In this review article, we discuss recent progress with regard to modeling gravity-driven, high Reynolds number currents, with the emphasis on depth-resolving, high-resolution simulations. The initial sections describe new developments in the conceptual modeling of such currents for the purpose of identifying the Froude number–current height relationship, in the spirit of the pioneering work by von Kármán and Benjamin. A brief introduction to depth-averaged approaches follows, including box models and shallow water equations. Subsequently, we provide a detailed review of depth-resolving modeling strategies, including direct numerical simulations (DNS), large-eddy simulations (LES), and Reynolds-averaged Navier–Stokes (RANS) simulations. The strengths and challenges associated with these respective approaches are discussed by highlighting representative computational results obtained in recent years.

References

1.
Simpson
,
J. E.
,
1997
,
Gravity Currents: In the Environment and the Laboratory
,
Cambridge University Press
,
Cambridge, UK
.
2.
Ungarish
,
M.
,
2010
,
An Introduction to Gravity Currents and Intrusions
,
CRC Press
, Boca Raton, FL.
3.
Chassignet
,
E.
,
Cenedese
,
C.
, and
Verron
,
J.
,
2012
,
Buoyancy-Driven Flows
,
Cambridge University Press
, Cambridge, UK.
4.
Hopfinger
,
E. J.
,
1983
, “
Snow Avalanche Motion and Related Phenomena
,”
Annu. Rev. Fluid Mech.
,
15
(
1
), pp.
47
76
.
5.
Meiburg
,
E.
, and
Kneller
,
B.
,
2010
, “
Turbidity Currents and Their Deposits
,”
Annu. Rev. Fluid Mech.
,
42
, pp.
135
156
.
6.
Klaucke
,
I.
,
Hesse
,
R.
, and
Ryan
,
W.
,
1998
, “
Seismic Stratigraphy of the Northwest Atlantic Mid-Ocean Channel: Growth Pattern of a Mid-Ocean Channel-Levee Complex
,”
Mar. Pet. Geol.
,
15
(
6
), pp.
575
585
.
7.
Curray
,
J. R.
,
Emmel
,
F. J.
, and
Moore
,
D. G.
,
2002
, “
The Bengal Fan: Morphology, Geometry, Stratigraphy, History and Processes
,”
Mar. Pet. Geol.
,
19
(
10
), pp.
1191
1223
.
8.
Weimer
,
P.
, and
Slatt
,
R. M.
,
2007
,
Introduction to the Petroleum Geology of Deepwater Settings
,
AAPG/Datapages
, Tulsa, OK.
9.
Moncrieff
,
M. W.
,
1978
, “
The Dynamical Structure of Two-Dimensional Steady Convection in Constant Vertical Shear
,”
Q. J. R. Meteorol. Soc.
,
104
(
441
), pp.
543
567
.
10.
Maxworthy
,
T.
,
Leilich
,
J.
,
Simpson
,
J. E.
, and
Meiburg
,
E. H.
,
2002
, “
The Propagation of a Gravity Current Into a Linearly Stratified Fluid
,”
J. Fluid Mech.
,
453
, pp.
371
394
.
11.
Baines
,
P.
,
1995
,
Topographic Effects in Stratified Flows
,
Cambridge University Press
,
Cambridge, UK
.
12.
Rottman
,
J.
, and
Linden
,
P.
,
2001
, “
Gravity Currents
,”
Environmental Stratified Flows
,
R.
Grimshaw
, ed.,
Kluwer Academic
,
Dordrecht, The Netherlands
, pp.
89
117
.
13.
Huppert
,
H. E.
,
2000
, “
Geological Fluid Mechanics
,”
Perspectives in Fluid Dynamics: A Collective Introduction to Current Research
,
G.
Batchelor
,
H.
Moffatt
, and
M.
Worster
, eds.,
Cambridge University Press
,
Cambridge, UK
, pp.
447
506
.
14.
Huppert
,
H. E.
,
1998
, “
Quantitative Modelling of Granular Suspension Flows
,”
Philos. Trans. R. Soc. A
,
356
(
1747
), pp.
2471
2496
.
15.
Huppert
,
H. E.
,
2006
, “
Gravity Currents: A Personal Perspective
,”
J. Fluid Mech.
,
554
, pp.
299
322
.
16.
Kneller
,
B.
, and
Buckee
,
C.
,
2000
, “
The Structure and Fluid Mechanics of Turbidity Currents: A Review of Some Recent Studies and Their Geological Implications
,”
Sedimentology
,
47
(
S1
), pp.
62
94
.
17.
Parsons
,
J.
,
Friedrichs
,
C.
,
Traykovski
,
P.
,
Mohrig
,
D.
, and
Imran
,
J.
,
2007
, “
The Mechanics of Marine Sediment Gravity Flows
,”
Continental Margin Sedimentation: From Sediment Transport to Sequence Stratigraphy
,
C.
Nittrouer
,
J.
Austin
,
M.
Field
,
J.
Syvitski
, and
P.
Wiberg
, eds.,
Blackwell
,
Oxford, UK
, pp.
275
333
.
18.
von Kármán
,
T.
,
1940
, “
The Engineer Grapples With Non-Linear Problems
,”
Bull. Am. Math. Soc.
,
46
, pp.
615
683
.
19.
Benjamin
,
T. B.
,
1968
, “
Gravity Currents and Related Phenomena
,”
J. Fluid Mech.
,
31
(2), pp.
209
248
.
20.
Yih
,
C.
,
1965
,
Dynamics of Nonhomogeneous Fluids
,
Macmillan
,
New York
.
21.
Shin
,
J. O.
,
Dalziel
,
S. B.
, and
Linden
,
P. F.
,
2004
, “
Gravity Currents Produced by Lock Exchange
,”
J. Fluid Mech.
,
521
, pp.
1
34
.
22.
