The achievements occurred in nonlinear dynamics over the last 30 years entail a substantial change of perspective when dealing with vibration problems, since they are now deemed ready to meaningfully affect the analysis, control, and design of mechanical and structural systems. This paper aims at overviewing the matter, by highlighting and discussing the important, yet still overlooked, role that some relevant concepts and tools may play in engineering applications. Upon dwelling on such topical concepts as local and global dynamics, bifurcation and complexity, theoretical and practical stability, attractor robustness, basin erosion, and dynamical integrity, recent results obtained for a variety of systems and models of interest in applied mechanics and structural dynamics are overviewed in terms of analysis of nonlinear phenomena and their control. The global dynamics perspective permits to explain partial discrepancies between experimental and theoretical/numerical results based on merely local analyses and to implement effective dedicated control procedures. This is discussed for discrete systems and reduced order models of continuous systems, for applications ranging from macro- to micro/nanomechanics. Understanding of basic phenomena in nonlinear dynamics has now reached such a critical mass that it is time to exploit their potential to enhance the effectiveness and safety of systems in technological applications and to develop novel design criteria.

References

References
1.
Lenci
,
S.
,
Rega
,
G.
, and
Ruzziconi
,
L.
,
2013
, “
The Dynamical Integrity Concept for Interpreting/Predicting Experimental Behavior: From Macro- to Nano-Mechanics
,”
Phil. Trans. R. Soc. A
,
371
(
1993
), p.
20120423
.
2.
Euler
,
L.
,
1744
,
Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Sive Solutio Problematis Isoperimetrici Latissimo Sensu Accepti, Addentamentum 1: de Curvis Elasticis
,
Laussanae et Genevae, Apud Marcum-Michaelem, Bousquet et Socios
,
Geneva, Switzerland
, pp.
245
310
.
3.
Lyapunov
,
A. M.
,
1892
, “
The General Problem of the Stability of Motion
,” Ph.D. thesis, Moscow University, Moscow, Russia (English translation: 1992, Taylor & Francis, London).
4.
Koiter
,
W. T.
,
1945
, “
Over de Stabiliteit van het Elastisch Evenwicht
,” Ph.D. thesis, Delft University, Delft, The Netherlands (English translation: Koiter, W. T., 1967, “On the Stability of Elastic Equilibrium,” NASA Technical Translation, F-10, 833, U.S. Department of Commerce/National Bureau of Standards, N67–25033).
5.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
1983
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
,
Springer
,
New York
.
6.
Wiggins
,
S.
,
1990
,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
,
Springer
,
New York
.
7.
Troger
,
H.
, and
Steindl
,
A.
,
1991
,
Nonlinear Stability and Bifurcation Theory
,
Springer
,
Wien, Germany
.
8.
Kustnezov
,
Y. A.
,
1995
,
Elements of Applied Bifurcation Theory
,
Springer
,
New York
.
9.
Scott
,
R.
,
2001
,
In the Wake of Tacoma: Suspension Bridges and the Quest for Aerodynamic Stability
,
American Society of Civil Engineers
,
Reston, VA
.
10.
Gurung
,
C. B.
,
Yamaguchi
,
H.
, and
Yukino
,
T.
,
2002
, “
Identification of Large Amplitude Wind-Induced Vibration of Ice-Accreted Transmission Lines Based on Field Observed Data
,”
Eng. Struct.
,
24
(
2
), pp.
179
188
.
11.
Goncalves
,
P. B.
,
Silva
,
F. M. A.
, and
Del Prado
,
Z. J. G. N.
,
2007
, “
Global Stability Analysis of Parametrically Excited Cylindrical Shells Through the Evolution of Basin Boundaries
,”
Nonlinear Dyn.
,
50
, pp.
121
145
.
12.
Thompson
,
J. M. T.
,
1989
, “
Chaotic Phenomena Triggering the Escape From a Potential Well
,”
Proc. R. Soc. London A
,
421
(
1861
), pp.
195
225
.
13.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1995
,
Applied Nonlinear Dynamics
,
Wiley
,
New York
.
14.
