157.
Hughes
,
T. J.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
39
), pp.
4135
4195
.
158.
Cazzani
,
A.
,
Malagù
,
M.
, and
Turco
,
E.
, “
Isogeometric Analysis of Plane-Curved Beams
,”
Math. Mech. Solids
, epub.
159.
Greco
,
L.
, and
Cuomo
,
M.
,
2013
, “
B-Spline Interpolation of Kirchhoff–Love Space Rods
,”
Comput. Methods Appl. Mech. Eng.
,
256
, pp.
251
269
.
160.
Greco
,
L.
, and
Cuomo
,
M.
,
2014
, “
An Implicit G1 Multi Patch B-Spline Interpolation for Kirchhoff–Love Space Rod
,”
Comput. Methods Appl. Mech. Eng.
,
269
, pp.
173
197
.
161.
Cazzani
,
A.
,
Malagù
,
M.
, and
Turco
,
E.
,
2014
, “
Isogeometric Analysis: A Powerful Numerical Tool for the Elastic Analysis of Historical Masonry Arches
,”
Continuum Mech. Thermodyn.
, epub.
162.
Cazzani
,
A.
,
Malagù
,
M.
,
Turco
,
E.
, and
Stochino
,
F.
, “
Constitutive Models for Strongly Curved Beams in the Frame of Isogeometric Analysis
,”
Math. Mech. Solids
, epub.
163.
Cuomo
,
M.
,
Contrafatto
,
L.
, and
Greco
,
L.
,
2014
, “
A Variational Model Based on Isogeometric Interpolation for the Analysis of Cracked Bodies
,”
Int. J. Eng. Sci.
,
80
(
SI
), pp.
173
188
.
164.
De Luycker
,
E.
,
Benson
,
D.
,
Belytschko
,
T.
,
Bazilevs
,
Y.
, and
Hsu
,
M.
,
2011
, “
X-FEM in Isogeometric Analysis for Linear Fracture Mechanics
,”
Int. J. Numer. Methods Eng.
,
87
(
6
), pp.
541
565
.
165.
Allen
,
M. P.
,
2004
, “
Introduction to Molecular Dynamics Simulation
,”
Comput. Soft Matter
,
23
, pp.
1
28
.
166.
Tinsley Oden
,
J.
,
Prudhomme
,
S.
,
Romkes
,
A.
, and
Bauman
,
P. T.
,
2006
, “
Multiscale Modeling of Physical Phenomena: Adaptive Control of Models
,”
SIAM J. Sci. Comput.
,
28
(
6
), pp.
2359
2389
.
167.
Piola
,
G.
,
2014
,
The Complete Works of Gabrio Piola: Commented English Translation
, Vol.
38
,
Springer
,
Cham, Switzerland
.
168.
Silling
,
S. A.
,
Epton
,
M.
,
Weckner
,
O.
,
Xu
,
J.
, and
Askari
,
E.
,
2007
, “
Peridynamic States and Constitutive Modeling
,”
J. Elasticity
,
88
(
2
), pp.
151
184
.
169.
Silling
,
S.
, and
Lehoucq
,
R.
,
2010
, “
Peridynamic Theory of Solid Mechanics
,”
Adv. Appl. Mech.
,
44
(
1
), pp.
73
166
.
170.
Askari
,
E.
,
Bobaru
,
F.
,
Lehoucq
,
R.
,
Parks
,
M.
,
Silling
,
S.
, and
Weckner
,
O.
,
2008
, “
Peridynamics for Multiscale Materials Modeling
,”
J. Phys.: Conf. Ser.
,
125
(
1
), p.
012078
.
171.
Silling
,
S. A.
, and
Askari
,
E.
,
2005
, “
A Meshfree Method Based on the Peridynamic Model of Solid Mechanics
,”
Comput. Struct.
,
83
(
17
), pp.
1526
1535
.
172.
Parks
,
M. L.
,
Lehoucq
,
R. B.
,
Plimpton
,
S. J.
, and
Silling
,
S. A.
,
2008
, “
Implementing Peridynamics Within a Molecular Dynamics Code
,”
Comput. Phys. Commun.
,
179
(
11
), pp.
777
783
.
173.
Leyendecker
,
S.
,
Ober-Blöbaum
,
S.
,
Marsden
,
J. E.
, and
Ortiz
,
M.
,
2010
, “
Discrete Mechanics and Optimal Control for Constrained Systems
,”
Optim. Control Appl. Methods
,
31
(
6
), pp.
505
528
.
174.
Ferretti
,
M.
,
Madeo
,
A.
,
dell'Isola
,
F.
, and
Boisse
,
P.
,
2014
, “
Modeling the Onset of Shear Boundary Layers in Fibrous Composite Reinforcements by Second-Gradient Theory
,”
Z. Angew. Math. Phys.
,
65
(
3
), pp.
587
612
.
175.
Andreaus
,
U.
,
dell'Isola
,
F.
, and
Porfiri
,
M.
,
2004
, “
Piezoelectric Passive Distributed Controllers for Beam Flexural Vibrations
,”
J. Vib. Control
,
10
(
5
), pp.
625
659
.
176.
Maurini
,
C.
,
Pouget
,
J.
, and
dell'Isola
,
F.
,
2006
, “
Extension of the Euler–Bernoulli Model of Piezoelectric Laminates to Include 3D Effects Via a Mixed Approach
,”
Comput. Struct.
,
84
(
22
), pp.
1438
1458
.
177.
dell'Isola
,
F.
,
Maurini
,
C.
, and
Porfiri
,
M.
,
2004
, “
Passive Damping of Beam Vibrations Through Distributed Electric Networks and Piezoelectric Transducers: Prototype Design and Experimental Validation
,”
Smart Mater. Struct.
,
13
(
2
), p.
299
.
178.
Gantzounis
,
G.
,
Serra-Garcia
,
M.
,
Homma
,
K.
,
Mendoza
,
J.
, and
Daraio
,
C.
,
2013
, “
Granular Metamaterials for Vibration Mitigation
,”
J. Appl. Phys.
,
114
(
9
), p.
093514
.
179.
Alessandroni
,
S.
,
Andreaus
,
U.
,
dell'Isola
,
F.
, and
Porfiri
,
M.
,
2005
, “
A Passive Electric Controller for Multimodal Vibrations of Thin Plates
,”
Comput. Struct.
,
83
(
15
), pp.
1236
1250
.
180.
Bailey
,
T.
, and
Ubbard
,
J. E.
,
1985
, “
Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam
,”
J. Guid. Control Dyn.
,
8
(
5
), pp.
605
611
.
181.
Behrens
,
S.
,
Fleming
,
A. J.
, and
Moheimani
,
S. O. R.
,
2003
, “
A Broadband Controller for Shunt Piezoelectric Damping of Structural Vibration
,”
Smart Mater. Struct.
,
12
(
1
), p.
18
.
182.
Corr
,
L. R.
, and
Clark
,
W. W.
,
2003
, “
A Novel Semi-Active Multi-Modal Vibration Control Law for a Piezoceramic Actuator
,”
ASME J. Vib. Acoust.
,
125
(
2
), pp.
214
222
.
183.
Dimitriadis
,
E. K.
,
Fuller
,
C. R.
, and
Rogers
,
C. A.
,
1991
, “
Piezoelectric Actuators for Distributed Vibration Excitation of Thin Plates
,”
ASME J. Vib. Acoust.
,
113
(
1
), pp.
100
107
.
184.
Hollkamp
,
J. J.
,
1994
, “
Multimodal Passive Vibration Suppression With Piezoelectric Materials and Resonant Shunts
,”
J. Intell. Mater. Syst. Struct.
,
5
(
1
), pp.
49
57
.
185.
Lallart
,
M.
,
Lefeuvre
,
É.
,
Richard
,
C.
, and
Guyomar
,
D.
,
2008
, “
Self-Powered Circuit for Broadband, Multimodal Piezoelectric Vibration Control
,”
Sens. Actuators A
,
143
(
2
), pp.