Ungarish
,
M.
,
2008
, “
Energy Balances and Front Speed Conditions of Two-Layer Models for Gravity Currents Produced by Lock Release
,”
Acta Mech.
,
201
(
1–4
), pp.
63
81
.
23.
Ungarish
,
M.
,
2010
, “
Energy Balances for Gravity Currents With a Jump at the Interface Produced by Lock Release
,”
Acta Mech.
,
211
(
1–2
), pp.
1
21
.
24.
Borden
,
Z.
, and
Meiburg
,
E.
,
2013
, “
Circulation Based Models for Boussinesq Gravity Currents
,”
Phys. Fluids
,
25
(
10
), p.
101301
.
25.
Pozrikidis
,
C.
,
1997
,
Introduction to Theoretical and Computational Fluid Dynamics
,
Oxford University Press
,
New York
.
26.
Saffman
,
P.
,
1992
,
Vortex Dynamics
,
Cambridge University Press
, Cambridge, UK.
27.
Nasr-Azadani
,
M. M.
, and
Meiburg
,
E.
, “
Gravity Currents Propagating Into Shear
,”
J. Fluid Mech.
(in press).
28.
Konopliv
,
N.
,
Llewellyn Smith
,
S.
, and
Meiburg
,
E.
, “
Modeling Gravity Currents Without an Energy Closure
,”
J. Fluid Mech.
(submitted).
29.
Flynn
,
M. R.
,
Ungarish
,
M.
, and
Tan
,
A. W.
,
2012
, “
Gravity Currents in a Two-Layer Stratified Ambient: The Theory for the Steady-State (Front Condition) and Lock-Released Flows, and Experimental Confirmations
,”
Phys. Fluids
,
24
, p.
026601
.
30.
Ungarish
,
M.
,
2006
, “
On Gravity Currents in a Linearly Stratified Ambient: A Generalization of Benjamin's Steady-State Propagation Results
,”
J. Fluid Mech.
,
548
(
2
), pp.
49
68
.
31.
Ungarish
,
M.
,
2012
, “
A General Solution of Benjamin-Type Gravity Current in a Channel of Non-Rectangular Cross-Section
,”
Environ. Fluid Mech.
,
12
(
3
), pp.
251
263
.
32.
Shringarpure
,
M.
,
Lee
,
H.
,
Ungarish
,
M.
, and
Balachandar
,
S.
,
2013
, “
Front Conditions of High-Regravity Currents Produced by Constant and Time-Dependent Influx: An Analytical and Numerical Study
,”
Eur. J. Mech. B
,
41
, pp.
109
122
.
33.
Ungarish
,
M.
,
2011
, “
A Non-Dissipative Solution of Benjamin-Type Gravity Current for a Wide Range of Depth Ratios
,”
J. Fluid Mech.
,
682
(
9
), pp.
54
65
.
34.
Huppert
,
H. E.
, and
Simpson
,
J. E.
,
1980
, “
The Slumping of Gravity Currents
,”
J. Fluid Mech.
,
99
(
8
), pp.
785
799
.
35.
Huppert
,
H. E.
,
1982
, “
The Propagation of Two-Dimensional and Axisymmetric Viscous Gravity Currents Over a Rigid Horizontal Surface
,”
J. Fluid Mech.
,
121
, pp.
43
58
.
36.
Rottman
,
J.
, and
Simpson
,
J.
,
1983
, “
Gravity Currents Produced by Instantaneous Releases of Heavy Fluids in a Rectangular Channel
,”
J. Fluid Mech.
,
135
, pp.
95
110
.
37.
Dade
,
W.
, and
Huppert
,
H. E.
,
1995
, “
A Box Model for Non-Entraining Suspension-Driven Gravity Surges on Horizontal Surfaces
,”
Sedimentology
,
42
(
3
), pp.
453
471
.
38.
Gladstone
,
C.
, and
Woods
,
A.
,
2000
, “
On the Application of Box Models to Particle-Driven Gravity Currents
,”
J. Fluid Mech.
,
416
, pp.
187
195
.
39.
Bonnecaze
,
R. T.
,
Huppert
,
H. E.
, and
Lister
,
J. R.
,
1993
, “
Particle-Driven Gravity Currents
,”
J. Fluid Mech.
,
250
, pp.
339
369
.
40.
Parker
,
G.
,
Fukushima
,
Y.
, and
Pantin
,
H.
,
1986
, “
Self-Accelerating Turbidity Currents
,”
J. Fluid Mech.
,
171
, pp.
145
181
.
41.
Harris
,
T. C.
,
Hogg
,
A. J.
, and
Huppert
,
H. E.
,
2002
, “
Polydisperse Particle-Driven Gravity Currents
,”
J. Fluid Mech.
,
472
(
12
), pp.
333
371
.
42.
Johnson
,
C. G.
, and
Hogg
,
A. J.
,
2013
, “
Entraining Gravity Currents
,”
J. Fluid Mech.
,
731
, pp.
477
508
.
43.
Kowalski
,
J.
, and
McElwaine
,
J. N.
,
2013
, “
Shallow Two-Component Gravity-Driven Flows With Vertical Variation
,”
J. Fluid Mech.
,
714
, pp.
434
462
.
44.
Monaghan
,
J.
,
Mériaux
,
C.
,
Huppert
,
H.
, and
Monaghan
,
J.
,
2009
, “
High Reynolds Number Gravity Currents Along V-Shaped Valleys
,”
Eur. J. Mech. B
,
28
(
5
), pp.
651
659
.
45.
Ungarish
,
M.
,
Mériaux
,
C. A.
, and
Kurz-Besson
,
C. B.
,
2014
, “
The Propagation of Gravity Currents in a V-Shaped Triangular Cross-Section Channel: Experiments and Theory
,”
J. Fluid Mech.
,
754
(
9
), pp.