Soliman
,
M. S.
, and
Thompson
,
J. M. T.
,
1989
, “
Integrity Measures Quantifying the Erosion of Smooth and Fractal Basins of Attraction
,”
J. Sound Vib.
,
135
(
3
), pp.
453
475
.
15.
Lansbury
,
A. N.
,
Thompson
,
J. M. T.
, and
Stewart
,
H. B.
,
1992
, “
Basin Erosion in the Twin-Well Duffing Oscillator: Two Distinct Bifurcation Scenarios
,”
Int. J. Bifurcation Chaos
,
2
(
03
), pp.
505
532
.
16.
Lorenz
,
E. N.
,
1963
, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
,
20
(
2
), pp.
130
141
.
17.
Rega
,
G.
, and
Lenci
,
S.
,
2005
, “
Identifying, Evaluating, and Controlling Dynamical Integrity Measures in Nonlinear Mechanical Oscillators
,”
Nonlinear Anal.
,
63
, pp.
902
914
.
18.
Gonçalves
,
P. B.
,
Silva
,
F. M. A.
, and
Del Prado
,
Z. J. G. N.
,
2007
, “
Transient and Steady State Stability of Cylindrical Shells Under Harmonic Axial Loads
,”
Int. J. Nonlinear Mech.
,
42
(
1
), pp.
58
70
.
19.
Thompson
,
J. M. T.
, and
Soliman
,
M. S.
,
1990
, “
Fractal Control Boundaries of Driven Oscillators and Their Relevance to Safe Engineering Design
,”
Proc. R. Soc. London A
,
428
(
1874
), pp.
1
13
.
20.
Soliman
,
M. S.
, and
Goncalves
,
P. B.
,
2003
, “
Chaotic Behavior Resulting in Transient and Steady State Instabilities of Pressure-Loaded Shallow Spherical Shells
,”
J. Sound Vib.
,
259
(
3
), pp.
497
512
.
21.
Lenci
,
S.
, and
Rega
,
G.
,
2003
, “
Optimal Control of Homoclinic Bifurcation: Theoretical Treatment and Practical Reduction of Safe Basin Erosion in the Helmholtz Oscillator
,”
J. Vib. Control
,
9
, pp.
281
315
.
22.
Sun
,
J. Q.
,
1994
, “
Effect of Small Random Disturbance on the ‘Protection Thickness' of Attractors of Nonlinear Dynamic Systems
,”
Nonlinearity and Chaos in Engineering Dynamics
,
J. M. T.
Thompson
and
S. R.
Bishop
, eds.,
Wiley
,
Chichester, UK
, pp.
435
437
.
23.
Hsu
,
C. S.
,
1987
,
Cell to Cell Mapping: A Method of Global Analysis for Nonlinear System
,
Springer
,
New York
.
24.
Hsu
,
C. S.
, and
Chiu
,
H. M.
,
1987
, “
Global Analysis of a System With Multiple Responses Including a Strange Attractor
,”
J. Sound Vib.
,
114
(
2
), pp.
203
218
.
25.
Sun
,
J. Q.
, and
Hsu
,
C. S.
,
1991
, “
Effects of Small Random Uncertainties on the Non-Linear Systems Studied by the Generalized Cell Mapping Methods
,”
J. Sound Vib.
,
147
(
2
), pp.
185
201
.
26.
Soliman
,
M. S.
, and
Thompson
,
J. M. T.
,
1990
, “
Stochastic Penetration of Smooth and Fractal Basin Boundaries Under Noise Excitation
,”
Dyn. Stab. Syst.
,
5
(4), pp.
281
298
.
27.
Gan
,
C. B.
, and
He
,
S. M.
,
2007
, “
Studies on Structural Safety in Stochastically Excited Duffing Oscillator With Double Potential Wells
,”
Acta Mech. Sin.
,
23
(
5
), pp.
577
583
.
28.
de Souza
,
J. R.
, Jr.
, and
Rodrigues
,
M. L.
,
2002
, “
An Investigation Into Mechanisms of Loss of Safe Basins in a 2 DOF Nonlinear Oscillator
,”
J. Braz. Soc. Mech. Sci. Eng.
,
24
, pp.