377
382
.
186.
Pipkin
,
A.
,
1981
, “
Plane Traction Problems for Inextensible Networks
,”
Q. J. Mech. Appl. Math.
,
34
(
4
), pp.
415
429
.
187.
Rivlin
,
R.
,
1997
, “
Plane Strain of a Net Formed by Inextensible Cords
,”
Collected Papers of RS Rivlin
,
Springer
,
New York
, pp.
511
534
.
188.
D'Agostino
,
M. V.
,
Giorgio
,
I.
,
Greco
,
L.
,
Madeo
,
A.
, and
Boisse
,
P.
,
2015
, “
Continuum and Discrete Models for Structures Including (Quasi-) Inextensible Elasticae With a View to the Design and Modeling of Composite Reinforcements
,”
Int. J. Solids Struct.
,
59
, pp.
1
17
.
189.
dell'Isola
,
F.
,
D'Agostino
,
M. V.
,
Madeo
,
A.
,
Boisse
,
P.
, and
Steigmann
,
D.
, “
Minimization of Shear Energy in Two Dimensional Continua With Two Orthogonal Families of Inextensible Fibers: The Case of Standard Bias Extension Test
,”
J. Elasticity
, epub.
190.
dell'Isola
,
F.
,
Giorgio
,
I.
, and
Andreaus
,
U.
,
2015
, “
Elastic Pantographic 2D Lattices: A Numerical Analysis on Static Response and Wave Propagation
,”
Proc. Est. Acad. Sci.
,
64
(
3
), pp.
219
225
.
191.
Descamps
,
B.
,
2014
,
Computational Design of Lightweight Structures: Form Finding and Optimization
,
Wiley
,
Weinheim, Germany
.
192.
Dell'Isola
,
F.
,
Della Corte
,
A.
,
Greco
,
L.
, and
Luongo
,
A.
, “
Plane Bias Extension Test for a Continuum With Two Inextensible Families of Fibers: A Variational Treatment With Lagrange Multipliers and a Perturbation Solution
,”
Int. J. Solids Struct.
(in press).
193.
dell'Isola
,
F.
, and
Steigmann
,
D.
,
2015
, “
A Two-Dimensional Gradient-Elasticity Theory for Woven Fabrics
,”
J. Elasticity
,
118
(
1
), pp.
113
125
.
194.
Hamila
,
N.
, and
Boisse
,
P.
,
2013
, “
Tension Locking in Finite-Element Analyses of Textile Composite Reinforcement Deformation
,”
C. R. Méc.
,
341
(
6
), pp.
508
519
.
195.
Hamila
,
N.
, and
Boisse
,
P.
,
2013
, “
Locking in Simulation of Composite Reinforcement Deformations. Analysis and Treatment
,”
Composites, Part A
,
53
, pp.
109
117
.
196.
Federico
,
S.
,
2010
, “
On the Linear Elasticity of Porous Materials
,”
Int. J. Mech. Sci.
,
52
(
2
), pp.
175
182
.
197.
Hollister
,
S. J.
,
2005
, “
Porous Scaffold Design for Tissue Engineering
,”
Nat. Mater.
,
4
(
7
), pp.
518
524
.
198.
Serra
,
F.
,
Vishnubhatla
,
K. C.
,
Buscaglia
,
M.
,
Cerbino
,
R.
,
Osellame
,
R.
,
Cerullo
,
G.
, and
Bellini
,
T.
,
2011
, “
Topological Defects of Nematic Liquid Crystals Confined in Porous Networks
,”
Soft Matter
,
7
(
22
), pp.
10945
10950
.
199.
Araki
,
T.
,
Buscaglia
,
M.
,
Bellini
,
T.
, and
Tanaka
,
H.
,
2011
, “
Memory and Topological Frustration in Nematic Liquid Crystals Confined in Porous Materials
,”
Nat. Mater.
,
10
(
4
), pp.
303
309
.
200.
Andreaus
,
U.
, and
Colloca
,
M.
,
2009
, “
Prediction of Micromotion Initiation of an Implanted Femur Under Physiological Loads and Constraints Using the Finite Element Method
,”
Proc. Inst. Mech. Eng, Part H
,
223
, pp.
589
605
.
201.
Andreaus
,
U.
,
Colloca
,
M.
, and
Iacoviello
,
D.
,
2013
,
Modeling of Trabecular Architecture as Result of an Optimal Control Procedure
(Lecture Notes in Computational Vision and Biomechanics), Vol.
4
,
Springer
,
Dordrecht
.
202.
Andreaus
,
U.
,
Colloca
,
M.
,
Iacoviello
,
D.
, and
Pignataro
,
M.
,
2011
, “
Optimal-Tuning PID Control of Adaptive Materials for Structural Efficiency
,”
Struct. Multidiscip. Optim.
,
43
(
1
), pp.
43
59
.
203.
Andreaus
,
U.
,
Giorgio
,
I.
, and
Lekszycki
,
T.
,
2014
, “
A 2-D Continuum Model of a Mixture of Bone Tissue and Bio-Resorbable Material for Simulating Mass Density Redistribution Under Load Slowly Variable in Time
,”
Z. Angew. Math. Mech./J. Appl. Math. Mech.
,
94
(
12
), pp.
978
1000
.
204.
Park
,
J.-G.
,
Ye
,
Q.
,
Topp
,
E. M.
,
Lee
,
C. H.
,
Kostoryz
,
E. L.
,
Misra
,
A.
, and
Spencer
,
P.
,
2009
, “
Dynamic Mechanical Analysis and Esterase Degradation of Dentin Adhesives Containing a Branched Methacrylate
,”
J. Biomed. Mater. Res., Part B
,
91
(
1
), pp.
61
70
.
205.
Andreaus
,
U.
,
Giorgio
,
I.
, and
Madeo
,
A.
,
2014
, “
Modeling of the Interaction Between Bone Tissue and Resorbable Biomaterial as Linear Elastic Materials With Voids
,”
Z. Angew. Math. Phys.
,
66
(
1
), pp.
209
237
.
206.
Ganghoffer
,
J.-F.
,
2012
, “
A Contribution to the Mechanics and Thermodynamics of Surface Growth. Application to Bone External Remodeling
,”
Int. J. Eng. Sci.
,
50
(
1
), pp.
166
191
.
207.
Giorgio
,
I.
,
Andreaus
,
U.
, and
Madeo
,
A.
,
2014
, “
The Influence of Different Loads on the Remodeling Process of a Bone and Bio-Resorbable Material Mixture With Voids
,”
Continuum Mech. Thermodyn.
, epub.
208.
Laurent
,
C.
,
Durville
,
D.
,
Vaquette
,
C.
,
Rahouadj
,
R.
, and
Ganghoffer
,
J.
,
2013
, “
Computer-Aided Tissue Engineering: Application to the Case of Anterior Cruciate Ligament Repair
,”
Biomech. Cells Tissues
,
9
(
1
), pp.
1
44
.
209.
Laurent
,
C.
,
Durville
,
D.
,
Mainard
,
D.
,
Ganghoffer
,
J.-F.
, and
Rahouadj
,
R.
,
2012
, “
Designing a New Scaffold for Anterior Cruciate Ligament Tissue Engineering
,”
J. Mech. Behav. Biomed. Mater.
,
12
(
1
), pp.
184
196
.
210.
Laurent
,
C.
,
Durville
,
D.
,
Wang
,
X.
,
Ganghoffer
,
J.-F.
, and
Rahouadj
,
R.
,
2010
, “
Designing a New Scaffold for Anterior Cruciate Ligament Tissue Engineering
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(S
1
), pp.
87
88
.
211.
Misra
,
A.
,
Spencer
,
P.
,
Marangos
,
O.
,
Wang
,
Y.
, and
Katz
,
J. L.
,
2005
, “
Parametric Study of the Effect of Phase Anisotropy on the Micromechanical Behaviour of Dentin–Adhesive Interfaces
,”
J. R. Soc. Interface
,
2
(
3
), pp.