232
249
.
46.
Mériaux
,
C. A.
, and
Kurz-Besson
,
C. B.
,
2012
, “
Sedimentation From Binary Suspensions in a Turbulent Gravity Current Along a V-Shaped Valley
,”
J. Fluid Mech.
,
712
(
12
), pp.
624
645
.
47.
Linden
,
P.
,
2012
, “
Gravity Currents: Theory and Laboratory Experiments
,”
Buoyancy-Driven Flows
,
E.
Chassignet
,
C.
Cenedese
, and
J.
Verron
, eds.,
Cambridge University Press
, Cambridge, UK, pp.
13
51
.
48.
Gonzalez-Juez
,
E.
, and
Meiburg
,
E.
,
2009
, “
Shallow-Water Analysis of Gravity-Current Flows Past Isolated Obstacles
,”
J. Fluid Mech.
,
635
, pp.
415
438
.
49.
Lane-Serff
,
G. F.
,
Beal
,
L. M.
, and
Hadfield
,
T. D.
,
1995
, “
Gravity Current Flow Over Obstacles
,”
J. Fluid Mech.
,
292
, pp.
39
53
.
50.
Birman
, V
. K.
,
Meiburg
,
E.
, and
Kneller
,
B.
,
2009
, “
The Shape of Submarine Levees: Exponential or Power Law?
,”
J. Fluid Mech.
,
619
, pp.
367
376
.
51.
Ham
,
J.
, and
Homsy
,
G.
,
1988
, “
Hindered Settling and Hydrodynamic Dispersion in Quiescent Sedimenting Suspensions
,”
Int. J. Multiphase Flow
,
14
(
5
), pp.
533
546
.
52.
Guazzelli
,
É.
, and
Morris
,
J.
,
2011
,
A Physical Introduction to Suspension Dynamics
(Cambridge Texts in Applied Mathematics),
Cambridge University Press
, Cambridge, UK.
53.
Raju
,
N.
, and
Meiburg
,
E.
,
1995
, “
The Accumulation and Dispersion of Heavy-Particles in Forced 2-Dimensional Mixing Layers Part 2—The Effect of Gravity
,”
Phys. Fluids
,
7
(
6
), pp.
1241
1264
.
54.
Davis
,
R. H.
, and
Hassen
,
M. A.
,
1988
, “
Spreading of the Interface at the Top of a Slightly Polydisperse Sedimenting Suspension
,”
J. Fluid Mech.
,
196
, pp.
107
134
.
55.
Nasr-Azadani
,
M. M.
, and
Meiburg
,
E.
,
2014
, “
Turbidity Currents Interacting With Three-Dimensional Seafloor Topography
,”
J. Fluid Mech.
,
745
, pp.
409
443
.
56.
Härtel
,
C.
,
Meiburg
,
E.
, and
Necker
,
F.
,
2000
, “
Analysis and Direct Numerical Simulation of the Flow at a Gravity-Current Head Part 1—Flow Topology and Front Speed for Slip and No-Slip Boundaries
,”
J. Fluid Mech.
,
418
, pp.
189
212
.
57.
Necker
,
F.
,
Härtel
,
C.
,
Kleiser
,
L.
, and
Meiburg
,
E.
,
2002
, “
High-Resolution Simulations of Particle-Driven Gravity Currents
,”
Int. J. Multiphase Flow
,
28
(
2
), pp.
279
300
.
58.
Cantero
,
M. I.
,
Balachandar
,
S.
,
García
,
M. H.
, and
Bock
,
D.
,
2008
, “
Turbulent Structures in Planar Gravity Currents and Their Influence on the Flow Dynamics
,”
J. Geophys. Res.-Oceans
,
113
(
C8
), p.
C08018
.
59.
Yeh
,
T.-H.
,
Cantero
,
M.
,
Cantelli
,
A.
,
Pirmez
,
C.
, and
Parker
,
G.
,
2013
, “
Turbidity Current With a Roof: Success and Failure of RANS Modeling for Turbidity Currents Under Strongly Stratified Conditions
,”
J. Geophys. Res.-Earth Surf.
,
118
(
3
), pp.
1975
1998
.
60.
Piomelli
,
U.
,
1999
, “
Large-Eddy Simulation: Achievements and Challenges
,”
Prog. Aerosp. Sci.
,
35
(4), pp.
335
362
.
61.
Meneveau
,
C.
, and
Katz
,
J.
,
2000
, “
Scale-Invariance and Turbulence Models for Large-Eddy Simulations
,”
Annu. Rev. Fluid Mech.
,
32
, pp.
1
32
.
62.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations I. The Basic Experiment
,”
Mon. Weather Rev.
,
91
(3), pp.
99
164
.
63.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
(7), pp.
1760
1765
.
64.
Moin
,
P.
,
Squires
,
K.
,
Cabot
,
W.
, and
Lee
,
S.
,
1991
, “
A Dynamic Subgrid-Scale Model for Compressible Turbulence and Scalar Transport
,”
Phys. Fluids
,
3
(11), pp.
2746
2757
.
65.
Stevens
,
R. J. A. M.
,
Wilczek
,
M.
, and
Meneveau
,
C.
,
2014
, “
Large-Eddy Simulation Study of the Logarithmic Law for Second- and Higher-Order Moments in Turbulent Wall-Bounded Flow
,”
J. Fluid Mech.
,
757
, pp.
888
907
.
66.
Ooi
,
S. K.
,
Constantinescu
,
G.
, and
Weber
,
L.
,
2009
, “
Numerical Simulations of Lock-Exchange Compositional Gravity Current
,”
J. Fluid Mech.
,
635
, pp.
361
388
.
67.
Piomelli
,
U.
, and
Balaras
,
E.
,
2002
, “
Wall-Layer Models for Large-Eddy Simulations
,”
Annu. Rev. Fluid Mech.