93
98
.
29.
Rega
,
G.
, and
Lenci
,
S.
,
2008
, “
Dynamical Integrity and Control of Nonlinear Mechanical Oscillators
,”
J. Vib. Control
,
14
, pp.
159
179
.
30.
Lenci
,
S.
, and
Rega
,
G.
,
2011
, “
Load Carrying Capacity of Systems Within a Global Safety Perspective. Part II: Attractor/Basin Integrity Under Dynamical Excitations
,”
Int. J. Nonlinear Mech.
,
46
(
9
), pp.
1240
1251
.
31.
Lenci
,
S.
, and
Rega
,
G.
,
2006
, “
Control of Pull-In Dynamics in a Nonlinear Thermoelastic Electrically Actuated Microbeam
,”
J. Micromech. Microeng.
,
16
(
2
), pp.
390
401
.
32.
Rega
,
G.
, and
Settimi
,
V.
,
2013
, “
Bifurcation, Response Scenarios and Dynamical Integrity in a Single-Mode Model of Noncontact Atomic Force Microscopy
,”
Nonlinear Dyn.
,
73
(
1
), pp.
101
123
.
33.
Lenci
,
S.
, and
Rega
,
G.
,
2008
, “
Competing Dynamical Solutions in a Parametrically Excited Pendulum: Attractor Robustness and Basin Integrity
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
4
), p.
041010
.
34.
Goncalves
,
P. B.
,
Silva
,
F. M. A.
,
Rega
,
G.
, and
Lenci
,
S.
,
2011
, “
Global Dynamics and Integrity of a Two-Dof Model of a Parametrically Excited Cylindrical Shell
,”
Nonlinear Dyn.
,
63
, pp.
61
82
.
35.
Lenci
,
S.
,
Orlando
,
D.
,
Rega
,
G.
, and
Gonçalves
,
P. B.
,
2012
, “
Controlling Practical Stability and Safety of Mechanical Systems by Exploiting Chaos Properties
,”
Chaos
,
22
(
4
), p.
047502
.
36.
Lenci
,
S.
,
Orlando
,
D.
,
Rega
,
G.
, and
Gonçalves
,
P. B.
,
2012
, “
Controlling Nonlinear Dynamics of Systems Liable to Unstable Interactive Buckling
,”
Procedia IUTAM
,
5
, pp.
108
123
.
37.
Eason
,
R. P.
,
Dick
,
A. J.
, and
Nagarajaiah
,
S.
,
2014
, “
Numerical Investigation of Coexisting High and Low Amplitude Responses and Safe Basin Erosion for a Coupled Linear Oscillator and Nonlinear Absorber System
,”
J. Sound Vib.
,
333
(
15
), pp.
3490
3504
.
38.
Ruzziconi
,
L.
,
Younis
,
M. I.
, and
Lenci
,
S.
,
2012
, “
Multistability in an Electrically Actuated Carbon Nanotube: A Dynamical Integrity Perspective
,”
Nonlinear Dyn.
,
74
(3), pp.
533
549
.
39.
Silva
,
F. M. A.
, and
Goncalves
,
P. B.
,
2015
, “
The Influence of Uncertainties and Random Noise on the Dynamical Integrity of a System Liable to Unstable Buckling
,”
Nonlinear Dyn.
,
81
(
1
), pp.
707
724
.
40.
Lenci
,
S.
, and
Rega
,
G.
,
2011
, “
Load Carrying Capacity of Systems Within a Global Safety Perspective. Part I: Robustness of Stable Equilibria Under Imperfections
,”
Int. J. Nonlinear Mech.
,
46
(
9
), pp.
1232
1239
.
41.
Gonçalves
,
P. B.
, and
Santee
,
D.
,
2008
, “
Influence of Uncertainties on the Dynamic Buckling Loads of Structures Liable to Asymmetric Post-Buckling Behavior
,”
Math. Probl. Eng.
,
2008
, pp.
1
24
.
42.
Orlando
,
D.
,
Gonçalves
,
P. B.
,
Rega
,
G.
, and
Lenci
,
S.
