Pelvic organ prolapse (POP) is an abnormality of the female pelvic anatomy due to events, such as multiple child births, menopause, and morbid obesity, which may lead to weakening of the pelvic floor striated muscles and smooth musculo-connective tissues. POP leads to dropping of the pelvic organs, namely, the bladder, uterus, and rectum into the vaginal canal and eventual protrusion, causing vaginal pain, pressure, difficulty emptying the bladder and rectum, and sexual dysfunction. Each year, close to 300,000 POP surgeries are performed in the U.S., out of which more than 60% of patients may face relapse conditions. A closer look into the problem reveals that POP surgery failures may be attributed mainly to the lack of understanding among medical practitioners on the mechanics of prolapse. In the literature, there have been attempts in the engineering community to understand prolapse using phenomenological computational modeling. This paper reviews the development and study of these numerical models, aimed at understanding the mechanics of POP. The various computational challenges related to geometry creation, material modeling, finite-element (FE) modeling, and boundary conditions (BCs) will be discussed and significant future research directions will also be highlighted in this review.

References

References
1.
Brubaker
,
L.
,
Bump
,
R.
,
Jacquetin
,
B.
,
Schuessler
,
B.
,
Weidner
,
A.
,
Zimmern
,
P.
, and
Milani
,
R.
,
2002
, “
Pelvic Organ Prolapse
,”
2nd International Consultation on Incontinence, Paris, July 1–3, 2001, Plymouth Distributors
, Plymouth, UK, pp.
243
265
.
2.
Jelovsek
,
J. E.
,
Maher
,
C.
, and
Barber
,
M. D.
,
2007
, “
Pelvic Organ Prolapse
,”
Lancet
,
369
(
9566
), pp.
1027
1038
.
3.
Kuncharapu
,
I.
,
Majeroni
,
B. A.
, and
Johnson
,
D. W.
,
2010
, “
Pelvic Organ Prolapse
,”
Am. Fam. Physician
,
81
(
9
), pp.
1111
1117
.
4.
Weber
,
A. M.
, and
Richter
,
H. E.
,
2005
, “
Pelvic Organ Prolapse
,”
Obstet. Gynecol.
,
106
(
3
), pp.
615
634
.
5.
White
,
G. R.
,
1909
, “
Cystocele
,”
South. Med. J.
,
2
(
12
), pp.
1707
1710
.
6.
Nygaard
,
I. E.
, and
Heit
,
M.
,
2004
, “
Stress Urinary Incontinence
,”
Obstet. Gynecol.
,
104
(
3
), pp.
607
620
.
7.
Felt-Bersma
,
R. J.
, and
Cuesta
,
M. A.
,
2001
, “
Rectal Prolapse, Rectal Intussusception, Rectocele, and Solitary Rectal Ulcer Syndrome
,”
Gastroenterol. Clin. North Am.
,
30
(
1
), pp.
199
222
.
8.
Doshani
,
A.
,
Teo
,
R. E.
,
Mayne
,
C. J.
, and
Tincello
,
D. G.
,
2007
, “
Uterine Prolapse
,”
BMJ
,
335
(
7624
), pp.
819
823
.
9.
Carey
,
M.
, and
Slack
,
M.
,
1993
, “
Vaginal Vault Prolapse
,”
Br. J. Hosp. Med.
,
51
(
8
), pp.
417
420
.
10.
Ashton-Miller
,
J. A.
, and
DeLancey
,
J.
,
2007
, “
Functional Anatomy of the Female Pelvic Floor
,”
Ann. N. Y. Acad. Sci.
,
1101
(
1
), pp.
266
296
.
11.
Allen
,
R.
,
Hosker
,
G.
,
Smith
,
A.
, and
Warrell
,
D.
,
1990
, “
Pelvic Floor Damage and Childbirth: A Neurophysiological Study
,”
BJOG: Int. J. Obstet. Gynaecol.
,
97
(
9
), pp.
770
779
.
12.
Dunivan
,
G. C.
,
Cichowski
,
S. B.
,
Komesu
,
Y. M.
,
Fairchild
,
P. S.
,
Anger
,
J. T.
, and
Rogers
,
R. G.
,
2014
, “
Ethnicity and Variations of Pelvic Organ Prolapse Bother
,”
Int. Urogynecology J.
,
25
(
1
), pp.
53
59
.
13.
Graham
,
C. A.
, and
Mallett
,
V. T.
,
2001
, “
Race as a Predictor of Urinary Incontinence and Pelvic Organ Prolapse
,”
Am. J. Obstet. Gynecol.
,
185
(
1
), pp.
116
120
.
14.
Camacho
,
D. L.
,
Hopper
,
R. H.
,
Lin
,
G. M.
, and
Myers
,
B. S.
,
1997
, “
An Improved Method for Finite Element Mesh Generation of Geometrically Complex Structures With Application to the Skullbase
,”
J. Biomech.
,
30
(
10
), pp.
1067
1070
.
15.
Chanda
,
A.
,
2014
, “
Pumping Potential of a Two-Layer Left-Ventricle-Like Flexible Matrix Composite (FMC) Structure
,” Master's thesis, Rochester Institute of Technology, Rochester, NY.
16.
Feola
,
A.
,
Pal
,
S.
,
Moalli
,
P.
,
Maiti
,
S.
, and
Abramowitch
,
S.
,
2013
, “
Varying Degrees of Nonlinear Mechanical Behavior Arising From Geometric Differences of Urogynecological Meshes
,”
ASME
Paper No. SBC2012-80227.
17.
Huiskes
,
R.
, and
Chao
,
E.
,
1983
, “
A Survey of Finite Element Analysis in Orthopedic Biomechanics: The First Decade
,”
J. Biomech.
,
16
(
6
), pp.
385
409
.
18.
Jenson
,
D.
, and
Unnikrishnan
,
V.
,
2014
, “
Energy Dissipation of Nanocomposite Based Helmets for Blast-Induced Traumatic Brain Injury Mitigation
,”
Compos. Struct.
,
121
, pp.
211
216
.
19.
Larrabee
,
W. F.
,
1986
, “
A Finite Element Model of Skin Deformation. I. Biomechanics of Skin and Soft Tissue: A Review
,”
Laryngoscope
,
96
(
4
), pp.
399
405
.
20.
Pal
,
S.
,
Thunes
,
J.
,
Moalli
,
P.
,
Abramowitch
,
S.
, and
Maiti
,
S.
,
2013
, “
A Continuum Material Model for Urogynecogical Meshes
,”
ASME
Paper No. SBC2013-14717.
21.
Richmond
,
B. G.
,
Wright
,
B. W.
,
Grosse
,
I.
,
Dechow
,
P. C.
,
Ross
,
C. F.
,
Spencer
,
M. A.
, and
Strait
,
D. S.
,
2005
, “
Finite Element Analysis in Functional Morphology
,”
Anat. Rec., Part A
,
283
(
2
), pp.
259
274
.
22.
Samani
,
A.
,
Bishop
,
J.
,
Yaffe
,
M. J.
, and
Plewes
,
D. B.
,
2001
, “
Biomechanical 3-D Finite Element Modeling of the Human Breast Using MRI Data
,”
IEEE Trans. Med. Imaging
,
20
(
4
), pp.
271
279
.
23.
Unnikrishnan
,
G. U.
,
2008
, “
Computational Modeling of Biological Cells and Soft Tissues
,” Ph.D. thesis, Texas A&M University, College Station, TX.
24.
Unnikrishnan
,
V.
,
Unnikrishnan
,
G.
, and
Reddy
,
J.
,
2010
, “
Multiscale Computational Analysis of Biomechanical Systems
,”
IUTAM
Symposium on Multi-Functional Material Structures and Systems
, Springer, Berlin, pp.
123
131
.
25.
Woo
,
S. L.-Y.
,
Abramowitch
,
S. D.
,
Kilger
,
R.
, and
Liang
,
R.
,
2006
, “
Biomechanics of Knee Ligaments: Injury, Healing, and Repair
,”
J. Biomech.
,
39
(
1
), pp.
1
20
.
26.
Yoganandan
,
N.
,
Kumaresan
,
S.
,
Voo
,
L.
, and
Pintar
,
F. A.
,
1996
, “
Finite Element Applications in Human Cervical Spine Modeling
,”
Spine
,
21
(
15
), pp.
1824
1834
.
27.
Feola
,
A. J.
,
2011
, “
Impact of Vaginal Synthetic Prolapse Meshes on the Mechanics of the Host Tissue Response
,” Ph.D. thesis, University of Pittsburgh, Pittsburgh, PA.
28.
Barone
,
W. R.
,
Amini
,
R.
,
Maiti
,
S.
,
Moalli
,
P.
, and
Abramowitch
,
S.
,
2013
, “
The Impact of Boundary Conditions on Surface Curvature Measurements of Polypropylene Mesh in Response to Uniaxial Loading
,”
ASME
Paper No. SBC2013-14598.
29.
Unnikrishnan
,
G. U.
,
Unnikrishnan
,
V. U.
,
Reddy
,
J. N.
, and
Lim
,
C. T.
,
2010
, “
Review on the Constitutive Models of Tumor Tissue for Computational Analysis
,”
ASME Appl. Mech. Rev.
,
63
(
4
), p.
040801
.
30.
Scheepers
,
F.
,
Parent
,
R. E.
,
Carlson
,
W. E.
, and
May
,
S. F.
,
1997
, “
Anatomy-Based Modeling of the Human Musculature
,” 24th Annual Conference on Computer Graphics and Interactive Techniques (
SIGGRAPH '97
), Los Angeles, Aug. 3-8, ACM Press/Addison-Wesley Publishing, New York, pp.
163
172
.
31.
Janda
,
S.
,
2006
, “
Biomechanics of the Pelvic Floor Musculature
,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
32.
Petros
,
P. E. P.
, and
Ulmsten
,
U. I.
,
1990
, “
An Integral Theory of Female Urinary Incontinence
,”
Acta Obstet. Gynecol. Scand.
,
69
(
S153
), pp.
7
31
.
33.
Pato
,
M. P. M.
, and
Areias
,
P.
,
2010
, “
Active and Passive Behaviors of Soft Tissues: Pelvic Floor Muscles
,”
Int. J. Numer. Methods Biomed. Eng.