,
34
, pp.
349
374
.
68.
Radhakrishnan
,
S.
, and
Piomelli
,
U.
,
2008
, “
Large-Eddy Simulation of Oscillating Boundary Layers: Model Comparison and Validation
,”
J. Geophys. Res. (Oceans)
,
113
(
C2
), p.
C02022
.
69.
Wilcox
,
D.
,
1994
,
Turbulence Modeling for CFD
,
DCW Industries
, La Cañada Flintridge, CA.
70.
Choi
,
S.
, and
Garcia
,
M.
,
2002
, “
k–ε Turbulence Modeling of Density Currents Developing Two Dimensionally on a Slope
,”
J. Hydraul. Eng.
,
128
(
1
), pp.
55
63
.
71.
Sequeiros
,
O. E.
,
Cantelli
,
A.
,
Viparelli
,
E.
,
White
,
J. D. L.
,
García
,
M. H.
, and
Parker
,
G.
,
2009
, “
Modeling Turbidity Currents With Nonuniform Sediment and Reverse Buoyancy
,”
Water Resour. Res.
,
45
(
6
), p.
W06408
.
72.
Garcia
,
M.
,
2008
,
Sedimentation Engineering: Processes, Measurements, Modeling, and Practice
, American Society of Civil Engineers, Reston, VA.
73.
Paola
,
C.
, and
Voller
, V
. R.
,
2005
, “
A Generalized Exner Equation for Sediment Mass Balance
,”
J. Geophys. Res.: Earth Surf.
,
110
(
F4
), p.
F0414
.
74.
Abd El-Gawad
,
S.
,
Cantelli
,
A.
,
Pirmez
,
C.
,
Minisini
,
D.
,
Sylvester
,
Z.
, and
Imran
,
J.
,
2012
, “
Three-Dimensional Numerical Simulation of Turbidity Currents in a Submarine Channel on the Seafloor of the Niger Delta Slope
,”
J. Geophys. Res.: Oceans
,
117
(
C5
), p.
C05026
.
75.
Härtel
,
C.
,
Carlsson
,
F.
, and
Thunblom
,
M.
,
2000
, “
Analysis and Direct Numerical Simulation of the Flow at a Gravity-Current Head Part 2—The Lobe-And-Cleft Instability
,”
J. Fluid Mech.
,
418
(
9
), pp.
213
229
.
76.
De Rooij
,
F.
, and
Dalziel
,
S.
,
2009
, “
Time-And Space-Resolved Measurements of Deposition Under Turbidity Currents
,”
Particulate Gravity Currents
, Wiley, New York, pp.
207
215
.
77.
Necker
,
F.
,
Härtel
,
C.
,
Kleiser
,
L.
, and
Meiburg
,
E.
,
2005
, “
Mixing and Dissipation in Particle-Driven Gravity Currents
,”
J. Fluid Mech.
,
545
, pp.
339
372
.
78.
Espath
,
L.
,
Pinto
,
L.
,
Laizet
,
S.
, and
Silvestrini
,
J.
,
2014
, “
Two-And Three-Dimensional Direct Numerical Simulation of Particle-Laden Gravity Currents
,”
Comput. Geosci.
,
63
, pp.
9
16
.
79.
Bonometti
,
T.
,
Ungarish
,
M.
, and
Balachandar
,
S.
,
2011
, “
A Numerical Investigation of High-Reynolds-Number Constant-Volume Non-Boussinesq Density Currents in Deep Ambient
,”
J. Fluid Mech.
,
673
, pp.
574
602
.
80.
Cantero
,
M. I.
,
Lee
,
J. R.
,
Balachandar
,
S.
, and
Garcia
,
M. H.
,
2007
, “
On the Front Velocity of Gravity Currents
,”
J. Fluid Mech.
,
586
, pp.
1
39
.
81.
Marino
,
B. M.
,
Thomas
,
L. P.
, and
Linden
,
P. F.
,
2005
, “
The Front Condition for Gravity Currents
,”
J. Fluid Mech.
,
536
(
8
), pp.
49
78
.
82.
Constantinescu
,
G.
,
2014
, “
LES of Lock-Exchange Compositional Gravity Currents: A Brief Review of Some Recent Results
,”
Environ. Fluid Mech.
,
14
(
2
), pp.
295
317
.
83.
Parker
,
G.
, and
Izumi
,
N.
,
2000
, “
Purely Erosional Cyclic and Solitary Steps Created by Flow Over a Cohesive Bed
,”
J. Fluid Mech.
,
419
, pp.
203
238
.
84.
Fagherazzi
,
S.
, and
Sun
,
T.
,
2003
, “
Numerical Simulations of Transportational Cyclic Steps
,”
Comput. Geosci.
,
29
(
9
), pp.
1143
1154
.
85.
Sun
,
T.
, and
Parker
,
G.
,
2005
, “
Transportational Cyclic Steps Created by Flow Over an Erodible Bed Part 2—Theory and Numerical Simulation
,”
J. Hydraul. Res.
,
43
(
5
), pp.
502
514
.
86.
Hall
,
B.
,
Meiburg
,
E.
, and
Kneller
,
B.
,
2008
, “
Channel Formation by Turbidity Currents: Navier–Stokes-Based Linear Stability Analysis
,”
J. Fluid Mech.
,
615
, pp.
185
210
.
87.
Lesshafft
,
L.
,
Hall
,
B.
,
Meiburg
,
E.
, and
Kneller
,
B.
,
2011
, “
Deep-Water Sediment Wave Formation: Linear Stability Analysis of Coupled Flow/Bed Interaction
,”
J. Fluid Mech.
,
680
, pp.
435
458
.
88.
Alexander
,
J.
, and
Morris
,
S.
,
1994
, “
Observations on Experimental, Nonchannelized, High-Concentration Turbidity Currents and Variations in Deposits Around Obstacles
,”
J. Sediment. Res.
,
64
(
4a
), pp.