,
2011
, “
Influence of Modal Coupling on the Nonlinear Dynamics of Augusti's Model
,”
ASME J. Comput. Nonlinear. Dyn.
,
6
(
4
), p.
041014
.
43.
Thompson
,
J. M. T.
, and
Ueda
,
Y.
,
1989
, “
Basin Boundary Metamorphoses in the Canonical Escape Equation
,”
Dyn. Stab. Syst.
,
4
, pp.
285
294
.
44.
Bazant
,
Z.
, and
Cedolin
,
L.
,
1991
,
Stability of Structures
,
Oxford University Press
,
Oxford, UK
.
45.
Lenci
,
S.
, and
Rega
,
G.
,
2011
, “
Forced Harmonic Vibration in a System With Negative Linear Stiffness and Linear Viscous Damping
,”
The Duffing Equation. Non-linear Oscillators and Their Behaviour
,
I.
Kovacic
and
M.
Brennan
, eds.,
Wiley
,
Chichester, UK
, pp.
219
276
.
46.
Xu
,
J.
,
Lu
,
Q. S.
, and
Huang
,
K. L.
,
1996
, “
Controlling Erosion of Safe Basin in Nonlinear Parametrically Excited Systems
,”
Acta Mech. Sin.
,
12
(3), pp.
281
288
.
47.
Thompson
,
J. M. T.
,
Rainey
,
R. C. T.
, and
Soliman
,
M. S.
,
1990
, “
Ship Stability Criteria Based on Chaotic Transients From Incursive Fractals
,”
Phil. Trans. R. Soc. A
,
332
(
1
), pp.
149
167
.
48.
Soliman
,
M. S.
, and
Thompson
,
J. M. T.
,
1991
, “
Transient and Steady State Analysis of Capsize Phenomena
,”
Appl. Ocean Res.
,
13
(
2
), pp.
82
92
.
49.
Soliman
,
M. S.
, and
Thompson
,
J. M. T.
,
1992
, “
Global Dynamics Underlying Sharp Basin Erosion in Nonlinear Driven Oscillators
,”
Phys. Rev. A
,
45
(
6
), pp.
3425
3431
.
50.
Infeld
,
E.
,
Lenkowska
,
T.
, and
Thompson
,
J. M. T.
,
1993
, “
Erosion of the Basin of Stability of a Floating Body as Caused by Dam Breaking
,”
Phys. Fluids
,
5
(
10
), pp.
2315
2316
.
51.
Alsaleem
,
F. M.
,
Younis
,
M. I.
, and
Ruzziconi
,
L.
,
2010
, “
An Experimental and Theoretical Investigation of Dynamical Pull-In in MEMS Resonators Actuated Electrostatically
,”
J. Microelectromech. Syst.
,
19
(
4
), pp.
794
806
.
52.
Ruzziconi
,
L.
,
Younis
,
M. I.
, and
Lenci
,
S.
,
2013
, “
Dynamical Integrity for Interpreting Experimental Data and Ensuring Safety in Electrostatic MEMS
,”
IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design
(IUTAM Bookseries), Vol.
32
,
M.
Wiercigroch
and
G.
Rega
, eds.,
Springer
,
Berlin
, pp.
249
261
.
53.
Ruzziconi
,
L.
,
Younis
,
M. I.
, and
Lenci
,
S.
,
2013
, “
An Electrically Actuated Imperfect Microbeam: Dynamical Integrity for Interpreting and Predicting the Device Response
,”
Meccanica
,
48
(
7
), pp.
1761
1775
.
54.
Alsaleem
,
F.
, and
Younis
,
M. I.
,
2011
, “
Integrity Analysis of Electrically Actuated Resonators With Delayed Feedback Controller
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
3
), p.
031011
.
55.
Ruzziconi
,
L.
,
Lenci
,
S.
, and
Younis
,
M. I.
,
2013
, “
An Imperfect Microbeam Under an Axial Load and Electric Excitation: Nonlinear Phenomena and Dynamical Integrity
,”
Int. J. Bifurcation Chaos
,
23
(
02
), p.
1350026
.
56.
Lenci
,
S.
, and
Rega
,
G.