,
26
(
6
), pp.
667
680
.
34.
Beck
,
J. J.
,
Elzevier
,
H. W.
,
Pelger
,
R.
,
Putter
,
H.
, and
Voorham-van der Zalm
,
P. J.
,
2009
, “
Multiple Pelvic Floor Complaints are Correlated With Sexual Abuse History
,”
J. Sex. Med.
,
6
(
1
), pp.
193
198
.
35.
Berti
,
G.
,
2004
, “
Image-Based Unstructured 3D Mesh Generation for Medical Applications
,”
European Congress on Computational Methods in Applied Sciences and Engineering
(
ECCOMAS 2004
), Jyväskylä, Finland, July 24–28.
36.
Betschart
,
C.
,
Kim
,
J.
,
Miller
,
J. M.
,
Ashton-Miller
,
J. A.
, and
DeLancey
,
J. O.
,
2014
, “
Comparison of Muscle Fiber Directions Between Different Levator Ani Muscle Subdivisions: In Vivo MRI Measurements in Women
,”
Int. Urogynecology J.
,
25
(
9
), pp.
1263
1268
.
37.
Brandao
,
S.
,
T.
Da Roza
,
Parente
,
M.
,
Ramos
,
I.
,
Mascarenhas
,
T.
, and
Natal Jorge
,
R. M.
,
2013
, “
Magnetic Resonance Imaging of the Pelvic Floor: From Clinical to Biomechanical Imaging
,”
Proc. Inst. Mech. Eng., Part H
,
227
(
12
), pp.
1324
1332
.
38.
Chen
,
L.
,
Ashton-Miller
,
J. A.
,
Hsu
,
Y.
, and
DeLancey
,
J.
,
2006
, “
Interaction Among Apical Support, Levator Ani Impairment, and Anterior Vaginal Wall Prolapse
,”
Obstet. Gynecol.
,
108
(
2
), pp.
324
332
.
39.
Da Roza
,
T.
,
Jorge
,
R. M. N.
,
Parente
,
M. P. L.
,
da Silva Tavares
,
J. M. R.
,
Saleme
,
C.
,
Barbosa
,
M.
,
Mascarenhas
,
T.
, and
Loureiro
,
J.
,
2009
, “
Geometric Analysis of Female Pelvic Floor Muscles by Using Manual Segmentation
,”
ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing
(VipIMAGE 2009-II), Porto, Portugal, Oct. 14–16.
40.
da Roza
,
T.
,
Parente
,
M.
,
Jorge
,
R. N.
,
Mascarenhas
,
T.
,
Loureiro
,
J.
, and
Duarte
,
S.
,
2011
, “
Analysis of the Contraction of the Pelvic Floor Through the Finite Element Method Considering Different Pathologies
,”
Technology Medical Science
, Taylor and Francis, London, pp.
39
42
.
41.
da Silva-Filho
,
A. L.
,
Martins
,
P. A.
,
Parente
,
M. P.
,
Saleme
,
C. S.
,
Roza
,
T.
,
Pinotti
,
M.
,
Mascarenhas
,
T.
, and
Jorge
,
R. M. N.
,
2010
, “
Translation of Biomechanics Research to Urogynecology
,”
Arch. Gynecol. Obstet.
,
282
(
2
), pp.
149
155
.
42.
d'Aulignac
,
D.
,
Martins
,
J.
, and
Pires
,
E.
,
2004
, “
Physical Modeling of the Pelvic Floor Muscles Using Shell Elements
,”
European Congress on Computational Methods in Applied Sciences and Engineering
(
ECCOMAS
2004), Jyväskylä, Finland, July 24–28.
43.
Hao
,
Z.
,
Wan
,
C.
,
Gao
,
X.
, and
Ji
,
T.
,
2011
, “
The Effect of Condition on the Biomechanics of a Human Pelvic Joint Under an Axial Compressive Load: A Three-Dimensional Finite Element Model
,”
ASME J. Biomech. Eng.
,
133
(
10
), p.
101006
.
44.
Lee
,
S.-L.
,
Horkaew
,
P.
,
Darzi
,
A.
, and
Yang
,
G.-Z.
,
2003
, “Optimal Scan Planning With Statistical Shape Modelling of the Levator Ani,” Medical Image Computing and Computer-Assisted Intervention—
MICCAI 2003
,
Springer
,
Berlin
, pp.
714
721
.
45.
Lee
,
S.-L.
,
Horkaew
,
P.
,
Darzi
,
A.
, and
Yang
,
G.-Z.
,
2004
, “Statistical Shape Modelling of the Levator Ani With Thickness Variation,” Medical Image Computing and Computer-Assisted Intervention—
MICCAI 2004
,
Springer
,
Berlin
, pp.
258
265
.
46.
Lee
,
S.-L.
,
Darzi
,
A.
, and
Yang
,
G.-Z.
,
2005
, “Subject Specific Finite Element Modelling of the Levator Ani,” Medical Image Computing and Computer-Assisted Intervention—
MICCAI 2005
,
Springer
,
Berlin
, pp.
360
367
.
47.
Lee
,
S.-L.
,
Horkaew
,
P.
,
Caspersz
,
W.
,
Darzi
,
A.
, and
Yang
,
G.-Z.
,
2005
, “
Assessment of Shape Variation of the Levator Ani With Optimal Scan Planning and Statistical Shape Modeling
,”
J. Comput. Assisted Tomogr.
,
29
(
2
), pp.
154
162
.
48.
Lee
,
S.-L.
,
Tan
,
E.
,
Khullar
,
V.
,
Gedroyc
,
W.
,
Darzi
,
A.
, and
Yang
,
G.-Z.
,
2009
, “
Physical-Based Statistical Shape Modeling of the Levator Ani
,”
IEEE Trans. Med. Imaging
,
28
(
6
), pp.
926
936
.
49.
Li
,
X.
,
Kruger
,
J. A.
,
Chung
,
J.-H.
,
Nash
,
M. P.
, and
Nielsen
,
P. M.
,
2008
, “
Modelling the Pelvic Floor for Investigating Difficulties During Childbirth
,”
Proc. SPIE
,
6916
, p.
69160V
.
50.
Li
,
X.
,
2011
, “
Modelling Levator Ani Mechanics During the Second Stage of Labour
,” Ph.D. thesis, The University of Auckland, Auckland, New Zealand.
51.
Lien
,
K.-C.
,
Mooney
,
B.
,
DeLancey
,
J. O.
, and
Ashton-Miller
,
J. A.
,
2004
, “
Levator Ani Muscle Stretch Induced by Simulated Vaginal Birth
,”
Obstet. Gynecol.
,
103
(
1
), pp.
31
40
.
52.
Marani
,
E.
, and
Koch
,
W. F.
,
2014
, “Concepts and Approaches in the Study of the Pelvis,”
The Pelvis
,
Springer
,
Berlin
, pp.
111
141
.
53.
Martins
,
P. A.
,
Jorge
,
R. M. N.
,
Ferreia
,
A. J.
,
Saleme
,
C. S.
,
Roza
,
T.
,
Parente
,
M. M.
,
Pinotti
,
M.
,
Mascarenhas
,
T.
,
Santos
,
A.
, and
Santos
,
L.
,
2010
, “
Vaginal Tissue Properties Versus Increased Intra-Abdominal Pressure: A Preliminary Biomechanical Study
,”
Gynecol. Obstet. Invest.
,
71
(
3
), pp.
145
150
.
54.
Nguyen
,
O. T.-M.
,
2012
, “
Characterizing the Muscle Architecture in Cadaveric Female Pelvic Floor Muscles
,” Master's thesis, University of California, San Diego.
55.
Noakes
,
K. F.
,
Bissett
,
I. P.
,
Pullan
,
A. J.
, and
Cheng
,
L. K.
,
2008
, “
Anatomically Realistic Three-Dimensional Meshes of the Pelvic Floor and Anal Canal for Finite Element Analysis
,”
Ann. Biomed. Eng.
,
36
(
6
), pp.
1060
1071
.
56.
Noakes
,
K. F.
,
Pullan
,
A. J.
,
Bissett
,
I. P.
, and
Cheng
,
L. K.
,
2008
, “
Subject Specific Finite Elasticity Simulations of the Pelvic Floor
,”
J. Biomech.
,
41
(
14
), pp.
3060
3065
.
57.
Parente
,
M. L.
,
Jorge
,
R. N.
,
Mascarenhas
,
T.
,
Fernandes
,
A.
, and
Martins
,
J.
,
2006
, “
The Biomechanical Behavior of the Pelvic Floor Muscles During a Vaginal Delivery
,”
III European Conference on Computational Mechanics
, Springer, Berlin, pp.
678
678
.
58.
Parente
,
M.
,
Jorge
,
R. N.
,
Mascarenhas
,
T.
,
Fernandes
,
A.
, and
Martins
,
J.
,
2008
, “
Deformation of the Pelvic Floor Muscles During a Vaginal Delivery
,”
Int. Urogynecology J.
,
19
(
1
), pp.
65
71
.
59.
Parente
,
M.
,
Jorge
,
R.
,
Mascarenhas
,
T.
,
Fernandes
,
A.
, and
Martins
,
J.
,
2009
, “
The Influence of an Occipito-Posterior Malposition on the Biomechanical Behavior of the Pelvic Floor
,”
Eur. J. Obstet. Gynecol. Reprod. Biol.
,
144
(Suppl. 1), pp.
S166
S169
.
60.
Parente
,
M.
,
Natal Jorge
,
R.
,
Mascarenhas
,
T.
,
Fernandes
,
A.
, and
Martins
,
J.
,
2009
, “
The Influence of the Material Properties on the Biomechanical Behavior of the Pelvic Floor Muscles During Vaginal Delivery
,”
J. Biomech.
,
42
(
9
), pp.
1301
1306
.
61.
Parente
,
M. P.
,
Jorge
,
R. M. N.
,
Mascarenhas
,
T.
, and
Silva-Filho
,
A. L.
,
2010
, “
The Influence of Pelvic Muscle Activation During Vaginal Delivery
,”
Obstet. Gynecol.
,
115
(
4
), pp.
804
808
.
62.
Pato
,
M.
, and
Areias
,
P.
,
2010
, “
Active and Passive Behaviors of Soft Tissues: Pelvic Floor Muscles
,”
Int. J. Numer. Methods Biomed. Eng.