899
909
.
89.
Woods
,
A. W.
,
Bursik
,
M. I.
, and
Kurbatov
,
A. V.
,
1998
, “
The Interaction of Ash Flows With Ridges
,”
Bull. Volcanol.
,
60
(
1
), pp.
38
51
.
90.
Bursik
,
M. I.
, and
Woods
,
A. W.
,
2000
, “
The Effects of Topography on Sedimentation From Particle-Laden Turbulent Density Currents
,”
J. Sediment. Res.
,
70
(
1
), pp.
53
63
.
91.
Morris
,
S. A.
, and
Alexander
,
J.
,
2003
, “
Changes in Flow Direction at a Point Caused by Obstacles During Passage of a Density Current
,”
J. Sediment. Res.
,
73
(
4
), pp.
621
629
.
92.
Kubo
,
Y.
,
2004
, “
Experimental and Numerical Study of Topographic Effects on Deposition From Two-Dimensional, Particle-Driven Density Currents
,”
Sediment. Geol.
,
164
(
3–4
), pp.
311
326
.
93.
Nasr-Azadani
,
M. M.
, and
Meiburg
,
E.
,
2014
, “
Influence of Seafloor Topography on the Depositional Behavior of Bi-Disperse Turbidity Currents: A Three-Dimensional, Depth-Resolved Numerical Investigation
,”
Environ. Fluid Mech.
,
14
(2), pp.
319
342
.
94.
Ye
,
T.
,
Mittal
,
R.
,
Udaykumar
,
H.
, and
Shyy
,
W.
,
1999
, “
An Accurate Cartesian Grid Method for Viscous Incompressible Flows With Complex Immersed Boundaries
,”
J. Comput. Phys.
,
156
(
2
), pp.
209
240
.
95.
Fadlun
,
E.
,
Verzicco
,
R.
,
Orlandi
,
P.
, and
Mohd-Yusof
,
J.
,
2000
, “
Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations
,”
J. Comput. Phys.
,
161
(
1
), pp.
35
60
.
96.
Balaras
,
E.
,
2004
, “
Modeling Complex Boundaries Using an External Force Field on Fixed Cartesian Grids in Large-Eddy Simulations
,”
Comput. Fluids
,
33
(
3
), pp.
375
404
.
97.
Mittal
,
R.
, and
Iaccarino
,
G.
,
2005
, “
Immersed Boundary Methods
,”
Annu. Rev. Fluid Mech.
,
37
, pp.
239
261
.
98.
Mittal
,
R.
,
Dong
,
H.
,
Bozkurttas
,
M.
,
Najjar
,
F.
,
Vargas
,
A.
, and
von Loebbecke
,
A.
,
2008
, “
A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows With Complex Boundaries
,”
J. Comput. Phys.
,
227
(
10
), pp.
4825
4852
.
99.
Elias
,
R. N.
,
Paraizo
,
P. L. B.
, and
Coutinho
,
A. L. G. A.
,
2008
, “
Stabilized Edge-Based Finite Element Computation of Gravity Currents in Lock-Exchange Configurations
,”
Int. J. Numer. Methods Fluids
,
57
(
9
), pp.
1137
1152
.
100.
Guerra
,
G. M.
,
Zio
,
S.
,
Camata
,
J. J.
,
Rochinha
,
F. A.
,
Elias
,
R. N.
,
Paraizo
,
P. L.
, and
Coutinho
,
A. L.
,
2013
, “
Numerical Simulation of Particle-Laden Flows by the Residual-Based Variational Multiscale Method
,”
Int. J. Numer. Methods Fluids
,
73
(
8
), pp.
729
749
.
101.
Camata
,
J. J.
,
Elias
,
R. N.
, and
Coutinho
,
A. L. G. A.
,
2013
, “
FEM Simulation of Coupled Flow and Bed Morphodynamic Interactions Due to Sediment Transport Phenomena
,”
J. Comput. Sci. Technol.
,
7
(
2
), pp.
306
321
.
102.
Rossa
,
A. L.
, and
Coutinho
,
A. L.
,
2013
, “
Parallel Adaptive Simulation of Gravity Currents on the Lock-Exchange Problem
,”
Comput. Fluids
,
88
, pp.
782
794
.
103.
Özgökmen
,
T. M.
,
Fischer
,
P. F.
,
Duan
,
J.
, and
Iliescu
,
T.
,
2004
, “
Entrainment in Bottom Gravity Currents Over Complex Topography From Three-Dimensional Nonhydrostatic Simulations
,”
Geophys. Res. Lett.
,
31
(
13
), p.
L13212
.
104.
Blanchette
,
F.
,
Strauss
,
M.
,
Meiburg
,
E.
,
Kneller
,
B.
, and
Glinsky
,
M. E.
,
2005
, “
High-Resolution Numerical Simulations of Resuspending Gravity Currents: Conditions for Self-Sustainment
,”
J. Geophys. Res. Oceans
,
110
(
C12
), p.
C12022
.
105.
Garcia
,
M.
, and
Parker
,
G.
,
1993
, “
Experiments on the Entrainment of Sediment Into Suspension by a Dense Bottom Current
,”
J. Geophys. Res. Oceans
,
98
(
C3
), pp.
4793
4807
.
106.
Strauss
,
M.
, and
Glinsky
,
M. E.
,
2012
, “
Turbidity Current Flow Over an Erodible Obstacle and Phases of Sediment Wave Generation
,”
J. Geophys. Res. Oceans
,
117
(
C6
), p.
C06007
.
107.
Hoffmann
,
G.
,
Nasr-Azadani
,
M.
, and
Meiburg
,
E.
,
2014
, “
Sediment Wave Formation Caused by Erosional and Depositional Turbidity Currents: A Numerical Investigation
,”
Procedia IUTAM
,
15
, pp.