,
1998
, “
Controlling Nonlinear Dynamics in a Two-Well Impact System. I. Attractors and Bifurcation Scenario Under Symmetric Excitations
,”
Int. J. Bifurcation Chaos
,
8
(
12
), pp.
2387
2408
.
57.
Lenci
,
S.
, and
Rega
,
G.
,
2005
, “
Computational Nonlinear Dynamics and Optimal Control/Anti-Control of a Rocking Block
,”
Multibody Dynamics, ECCOMAS Thematic Conference
, Madrid, Spain, June 21–24.
58.
de Freitas
,
M. S. T.
,
Viana
,
R. L.
, and
Grebogi
,
C.
,
2003
, “
Erosion of the Safe Basin for the Transversal Oscillations of a Suspension Bridge
,”
Chaos, Solitons Fractals
,
18
(
4
), pp.
829
841
.
59.
Silva
,
F. M. A.
,
Gonçalves
,
P. B.
, and
del Prado
,
Z. J. G. N.
,
2011
, “
An Alternative Procedure for the Non-Linear Vibration Analysis of Fluid-Filled Cylindrical Shells
,”
Nonlinear Dyn
,
66
(
3
), pp.
303
333
.
60.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley
,
New York
.
61.
Wiercigroch
,
M.
,
2010
, “
A New Concept of Energy Extraction From Waves Via Parametric Pendulor
,” UK Patent Application (pending).
62.
Nandakumar
,
K.
,
Wiercigroch
,
M.
, and
Chatterjee
,
A.
,
2012
, “
Optimum Energy Extraction From Rotational Motion in a Parametrically Excited Pendulum
,”
Mech. Res. Commun.
,
43
, pp.
7
14
.
63.
Gendelman
,
O.
,
2001
, “
Transition of Energy to a Nonlinear Localized Mode in a Highly Asymmetric System of Two Oscillators
,”
Nonlinear Dyn.
,
25
(
1–3
), pp.
237
253
.
64.
Soliman
,
M. S.
,
1994
, “
Suppression of Steady State Bifurcations and Premature Fractal Basin Erosion in Nonlinear Systems Subjected to Combined External and Parametric Excitations
,”
Chaos, Solitons Fractals
,
4
(
10
), pp.
1871
1882
.
65.
Rega
,
G.
, and
Lenci
,
S.
,
2010
, “
Recent Advances in Control of Complex Dynamics in Mechanical and Structural Systems
,”
Recent Progress in Controlling Chaos
,
M. A. F.
Sanjuan
and
C.
Grebogi
, eds.,
World Scientific
,
Singapore
, pp.
189
237
.
66.
Yagasaki
,
K.
,
2010
, “
New Control Methodology of Microcantilevers in Atomic Force Microscopy
,”
Phys. Lett. A
,
375
(
1
), pp.
23
28
.
67.
Settimi
,
V.
,
Gottlieb
,
O.
, and
Rega
,
G.
,
2015
, “
Asymptotic Analysis of a Noncontact AFM Microcantilever Sensor With External Feedback Control
,”
Nonlinear Dyn.
,
79
(
4
), pp.
2675
2698
.
68.
Lenci
,
S.
, and
Rega
,
G.
,
2004
, “
A Unified Control Framework of the Nonregular Dynamics of Mechanical Oscillators
,”
J. Sound Vib.
,
278
, pp.
1051
1080
.
69.
Chacon
,
R.
,
2005
,
Control of Homoclinic Chaos by Weak Periodic Perturbations
(Series Nonlinear Science, Series A), Vol.
55
,
World Scientific
,
Singapore
.
70.
Yagasaki
,
K.
,
2013
, “
Nonlinear Dynamics and Bifurcations in External Feedback Control of Microcantilevers in Atomic Force Microscopy
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
10
), pp.
2926
2943
.
71.
Settimi
,
V.
, and
Rega
,
G.
, “
Influence of a Locally-Tailored External Feedback Control on the Overall Dynamics of a Non-Contact AFM Model
,”
Int. J. Nonlinear Mech.
(in press).
72.
Lenci
,
S.
, and
Rega
,
G.