,
26
(
6
), pp.
667
680
.
63.
Pu
,
F.
,
Jin
,
D.
,
Li
,
S.
,
Li
,
D.
,
Niu
,
H.
,
Yang
,
Y.
, and
Fan
,
Y.
,
2007
, “
Reconstruction of Three-Dimensional Model of Normal Female Pelvic Cavity Based on Magnetic Resonance Imaging
,” IEEE/ICME
International Conference on Complex Medical Engineering
(
CME 2007
), Beijing, China, May 23–27, pp.
732
735
.
64.
Roza
,
T.
,
Saleme
,
C. S.
,
Jorge
,
R. N.
,
Barbosa
,
M. P.
,
Parente
,
M.
,
Filho
,
A. L.
,
Mascarenhas
,
T.
, and
Loureiro
,
J.
,
2009
, “
Establishment of the Moment of Inertia of Female Pelvic Floor Muscles by Using Manual Segmentation
,”
7th EUROMECH Solid Mechanics Conference
(ESMC7), Lisbon, Portugal, Sept. 7–11.
65.
Saleme
,
C.
,
Parente
,
M.
,
Jorge
,
R. N.
,
Pinotti
,
M.
,
Silva-Filho
,
A.
,
Roza
,
T.
,
Mascarenhas
,
T.
, and
Tavares
,
J. M. R.
,
2011
, “
An Approach on Determining the Displacements of the Pelvic Floor During Voluntary Contraction Using Numerical Simulation and MRI
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
04
), pp.
365
370
.
66.
Tuttle
,
L. J.
,
Nguyen
,
O. T.
,
Cook
,
M. S.
,
Alperin
,
M.
,
Shah
,
S. B.
,
Ward
,
S. R.
, and
Lieber
,
R. L.
,
2014
, “
Architectural Design of the Pelvic Floor is Consistent With Muscle Functional Subspecialization
,”
Int. Urogynecology J.
,
25
(
2
), pp.
205
212
.
67.
Voorham-van der Zalm
,
P. J.
,
Lycklama Nijeholt
,
G. A.
,
Elzevier
,
H. W.
,
Putter
,
H.
, and
Pelger
,
R.
,
2008
, “
Diagnostic Investigation of the Pelvic Floor: A Helpful Tool in the Approach in Patients With Complaints of Micturition, Defecation, and/or Sexual Dysfunction
,”
J. Sex. Med.
,
5
(
4
), pp.
864
871
.
68.
Voorham-van der Zalm
,
P. J.
,
Voorham
,
J. C.
,
van den Bos
,
T. W.
,
Ouwerkerk
,
T. J.
,
Putter
,
H.
,
Wasser
,
M. N.
,
Webb
,
A.
,
DeRuiter
,
M. C.
, and
Pelger
,
R.
,
2013
, “
Reliability and Differentiation of Pelvic Floor Muscle Electromyography Measurements in Healthy Volunteers Using a New Device: The Multiple Array Probe Leiden (MAPLE)
,”
Neurourol. Urodyn.
,
32
(
4
), pp.
341
348
.
69.
Yan
,
X.
,
Kruger
,
J. A.
,
Nash
,
M. P.
, and
Nielsen
,
P. M.
,
2011
, “A Quantitative Description of Pelvic Floor Muscle Fibre Organisation,”
Computational Biomechanics for Medicine
,
Springer
,
Berlin
, pp.
119
130
.
70.
Fuchs
,
T. J.
, and
Buhmann
,
J. M.
,
2011
, “
Computational Pathology: Challenges and Promises for Tissue Analysis
,”
Comput. Med. Imaging Graphics
,
35
(
7
), pp.
515
530
.
71.
Louis
,
D. N.
,
Gerber
,
G. K.
,
Baron
,
J. M.
,
Bry
,
L.
,
Dighe
,
A. S.
,
Getz
,
G.
,
Higgins
,
J. M.
,
Kuo
,
F. C.
,
Lane
,
W. J.
, and
Michaelson
,
J. S.
,
2014
, “
Computational Pathology: An Emerging Definition
,”
Arch. Pathol. Lab. Med.
,
138
(
9
), pp.
1133
1138
.
72.
Bay
,
T.
,
Chen
,
Z.-W.
,
Raffin
,
R.
,
Daniel
,
M.
,
Joli
,
P.
,
Feng
,
Z.-Q.
, and
Bellemare
,
M.-E.
,
2012
, “
Geometric Modeling of Pelvic Organs With Thickness
,”
Proc. SPIE
,
8290
, p.
82900I
.
73.
Bhattarai
,
A.
,
Frotscher
,
R.
,
Sora
,
M.-C.
, and
Staat
,
M.
,
2014
, “
A 3D Finite Element Model of the Female Pelvic Floor for the Reconstruction of Urinary Incontinence
,”
Rev. Urol.
,
16
(
5
), pp.
S2
S10
.
74.
Chen
,
L.
,
2008
, “
Biomechanical Analyses of Anterior Vaginal Wall Prolapse: MR Imaging and Computer Modeling Studies
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
75.
Chen
,
L.
,
Ashton-Miller
,
J. A.
, and
DeLancey
,
J. O.
,
2009
, “
A 3D Finite Element Model of Anterior Vaginal Wall Support to Evaluate Mechanisms Underlying Cystocele Formation
,”
J. Biomech.
,
42
(
10
), pp.
1371
1377
.
76.
Chen
,
Z.
,
Joli
,
P.
, and
Feng
,
Z.-Q.
,
2011
, “
Finite Element Modeling of Interactions Between Pelvic Organs Due to Pressure
,” 10th National Symposium on Structural Design (CSMA 2011), Giens, France, May 9–13.
77.
Chen
,
Z.
,
Joli
,
P.
, and
Feng
,
Z.-Q.
,
2012
, “
Finite Element Modelling for the Study of Pelvic Organ Prolapse
,”
J. Biomech.
,
45
(
Suppl. 1
), p.
S66
.
78.
Chen
,
Z.-W.
,
Joli
,
P.
,
Feng
,
Z.-Q.
,
Rahim
,
M.
,
Pirro
,
N.
, and
Bellemare
,
M.-E.
,
2014
, “
Female Patient-Specific Finite Element Modeling of Pelvic Organ Prolapse (POP)
,”
J. Biomech.
,
48
(
2
), pp.
238
245
.
79.
Cheng
,
L. K.
,
Noakes
,
K. F.
,
Bissett
,
I. P.
, and
Pullan
,
A. J.
,
2007
, “
Anatomically Realistic Finite Element Simulations of Pelvic Floor Mechanics
,”
PAMM
,
7
(
1
), pp.
4020031
4020032
.
80.
Cosson
,
M.
,
Rubod
,
C.
,
Vallet
,
A.
,
Witz
,
J.
,
Dubois
,
P.
, and
Brieu
,
M.
,
2013
, “
Simulation of Normal Pelvic Mobilities in Building an MRI-Validated Biomechanical Model
,”
Int. Urogynecology J.
,
24
(
1
), pp.
105
112
.
81.
Cosson
,
M.
,
Rubod
,
C.
,
Vallet
,
A.
,
Witz
,
J.-F.
, and
Brieu
,
M.
,
2011
, “
Biomechanical Modeling of Pelvic Organ Mobility: Towards Personalized Medicine
,”
Bull. Acad. Natl. Med.
,
195
(
8
), pp.
1869
83
.
82.
d'Aulignac
,
D.
,
Martins
,
J.
,
Pires
,
E.
,
Mascarenhas
,
T.
, and
Jorge
,
R. N.
,
2005
, “
A Shell Finite Element Model of the Pelvic Floor Muscles
,”
Comput. Methods Biomech. Biomed. Eng.
,
8
(
5
), pp.
339
347
.
83.
Larson
,
K. A.
,
Hsu
,
Y.
,
Chen
,
L.
,
Ashton-Miller
,
J. A.
, and
DeLancey
,
J. O.
,
2010
, “
Magnetic Resonance Imaging-Based Three-Dimensional Model of Anterior Vaginal Wall Position at Rest and Maximal Strain in Women With and Without Prolapse
,”
Int. Urogynecology J.
,
21
(
9
), pp.
1103
1109
.
84.
Larson
,
K. A.
,
Luo
,
J.
,
Guire
,
K. E.
,
Chen
,
L.
,
Ashton-Miller
,
J. A.
, and
DeLancey
,
J. O.
,
2012
, “
3D Analysis of Cystoceles Using Magnetic Resonance Imaging Assessing Midline, Paravaginal, and Apical Defects
,”
Int. Urogynecology J.
,
23
(
3
), pp.
285
293
.
85.
Fielding
,
J. R.
,
Dumanli
,
H.
,
Schreyer
,
A. G.
,
Okuda
,
S.
,
Gering
,
D. T.
,
Zou
,
K. H.
,
Kikinis
,
R.
, and
Jolesz
,
F. A.
,
2000
, “
MR-Based Three-Dimensional Modeling of the Normal Pelvic Floor in Women: Quantification of Muscle Mass
,”
Am. J. Roentgenol.
,
174
(
3
), pp.
657
660
.
86.
Larson
,
K. A.
,
Luo
,
J.
,
Yousuf
,
A.
,
Ashton-Miller
,
J. A.
, and
Delancey
,
J. O.
,
2012
, “
Measurement of the 3D Geometry of the Fascial Arches in Women With a Unilateral Levator Defect and ‘Architectural Distortion’
,”
Int. Urogynecology J.
,
23
(
1
), pp.
57
63
.
87.
Lecomte-Grosbras
,
P.
,
Diallo
,
M. N.
,
Witz
,
J.-F.
,
Marchal
,
D.
,
Dequidt
,
J.
,
Cotin
,
S.
,
Cosson
,
M.
,
Duriez
,
C.
, and
Brieu
,
M.
,
2013
, “Towards a Better Understanding of Pelvic System Disorders Using Numerical Simulation,” Medical Image Computing and Computer-Assisted Intervention—
MICCAI 2013
,
Springer
,
Berlin
.
88.
Luo
,
J.
,
2012
, “
Biomechanical Analyses of Posterior Vaginal Prolapse: MR Imaging and Computer Modeling Studies
,” Ph.D. thesis, The University of Michigan, Ann Arbor, MI.