26
33
.
108.
Ermanyuk
,
E.
, and
Gavrilov
,
N.
,
2005
, “
Interaction of Internal Gravity Current With an Obstacle on the Channel Bottom
,”
ASME J. Appl. Mech. Tech. Phys.
,
46
(
4
), pp.
489
495
.
109.
Ermanyuk
,
E.
, and
Gavrilov
,
N.
,
2005
, “
Interaction of an Internal Gravity Current With a Submerged Circular Cylinder
,”
ASME J. Appl. Mech. Tech. Phys.
,
46
(
2
), pp.
216
223
.
110.
Gonzalez-Juez
,
E.
,
Meiburg
,
E.
, and
Constantinescu
,
G.
,
2009
, “
Gravity Currents Impinging on Bottom-Mounted Square Cylinders: Flow Fields and Associated Forces
,”
J. Fluid Mech.
,
631
, pp.
65
102
.
111.
Pierce
,
C. D.
, and
Moin
,
P.
,
2004
, “
Progress-Variable Approach for Large-Eddy Simulation of Non-Premixed Turbulent Combustion
,”
J. Fluid Mech.
,
504
(
4
), pp.
73
97
.
112.
Gonzalez-Juez
,
E.
,
Meiburg
,
E.
, and
Constantinescu
,
G.
,
2009
, “
The Interaction of a Gravity Current With a Circular Cylinder Mounted Above a Wall: Effect of the Gap Size
,”
J. Fluids Struct.
,
25
(4), pp.
629
640
.
113.
Gonzalez-Juez
,
E.
,
Meiburg
,
E.
,
Tokyay
,
T.
, and
Constantinescu
,
G.
,
2010
, “
Gravity Current Flow Past a Circular Cylinder: Forces, Wall Shear Stresses and Implications for Scour
,”
J. Fluid Mech.
,
649
, pp.
69
102
.
114.
Tokyay
,
T.
,
Constantinescu
,
G.
, and
Meiburg
,
E.
,
2011
, “
Lock-Exchange Gravity Currents With a High Volume of Release Propagating Over a Periodic Array of Obstacles
,”
J. Fluid Mech.
,
672
, pp.
570
605
.
115.
Tokyay
,
T.
,
Constantinescu
,
G.
, and
Meiburg
,
E.
,
2012
, “
Tail Structure and Bed Friction Velocity Distribution of Gravity Currents Propagating Over an Array of Obstacles
,”
J. Fluid Mech.
,
694
, pp.
252
291
.
116.
Tokyay
,
T.
,
Constantinescu
,
G.
, and
Meiburg
,
E.
,
2014
, “
Lock-Exchange Gravity Currents With a Low Volume of Release Propagating Over an Array of Obstacles
,”
J. Geophys. Res. Oceans
,
119
(
5
), pp.
2752
2768
.
117.
Ungarish
,
M.
, and
Huppert
,
H. E.
,
2002
, “
On Gravity Currents Propagating at the Base of a Stratified Ambient
,”
J. Fluid Mech.
,
458
, pp.
283
301
.
118.
White
,
B. L.
, and
Helfrich
,
K. R.
,
2012
, “
A General Description of a Gravity Current Front Propagating in a Two-Layer Stratified Fluid
,”
J. Fluid Mech.
,
711
, pp.
545
575
.
119.
White
,
B. L.
, and
Helfrich
,
K. R.
,
2008
, “
Gravity Currents and Internal Waves in a Stratified Fluid
,”
J. Fluid Mech.
,
616
, pp.
327
356
.
120.
Zemach
,
T.
, and
Ungarish
,
M.
,
2012
, “
The Flow of High-Reynolds Axisymmetric Gravity Currents of a Stratified Fluid Into a Stratified Ambient: Shallow-Water and Box Model Solutions
,”
Environ. Fluid Mech.
,
12
(
4
), pp.
347
359
.
121.
Cantero
,
M. I.
,
Balachandar
,
S.
,
Cantelli
,
A.
,
Pirmez
,
C.
, and
Parker
,
G.
,
2009
, “
Turbidity Current With a Roof: Direct Numerical Simulation of Self-Stratified Turbulent Channel Flow Driven by Suspended Sediment
,”
J. Geophys. Res. Oceans
,
114
(
C3
), p.
C03008
.
122.
Shringarpure
,
M.
,
Cantero
,
M. I.
, and
Balachandar
,
S.
,
2012
, “
Dynamics of Complete Turbulence Suppression in Turbidity Currents Driven by Monodisperse Suspensions of Sediment
,”
J. Fluid Mech.
,
712
, pp.
384
417
.
123.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T. M.
,
1999
, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid Mech.
,
387
(
5
), pp.
353
396
.
124.
Chakraborty
,
P.
,
Balachandar
,
S.
, and
Adrian
,
R. J.
,
2005
, “
On the Relationships Between Local Vortex Identification Schemes
,”
J. Fluid Mech.
,
535
, pp.
189
214
.
125.
Wallace
,
J. M.
,
Eckelmann
,
H.
, and
Brodkey
,
R. S.
,
1972
, “
The Wall Region in Turbulent Shear Flow
,”
J. Fluid Mech.
,
54
(
7
), pp.
39
48
.
126.
Segre
,
P.
,
Liu
,
F.
,
Umbanhowar
,
P.
, and
Weitz
,
D.
,
2001
, “
An Effective Gravitational Temperature for Sedimentation
,”
Nature
,
409
(
6820
), pp.
594
597
.
127.
Yu
,
X.
,
Hsu
,
T.-J.
, and
Balachandar
,
S.
,
2013
, “
Convective Instability in Sedimentation: Linear Stability Analysis
,”
J. Geophys. Res. Oceans
,
118
(
1
), pp.
256
272
.