,
2003
, “
Optimal Numerical Control of Single-Well to Cross-Well Chaos Transition in Mechanical Systems
,”
Chaos, Solitons Fractals
,
15
(
1
), pp.
173
186
.
73.
Settimi
,
V.
,
Rega
,
G.
, and
Lenci
,
S.
,
2015
, “
Analytical and Numerical Control of Global Bifurcations in a Noncontact Atomic Force Microcantilever
,”
IUTAM Symposium on Analytical Methods in Nonlinear Dynamics
, Frankfurt, Germany, July 6–9, pp.
7
8
.
74.
Goncalves
,
P. B.
,
Orlando
,
D.
,
Rega
,
G.
, and
Lenci
,
S.
,
2013
, “
Nonlinear Dynamics and Instability as Important Design Concerns for a Guyed Mast
,”
IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design
(IUTAM Bookseries), Vol.
32
,
M.
Wiercigroch
and
G.
Rega
, eds.,
Springer
,
Berlin
, pp.
223
234
.
75.
Orlando
,
D.
,
2010
, “
Nonlinear Dynamics, Instability and Control of Structural Systems With Modal Interaction
,” Ph.D. thesis, Pontifícia Universidade Católica do Rio de Janeiro, PUC-Rio, Rio de Janeiro, Brazil (in Portuguese).
76.
Orlando
,
D.
,
Gonçalves
,
P. B.
,
Rega
,
G.
, and
Lenci
,
S.
,
2011
, “
Non-Linear Dynamics and Sensitivity to Imperfections in Augusti's Model
,”
J. Mech. Mater. Struct.
,
6
(
7–8
), pp.
1065
1078
.
77.
Lenci
,
S.
, and
Rega
,
G.
,
1998
, “
A Procedure for Reducing the Chaotic Response Region in an Impact Mechanical System
,”
Nonlinear Dyn.
,
15
(
4
), pp.
391
409
.
78.
Rega
,
G.
, and
Lenci
,
S.
,
2003
, “
Bifurcations and Chaos in Single-D.o.f. Mechanical Systems: Exploiting Nonlinear Dynamics Properties for Their Control
,”
Recent Research Developments in Structural Dynamics
,
A.
Luongo
, ed.,
Transworld Research Network
,
Trivandrum, India
, pp.
331
369
.
79.
Lenci
,
S.
, and
Rega
,
G.
,
2003
, “
Optimal Control of Nonregular Dynamics in a Duffing Oscillator
,”
Nonlinear Dyn.
,
33
(
1
), pp.
71
86
.
80.
Rega
,
G.
,
Lenci
,
S.
, and
Thompson
,
J. M. T.
,
2010
, “
Controlling Chaos: The OGY Method, Its Use in Mechanics, and an Alternative Unified Framework for Control of Non-Regular Dynamics
,”
Nonlinear Dynamics and Chaos: Advances and Perspectives
,
M.
Thiel
,
J.
Kurths
,
C.
Romano
,
A.
Moura
, and
G.
Károlyi
, eds.,
Springer
,
Berlin
, pp.
211
269
.
81.
Lenci
,
S.
, and
Rega
,
G.
,
2004
, “
Global Optimal Control and System-Dependent Solutions in the Hardening Helmholtz–Duffing Oscillator
,”
Chaos, Solitons Fractals
,
21
(
5
), pp.
1031
1046
.
82.
Virgin
,
L. N.
,
2000
,
Introduction to Experimental Nonlinear Dynamics: A Case Study in Mechanical Vibration
,
Cambridge University Press
,
Cambridge, UK
.
83.
Amabili
,
M.
,
2008
,
Nonlinear Vibrations and Stability of Shells and Plates
,
Cambridge University Press
,
Cambridge, UK
.
84.
Ruzziconi
,
L.
,
Younis
,
M. I.
, and
Lenci
,
S.
,
2013
, “
Parameter Identification of an Electrically Actuated Imperfect Microbeam
,”
Int. J. Nonlinear Mech.
,
57
, pp.
208
219
.
85.
Younis
,
M. I.
,
2011
,
MEMS Linear and Nonlinear Statics and Dynamics
,
Springer
,
New York
.