145
157
.
212.
Spencer
,
P.
,
Ye
,
Q.
,
Park
,
J.
,
Topp
,
E. M.
,
Misra
,
A.
,
Marangos
,
O.
,
Wang
,
Y.
,
Bohaty
,
B. S.
,
Singh
,
V.
,
Sene
,
F.
,
Eslick
,
J.
,
Camarda
,
K.
, and
Katz
,
J. L.
,
2010
, “
Adhesive/Dentin Interface: The Weak Link in the Composite Restoration
,”
Ann. Biomed. Eng.
,
38
(
6
), pp.
1989
2003
.
213.
Steigmann
,
D. J.
, and
dell'Isola
,
D.
, “
Mechanical Response of Fabric Sheets to Three-Dimensional Bending, Twisting, and Stretching
,”
Acta Mech. Sin.
,
31
(
3
), pp.
373
382
.
214.
Ye
,
Q.
,
Spencer
,
P.
,
Wang
,
Y.
, and
Misra
,
A.
,
2007
, “
Relationship of Solvent to the Photopolymerization Process, Properties, and Structure in Model Dentin Adhesives
,”
J. Biomed. Mater. Res., Part A
,
80
(
2
), pp.
342
350
.
215.
Hu
,
L.
,
Pasta
,
M.
,
Mantia
,
F. L.
,
Cui
,
L.
,
Jeong
,
S.
,
Deshazer
,
H. D.
,
Choi
,
J. W.
,
Han
,
S. M.
, and
Cui
,
Y.
,
2010
, “
Stretchable, Porous, and Conductive Energy Textiles
,”
Nano Lett.
,
10
(
2
), pp.
708
714
.
216.
Piccardo
,
G.
,
Ranzi
,
G.
, and
Luongo
,
A.
,
2014
, “
A Complete Dynamic Approach to the Generalized Beam Theory Cross-Section Analysis Including Extension and Shear Modes
,”
Math. Mech. Solids
,
19
(
8
), pp.
900
924
.
217.
Piccardo
,
G.
, and
Tubino
,
F.
,
2012
, “
Dynamic Response of Euler–Bernoulli Beams to Resonant Harmonic Moving Loads
,”
Struct. Eng. Mech.
,
44
(
5
), pp.
681
704
.
218.
Luongo
,
A.
,
Zulli
,
D.
, and
Piccardo
,
G.
,
2007
, “
A Linear Curved-Beam Model for the Analysis of Galloping in Suspended Cables
,”
J. Mech. Mater. Struct.
,
2
(
4
), pp.
675
694
.
219.
Altenbach
,
H.
,
Bîrsan
,
M.
, and
Eremeyev
,
V. A.
,
2012
, “
On a Thermodynamic Theory of Rods With Two Temperature Fields
,”
Acta Mech.
,
223
(
8
), pp.
1583
1596
.
220.
Luongo
,
A.
, and
Piccardo
,
G.
,
1998
, “
Non-Linear Galloping of Sagged Cables in 1:2 Internal Resonance
,”
J. Sound Vib.
,
214
(
5
), pp.
915
940
.
221.
Luongo
,
A.
,
Zulli
,
D.
, and
Piccardo
,
G.
,
2008
, “
Analytical and Numerical Approaches to Nonlinear Galloping of Internally Resonant Suspended Cables
,”
J. Sound Vib.
,
315
(
3
), pp.
375
393
.
222.
Luongo
,
A.
,
Rega
,
G.
, and
Vestroni
,
F.
,
1984
, “
Planar Non-Linear Free Vibrations of an Elastic Cable
,”
Int. J. Nonlinear Mech.
,
19
(
1
), pp.
39
52
.
223.
Luongo
,
A.
,
1996
, “
Perturbation Methods for Nonlinear Autonomous Discrete-Time Dynamical Systems
,”
Nonlinear Dyn.
,
10
(
4
), pp.
317
331
.
224.
Liu
,
W. K.
,
Park
,
H. S.
,
Qian
,
D.
,
Karpov
,
E. G.
,
Kadowaki
,
H.
, and
Wagner
,
G. J.
,
2006
, “
Bridging Scale Methods for Nanomechanics and Materials
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
13
), pp.
1407
1421
.
225.
Miehe
,
C.
,
Schröder
,
J.
, and
Schotte
,
J.
,
1999
, “
Computational Homogenization Analysis in Finite Plasticity Simulation of Texture Development in Polycrystalline Materials
,”
Comput. Methods Appl. Mech. Eng.
,
171
(
3
), pp.
387
418
.
226.
Brun
,
M.
,
Lopez-Pamies
,
O.
, and
Castaneda
,
P. P.
,
2007
, “
Homogenization Estimates for Fiber-Reinforced Elastomers With Periodic Microstructures
,”
Int. J. Solids Struct.
,
44
(
18
), pp.
5953
5979
.
227.
Milton
,
G.
,
1986
, “
Modelling the Properties of Composites by Laminates
,”
Homogenization and Effective Moduli of Materials and Media
,
Springer
,
New York
, pp.
150
174
.
228.
Dos Reis
,
F.
, and
Ganghoffer
,
J.
,
2012
, “
Equivalent Mechanical Properties of Auxetic Lattices From Discrete Homogenization
,”
Comput. Mater. Sci.
,
51
(
1
), pp.
314
321
.
229.
Dos Reis
,
F.
, and
Ganghoffer
,
J.-F.
,
2011
, “
Construction of Micropolar Continua From the Homogenization of Repetitive Planar Lattices
,”
Mechanics of Generalized Continua
,
Springer
,
New York
, pp.
193
217
.
230.
Ladeveze
,
P.
, and
Nouy
,
A.
,
2003
, “
On a Multiscale Computational Strategy With Time and Space Homogenization for Structural Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
28
), pp.
3061
3087
.
231.
Federico
,
S.
,
Grillo
,
A.
, and
Herzog
,
W.
,
2004
, “
A Transversely Isotropic Composite With a Statistical Distribution of Spheroidal Inclusions: A Geometrical Approach to Overall Properties
,”
J. Mech. Phys. Solids
,
52
(
10
), pp.
2309
2327
.
232.
Goda
,
I.
,
Assidi
,
M.
,
Belouettar
,
S.
, and
Ganghoffer
,
J.
,
2012
, “
A Micropolar Anisotropic Constitutive Model of Cancellous Bone From Discrete Homogenization
,”
J. Mech. Behav. Biomed. Mater.
,
16
, pp.
87
108
.
233.
Ebinger
,
T.
,
Steeb
,
H.
, and
Diebels
,
S.
,
2005
, “
Modeling Macroscopic Extended Continua With the Aid of Numerical Homogenization Schemes
,”
Comput. Mater. Sci.
,
32
(
3
), pp.
337
347
.
234.
Ober-Blöbaum
,
S.
,
Junge
,
O.
, and
Marsden
,
J. E.
,
2011
, “
Discrete Mechanics and Optimal Control: An Analysis
,”
ESAIM: Control Optim. Calculus Var.
,
17
(
2
), pp.
322
352
.
235.
Luongo
,
A.
,
Rega
,
G.
, and
Vestroni
,
F.
,
1986
, “
On Nonlinear Dynamics of Planar Shear Indeformable Beams
,”
ASME J. Appl. Mech.
,
53
(
3
), pp.
619
624
.
236.
Bîrsan
,
M.
,
Altenbach
,
H.
,
Sadowski
,
T.
,
Eremeyev
,
V.
, and
Pietras
,
D.
,
2012
, “
Deformation Analysis of Functionally Graded Beams by the Direct Approach
,”
Composites, Part B
,
43
(
3
), pp.
1315
1328
.
237.
Mei
,
C. C.
, and
Vernescu
,
B.
,
2010
,
Homogenization Methods for Multiscale Mechanics
,
World Scientific
,
Singapore
.