128.
Birman
,
V.
,
Martin
,
J.
, and
Meiburg
,
E.
,
2005
, “
The Non-Boussinesq Lock-Exchange Problem Part 2—High-Resolution Simulations
,”
J. Fluid Mech.
,
537
, pp.
125
144
.
129.
Bonometti
,
T.
, and
Balachandar
,
S.
,
2008
, “
Effect of Schmidt Number on the Structure and Propagation of Density Currents
,”
Theor. Comput. Fluid Dyn.
,
22
(
5
), pp.
341
361
.
130.
Turner
,
J. S.
,
1973
,
Buoyancy Effects in Fluids
,
Cambridge University Press
,
Cambridge, UK
.
131.
Burns
,
P.
, and
Meiburg
,
E.
,
2015
, “
Sediment-Laden Fresh Water Above Salt Water: Nonlinear Simulations
,”
J. Fluid Mech.
,
762
, pp.
156
195
.
132.
Turnbull
,
B.
, and
McElwaine
,
J. N.
,
2008
, “
Experiments on the Non-Boussinesq Flow of Self-Igniting Suspension Currents on a Steep Open Slope
,”
J. Geophys. Res. Earth Surf.
,
113
(
F1
), p.
F01003
.
133.
Ungarish
,
M.
,
2007
, “
A Shallow-Water Model for High-Reynolds-Number Gravity Currents for a Wide Range of Density Differences and Fractional Depths
,”
J. Fluid Mech.
,
579
, pp.
373
382
.
134.
Ungarish
,
M.
,
2011
, “
Two-Layer Shallow-Water Dam-Break Solutions for Non-Boussinesq Gravity Currents in a Wide Range of Fractional Depth
,”
J. Fluid Mech.
,
675
, pp.
27
59
.
135.
Lowe
,
R. J.
,
Rottman
,
J.
, and
Linden
,
P. F.
,
2005
, “
The Non-Boussinesq Lock-Exchange Problem Part 1—Theory and Experiments
,”
J. Fluid Mech.
,
537
(
8
), pp.
101
124
.
136.
Rotunno
,
R.
,
Klemp
,
J. B.
,
Bryan
,
G. H.
, and
Muraki
,
D. J.
,
2011
, “
Models of Non-Boussinesq Lock-Exchange Flow
,”
J. Fluid Mech.
,
675
(
5
), pp.
1
26
.
137.
Gröbelbauer
,
H. P.
,
Fannelop
,
T. K.
, and
Britter
,
R. E.
,
1993
, “
The Propagation of Intrusion Fronts of High Density Ratios
,”
J. Fluid Mech.
,
250
(
5
), pp.
669
687
.
138.
Keller
,
J.
, and
Chyou
,
Y.-P.
,
1991
, “
On the Hydraulic Lock-Exchange Problem
,”
J. Appl. Math. Phys.
,
42
(
6
), pp.
874
910
.
139.
Bonometti
,
T.
,
Balachandar
,
S.
, and
Magnaudet
,
J.
,
2008
, “
Wall Effects in Non-Boussinesq Density Currents
,”
J. Fluid Mech.
,
616
, pp.
445
475
.
140.
Squires
,
K. D.
, and
Eaton
,
J. K.
,
1991
, “
Measurements of Particle Dispersion Obtained From Direct Numerical Simulation of Isotropic Turbulence
,”
J. Fluid Mech.
,
226
, pp.
1
35
.
141.
Martin
,
J.
, and
Meiburg
,
E.
,
1994
, “
The Accumulation and Dispersion of Heavy-Particles in Forced 2-Dimensional Mixing Layers 1—The Fundamental and Subharmonic Cases
,”
Phys. Fluids
,
6
(
3
), pp.
1116
1132
.
142.
Marcu
,
B.
,
Meiburg
,
E.
, and
Newton
,
P.
,
1995
, “
Dynamics of Heavy-Particles in a Burgers Vortex
,”
Phys. Fluids
,
7
(
2
), pp.
400
410
.
143.
Marcu
,
B.
, and
Meiburg
,
E.
,
1996
, “
The Effect of Streamwise Braid Vortices on the Particle Dispersion in a Plane Mixing Layer 1—Equilibrium Points and Their Stability
,”
Phys. Fluids
,
8
(
3
), pp.
715
733
.
144.
Marcu
,
B.
,
Meiburg
,
E.
, and
Raju
,
N.
,
1996
, “
The Effect of Streamwise Braid Vortices on the Particle Dispersion in a Plane Mixing Layer 2—Nonlinear Particle Dynamics
,”
Phys. Fluids
,
8
(
3
), pp.
734
753
.
145.
Ferry
,
J.
, and
Balachandar
,
S.
,
2002
, “
Equilibrium Expansion for the Eulerian Velocity of Small Particles
,”
Powder Technol.
,
125
(
2
), pp.
131
139
.
146.
Cantero
,
M. I.
,
Balachandar
,
S.
, and
Garcia
,
M. H.
,
2008
, “
An Eulerian–Eulerian Model for Gravity Currents Driven by Inertial Particles
,”
Int. J. Multiphase Flow
,
34
(
5
), pp.
484
501
.
147.
Bhaganagar
,
K.
,
2014
, “
Direct Numerical Simulation of Lock-Exchange Density Currents Over the Rough Wall in Slumping Phase
,”
J. Hydraul. Res.
,
52
(
3
), pp.
386
398
.
148.
Özgökmen
,
T. M.
, and
Fischer
,
P. F.
,
2008
, “
On the Role of Bottom Roughness in Overflows
,”
Ocean Modell.
,
20
(
4
), pp.
336
361
.
149.
Stickel
,
J. J.
, and
Powell
,
R. L.
,
2005
, “
Fluid Mechanics and Rheology of Dense Suspensions
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
129
149
.
150.
Govindarajan
,
R.