89.
Martins
,
J.
,
Pato
,
M.
,
Pires
,
E.
,
Jorge
,
R. N.
,
Parente
,
M.
, and
Mascarenhas
,
T.
,
2007
, “
Finite Element Studies of the Deformation of the Pelvic Floor
,”
Ann. N. Y. Acad. Sci.
,
1101
(
1
), pp.
316
334
.
90.
Mayeur
,
O.
,
Lamblin
,
G.
,
Lecomte-Grosbras
,
P.
,
Brieu
,
M.
,
Rubod
,
C.
, and
Cosson
,
M.
,
2014
, “FE Simulation for the Understanding of the Median Cystocele Prolapse Occurrence,”
Biomedical Simulation
,
Springer
,
Berlin
, pp.
220
227
.
91.
Noakes
,
K.
,
2007
, “
Anatomically Realistic Finite Element Models of the Pelvic Floor and Anal Canal: Towards Understanding the Mechanisms of Defaecation
,” Ph.D. thesis, University of Auckland, Auckland, New Zealand.
92.
Noakes
,
K. F.
,
Bissett
,
I. P.
,
Pullan
,
A. J.
, and
Cheng
,
L. K.
,
2006
, “
Anatomically Based Computational Models of the Male and Female Pelvic Floor and Anal Canal
,”
28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBS'06
), New York, Aug. 30–Sept. 3, pp.
3815
3818
.
93.
Ramanah
,
R.
,
Berger
,
M. B.
,
Chen
,
L.
,
Riethmuller
,
D.
, and
DeLancey
,
J. O.
,
2012
, “
See It in 3D!: Researchers Examined Structural Links Between the Cardinal and Uterosacral Ligaments
,”
Am. J. Obstet. Gynecol.
,
207
(
5
), pp.
437.e1
437.e7
.
94.
Rubod
,
C.
,
Boukerrou
,
M.
,
Rousseau
,
J.
,
Viard
,
R.
,
Brieu
,
M.
, and
Dubois
,
P.
,
2006
, “
A Biomechanical Model of the Pelvic Cavity: First Steps
,”
28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBS'06
), New York, Aug. 30–Sept. 3, pp.
968
971
.
95.
Singh
,
K.
,
Jakab
,
M.
,
Reid
,
W.
,
Berger
,
L. A.
, and
Hoyte
,
L.
,
2003
, “
Three-Dimensional Magnetic Resonance Imaging Assessment of Levator Ani Morphologic Features in Different Grades of Prolapse
,”
Am. J. Obstet. Gynecol.
,
188
(
4
), pp.
910
915
.
96.
Spirka
,
T.
,
Kenton
,
K.
,
Brubaker
,
L.
, and
Damaser
,
M.
,
2011
, “
Pathway to Finite Element Analysis of Stress Urinary Incontinence Mechanics
,”
ASME
Paper No. SBC2011-53050.
97.
Spirka
,
T. A.
,
2010
, “
Finite Element Modeling of Stress Urinary Incontinence Mechanics
,” Ph.D. thesis, Cleveland State University, Cleveland, OH.
98.
Li
,
D.
, and
Guo
,
M.
,
2007
, “
Morphology of the Levator Ani Muscle
,”
Dis. Colon Rectum
,
50
(
11
), pp.
1831
1839
.
99.
Baiamonte
,
T.
,
Abbate
,
M.
,
Pizzarello
,
F.
,
Lozada
,
J.
, and
James
,
R.
,
1995
, “
The Experimental Verification of the Efficacy of Finite Element Modeling to Dental Implant Systems
,”
J. Oral Implantol.
,
22
(
2
), pp.
104
110
.
100.
Bro-Nielsen
,
M.
,
1998
, “
Finite Element Modeling in Surgery Simulation
,”
Proc. IEEE
,
86
(
3
), pp.
490
503
.
101.
Conte
,
V.
,
Munoz
,
J. J.
, and
Miodownik
,
M.
,
2008
, “
A 3D Finite Element Model of Ventral Furrow Invagination in the Drosophila melanogaster Embryo
,”
J. Mech. Behave. Biomed. Mater.
,
1
(
2
), pp.
188
198
.
102.
Diller
,
K.
, and
Hayes
,
L.
,
1983
, “
A Finite Element Model of Burn Injury in Blood-Perused Skin
,”
ASME J. Biomech. Eng.
,
105
(
3
), pp.
300
307
.
103.
Dumont
,
E. R.
,
Piccirillo
,
J.
, and
Grosse
,
I. R.
,
2005
, “
Finite Element Analysis of Biting Behavior and Bone Stress in the Facial Skeletons of Bats
,”
Anat. Rec. Part A
,
283
(
2
), pp.
319
330
.
104.
Gan
,
R. Z.
,
Feng
,
B.
, and
Sun
,
Q.
,
2004
, “
Three-Dimensional Finite Element Modeling of Human Ear for Sound Transmission
,”
Ann. Biomed. Eng.
,
32
(
6
), pp.
847
859
.
105.
Korioth
,
T.
, and
Versluis
,
A.
,
1997
, “
Modeling the Mechanical Behavior of the Jaws and Their Related Structures by Finite Element (FE) Analysis
,”
Crit. Rev. Oral Biol. Med.
,
8
(
1
), pp.
90
104
.
106.
Kunzelman
,
K.
,
Cochran
,
R.
,
Chuong
,
C.
,
Ring
,
W.
,
Verrier
,
E.
, and
Eberhart
,
R.
,
1993
, “
Finite Element Analysis of the Mitral Valve
,”
J. Heart Valve Disease
,
2
(
3
), pp.
326
340
.
107.
Oomens
,
C.
,
Maenhout
,
M.
,
Van Oijen
,
C.
,
Drost
,
M.
, and
Baaijens
,
F.
,
2003
, “
Finite Element Modelling of Contracting Skeletal Muscle
,”
Philos. Trans. R. Soc. London
, Ser. B,
358
(
1437
), pp.
1453
1460
.
108.
Peña
,
A.
,
Bolton
,
M. D.
,
Whitehouse
,
H.
, and
Pickard
,
J. D.
,
1999
, “
Effects of Brain Ventricular Shape on Periventricular Biomechanics: A Finite Element Analysis
,”
Neurosurgery
,
45
(
1
), pp.
107
116
.
109.
Prendergast
,
P.
,
1997
, “
Finite Element Models in Tissue Mechanics and Orthopaedic Implant Design
,”
Clin. Biomech.
,
12
(
6
), pp.
343
366
.
110.
Taylor
,
C. A.
,
Hughes
,
T. J.
, and
Zarins
,
C. K.
,
1998
, “
Finite Element Modeling of Blood Flow in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
158
(
1
), pp.
155
196
.
111.
Wang
,
W.
, and
Eisenberg
,
S. R.
,
1994
, “
A Three-Dimensional Finite Element Method for Computing Magnetically Induced Currents in Tissues
,”
IEEE Trans. Magn.
,
30
(
6
), pp.
5015
5023
.
112.
Unnikrishnan
,
G. U.
,
Unnikrishnan
,
V. U.
, and
Reddy
,
J. N.
,
2012
, “
Finite Element Model for Nutrient Distribution Analysis of a Hollow Fiber Membrane Bioreactor
,”
Int. J. Numer. Methods Biomed. Eng.
,
28
(
2
), pp.
229
238
.
113.
Unnikrishnan
,
G. U.
,
Unnikrishnan
,
V. U.
, and
Reddy
,
J. N.
,
2009
, “
Tissue–Fluid Interface Analysis Using Biphasic Finite Element Method
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
2
), pp.
165
172
.
114.
Unnikrishnan
,
G. U.
,
Unnikrishnan
,
V. U.
, and
Reddy
,
J. N.
,
2007
, “
Constitutive Material Modeling of Cell: A Micromechanics Approach
,”
ASME J. Biomech. Eng.
,
129
(
3
), pp.
315
323
.
115.
Cheng
,
I.
,
Firouzmanesh
,
A.
,
Leleve
,
A.
,
Shen
,
R.
,
Moreau
,
R.
,
Brizzi
,
V.
,
Pham
,
M.-T.
,
Redarce
,
T.
,
Lermusiaux
,
P.
, and
Basu
,
A.
,
2012
, “
Enhanced Segmentation and Skeletonization for Endovascular Surgical Planning
,”
Proc. SPIE
,
8316
, p.
83162W
.
116.
Harandi
,
N. M.
,
Abugharbieh
,
R.
, and
Fels
,
S.
,
2004
, Minimally Interactive MRI Segmentation for Subject-Specific Modelling of the Tongue,
Bio-Imaging and Visualization for Patient-Customized Simulations
,
Springer
,
Berlin
, pp.
53
64
.
117.
Khalvati
,
F.
,
Gallego-Ortiz
,
C.
,
Balasingham
,
S.
, and
Martel
,
A.
,
2015
, “
Automated Segmentation of Breast in 3-D MR Images Using a Robust Atlas
,”
IEEE Trans. Med. Imaging
,
34
(1), pp.
116
125
.
118.
Top
,
A.
,
Hamarneh
,
G.
, and
Abugharbieh
,
R.
,
2011
, Active Learning for Interactive 3D Image Segmentation, Medical Image Computing and Computer-Assisted Intervention—
MICCAI 2011
,
Springer
,
Berlin
, pp.
603
610
.
119.
Parikh
,
M.
,
Rasmussen
,
M.
,
Brubaker
,
L.
,
Salomon
,
C.
,
Sakamoto
,
K.
,
Evenhouse
,
R.
,
Ai
,
Z.
, and
Damaser
,
M. S.
,
2004
, “
Three Dimensional Virtual Reality Model of the Normal Female Pelvic Floor
,”
Ann. Biomed. Eng.
,
32
(
2
), pp.
292
296
.
120.
Chen
,
L.
,
Hsu
,
Y.
,
Ashton-Miller
,
J.
, and
DeLancey
,
J.
,
2006
, “
Measurement of the Pubic Portion of the Levator Ani Muscle in Women With Unilateral Defects in 3-D Models From MR Images
,”
Int. J. Gynecol. Obstet.
,
92
(
3
), pp.
234
241
.
121.
Saleme
,
C. S.
,
Rocha
,
D. N.
,
Del Vecchio
,
S.