238.
Madeo
,
A.
,
Neff
,
P.
,
Ghiba
,
I.-D.
,
Placidi
,
L.
, and
Rosi
,
G.
,
2013
, “
Wave Propagation in Relaxed Micromorphic Continua: Modeling Metamaterials With Frequency Band-Gaps
,”
Continuum Mech. Thermodyn.
,
27
(
4
), pp.
551
570
.
239.
Berezovski
,
A.
,
Giorgio
,
I.
, and
Della Corte
,
A.
,
2015
, “
Interfaces in Micromorphic Materials: Wave Transmission and Reflection With Numerical Simulations
,”
Math. Mech. Solids
, epub.
240.
Madeo
,
A.
,
Della Corte
,
A.
,
Greco
,
L.
, and
Neff
,
P.
, “
Wave Propagation in Pantographic 2D Lattices With Internal Discontinuities
,”
Proc. Est. Acad. Sci.
, epub.
241.
Seppecher
,
P.
,
Alibert
,
J.-J.
, and
dell'Isola
,
F.
,
2011
, “
Linear Elastic Trusses Leading to Continua With Exotic Mechanical Interactions
,”
J. Phys.: Conf. Ser.
,
319
(
1
), p.
012018
.
242.
Giorgio
,
I.
,
Culla
,
A.
, and
Del Vescovo
,
D.
,
2009
, “
Multimode Vibration Control Using Several Piezoelectric Transducers Shunted With a Multiterminal Network
,”
Arch. Appl. Mech.
,
79
(
9
), pp.
859
879
.
243.
Moheimani
,
S. O. R.
,
2003
, “
A Survey of Recent Innovations in Vibration Damping and Control Using Shunted Piezoelectric Transducers
,”
IEEE Trans. Control Syst. Technol.
,
11
(
4
), pp.
482
494
.
244.
Porfiri
,
M.
,
dell'Isola
,
F.
, and
Mascioli
,
F.
,
2004
, “
Circuit Analog of a Beam and Its Application to Multimodal Vibration Damping, Using Piezoelectric Transducers
,”
Int. J. Circuit Theory Appl.
,
32
(
4
), pp.
167
198
.
245.
Eremeev
,
V.
,
Freidin
,
A.
, and
Sharipova
,
L.
,
2003
, “
Nonuniqueness and Stability in Problems of Equilibrium of Elastic Two-Phase Bodies
,”
Dokl. Phys.
,
48
(
7
), pp.
359
363
.
246.
Yeremeyev
,
V.
,
Freidin
,
A.
, and
Sharipova
,
L.
,
2007
, “
The Stability of the Equilibrium of Two-Phase Elastic Solids
,”
J. Appl. Math. Mech.
,
71
(
1
), pp.
61
84
.
247.
Rizzi
,
N.
,
Varano
,
V.
, and
Gabriele
,
S.
,
2013
, “
Initial Postbuckling Behavior of Thin-Walled Frames Under Mode Interaction
,”
Thin-Walled Struct.
,
68
, pp.
124
134
.
248.
Rizzi
,
N.
, and
Varano
,
V.
,
2011
, “
On the Postbuckling Analysis of Thin-Walled Frames
,” 13th International Conference On Civil, Structural And Environmental Engineering Computing (
CC2011
), Chania, Crete, Greece, Sept. 6-9, Paper No. 43.
249.
Rizzi
,
N.
, and
Varano
,
V.
,
2011
, “
The Effects of Warping on the Postbuckling Behaviour of Thin-Walled Structures
,”
Thin-Walled Struct.
,
49
(
9
), pp.
1091
1097
.
250.
Pignataro
,
M.
,
Ruta
,
G.
,
Rizzi
,
N.
, and
Varano
,
V.
,
2010
, “
Effects of Warping Constraints and Lateral Restraint on the Buckling of Thin-Walled Frames
,”
ASME
Paper No. IMECE2009-12254.
251.
Pignataro
,
M.
,
Rizzi
,
N.
,
Ruta
,
G.
, and
Varano
,
V.
,
2009
, “
The Effects of Warping Constraints on the Buckling of Thin-Walled Structures
,”
J. Mech. Mater. Struct.
,
4
(
10
), pp.
1711
1727
.
252.
Ruta
,
G.
,
Varano
,
V.
,
Pignataro
,
M.
, and
Rizzi
,
N.
,
2008
, “
A Beam Model for the Flexural–Torsional Buckling of Thin-Walled Members With Some Applications
,”
Thin-Walled Struct.
,
46
(
7–9
), pp.
816
822
.
253.
Pignataro
,
M.
,
Rizzi
,
N.
, and
Luongo
,
A.
,
1991
,
Stability, Bifurcation, and Postcritical Behaviour of Elastic Structures
,
Elsevier
,
Amsterdam
.
254.
Luongo
,
A.
,
2001
, “
Mode Localization in Dynamics and Buckling of Linear Imperfect Continuous Structures
,”
Nonlinear Dyn.
,
25
(
1–3
), pp.
133
156
.
255.
Luongo
,
A.
, and
Piccardo
,
G.
,
2005
, “
Linear Instability Mechanisms for Coupled Translational Galloping
,”
J. Sound Vib.
,
288
(
4
), pp.
1027
1047
.
256.
Luongo
,
A.
, and
Zulli
,
D.
,
2012
, “
Dynamic Instability of Inclined Cables Under Combined Wind Flow and Support Motion
,”
Nonlinear Dyn.
,
67
(
1
), pp.
71
87
.
257.
Luongo
,
A.
, and
Zulli
,
D.
,
2014
, “
Aeroelastic Instability Analysis of NES-Controlled Systems Via a Mixed Multiple Scale/Harmonic Balance Method
,”
J. Vib. Control
,
20
(
13
), pp.
1985
1998
.
258.
Luongo
,
A.
,
2010
, “
A Unified Perturbation Approach to Static/Dynamic Coupled Instabilities of Nonlinear Structures
,”
Thin-Walled Struct.
,
48
(
10
), pp.
744
751
.
259.
Di Egidio
,
A.
,
Luongo
,
A.
, and
Paolone
,
A.
,
2007
, “
Linear and Non-Linear Interactions Between Static and Dynamic Bifurcations of Damped Planar Beams
,”
Int. J. Nonlinear Mech.
,
42
(
1
), pp.
88
98
.
260.
Vestroni
,
F.
,
Luongo
,
A.
, and
Pasca
,
M.
,
1995
, “
Stability and Control of Transversal Oscillations of a Tethered Satellite System
,”
Appl. Math. Comput.
,
70
(
2
), pp.
343
360
.
261.
Knight
,
J.
,
Page
,
T.
, and
Chandler
,
H.
,
1991
, “
Thermal Instability of the Microstructure and Surface Mechanical Properties of Hydrogenated Amorphous Carbon Films
,”
Surf. Coat. Technol.
,
49
(
1
), pp.
519
529
.
262.
Ma
,
E.
,
2003
, “
Nanocrystalline Materials: Controlling Plastic Instability
,”
Nat. Mater.
,
2
(
1
), pp.
7
8
.
263.
Konkova
,
T.
,
Mironov
,
S.
,
Korznikov
,
A.
, and
Semiatin
,
S.
,
2010
, “
Microstructure Instability in Cryogenically Deformed Copper
,”
Scr. Mater.
,
63
(
9
), pp.
921
924
.
264.
Zhu
,
H.
,
Maruyama
,
K.
,
Seo
,
D.
, and
Au
,
P.
,
2006
, “
Effect of Initial Microstructure on Microstructural Instability and Creep Resistance of XD TiAl Alloys
,”
Metall. Mater. Trans. A
,
37
(
10
), pp.
3149
3159
.
265.
Lipson
,
H.
, and
Kurman
,
M.
,
2013
,
Fabricated: The New World of 3D Printing
,
Wiley
,
Weinheim, Germany
.
266.
Hockaday
,
L.
,
Kang
,
K.