, and
Sahu
,
K. C.
,
2014
, “
Instabilities in Viscosity-Stratified Flow
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
331
353
.
151.
Sameen
,
A.
, and
Govindarajan
,
R.
,
2007
, “
The Effect of Wall Heating on Instability of Channel Flow
,”
J. Fluid Mech.
,
577
(
4
), pp.
417
442
.
152.
Zonta
,
F.
,
Marchioli
,
C.
, and
Soldati
,
A.
,
2012
, “
Modulation of Turbulence in Forced Convection by Temperature-Dependent Viscosity
,”
J. Fluid Mech.
,
697
(
4
), pp.
150
174
.
153.
Zonta
,
F.
,
Onorato
,
M.
, and
Soldati
,
A.
,
2012
, “
Turbulence and Internal Waves in Stably-Stratified Channel Flow With Temperature-Dependent Fluid Properties
,”
J. Fluid Mech.
,
697
(
4
), pp.
175
203
.
154.
Yu
,
X.
,
Hsu
,
T.-J.
, and
Balachandar
,
S.
,
2013
, “
A Spectral-Like Turbulence-Resolving Scheme for Fine Sediment Transport in the Bottom Boundary Layer
,”
Comput. Geosci.
,
61
, pp.
11
22
.
155.
Krieger
,
I.
, and
Dougherty
,
T.
,
1959
, “
A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres
,”
Trans. Soc. Rheol.
,
3
, pp.
137
152
.
156.
Yu
,
X.
,
Ozdemir
,
C.
,
Hsu
,
T.-J.
, and
Balachandar
,
S.
,
2014
, “
Numerical Investigation of Turbulence Modulation by Sediment-Induced Stratification and Enhanced Viscosity in Oscillatory Flows
,”
J. Waterw., Port, Coastal, Ocean Eng.
,
140
(
2
), pp.
160
172
.
157.
Uhlmann
,
M.
,
2005
, “
An Immersed Boundary Method With Direct Forcing for the Simulation of Particulate Flows
,”
J. Comput. Phys.
,
209
(
2
), pp.
448
476
.
158.
Lucci
,
F.
,
Ferrante
,
A.
, and
Elghobashi
,
S.
,
2010
, “
Modulation of Isotropic Turbulence by Particles of Taylor Length-Scale Size
,”
J. Fluid Mech.
,
650
, pp.
5
55
.
159.
Vowinckel
,
B.
,
Kempe
,
T.
, and
Fröhlich
,
J.
,
2014
, “
Fluid–Particle Interaction in Turbulent Open Channel Flow With Fully-Resolved Mobile Beds
,”
Adv. Water Resour.
,
72
, pp.
32
44
.
160.
Lesshafft
,
L.
,
Meiburg
,
E.
,
Kneller
,
B.
, and
Marsden
,
A.
,
2011
, “
Towards Inverse Modeling of Turbidity Currents: The Inverse Lock-Exchange Problem
,”
Comput. Geosci.
,
37
(
4
), pp.
521
529
.
161.
Flynn
,
M. R.
, and
Linden
,
P. F.
,
2006
, “
Intrusive Gravity Currents
,”
J. Fluid Mech.
,
568
(
12
), pp.
193
202
.
162.
Sutherland
,
B. R.
,
Kyba
,
P. J.
, and
Flynn
,
M. R.
,
2004
, “
Intrusive Gravity Currents in Two-Layer Fluids
,”
J. Fluid Mech.
,
514
(
9
), pp.
327
353
.
163.
Mehta
,
A. P.
,
Sutherland
,
B. R.
, and
Kyba
,
P. J.
,
2002
, “
Interfacial Gravity Currents. II. Wave Excitation
,”
Phys. Fluids
,
14
(
10
), pp.
3558
3569
.
164.
Flynn
,
M. R.
, and
Sutherland
,
B. R.
,
2004
, “
Intrusive Gravity Currents and Internal Gravity Wave Generation in Stratified Fluid
,”
J. Fluid Mech.
,
514
(
9
), pp.
355
383
.
165.
Munroe
,
J. R.
,
Voegeli
,
C.
,
Sutherland
,
B. R.
,
Birman
,
V.
, and
Meiburg
,
E. H.
,
2009
, “
Intrusive Gravity Currents From Finite-Length Locks in a Uniformly Stratified Fluid
,”
J. Fluid Mech.
,
635
, pp.
245
273
.
166.
Ungarish
,
M.
, and
Huppert
,
H. E.
,
1998
, “
The Effects of Rotation on Axisymmetric Gravity Currents
,”
J. Fluid Mech.
,
362
, pp.
17
51
.
167.
Huppert
,
H. E.
, and
Woods
,
A. W.
,
1995
, “
Gravity-Driven Flows in Porous Layers
,”
J. Fluid Mech.
,
292
, pp.
55
69
.
168.
Pritchard
,
D.
,
Woods
,
A. W.
, and
Hogg
,
A. J.
,
2001
, “
On the Slow Draining of a Gravity Current Moving Through a Layered Permeable Medium
,”
J. Fluid Mech.
,
444
, pp.
23
47
.
169.
Gerritsen
,
M. G.
, and
Durlofsky
,
L. J.
,
2005
, “
Modeling Fluid Flow in Oil Reservoirs
,”
Annu. Rev. Fluid Mech.
,
37
, pp.
211
238
.
170.
Matson
,
G. P.
, and
Hogg
,
A. J.
,
2012
, “
Viscous Exchange Flows
,”
Phys. Fluids
,
24
(
2
), p.
023102
.
171.
Fink
,
J. H.
, and
Griffiths
,
R. W.
,
1990
, “
Radial Spreading of Viscous-Gravity Currents With Solidifying Crust
,”
J. Fluid Mech.
,
221
, pp.
485
509
.
You do not currently have access to this content.