86.
Lenci
,
S.
, and
Rega
,
G.
,
2011
, “
Experimental Versus Theoretical Robustness of Rotating Solutions in a Parametrically Excited Pendulum: A Dynamical Integrity Perspective
,”
Physica D
,
240
, pp.
814
824
.
87.
Lenci
,
S.
,
Pavlovskaia
,
E.
,
Rega
,
G.
, and
Wiercigroch
,
M.
,
2008
, “
Rotating Solutions and Stability of Parametric Pendulum by Perturbation Method
,”
J. Sound Vib.
,
310
, pp.
243
259
.
88.
Pavlovskaia
,
E.
,
Horton
,
B.
,
Wiercigroch
,
M.
,
Lenci
,
S.
, and
Rega
,
G.
,
2012
, “
Approximate Rotational Solutions of Pendulum Under Combined Vertical and Horizontal Excitation
,”
Int. J. Bifurcation Chaos
,
22
(
5
), p.
1250100
.
89.
Lenci
,
S.
,
Brocchini
,
M.
, and
Lorenzoni
,
C.
,
2012
, “
Experimental Rotations of a Pendulum on Water Waves
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
1
), p.
011007
.
90.
Ruzziconi
,
L.
,
Bataineh
,
A. M.
,
Younis
,
M. I.
,
Cui
,
W.
, and
Lenci
,
S.
,
2013
, “
Nonlinear Dynamics of an Electrically Actuated Imperfect Microbeam Resonator: Experimental Investigation and Reduced-Order Model
,”
J. Micromech. Microeng.
,
23
(
7
), p.
075012
.
91.
Szemplinska-Stupnicka
,
W.
,
1992
, “
Cross-Well Chaos and Escape Phenomena in Driven Oscillators
,”
Nonlinear Dyn.
,
3
(
3
), pp.
225
243
.
92.
Thompson
,
J. M. T.
,
1997
, “
Designing Against Capsize in Beam Seas: Recent Advances and New Insights
,”
ASME Appl. Mech. Rev.
,
50
(
5
), pp.
307
324
.
93.
Wu
,
X.
,
Tao
,
L.
, and
Li
,
Y.
,
2004
, “
The Safe Basin Erosion of a Ship in Waves With Single Degree of Freedom
,”
15th Australasian Fluid Mechanical Conference
, Sydney, Australia, Dec. 13–17, Paper No. AFMC00029.
94.
Hornstein
,
S.
, and
Gottlieb
,
O.
,
2008
, “
Nonlinear Dynamics, Stability and Control of the Scan Process in Noncontacting Atomic Force Microscopy
,”
Nonlinear Dyn.
,
54
, pp.
93
122
.
95.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
,
1990
, “
Controlling Chaos
,”
Phys. Rev. Lett. E
,
64
(
11
), pp.
1196
1199
.
96.
Pyragas
,
K.
,
1992
, “
Continuous Control of Chaos by Self-Controlling Feedback
,”
Phys. Lett. A
,
170
(
6
), pp.
421
428
.
97.
Settimi
,
V.
,
2013
, “
Bifurcation Scenarios, Dynamical Integrity and Control of a Noncontact Atomic Force Microscope
,” Ph.D. thesis, Sapienza University of Rome, Rome, Italy.
98.
Settimi
,
V.
, and
Rega
,
G.
,
2015
, “
Dynamical Integrity of Noncontact AFM With External Feedback Control
,”
Euromech Colloquium on Stability and Control of Nonlinear Vibrating Systems
, Sperlonga, Italy, May 24–28, pp.
51
52
.
99.
Eason
,
R.
, and
Dick
,
A. J.
,
2014
, “
A Parallelized Multi-Degrees-of-Freedom Cell Map Method
,”
Nonlinear Dyn.
,
77
(
3
), pp.
467
479
.
100.
Belardinelli
,
P.
, and
Lenci
,
S.
, “
A First Parallel Programming Approach in Basins of Attraction Computation
,”
Int. J. Nonlinear Mech.
(submitted).
101.