,
Colangelo
,
N.
,
Cheung
,
P.
,
Duan
,
B.
,
Malone
,
E.
,
Wu
,
J.
,
Girardi
,
L.
,
Bonassar
,
L.
,
Lipson
,
H.
,
Chu
,
C. C.
, and
Butcher
,
J. T.
,
2012
, “
Rapid 3D Printing of Anatomically Accurate and Mechanically Heterogeneous Aortic Valve Hydrogel Scaffolds
,”
Biofabrication
,
4
(
3
), p.
035005
.
267.
Greiner
,
A.
, and
Wendorff
,
J. H.
,
2007
, “
Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers
,”
Angew. Chem. Int. Ed.
,
46
(
30
), pp.
5670
5703
.
268.
Sill
,
T. J.
, and
von Recum
,
H. A.
,
2008
, “
Electrospinning: Applications in Drug Delivery and Tissue Engineering
,”
Biomaterials
,
29
(
13
), pp.
1989
2006
.
269.
Bhardwaj
,
N.
, and
Kundu
,
S. C.
,
2010
, “
Electrospinning: A Fascinating Fiber Fabrication Technique
,”
Biotechnol. Adv.
,
28
(
3
), pp.
325
347
.
270.
Di Camillo
,
D.
,
Fasano
,
V.
,
Ruggieri
,
F.
,
Santucci
,
S.
,
Lozzi
,
L.
,
Camposeo
,
A.
, and
Pisignano
,
D.
,
2013
, “
Near-Field Electrospinning of Conjugated Polymer Light-Emitting Nanofibers
,”
Nanosc.
,
5
, pp.
11637
11642
.
271.
Di Camillo
,
D.
,
Ruggieri
,
F.
,
Santucci
,
S.
, and
Lozzi
,
L.
,
2012
, “
N-Doped TiO2 Nanofibers Deposited by Electrospinning
,”
J. Phys. Chem. C
,
116
(
34
), pp.
18427
18431
.
272.
Dell'Erba
,
R.
,
dell'Isola
,
F.
, and
Rotoli
,
G.
,
1999
, “
The Influence of the Curvature Dependence of the Surface Tension on the Geometry of Electrically Charged Menisci
,”
Continuum Mech. Thermodyn.
,
11
(
2
), pp.
89
105
.
273.
Agarwal
,
S.
,
Wendorff
,
J. H.
, and
Greiner
,
A.
,
2009
, “
Progress in the Field of Electrospinning for Tissue Engineering Applications
,”
Adv. Mater.
,
21
(
32–33
), pp.
3343
3351
.
274.
Beachley
,
V.
,
Kasyanov
,
V.
,
Nagy-Mehesz
,
A.
,
Norris
,
R.
,
Ozolanta
,
I.
,
Kalejs
,
M.
,
Stradins
,
P.
,
Baptista
,
L.
,
da Silva
,
K.
,
Grainjero
,
J.
,
Wen
,
X.
, and
Mironov
,
V.
,
2014
, “
The Fusion of Tissue Spheroids Attached to Pre-Stretched Electrospun Polyurethane Scaffolds
,”
J. Tissue Eng.
,
5
, p.
2041731414556561
.
275.
Yasuda
,
H.
, and
Yang
,
J.
,
2015
, “
Reentrant Origami-Based Metamaterials With Negative Poisson's Ratio and Bistability
,”
Phys. Rev. Lett.
,
114
(
18
), p.
185502
.
276.
Boutin
,
C.
, and
Becot
,
F. X.
,
2015
, “
Theory and Experiments on Poro-Acoustics With Inner Resonators
,”
Wave Motion
,
54
, pp.
76
99
.
277.
Boutin
,
L. D. M. C.
, Schwan, “
Depolarization of Mechanical Waves by Anisotropic Metasurface
,”
J. Appl. Phys.
,
117
(
6
), p.
064902
.
278.
Boutin
,
C.
, and
Auriault
,
J.
,
1993
, “
Rayleigh Scattering in Elastic Composite Materials
,”
Int. J. Eng. Sci.
,
31
(
12
), pp.
1669
1689
.
279.
Boutin
,
C.
,
Rallu
,
A.
, and
Hans
,
S.
,
2012
, “
Large Scale Modulation of High Frequency Acoustic Waves in Periodic Porous Media
,”
J. Acoust. Soc. Am.
,
132
(
6
), pp.
3622
3636
.
280.
Boutin
,
C.
,
Royer
,
P.
, and
Auriault
,
J.
,
1998
, “
Acoustic Absorption of Porous Surfacing With Dual Porosity
,”
Int. J. Solids Struct.
,
35
(
34
), pp.
4709
4737
.
281.
Chesnais
,
C.
,
Hans
,
S.
, and
Boutin
,
C.
,
2007
, “
Wave Propagation and Diffraction in Discrete Structures: Effect of Anisotropy and Internal Resonance
,”
PAMM
,
7
(
1
), p.
1090
.
282.
Fokin
,
V.
,
Ambati
,
M.
,
Sun
,
C.
, and
Zhang
,
X.
,
2007
, “
Method for Retrieving Effective Properties of Locally Resonant Acoustic Metamaterials
,”
Phys. Rev. B
,
76
(
14
), p.
144302
.
283.
Wang
,
P.
,
Casadei
,
F.
,
Shan
,
S.
,
Weaver
,
J. C.
, and
Bertoldi
,
K.
,
2014
, “
Harnessing Buckling to Design Tunable Locally Resonant Acoustic Metamaterials
,”
Phys. Rev. Lett.
,
113
(
1
), p.
014301
.
284.
Altenbach
,
H.
,
Eremeyev
,
V. A.
, and
Morozov
,
N. F.
,
2013
, “
Mechanical Properties of Materials Considering Surface Effects
,”
IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures
,
Beijing
, Aug. 8–12, pp.
105
115
.
285.
Nesterenko
,
V.
,
Daraio
,
C.
,
Herbold
,
E.
, and
Jin
,
S.
,
2005
, “
Anomalous Wave Reflection at the Interface of Two Strongly Nonlinear Granular Media
,”
Phys. Rev. Lett.
,
95
(
15
), p.
158702
.
286.
Eremeyev
,
V. A.
,
2015
, “
On Effective Properties of Materials at the Nano- and Microscales Considering Surface Effects
,”
Acta Mech.
, epub.
287.
Cuenot
,
S.
,
Frétigny
,
C.
,
Demoustier-Champagne
,
S.
, and
Nysten
,
B.
,
2004
, “
Surface Tension Effect on the Mechanical Properties of Nanomaterials Measured by Atomic Force Microscopy
,”
Phys. Rev. B
,
69
(
16
), p.
165410
.
288.
Chen
,
C.
,
Shi
,
Y.
,
Zhang
,
Y.
,
Zhu
,
J.
, and
Yan
,
Y.
,
2006
, “
Size Dependence of Young's Modulus in ZnO Nanowires
,”
Phys. Rev. Lett.
,
96
(
7
), p.
075505
.
289.
Liu
,
X.
,
Luo
,
J.
, and
Zhu
,
J.
,
2006
, “
Size Effect on the Crystal Structure of Silver Nanowires
,”
Nano Lett.
,
6
(
3
), pp.
408
412
.
290.
Jing
,
G. Y.
,
Duan
,
H. L.
,
Sun
,
X. M.
,
Zhang
,
Z. S.
,
Xu
,
J.
,
Li
,
Y. D.
,
Wang
,
J. X.
, and
Yu
,
D. P.
,
2006
, “
Surface Effects on Elastic Properties of Silver Nanowires: Contact Atomic-Force Microscopy
,”
Phys. Rev. B
,
73
(
23
), p.
235409
.
291.
He
,
J.
, and
Lilley
,
C. M.
,
2008
, “
Surface Effect on the Elastic Behavior of Static Bending Nanowires
,”
Nano Lett.
,
8
(
7
), pp.
1798
1802
.
292.