,
da Silva Filho
,
A. L.
, and
Pinotti
,
M.
,
2007
, “
Development of a Device to Measure Multidirectional Isometric Pelvic Floor Strength
,”
19th International Congress of Mechanical Engineering
(COBEM 2007), Brasilia, Brazil, Nov. 5–9.
122.
Humphrey
,
J.
, and
Yin
,
F.
,
1987
, “
On Constitutive Relations and Finite Deformations of Passive Cardiac Tissue: I. A Pseudostrain-Energy Function
,”
ASME J. Biomech. Eng.
,
109
(
4
), pp.
298
304
.
123.
Machairiotis
,
N.
,
Tourountous
,
I.
,
Karamperis
,
A.
,
Zarogoulidis
,
P.
,
Oikonomou
,
A.
,
Theodoros
,
R.
,
Palouki
,
P.
,
Hohenforst-Schmidt
,
W.
,
Zissimopoulos
,
A.
, and
Machairiotis
,
C.
,
2013
, “
Postpartum Vaginal Cystic Lesions: Everyday Practice or a Differential Diagnosis Challenge?
,”
Eur. J. Med. Res.
,
18
(
1
), pp.
20
25
.
124.
Hsu
,
Y.
,
Chen
,
L.
,
Delancey
,
J. O.
, and
Ashton-Miller
,
J. A.
,
2005
, “
Vaginal Thickness, Cross-Sectional Area, and Perimeter in Women With and Those Without Prolapse
,”
Obstet. Gynecol.
,
105
(
5 Pt. 1
), pp.
1012
1017
.
125.
Luo
,
J.
,
Betschart
,
C.
,
Chen
,
L.
,
Ashton-Miller
,
J. A.
, and
DeLancey
,
J. O.
,
2014
, “
Using Stress MRI to Analyze the 3D Changes in Apical Ligament Geometry From Rest to Maximal Valsalva: A Pilot Study
,”
Int. Urogynecology J.
,
25
(
2
), pp.
197
203
.
126.
Spirka
,
T.
,
Kenton
,
K.
,
Brubaker
,
L.
, and
Damaser
,
M. S.
,
2013
, “
Effect of Material Properties on Predicted Vesical Pressure During a Cough in a Simplified Computational Model of the Bladder and Urethra
,”
Ann. Biomed. Eng.
,
41
(
1
), pp.
185
194
.
127.
Spirka
,
T.
,
Kenton
,
K.
,
Butler
,
R. S.
,
Damaser
,
M. S.
, and
Brubaker
,
L.
,
2008
, “
Biomechanical Relationships Between Urodynamic Pressures During Cough and Valsalva in Normal and Stress Incontinent Women
,”
Neurourology and Urodynamics
, Vol.
27
,
Wiley
,
New York
, pp.
139
140
.
128.
Rubod
,
C.
,
Lecomte-Grosbras
,
P.
,
Brieu
,
M.
,
Giraudet
,
G.
,
Betrouni
,
N.
, and
Cosson
,
M.
,
2013
, “
3D Simulation of Pelvic System Numerical Simulation for a Better Understanding of the Contribution of the Uterine Ligaments
,”
Int. Urogynecology J.
,
24
(
12
), pp.
2093
2098
.
129.
Petros
,
P.
,
2004
,
The Female Pelvic Floor: Function, Dysfunction and Management According to the Integral Theory; With 3 Tables
,
Springer
,
Berlin
.
130.
Petros
,
P. E. P.
,
2011
,
The Female Pelvic Floor: Function, Dysfunction and Management According to the Integral Theory
,
Springer
,
Berlin
.
131.
Chen
,
L.
,
Ramanah
,
R.
,
Hsu
,
Y.
,
Ashton-Miller
,
J. A.
, and
DeLancey
,
J. O.
,
2013
, “
Cardinal and Deep Uterosacral Ligament Lines of Action: MRI Based 3D Technique Development and Preliminary Findings in Normal Women
,”
Int. Urogynecology J.
,
24
(
1
), pp.
37
45
.
132.
Bartscht
,
K. D.
, and
DeLancey
,
J.
,
1988
, “
A Technique to Study the Passive Supports of the Uterus
,”
Obstet. Gynecol.
,
72
(
6
), pp.
940
943
.
133.
Yamada
,
H.
, and
Evans
,
F.
,
1970
,
Strength of Biological Materials
,
Williams & Wilkins
,
Baltimore, MD
.
134.
Chantereau
,
P.
,
Brieu
,
M.
,
Kammal
,
M.
,
Farthmann
,
J.
,
Gabriel
,
B.
, and
Cosson
,
M.
,
2014
, “
Mechanical Properties of Pelvic Soft Tissue of Young Women and Impact of Aging
,”
Int. Urogynecology J.
,
25
(
11
), pp.
1547
1553
.
135.
Green
,
T.
, Jr.
,
1975
, “
Urinary Stress Incontinence: Differential Diagnosis, Pathophysiology, and Management
,”
Am. J. Obstet. Gynecol.
,
122
(
3
), pp.
368
400
.
136.
Rogers
,
R. G.
,
2008
, “
Urinary Stress Incontinence in Women
,”
N. Engl. J. Med.
,
358
(
10
), pp.
1029
1036
.
137.
Haslam
,
J.
,
2003
, “
Stress Urinary Incontinence
,”
Primary Health Care
,
13
(
4
), pp.
43
49
.
138.
Laycock
,
J.
,
2008
,
Stress Urinary Incontinence
,
Springer
,
London
, pp.
221
227
.
139.
McGuire
,
E. J.
,
Lytton
,
B.
,
Pepe
,
V.
, and
Kohorn
,
E. I.
,
1976
, “
Stress Urinary Incontinence
,”
Obstet. Gynecol.
,
47
(
3
), pp.
255
264
.
140.
Bai
,
S.
,
Jeon
,
M.
,
Kim
,
J.
,
Chung
,
K.
,
Kim
,
S.
, and
Park
,
K.
,
2002
, “
Relationship Between Stress Urinary Incontinence and Pelvic Organ Prolapse
,”
Int. Urogynecology J.
,
13
(
4
), pp.
256
260
.
141.
Gardy
,
M.
,
Kozminski
,
M.
,
DeLancey
,
J.
,
Elkins
,
T.
, and
McGuire
,
E.
,
1991
, “
Stress Incontinence and Cystoceles
,”
J. Urol.
,
145
(
6
), pp.
1211
1213
.
142.
DeLancey
,
J. O.
,
Miller
,
J. M.
,
Kearney
,
R.
,
Howard
,
D.
,
Reddy
,
P.
,
Umek
,
W.
,
Guire
,
K. E.
,
Margulies
,
R. U.
, and
Ashton-Miller
,
J. A.
,
2007
, “
Vaginal Birth and De Novo Stress Incontinence: Relative Contributions of Urethral Dysfunction and Mobility
,”
Obstet. Gynecol.
,
110
(
2 Pt. 1
), pp.
354
362
.
143.
Reddy
,
P.
,
2010
, “
Stress Urinary Incontinence
,”
Obstetrics and Gynecology for Postgraduates
, Vol.
2
,
P. K.
Sabaratnam Arulkumaran
, and
S.
Gopalan
, eds.,
Stosius Inc/Advent Books
,
Beverly Hills, CA
, p.
11
.
144.
Rortveit
,
G.
,
Daltveit
,
A. K.
,
Hannestad
,
Y. S.
, and
Hunskaar
,
S.
,
2003
, “
Urinary Incontinence After Vaginal Delivery or Cesarean Section
,”
N. Engl. J. Med.
,
348
(
10
), pp.
900
907
.
145.
Zhang
,
Y.
,
Kim
,
S.
,
Erdman
,
A. G.
,
Roberts
,
K. P.
, and
Timm
,
G. W.
,
2009
, “
Feasibility of Using a Computer Modeling Approach to Study SUI Induced by Landing a Jump
,”
Ann. Biomed. Eng.
,
37
(
7
), pp.
1425
1433
.
146.
Zhang
,
Y.
,
Sweet
,
R. M.
,
Metzger
,
G. J.
,
Burke
,
D.
,
Erdman
,
A. G.
, and
Timm
,
G. W.
,
2009
, “
Advanced Finite Element Mesh Model of Female SUI Research During Physical and Daily Activities
,”
Stud. Health Technol. Inf.
,
142
(1), pp.
447
452
.
147.
Bastiaanssen
,
E.
,
Van Leeuwen
,
J.
,
Vanderschoot
,
J.
, and
Redert
,
P.
,
1996
, “
A Myocybernetic Model of the Lower Urinary Tract
,”
J. Theor. Biol.
,
178
(
2
), pp.
113
133
.
148.
Bastiaanssen
,
E.
,
Vanderschoot
,
J.
, and
J.
Van Leeuwen
,
1996
, “
State-Space Analysis of a Myocybernetic Model of the Lower Urinary Tract
,”
J. Theor. Biol.
,
180
(
3
), pp.
215
227
.
149.
Damaser
,
M. S.
, and
Lehman
,
S. L.
,
1995
, “
The Effect of Urinary Bladder Shape on Its Mechanics During Filling
,”
J. Biomech.
,
28
(
6
), pp.
725
732
.
150.
Hosein
,
R. A.
, and
Griffiths
,
D. J.
,
1990
, “
Computer Simulation of the Neural Control of Bladder and Urethra
,”
Neurourol. Urodyn.
,
9
(
6
), pp.
601
618
.
151.
Regnier
,
C. H.
,
Kolsky
,
H.
,
Richardson
,
P. D.
,
Ghoniem
,
G. M.
, and
Susset
,
J. G.
,
1983
, “
The Elastic Behavior of the Urinary Bladder for Large Deformations
,”
J. Biomech.
,
16
(
11
), pp.
915
922
.
152.
Torzen
,
A.
,
1986
, “
Assessment of Fiber Strength in a Urinary Bladder by Using Experimental Pressure Volume Curves: An Analytical Method
,”
ASME J. Biomech. Eng.
,
108
(4), pp.
301
305
.
153.
Haridas
,
B.
,
Hong
,
H.
,
Minoguchi
,
R.
,
Owens
,
S.
, and
Osborn
,
T.