Gan
,
C. B.
,
Lu
,
Q. S.
, and
Huang
,
K. L.
,
1998
, “
Nonstationary Effects on Safe Basins of a Forced Softening Duffing Oscillator
,”
Acta Mech. Solida Sin.
,
11
, pp.
253
260
.
102.
Hong
,
L.
, and
Sun
,
J. Q.
,
2006
, “
Bifurcations of Forced Oscillators With Fuzzy Uncertainties by the Generalized Cell Mapping Method
,”
Chaos, Solitons Fractals
,
27
(
4
), pp.
895
904
.
103.
Gan
,
C. B.
,
2005
, “
Noise-Induced Chaos and Basin Erosion in Softening Duffing Oscillator
,”
Chaos, Solitons Fractals
,
25
(
5
), pp.
1069
1081
.
104.
Silva
,
F. M. A.
,
Gonçalves
,
P. B.
, and
del Prado
,
Z. J. G. N.
,
2013
, “
Influence of Physical and Geometrical System Parameters Uncertainties on the Nonlinear Oscillations of Cylindrical Shells
,”
J. Braz. Soc. Mech. Sci. Eng.
,
34
, pp.
622
632
.
105.
Brazão
,
A. F.
,
Silva
,
F. M. A.
,
del Prado
,
Z. J. G. N.
, and
Gonçalves
,
P. B.
,
2014
, “
Influence of Physical Parameters and Geometrical Imperfection Uncertainties on the Nonlinear Vibrations of Axially Excited Cylindrical Shells
,”
9th International Conference on Structural Dynamics
, Porto, Portugal, June 30–July 2, pp.
2043
2048
.
106.
van Campen
,
D. H.
,
van de Vorst
,
E. L. B.
,
van der Spek
,
J. A. W.
, and
de Kraker
,
A.
,
1995
, “
Dynamics of a Multi-Dof Beam System With Discontinuous Support
,”
Nonlinear Dyn.
,
8
(
4
), pp.
453
466
.
107.
Kreuzer
,
E.
, and
Lagemann
,
B.
,
1996
, “
Cell Mapping for Multi-Degree-of-Freedom-Systems Parallel Computing in Nonlinear Dynamics
,”
Chaos, Solitons Fractals
,
7
(
10
), pp.
1683
1691
.
108.
Marszal
,
M.
,
Jankowski
,
K.
,
Perlikowski
,
P.
, and
Kapitaniak
,
T.
,
2014
, “
Bifurcations of Oscillatory and Rotational Solutions of Double Pendulum With Parametric Vertical Excitation
,”
Math. Probl. Eng.
,
2014
, p.
892793
.
109.
Carvalho
,
E. C.
,
Gonçalves
,
P. B.
,
Rega
,
G.
, and
del Prado
,
Z. J. G. N.
,
2013
, “
Influence of Axial Loads on the Nonplanar Vibrations of Cantilever Beams
,”
Shock Vib.
,
20
(
6
), pp.
1073
1092
.
110.
Carvalho
,
E. C.
,
Gonçalves
,
P. B.
,
Rega
,
G.
, and
del Prado
,
Z. J. G. N.
,
2014
, “
Nonlinear Nonplanar Vibration of a Functionally Graded Box Beam
,”
Meccanica
,
49
(
8
), pp.
1795
1819
.
111.
Xu
,
W.
,
Sun
,
C.
,
Sun
,
J.
, and
He
,
Q.
,
2013
, “
Development and Study on Cell Mapping Methods
,”
Adv. Mech.
,
43
, pp.
91
100
.
112.
Wiercigroch
,
M.
, and
Pavlovskaia
,
E.
,
2008
, “
Non-Linear Dynamics of Engineering Systems
,”
Int. J. Nonlinear Mech.
,
43
(
6
), pp.
459
461
.
113.
Wiercigroch
,
M.
, and
Rega
,
G.
,
2013
, “
Introduction to NDATED
,”
IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design
(IUTAM Bookseries), Vol.
32
,
M.
Wiercigroch
and
G.
Rega
, eds.,
Springer
,
Berlin
, pp.
v
viii
.
You do not currently have access to this content.