Greer
,
J. R.
, and
De Hosson
,
J. T. M.
,
2011
, “
Plasticity in Small-Sized Metallic Systems: Intrinsic Versus Extrinsic Size Effect
,”
Prog. Mater. Sci.
,
56
(
6
), pp.
654
724
.
293.
Greer
,
J. R.
, and
Nix
,
W. D.
,
2005
, “
Size Dependence of Mechanical Properties of Gold at the Sub-Micron Scale
,”
Appl. Phys. A
,
80
(
8
), pp.
1625
1629
.
294.
Özgür
,
Ü.
,
Alivov
,
Y. I.
,
Liu
,
C.
,
Teke
,
A.
,
Reshchikov
,
M.
,
Doğan
,
S.
,
Avrutin
,
V.
,
Cho
,
S.-J.
, and
Morkoc
,
H.
,
2005
, “
A Comprehensive Review of ZnO Materials and Devices
,”
J. Appl. Phys.
,
98
(
4
), p.
041301
.
295.
Bhushan
,
B.
, ed.,
2007
,
Handbook Springer of Nanotechnology
,
Springer
,
Berlin
.
296.
Melechko
,
A. V.
,
Merkulov
,
V. I.
,
McKnight
,
T. E.
,
Guillorn
,
M.
,
Klein
,
K. L.
,
Lowndes
,
D. H.
, and
Simpson
,
M. L.
,
2005
, “
Vertically Aligned Carbon Nanofibers and Related Structures: Controlled Synthesis and Directed Assembly
,”
J. Appl. Phys.
,
97
(
4
), p.
041301
.
297.
Grimm
,
S.
,
Giesa
,
R.
,
Sklarek
,
K.
,
Langner
,
A.
,
Gosele
,
U.
,
Schmidt
,
H.-W.
, and
Steinhart
,
M.
,
2008
, “
Nondestructive Replication of Self-Ordered Nanoporous Alumina Membranes Via Cross-Linked Polyacrylate Nanofiber Arrays
,”
Nano Lett.
,
8
(
7
), pp.
1954
1959
.
298.
Ma
,
X.
,
Liu
,
A.
,
Xu
,
H.
,
Li
,
G.
,
Hu
,
M.
, and
Wu
,
G.
,
2008
, “
A Large-Scale-Oriented ZnO Rod Array Grown on a Glass Substrate Via an In Situ Deposition Method and Its Photoconductivity
,”
Mater. Res. Bull.
,
43
(
8
), pp.
2272
2277
.
299.
Tan
,
L. K.
,
Kumar
,
M. K.
,
An
,
W. W.
, and
Gao
,
H.
,
2010
, “
Transparent, Well-Aligned TiO2 Nanotube Arrays With Controllable Dimensions on Glass Substrates for Photocatalytic Applications
,”
ACS Appl. Mater. Interfaces
,
2
(
2
), pp.
498
503
.
300.
Hutchens
,
S. B.
,
Needleman
,
A.
, and
Greer
,
J. R.
,
2011
, “
Analysis of Uniaxial Compression of Vertically Aligned Carbon Nanotubes
,”
J. Mech. Phys. Solids
,
59
(
10
), pp.
2227
2237
.
301.
Spinelli
,
P.
,
Verschuuren
,
M.
, and
Polman
,
A.
,
2012
, “
Broadband Omnidirectional Antireflection Coating Based on Subwavelength Surface Mie Resonators
,”
Nat. Commun.
,
3
, p.
692
.
302.
Naumenko
,
K.
, and
Eremeyev
,
V. A.
,
2014
, “
A Layer-Wise Theory for Laminated Glass and Photovoltaic Panels
,”
Compos. Struct.
,
112
, pp.
283
291
.
303.
Kang
,
X.
,
Zi
,
W.-W.
,
Xu
,
Z.-G.
, and
Zhang
,
H.-L.
,
2007
, “
Controlling the Micro/Nanostructure of Self-Cleaning Polymer Coating
,”
Appl. Surf. Sci.
,
253
(
22
), pp.
8830
8834
.
304.
Rios
,
P.
,
Dodiuk
,
H.
,
Kenig
,
S.
,
McCarthy
,
S.
, and
Dotan
,
A.
,
2007
, “
Transparent Ultra-Hydrophobic Surfaces
,”
J. Adhes. Sci. Technol.
,
21
(
5–6
), pp.
399
408
.
305.
Sanjay
,
S. L.
,
Annaso
,
B. G.
,
Chavan
,
S. M.
, and
Rajiv
,
S. V.
,
2012
, “
Recent Progress in Preparation of Superhydrophobic Surfaces: A Review
,”
J. Surf. Eng. Mater. Adv. Technol.
,
2
(
2
), pp.
76
94
.
306.
Dastjerdi
,
R.
, and
Montazer
,
M.
,
2010
, “
A Review on the Application of Inorganic Nano-Structured Materials in the Modification of Textiles: Focus on Anti-Microbial Properties
,”
Colloids Surf. B
,
79
(
1
), pp.
5
18
.
307.
Contreras
,
C. B.
,
Chagas
,
G.
,
Strumia
,
M. C.
, and
Weibel
,
D. E.
,
2014
, “
Permanent Superhydrophobic Polypropylene Nanocomposite Coatings by a Simple One-Step Dipping Process
,”
Appl. Surf. Sci.
,
307
, pp.
234
240
.
308.
Tian
,
X.
,
Yi
,
L.
,
Meng
,
X.
,
Xu
,
K.
,
Jiang
,
T.
, and
Lai
,
D.
,
2014
, “
Superhydrophobic Surfaces of Electrospun Block Copolymer Fibers With Low Content of Fluorosilicones
,”
Appl. Surf. Sci.
,
307
, pp.
566
575
.
309.
Heinonen
,
S.
,
Huttunen-Saarivirta
,
E.
,
Nikkanen
,
J.-P.
,
Raulio
,
M.
,
Priha
,
O.
,
Laakso
,
J.
,
Storgårds
,
E.
, and
Levänen
,
E.
,
2014
, “
Antibacterial Properties and Chemical Stability of Superhydrophobic Silver-Containing Surface Produced by Sol–Gel Route
,”
Colloids Surf. A
,
453
, pp.
149
161
.
310.
Escobar
,
A. M.
, and
Llorca-Isern
,
N.
,
2014
, “
Superhydrophobic Coating Deposited Directly on Aluminum
,”
Appl. Surf. Sci.
,
305
, pp.
774
782
.
311.
Li
,
J.
,
Zheng
,
W.
,
Zeng
,
W.
,
Zhang
,
D.
, and
Peng
,
X.
,
2014
, “
Structure, Properties and Application of a Novel Low-Glossed Waterborne Polyurethane
,”
Appl. Surf. Sci.
,
307
, pp.
255
262
.
312.
Ganesh
,
V. A.
,
Raut
,
H. K.
,
Nair
,
A. S.
, and
Ramakrishna
,
S.
,
2011
, “
A Review on Self-Cleaning Coatings
,”
J. Mater. Chem.
,
21
(
41
), pp.
16304
16322
.
313.
Liu
,
K.
, and
Jiang
,
L.
,
2012
, “
Bio-Inspired Self-Cleaning Surfaces
,”
Annu. Rev. Mater. Res.
,
42
, pp.
231
263
.
314.
Longley
,
W. R.
, and
Name
,
R. G. V.
, eds.,
1928
,
The Collected Works of J. Willard Gibbs, PHD., LL.D. I Thermodynamics
,
Longmans
,
New York
.
315.
Rowlinson
,
J. S.
, and
Widom
,
B.
,
2003
,
Molecular Theory of Capillarity
,
Dover
,
New York
.
316.
de Gennes
,
P. G.
,
Brochard-Wyart
,
F.
, and
Quéré
,
D.
,
2004
,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
,
Springer
,
New York
.
317.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
,
57
(
4
), pp.
291
323
.
318.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
Addenda to Our Paper. A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
,
59
(
4
), pp.