,
2006
, “
PelvicSim—A Computational-Experimental System for Biomechanical Evaluation of Female Pelvic Floor Organ Disorders and Associated Minimally Invasive Interventions
,”
Stud. Health Technol. Inf.
,
119
, pp.
182
187
.
154.
Yamada
,
H.
,
1970
, Strength of Biological Materials, F. G. Evans, ed., Williams & Wilkens, Baltimore, MD.
155.
Weber
,
A. M.
,
Walters
,
M. D.
,
Ballard
,
L. A.
,
Booher
,
D. L.
, and
Piedmonte
,
M. R.
,
1998
, “
Posterior Vaginal Prolapse and Bowel Function
,”
Am. J. Obstet. Gynecol.
,
179
(
6
), pp.
1446
1450
.
156.
Parks
,
A.
,
Porter
,
N.
, and
Hardcastle
,
J.
,
1966
, “
The Syndrome of the Descending Perineum
,”
Proc. R. Soc. Med.
,
59
(
6
), pp.
477
482
.
157.
Henry
,
M.
,
Parks
,
A.
, and
Swash
,
M.
,
1982
, “
The Pelvic Floor Musculature in the Descending Perineum Syndrome
,”
Br. J. Surg.
,
69
(
8
), pp.
470
472
.
158.
Bristow
,
R. E.
,
del Carmen
,
M. G.
,
Kaufman
,
H. S.
, and
Montz
,
F. J.
,
2003
, “
Radical Oophorectomy With Primary Stapled Colorectal Anastomosis for Resection of Locally Advanced Epithelial Ovarian Cancer
,”
J. Am. Coll. Surg
,
197
(
4
), pp.
565
574
.
159.
Comiter
,
C. V.
,
Vasavada
,
S. P.
,
Barbaric
,
Z. L.
,
Gousse
,
A. E.
, and
Raz
,
S.
,
1999
, “
Grading Pelvic Prolapse and Pelvic Floor Relaxation Using Dynamic Magnetic Resonance Imaging
,”
Urology
,
54
(
3
), pp.
454
457
.
160.
Gousse
,
A. E.
,
Barbaric
,
Z. L.
,
Safir
,
M. H.
,
Madjar
,
S.
,
Marumoto
,
A. K.
, and
Raz
,
S.
,
2000
, “
Dynamic Half Fourier Acquisition, Single Shot Turbo Spin-Echo Magnetic Resonance Imaging for Evaluating the Female Pelvis
,”
J. Urol.
,
164
(
5
), pp.
1606
1613
.
161.
Kelvin
,
F.
, and
Maglinte
,
D.
,
1997
, “
Dynamic Cystoproctography of Female Pelvic Floor Defects and Their Interrelationships
,”
Am. J. Roentgenol.
,
169
(
3
), pp.
769
774
.
162.
Kester
,
R. R.
,
Leboeuf
,
L.
,
Amendola
,
M. A.
,
Kim
,
S. S.
,
Benoit
,
A.
, and
Gousse
,
A. E.
,
2003
, “
Value of Express T2—Weighted Pelvic MRI in the Preoperative Evaluation of Severe Pelvic Floor Prolapse: A Prospective Study
,”
Urology
,
61
(
6
), pp.
1135
1139
.
163.
Lewicky-Gaupp
,
C.
,
Yousuf
,
A.
,
Larson
,
K. A.
,
Fenner
,
D. E.
, and
Delancey
,
J. O.
,
2010
, “
Structural Position of the Posterior Vagina and Pelvic Floor in Women With and Without Posterior Vaginal Prolapse
,”
Am. J. Obstet. Gynecol.
,
202
(
5
), pp.
497.e1
497.e6
.
164.
Milani
,
R.
,
Salvatore
,
S.
,
Soligo
,
M.
,
Pifarotti
,
P.
,
Meschia
,
M.
, and
Cortese
,
M.
,
2005
, “
Functional and Anatomical Outcome of Anterior and Posterior Vaginal Prolapse Repair With Prolene Mesh
,”
BJOG: Int. J. Obstet. Gynaecol.
,
112
(
1
), pp.
107
111
.
165.
Miller
,
D.
,
Milani
,
A. L.
,
Sutherland
,
S. E.
,
Navin
,
B.
, and
Rogers
,
R. G.
,
2012
, “
Informed Surgical Consent for a Mesh/Graft-Augmented Vaginal Repair of Pelvic Organ Prolapse
,”
Int. Urogynecology J.
,
23
(
1
), pp.
33
42
.
166.
Withagen
,
M.
,
Milani
,
A.
,
De Leeuw
,
J.
, and
Vierhout
,
M.
,
2012
, “
Development of De Novo Prolapse in Untreated Vaginal Compartments After Prolapse Repair With and Without Mesh: A Secondary Analysis of a Randomised Controlled Trial
,”
BJOG: Int. J. Obstet. Gynaecol.
,
119
(
3
), pp.
354
360
.
167.
Dannecker
,
C.
, and
Anthuber
,
C.
,
2000
, “
The Effects of Childbirth on the Pelvic-Floor
,”
J. Perinat. Med.
,
28
(
3
), pp.
175
184
.
168.
DeLancey
,
J. O.
,
1993
, “
Childbirth, Continence, and the Pelvic Floor
,”
N. Engl. J. Med.
,
329
(
26
), pp.
1956
1957
.
169.
Dietz
,
H.
, and
Wilson
,
P.
,
2005
, “
Childbirth and Pelvic Floor Trauma
,”
Best Pract. Res. Clin. Obstet. Gynaecol.
,
19
(
6
), pp.
913
924
.
170.
Dietz
,
H. P.
, and
Bennett
,
M.
,
2003
, “
The Effect of Childbirth on Pelvic Organ Mobility
,”
Obstet. Gynecol.
,
102
(
2
), pp.
223
228
.
171.
Dietz
,
H. P.
, and
Lanzarone
,
V.
,
2005
, “
Levator Trauma After Vaginal Delivery
,”
Obstet. Gynecol.
,
106
(
4
), pp.
707
712
.
172.
Gregory
,
W. T.
, and
Nygaard
,
I.
,
2004
, “
Childbirth and Pelvic Floor Disorders
,”
Clin. Obstet. Gynecol.
,
47
(
2
), pp.
394
403
.
173.
Handa
,
V. L.
,
Blomquist
,
J. L.
,
McDermott
,
K. C.
,
Friedman
,
S.
, and
Munoz
,
A.
,
2012
, “
Pelvic Floor Disorders After Childbirth: Effect of Episiotomy, Perineal Laceration, and Operative Birth
,”
Obstet. Gynecol.
,
119
(
2 Pt. 1
), pp.
233
239
.
174.
Meyer
,
S.
,
Schreyer
,
A.
,
De Grandi
,
P.
, and
Hohlfeld
,
P.
,
1998
, “
The Effects of Birth on Urinary Continence Mechanisms and Other Pelvic-Floor Characteristics
,”
Obstet. Gynecol.
,
92
(
4 Pt. 1
), pp.
613
618
.
175.
Peschers
,
U. M.
,
Schaer
,
G. N.
,
DeLancey
,
J. O.
, and
Schuessler
,
B.
,
1997
, “
Levator Ani Function Before and After Childbirth
,”
BJOG: Int. J. Obstet. Gynaecol.
,
104
(
9
), pp.
1004
1008
.
176.
Phillips
,
C.
, and
Monga
,
A.
,
2005
, “
Childbirth and the Pelvic Floor: The Gynaecological Consequences
,”
Rev. Gynaecol. Pract.
,
5
(
1
), pp.
15
22
.
177.
Sampselle
,
C. M.
,
1990
, “
Changes in Pelvic Muscle Strength and Stress Urinary Incontinence Associated With Childbirth
,”
J. Obstet., Gynecol., Neonat. Nurs.
,
19
(
5
), pp.
371
380
.
178.
Sato
,
T.
,
Konishi
,
F.
,
Minakami
,
H.
,
Nakatsubo
,
N.
,
Kanazawa
,
K.
,
Sato
,
I.
,
Itoh
,
K.
, and
Nagai
,
H.
,
2001
, “
Pelvic Floor Disturbance After Childbirth
,”
Dis. Colon Rectum
,
44
(
8
), pp.
1155
1161
.
179.
Snooks
,
S.
,
Henry
,
M.
, and
Swash
,
M.
,
1985
, “
Faecal Incontinence Due to External Anal Sphincter Division in Childbirth is Associated With Damage to the Innervation of the Pelvic Floor Musculature: A Double Pathology
,”
BJOG: Int. J. Obstet. Gynaecol.
,
92
(
8
), pp.
824
828
.
180.
Snooks
,
S.
,
Swash
,
M.
,
Henry
,
M.
, and
Setchell
,
M.
,
1986
, “
Risk Factors in Childbirth Causing Damage to the Pelvic Floor Innervation
,”
Int. J. Colorectal Dis.
,
1
(
1
), pp.
20
24
.
181.
Snooks
,
S.
,
Swash
,
M.
,
Setchell
,
M.
, and
Henry
,
M.
,
1984
, “
Injury to Innervation of Pelvic Floor Sphincter Musculature in Childbirth
,”
Lancet
,
324
(
8402
), pp.
546
550
.
182.
Sze
,
E. H.
,
Sherard
,
G. B.
, III
, and
Dolezal
,
J. M.
,
2002
, “
Pregnancy, Labor, Delivery, and Pelvic Organ Prolapse
,”
Obstet. Gynecol.
,
100
(
5 Pt. 1
), pp.
981
986
.
183.
Ashton-Miller
,
J. A.
, and
DeLancey
,
J. O.
,
2009
, “
On the Biomechanics of Vaginal Birth and Common Sequelae
,”
Annu. Rev. Biomed. Eng.
,
11
, pp.
163
176
.
184.
Bailet
,
M.
,
Zara
,
F.
, and
Promayon
,
E.
,
2014
, “
Biomechanical Model of the Fetal Head for Interactive Childbirth Simulation
,” Surgetica Conference (SURGETICA'2014), Chambéry, France, Dec. 3-5.
185.
Bylski
,
D. I.
,
Kriewall
,
T. J.
,
Akkas
,
N.
, and
Melvin
,
J. W.
,
1986
, “
Mechanical Behavior of Fetal Dura Mater Under Large Deformation Biaxial Tension
,”
J. Biomech.
,
19
(
1
), pp.