389
390
.
319.
Duan
,
H. L.
,
Wang
,
J.
, and
Karihaloo
,
B. L.
,
2008
, “
Theory of Elasticity at the Nanoscale
,”
Adv. Appl. Mech.
,
42
, pp.
1
68
.
320.
Wang
,
J.
,
Huang
,
Z.
,
Duan
,
H.
,
Yu
,
S.
,
Feng
,
X.
,
Wang
,
G.
,
Zhang
,
W.
, and
Wang
,
T.
,
2011
, “
Surface Stress Effect in Mechanics of Nanostructured Materials
,”
Acta Mech. Solida Sin.
,
24
(
1
), pp.
52
82
.
321.
Javili
,
A.
,
McBride
,
A.
, and
Steinmann
,
P.
,
2012
, “
Thermomechanics of Solids With Lower-Dimensional Energetics: On the Importance of Surface, Interface, and Curve Structures at the Nanoscale. A Unifying Review
,”
ASME Appl. Mech. Rev.
,
65
, p.
010802
.
322.
Wang
,
J.
,
Duan
,
H. L.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
,
2006
, “
A Scaling Law for Properties of Nano-Structured Materials
,”
Proc. R. Soc. A
,
462
(
2069
), pp.
1355
1363
.
323.
Steigmann
,
D. J.
, and
Ogden
,
R. W.
,
1999
, “
Elastic Surface–Substrate Interactions
,”
Proc. R. Soc. A
,
455
(
1982
), pp.
437
474
.
324.
Javili
,
A.
, and
Steinmann
,
P.
,
2010
, “
On Thermomechanical Solids With Boundary Structures
,”
Int. J. Solids Struct.
,
47
(
24
), pp.
3245
3253
.
325.
Povstenko
,
Y.
,
2013
, “
Mathematical Modeling of Phenomena Caused by Surface Stresses in Solids
,”
Surface Effects in Solid Mechanics
,
H.
Altenbach
and
N. F.
Morozov
, eds.,
Springer
,
Berlin
, pp.
135
153
.
326.
Rubin
,
M.
, and
Benveniste
,
Y.
,
2004
, “
A Cosserat Shell Model for Interphases in Elastic Media
,”
J. Mech. Phys. Solids
,
52
(
5
), pp.
1023
1052
.
327.
Kim
,
C. I.
,
Schiavone
,
P.
, and
Ru
,
C.-Q.
,
2011
, “
Effect of Surface Elasticity on an Interface Crack in Plane Deformations
,”
Proc. R. Soc. A
,
467
(
2136
), pp.
3530
3549
.
328.
Kim
,
C.
,
Ru
,
C.
, and
Schiavone
,
P.
,
2013
, “
A Clarification of the Role of Crack-Tip Conditions in Linear Elasticity With Surface Effects
,”
Math. Mech. Solids
,
18
(
1
), pp.
59
66
.
329.
Schiavone
,
P.
, and
Ru
,
C.-Q.
,
2009
, “
Solvability of Boundary Value Problems in a Theory of Plane-Strain Elasticity With Boundary Reinforcement
,”
Int. J. Eng. Sci.
,
47
(
11
), pp.
1331
1338
.
330.
Javili
,
A.
,
McBride
,
A.
,
Steinmann
,
P.
, and
Reddy
,
B.
,
2012
, “
Relationships Between the Admissible Range of Surface Material Parameters and Stability of Linearly Elastic Bodies
,”
Philos. Mag.
,
92
(
28–30
), pp.
3540
3563
.
331.
Guo
,
J. G.
, and
Zhao
,
Y. P.
,
2005
, “
The Size-Dependent Elastic Properties of Nanofilms With Surface Effects
,”
J. Appl. Phys.
,
98
(
7
), p.
074306
.
332.
Wang
,
Z. Q.
,
Zhao
,
Y.-P.
, and
Huang
,
Z.-P.
,
2010
, “
The Effects of Surface Tension on the Elastic Properties of Nano Structures
,”
Int. J. Eng. Sci.
,
48
(
2
), pp.
140
150
.
333.
Eremeyev
,
V. A.
,
Altenbach
,
H.
, and
Morozov
,
N. F.
,
2009
, “
The Influence of Surface Tension on the Effective Stiffness of Nanosize Plates
,”
Dokl. Phys.
,
54
(
2
), pp.
98
100
.
334.
Altenbach
,
H.
,
Eremeyev
,
V. A.
, and
Morozov
,
N. F.
,
2012
, “
Surface Viscoelasticity and Effective Properties of Thin-Walled Structures at the Nanoscale
,”
Int. J. Eng. Sci.
,
59
(
SI
), pp.
83
89
.
335.
Altenbach
,
H.
, and
Eremeyev
,
V. A.
,
2011
, “
On the Shell Theory on the Nanoscale With Surface Stresses
,”
Int. J. Eng. Sci.
,
49
(
12
), pp.
1294
1301
.
336.
Lagowski
,
J.
,
Gatos
,
H. C.
, and
Sproles
,
E. S.
,
1975
, “
Surface Stress and Normal Mode of Vibration of Thin Crystals: GaAs
,”
Appl. Phys. Lett.
,
26
(
9
), pp.
493
495
.
337.
Gurtin
,
M. E.
,
Markenscoff
,
X.
, and
Thurston
,
R. N.
,
1976
, “
Effect of Surface Stress on Natural Frequency of Thin Crystals
,”
Appl. Phys. Lett.
,
29
(
9
), pp.
529
530
.
338.
Wang
,
G.-F.
, and
Feng
,
X.-Q.
,
2007
, “
Effects of Surface Elasticity and Residual Surface Tension on the Natural Frequency of Microbeams
,”
Appl. Phys. Lett.
,
90
(
23
), p.
231904
.
339.
Kampshoff
,
E.
,
Hahn
,
E.
, and
Kern
,
K.
,
1994
, “
Correlation Between Surface Stress and the Vibrational Shift of CO Chemisorbed on Cu Surfaces
,”
Phys. Rev. Lett.
,
73
(
5
), pp.
704
707
.
340.
Wang
,
G. F.
, and
Feng
,
X. Q.
,
2010
, “
Effect of Surface Stresses on the Vibration and Buckling of Piezoelectric Nanowires
,”
EPL
,
91
(
5
), p.
56007
.
341.
Huang
,
Z.
, and
Wang
,
J.
,
2006
, “
A Theory of Hyperelasticity of Multi-Phase Media With Surface/Interface Energy Effect
,”
Acta Mech.
,
182
(
3
), pp.
195
210
.
342.
Huang
,
Z.
, and
Sun
,
L.
,
2007
, “
Size-Dependent Effective Properties of a Heterogeneous Material With Interface Energy Effect: From Finite Deformation Theory to Infinitesimal Strain Analysis
,”
Acta Mech.
,
190
(
1
), pp.
151
163
.
343.
Zhu
,
H. X.
,
Wang
,
J. X.
, and
Karihaloo
,
B. L.
,
2009
, “
Effects of Surface and Initial Stresses on the Bending Stiffness of Trilayer Plates and Nanofilms
,”
J. Mech. Mater. Struct.
,
4
(
3
), pp.
589
604
.
344.
Huang
,
Z.
, and
Wang
,
J.
,
2012
, “
Micromechanics of Nanocomposites With Interface Energy Effect
,”
Handbook on Micromechanics and Nanomechanics
,
S.
Li
and
X.-L.
Gao
, eds.,
Pan Stanford Publishing
,
Stanford, CA
, pp.
303
348
.
345.
Javili
,
A.
, and
Steinmann
,
P.
,
2009
, “
A Finite Element Framework for Continua With Boundary Energies. Part I: The Two-Dimensional Case
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
27–29
), pp.
2198
2208
.
346.
Javili
,
A.
, and
Steinmann
,
P.
,
2011
, “
A Finite Element Framework for Continua With Boundary Energies. Part III: The Thermomechanical Case
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
21
), pp.