19
26
.
186.
Hoyte
,
L.
,
Damaser
,
M. S.
,
Warfield
,
S. K.
,
Chukkapalli
,
G.
,
Majumdar
,
A.
,
Choi
,
D. J.
,
Trivedi
,
A.
, and
Krysl
,
P.
,
2008
, “
Quantity and Distribution of Levator Ani Stretch During Simulated Vaginal Childbirth
,”
Am. J. Obstet. Gynecol.
,
199
(
2
), pp.
198.e1
198.e5
.
187.
Jing
,
D.
,
Ashton-Miller
,
J. A.
, and
DeLancey
,
J. O.
,
2012
, “
A Subject-Specific Anisotropic Visco-Hyperelastic Finite Element Model of Female Pelvic Floor Stress and Strain During the Second Stage of Labor
,”
J. Biomech.
,
45
(
3
), pp.
455
460
.
188.
Kim
,
J.
,
2013
, “
On the Mechanism of Levator Ani Muscle Injury During Vaginal Birth
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
189.
Kriewall
,
T. J.
,
McPherson
,
G. K.
, and
Tsai
,
A. C.
,
1981
, “
Bending Properties and Ash Content of Fetal Cranial Bone
,”
J. Biomech.
,
14
(
2
), pp.
73
79
.
190.
Lapeer
,
R.
, and
Prager
,
R.
,
2001
, “
Fetal Head Moulding: Finite Element Analysis of a Fetal Skull Subjected to Uterine Pressures During the First Stage of Labour
,”
J. Biomech.
,
34
(
9
), pp.
1125
1133
.
191.
Lapeer
,
R.
, and
Prager
,
R. W.
,
1999
, “
Finite Element Model of a Fetal Skull Subjected to Labour Forces
,” Medical Image Computing and Computer-Assisted Intervention—
MICCAI'99
,
Springer
,
Berlin
, pp.
1143
1155
.
192.
Li
,
X.
,
Kruger
,
J. A.
,
Chung
,
J.-H.
,
Nielsen
,
P. M.
, and
Nash
,
M. P.
,
2007
, “
Investigating Difficulties During Childbirth Using Anatomically Based Pelvic Floor Models
,” Medical Sciences Congress, Queenstown, New Zealand, Nov. 27–30.
193.
Li
,
X.
,
Kruger
,
J. A.
,
Nash
,
M. P.
, and
Nielsen
,
P. M.
,
2010
, “
Modeling Childbirth: Elucidating the Mechanisms of Labor
,”
Wiley Interdiscip. Rev.: Syst. Biol. Med.
,
2
(
4
), pp.
460
470
.
194.
Li
,
X.
,
Kruger
,
J. A.
,
Nash
,
M. P.
, and
Nielsen
,
P. M.
,
2011
, “
Anisotropic Effects of the Levator Ani Muscle During Childbirth
,”
Biomech. Model. Mechanobiol.
,
10
(
4
), pp.
485
494
.
195.
Li
,
Z.
,
Luo
,
X.
, and
Zhang
,
J.
,
2013
, “
Development/Global Validation of a 6-Month-Old Pediatric Head Finite Element Model and Application in Investigation of Drop-Induced Infant Head Injury
,”
Comput. Methods Programs Biomed.
,
112
(
3
), pp.
309
319
.
196.
Lien
,
K.-C.
,
Morgan
,
D. M.
,
Delancey
,
J. O.
, and
Ashton-Miller
,
J. A.
,
2005
, “
Pudendal Nerve Stretch During Vaginal Birth: A 3D Computer Simulation
,”
Am. J. Obstet. Gynecol.
,
192
(
5
), pp.
1669
1676
.
197.
Li
,
X.
,
Kruger
,
J. A.
,
Chung
,
J.-H.
,
Nash
,
M. P.
, and
Nielsen
,
P. M.
,
2008
, “Modelling Childbirth: Comparing Athlete and Non-Athlete Pelvic Floor Mechanics,” Medical Image Computing and Computer-Assisted Intervention—
MICCAI 2008
,
Springer
,
Berlin
, pp.
750
757
.
198.
McPherson
,
G. K.
, and
Kriewall
,
T. J.
,
1980
, “
Fetal Head Molding: An Investigation Utilizing a Finite Element Model of the Fetal Parietal Bone
,”
J. Biomech.
,
13
(
1
), pp.
17
26
.
199.
Moorcroft
,
D. M.
,
Stitzel
,
J. D.
,
Duma
,
G. G.
, and
Duma
,
S. M.
,
2003
, “
Computational Model of the Pregnant Occupant: Predicting the Risk of Injury in Automobile Crashes
,”
Am. J. Obstet. Gynecol.
,
189
(
2
), pp.
540
544
.
200.
Parente
,
M. P.
,
da Silva
,
A. R. M. G.
,
da Silva
,
M. E. T.
,
Jorge
,
R. N.
,
Mascarenhas
,
T.
, and
Fernandes
,
A. A.
,
2012
, “
Study on the Influence of the Fetal Head Flexion During Vaginal Delivery by Using a Computational Model (Estudo Computacional Sobre a Influłncia da Flexo da Cabea Fetal No Pavimento Plvico Durante um Parto Vaginal
),”
Acta Obstet. Ginecol. Port.
,
6
(
4
), pp.
160
166
.
201.
Parente
,
M. P.
,
Natal Jorge
,
R. M.
,
Mascarenhas
,
T.
,
Fernandes
,
A. A.
, and
A. L.
Silva-Filho
,
2010
, “
Computational Modeling Approach to Study the Effects of Fetal Head Flexion During Vaginal Delivery
,”
Am. J. Obstet. Gynecol.
,
203
(
3
), pp.
217.e1
217.e6
.
202.
Roth
,
S.
,
Raul
,
J.-S.
,
Ludes
,
B.
, and
Willinger
,
R.
,
2007
, “
Finite Element Analysis of Impact and Shaking Inflicted to a Child
,”
Int. J. Leg. Med.
,
121
(
3
), pp.
223
228
.
203.
Silveira
,
R.
,
Pham
,
M. T.
,
Redarce
,
T.
,
Betemps
,
M.
, and
Dupuis
,
O.
,
2004
, “
A New Mechanical Birth Simulator: BirthSIM
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2004
), Sendai, Japan, Sept. 28–Oct. 2, Vol. 4, pp. 3948–3953.
204.
Snooks
,
S.
,
Swash
,
M.
,
Mathers
,
S.
, and
Henry
,
M.
,
1990
, “
Effect of Vaginal Delivery on the Pelvic Floor: A 5-Year Follow-Up
,”
Br. J. Surg.
,
77
(
12
), pp.
1358
1360
.
205.
Martins
,
J.
,
Pato
,
M.
,
Pires
,
E.
,
Jorge
,
R.
,
Parente
,
M.
, and
Mascarenhas
,
T.
,
2006
, “
Finite Element Studies of the Deformation of the Pelvic Floor
,”
J. Biomech.
,
39
(Suppl. 1), p.
S627
.
206.
Bo
,
K.
, and
Backe-Hansen
,
K.
,
2007
, “
Do Elite Athletes Experience Low Back, Pelvic Girdle and Pelvic Floor Complaints During and After Pregnancy?
,”
Scand. J. Med. Sci. Sports
,
17
(
5
), pp.
480
487
.
207.
Hale
,
R. W.
, and
Milne
,
L.
,
1996
, “
The Elite Athlete and Exercise in Pregnancy
,”
Seminars in Perinatology
,
Elsevier
,
New York
, Vol.
20
, pp.
277
284
.
208.
Kruger
,
J. A.
,
Murphy
,
B. A.
, and
Heap
,
S. W.
,
2005
, “
Alterations in Levator Ani Morphology in Elite Nulliparous Athletes: A Pilot Study
,”
Aust. N. Z. J. Obstet. Gynaecol.
,
45
(
1
), pp.
42
47
.
209.
Dupuis
,
O.
,
Ruimark
,
S.
,
Corinne
,
D.
,
Simone
,
T.
,
Andre
,
D.
, and
Rene-Charles
,
R.
,
2005
, “
Fetal Head Position During the Second Stage of Labor: Comparison of Digital Vaginal Examination and Transabdominal Ultrasonographic Examination
,”
Eur. J. Obstet. Gynecol. Reprod. Biol.
,
123
(
2
), pp.
193
197
.
210.
Kreiser
,
D.
,
Schiff
,
E.
,
Lipitz
,
S.
,
Kayam
,
Z.
,
Avraham
,
A.
, and
Achiron
,
R.
,
2001
, “
Determination of Fetal Occiput Position by Ultrasound During the Second Stage of Labor
,”
J. Matern.-Fetal Neonat. Med.
,
10
(
4
), pp.
283
286
.
211.
Ponkey
,
S. E.
,
Cohen
,
A. P.
,
Heffner
,
L. J.
, and
Lieberman
,
E.
,
2003
, “
Persistent Fetal Occiput Posterior Position: Obstetric Outcomes
,”
Obstet. Gynecol.
,
101
(
5 Pt. 1
), pp.
915
920
.
212.
Jing
,
D.
,
Ashton-Miller
,
J.
, and
DeLancey
,
J. O.
,
2008
, “
How Different Maternal Volitional Pushing Profiles Affect the Duration of the Second Stage of Labor: A 3-D Visco-Hyperelastic Finite Element Model
,” North American Congress on Biomechanics Conference (NACOB), Ann Arbor, MI, Aug. 5–9.
213.
Sampselle
,
C. M.
, and
Hines
,
S.
,
1999
, “
Spontaneous Pushing During Birth: Relationship to Perineal Outcomes
,”
J. Nurse-Midwifery
,
44
(
1
), pp.
36
39
.
214.
Thomson
,
A. M.
,
1993
, “
Pushing Techniques in the Second Stage of Labour
,”
J. Adv. Nurs.
,
18
(
2
), pp.
171
177
.
215.
Larsson
,
E.
,
Wesslen
,
L.
,
Lindquist
,
O.
,
Baandrur
,
U.
,
Eriksson
,
L.
,
Olsen
,
E.
,
Rolf
,
C.
, and
Friman
,
G.