1963
1977
.
347.
Javili
,
A.
,
McBride
,
A.
, and
Steinmann
,
P.
,
2012
, “
Numerical Modelling of Thermomechanical Solids With Mechanically Energetic (Generalised) Kapitza Interfaces
,”
Comput. Mater. Sci.
,
65
, pp.
542
551
.
348.
Arroyo
,
M.
, and
Belytschko
,
T.
,
2002
, “
An Atomistic-Based Finite Deformation Membrane for Single Layer Crystalline Films
,”
J. Mech. Phys. Solids
,
50
(
9
), pp.
1941
1977
.
349.
Sfyris
,
D.
,
Sfyris
,
G.
, and
Galiotis
,
C.
,
2014
, “
Curvature Dependent Surface Energy for a Free Standing Monolayer Graphene: Some Closed Form Solutions of the Non-Linear Theory
,”
Int. J. Nonlinear Mech.
,
67
, pp.
186
197
.
350.
Miller
,
R. E.
, and
Shenoy
,
V. B.
,
2000
, “
Size-Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
,
11
(
3
), p.
139
.
351.
Shenoy
,
V. B.
,
2005
, “
Atomistic Calculations of Elastic Properties of Metallic FCC Crystal Surfaces
,”
Phys. Rev. B
,
71
(
9
), p.
094104
.
352.
Ibach
,
H.
,
1997
, “
The Role of Surface Stress in Reconstruction, Epitaxial Growth and Stabilization of Mesoscopic Structures
,”
Surf. Sci. Rep.
,
29
(
5
), pp.
195
263
.
353.
De Gennes
,
P. G.
,
1981
, “
Some Effects of Long Range Forces on Interfacial Phenomena
,”
J. Phys. Lett.
,
42
(
16
), pp.
377
379
.
354.
Seppecher
,
P.
,
1996
,
Les Fluides de Cahn-Hilliard
,
Mémoire D'habilitation à Diriger des Recherches, Université du Sud Toulon
,
La Garde, France
.
355.
dell'Isola
,
F.
, and
Seppecher
,
P.
,
1997
, “
Edge Contact Forces and Quasi-Balanced Power
,”
Meccanica
,
32
(
1
), pp.
33
52
.
356.
dell'Isola
,
F.
, and
Seppecher
,
P.
,
1995
, “
The Relationship Between Edge Contact Forces, Double Forces and Interstitial Working Allowed by the Principle of Virtual Power
,”
C. R. Acad. Sci. Sér. II
,
321
(
8
), pp.
303
308
.
357.
dellIsola
,
F.
,
Lekszycki
,
T.
,
Pawlikowski
,
M.
,
Grygoruk
,
R.
, and
Greco
,
L.
,
2015
, “
Designing a Light Fabric Metamaterial Being Highly Macroscopically Tough Under Directional Extension: First Experimental Evidence
,”
Z. Angew. Math. Phys.
,
66
(
6
), pp.
3473
3498
.
358.
Giorgio
,
I.
,
Grygoruk
,
R.
,
dell'Isola
,
F.
, and
Steigmann
,
D. J.
,
2015
, “
Pattern Formation in the Three-Dimensional Deformations of Fibered Sheets
,”
Mech. Res. Commun.
,
69
, pp.
164
171
.
359.
G. L. B. A. C. M.
dell'Isola
,
F.
, “
Second Gradient Shear Energies for Pantographic 2D Plates: Numerical Simulations Towards Explanation of Experimental Evidence
,” (in preparation).
360.
Ball
,
J. M.
,
1976
, “
Convexity Conditions and Existence Theorems in Nonlinear Elasticity
,”
Arch. Ration. Mech. Anal.
,
63
(
4
), pp.
337
403
.
361.
Kim
,
D.-H.
,
Lu
,
N.
,
Ma
,
R.
,
Kim
,
Y.-S.
,
Kim
,
R.-H.
,
Wang
,
S.
,
Wu
,
J.
,
Won
,
S. M.
,
Tao
,
H.
,
Islam
,
A.
,
Yu
,
K. J.
,
Kim
,
T.-i.
,
Chowdhury
,
R.
,
Ying
,
M.
,
Xu
,
L.
,
Li
,
M.
,
Chung
,
H.-J.
,
Keum
,
H.
,
McCormick
,
M.
,
Liu
,
P.
,
Zhang
,
Y.-W.
,
Omenetto
,
F. G.
,
Huang
,
Y.
,
Coleman
,
T.
, and
Rogers
,
J. A.
,
2011
, “
Epidermal Electronics
,”
Science
,
333
(
6044
), pp.
838
843
.
362.
Arumugam
,
V.
,
Naresh
,
M.
, and
Sanjeevi
,
R.
,
1994
, “
Effect of Strain Rate on the Fracture Behaviour of Skin
,”
J. Biosci.
,
19
(
3
), pp.
307
313
.
363.
Elsner
,
P.
,
Berardesca
,
E.
, and
Wilhelm
,
K.-P.
,
2001
,
Bioengineering of the Skin: Skin Biomechanics
, Vol.
5
,
Taylor & Francis
,
New York
.
364.
Geerligs
,
M.
,
Van Breemen
,
L.
,
Peters
,
G.
,
Ackermans
,
P.
,
Baaijens
,
F.
, and
Oomens
,
C.
,
2011
, “
in vitro Indentation to Determine the Mechanical Properties of Epidermis
,”
J. Biomech.
,
44
(
6
), pp.
1176
1181
.
365.
Goriely
,
A.
,
Destrade
,
M.
, and
Amar
,
M. B.
,
2006
, “
Instabilities in Elastomers and in Soft Tissues
,”
Q. J. Mech. Appl. Math.
,
59
(
4
), pp.
615
630
.
366.
Lacour
,
S. P.
,
Jones
,
J.
,
Wagner
,
S.
,
Li
,
T.
, and
Suo
,
Z.
,
2005
, “
Stretchable Interconnects for Elastic Electronic Surfaces
,”
Proc. IEEE
,
93
(
8
), pp.
1459
1467
.
367.
Pailler-Mattei
,
C.
,
Bec
,
S.
, and
Zahouani
,
H.
,
2008
, “
in vivo Measurements of the Elastic Mechanical Properties of Human Skin by Indentation Tests
,”
Med. Eng. Phys.
,
30
(
5
), pp.
599
606
.
368.
Sekitani
,
T.
,
Noguchi
,
Y.
,
Hata
,
K.
,
Fukushima
,
T.
,
Aida
,
T.
, and
Someya
,
T.
,
2008
, “
A Rubberlike Stretchable Active Matrix Using Elastic Conductors
,”
Science
,
321
(
5895
), pp.
1468
1472
.
369.
Rey
,
T.
,
Le Cam
,
J.-B.
,
Chagnon
,
G.
,
Favier
,
D.
,
Rebouah
,
M.
,
Razan
,
F.
,
Robin
,
E.
,
Didier
,
P.
,
Heller
,
L.
,
Faure
,
S.
, and
Janouchova
,
K.
,
2014
, “
An Original Architectured NiTi Silicone Rubber Structure for Biomedical Applications
,”
Mater. Sci. Eng. C
,
45
, pp.
184
190
.
370.
Galilei
,
G.
,
1894
,
Opere: Edizione Nazionale sotto gli Auspicii di Sua Maestà il re d'Italia
, Vol.
6
,
Barbèra
,
Florence, Italy
.
371.
Drake
,
S.
,
1957
,
Discoveries and Opinions of Galileo
,
Doubleday
,
New York
.
372.
Cannone
,
M.
, and
Friedlander
,
S.
,
2003
, “
Navier: Blow-Up and Collapse
,”
Not. AMS
,
50
(
1
), pp.
7
13
.
373.
Picon
,
A.
,
1988
, “
Navier and the Introduction of Suspension Bridges in France
,”
Construction History
,
4
, pp.
21
34
.
You do not currently have access to this content.