,
1999
, “
Sudden Unexpected Cardiac Deaths Among Young Swedish Orienteers—Morphological Changes in Hearts and Other Organs
,”
APMIS
,
107
(
1–6
), pp.
325
336
.
216.
Majno
,
G.
, and
Joris
,
I.
,
1995
, “
Apoptosis, Oncosis, and Necrosis. An Overview of Cell Death
,”
Am. J. Pathol.
,
146
(
1
), pp.
3
15
.
217.
Condel
,
J. L.
,
Jukic
,
D. M.
,
Sharbaugh
,
D. T.
, and
Raab
,
S. S.
,
2005
, “
Histology Errors: Use of Real-Time Root Cause Analysis to Improve Practice
,”
Pathol. Case Rev.
,
10
(2), pp.
82
87
.
218.
Engstrom
,
C.
,
Loeb
,
G.
,
Reid
,
J.
,
Forrest
,
W.
, and
Avruch
,
L.
,
1991
, “
Morphometry of the Human Thigh Muscles. A Comparison Between Anatomical Sections and Computer Tomographic and Magnetic Resonance Images
,”
J. Anat.
,
176
, pp.
139
156
.
219.
Joutsivuo
,
T.
,
1996
, “
Vesalius and de Humani Corporis Fabrica: Galen's Errors and the Change of Anatomy in the Sixteenth Century
,”
Hippokrates
, PubMed,
Helsinki, Finland
, pp.
98
112
.
220.
Borisov
,
N.
,
Franck
,
D.
,
De Carlan
,
L.
, and
Laval
,
L.
,
2002
, “
A New Graphical User Interface for Fast Construction of Computation Phantoms and MCNP Calculations: Application to Calibration of In Vivo Measurement Systems
,”
Health Phys.
,
83
(
2
), pp.
272
279
.
221.
DeLancey
,
J. O.
,
Kearney
,
R.
,
Chou
,
Q.
,
Speights
,
S.
, and
Binno
,
S.
,
2003
, “
The Appearance of Levator Ani Muscle Abnormalities in Magnetic Resonance Images After Vaginal Delivery
,”
Obstet. Gynecol.
,
101
(
1
), pp.
46
53
.
222.
Dietz
,
H.
,
2007
, “
Quantification of Major Morphological Abnormalities of the Levator Ani
,”
Ultrasound Obstet. Gynecol.
,
29
(
3
), pp.
329
334
.
223.
Jezzard
,
P.
,
Matthews
,
P. M.
, and
Smith
,
S. M.
,
2001
,
Functional MRI: An Introduction to Methods
,
3rd ed.
,
Oxford University Press
,
Oxford, UK
.
224.
Marchandise
,
E.
,
Compere
,
G.
,
Willemet
,
M.
,
Bricteux
,
G.
,
Geuzaine
,
C.
, and
Remacle
,
J.-F.
,
2010
, “
Quality Meshing Based on STL Triangulations for Biomedical Simulations
,”
Int. J. Numer. Methods Biomed. Eng.
,
26
(
7
), pp.
876
889
.
225.
Owen
,
S. J.
,
White
,
D. R.
, and
Tautges
,
T. J.
,
2002
, “
Facet-Based Surfaces for 3D Mesh Generation
,”
IMR
, pp.
297
311
.
226.
Geuzaine
,
C.
, and
J.-Remacle
,
F.
,
2009
, “
GMSH: A 3-D Finite Element Mesh Generator With Built-In Pre-And Post-Processing Facilities
,”
Int. J. Numer. Methods Eng.
,
79
(
11
), pp.
1309
1331
.
227.
Szczerba
,
D.
,
McGregor
,
R.
, and
Szkely
,
G.
,
2007
, “High Quality Surface Mesh Generation for Multi-Physics Bio-Medical Simulations,” Computational Science—
ICCS 2007
,
Springer
,
New York
, pp.
906
913
.
228.
Wang
,
C.-S.
,
Wang
,
W.-H. A.
, and
Lin
,
M.-C.
,
2010
, “
STL Rapid Prototyping Bio-CAD Model for CT Medical Image Segmentation
,”
Comput. Ind.
,
61
(
3
), pp.
187
197
.
229.
Wang
,
D.
,
Hassan
,
O.
,
Morgan
,
K.
, and
Weatherill
,
N.
,
2007
, “
Enhanced Remeshing From STL Files With Applications to Surface Grid Generation
,”
Commun. Numer. Methods Eng.
,
23
(
3
), pp.
227
239
.
230.
Ribeiro
,
N.
,
Fernandes
,
P.
,
Lopes
,
D.
,
Folgado
,
J.
, and
Fernandes
,
P.
,
2009
, “
3-D Solid and Finite Element Modeling of Biomechanical Structures—A Software Pipeline
,”
7th EUROMECH Solid Mechanics Conference
.
231.
Sullivan
,
J. M.
,
Wu
,
Z.
, and
Kulkarni
,
A.
,
2000
, “
3D Volume Mesh Generation of Human Organs Using Surface Geometries Created From the Visible Human Data Set
,”
3rd Visible Human Project Conference
, NIH, Worcester, MA, pp.
5
6
.
232.
Zhang
,
Y.
,
Bajaj
,
C.
, and
Sohn
,
B.-S.
,
2005
, “
3D Finite Element Meshing From Imaging Data
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
48
), pp.
5083
5106
.
233.
Cook
,
R. D.
,
2007
,
Concepts and Applications of Finite Element Analysis
,
Wiley
,
New York
.
234.
Arnold
,
D. N.
,
1982
, “
An Interior Penalty Finite Element Method With Discontinuous Elements
,”
SIAM J. Numer. Anal.
,
19
(
4
), pp.
742
760
.
235.
Ho-Le
,
K.
,
1998
, “
Finite Element Mesh Generation Methods: A Review and Classification
,”
Comput.-Aided Des.
,
20
(
1
), pp.
27
38
.
236.
Hu
,
P.
,
Chen
,
H.
,
Wu
,
W.
, and
Heng
,
P.-A.
,
2010
, “
Multi-Tissue Tetrahedral Mesh Generation From Medical Images
,”
4th International Conference on Bioinformatics and Biomedical Engineering
(
iCBBE
),
Chengdu, China
, June 18–20.
237.
Lederman
,
C.
,
Joshi
,
A.
,
Dinov
,
I.
,
Van Horn
,
J. D.
,
Vese
,
L.
, and
Toga
,
A.
,
2013
, “
Tetrahedral Mesh Generation for Medical Images With Multiple Regions Using Active Surfaces
,” IEEE
International Symposium on Biomedical Imaging: From Nano to Macro
(
ISBI
),
Rotterdam
,
The Netherlands
, Apr. 14–17, pp.
436
439
.
238.
Mohamed
,
A.
, and
Davatzikos
,
C.
,
2004
, “
Finite Element Mesh Generation and Remeshing From Segmented Medical Images
,” IEEE
International Symposium on Biomedical Imaging: Nano to
Macro (
ISBI
),
Arlington, VA
, Apr. 15–18, pp.
420
423
.
239.
Tsukerman
,
I. A.
,
1992
, “
Overlapping Finite Elements for Problems With Movement
,”
IEEE Trans. Magn.
,
28
(
5
), pp.
2247
2249
.
240.
Rubod
,
C.
,
Brieu
,
M.
,
Cosson
,
M.
,
Rivaux
,
G.
,
Clay
,
J.-C.
,
de Landsheere
,
L.
, and
Gabriel
,
B.
,
2012
, “
Biomechanical Properties of Human Pelvic Organs
,”
Urology
,
79
(
4
), pp.
968.e17
968.e22
.
241.
Courtney
,
T.
,
Sacks
,
M. S.
,
Stankus
,
J.
,
Guan
,
J.
, and
Wagner
,
W. R.
,
2006
, “
Design and Analysis of Tissue Engineering Scaffolds That Mimic Soft Tissue Mechanical Anisotropy
,”
Biomaterials
,
27
(
19
), pp.
3631
3638
.
242.
Guo
,
X.
,
2001
, “
Mechanical Properties of Cortical Bone and Cancellous Bone Tissue
,”
Bone Mechanics Handbook
, Vol.
2
,
CRC Press
,
Boca Raton, FL
, pp. 10.11–10.23.
243.
Picinbono
,
G.
,
Delingette
,
H.
, and
Ayache
,
N.
, “
Nonlinear and Anisotropic Elastic Soft Tissue Models for Medical Simulation
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2001
),
Seoul, Korea
, May 21–26, Vol.
2
, pp.
1370
1375
.
244.
Roan
,
E.
, and
Vemaganti
,
K.
,
2007
, “
The Nonlinear Material Properties of Liver Tissue Determined From No-Slip Uniaxial Compression Experiments
,”
ASME J. Biomech. Eng.
,
129
(
3
), pp.
450
456
.
245.
Gonzalez
,
L. Y. S.
,
Botero
,
M. G.
, and
Betancur
,
M.
,
2005
, “
Hyperelastic Material Modeling
,” Departamento de Ingenieria Mecanica, Universidad EAFIT, Medellín, Colombia.
246.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics
, Vol.
24
,
Wiley
,
Chichester, UK
.
247.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity Phys. Sci. Solids
,
61
(
1–3
), pp.
1
48
.
248.
Martins
,
P.
,
Natal Jorge
,
R.
, and
Ferreira
,
A.
,
2006
, “
A Comparative Study of Several Material Models for Prediction of Hyperelastic Properties: Application to Silicone-Rubber and Soft Tissues
,”
Strain
,
42
(
3
), pp.
135
147
.
249.
Weiss
,
J. A.
,
Maker
,
B. N.
, and
Govindjee
,
S.
,
1996
, “
Finite Element Implementation of Incompressible, Transversely Isotropic Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
135
(
1
), pp.
107
128
.
250.
Martins
,
E.
,
Jorge
,
R. N.
,
Ferreira
,
A.
,
Figueiredo
,
M.
,
Fernandes
,
R.
,
Figueiredo
,
M.
, and
Silva
,
R.
,
2005
, “
Modelling the Mechanical Behavior of Soft Tissues Using Hyperelastic Constitutive Models
,” International Conference on Computational Bioengineering (ICCB2005), Lisbon, Portugal, Sept. 14–16.
251.
Martins
,
P.
,
Lopes
Silva-Filho
,
A.
,
Rodrigues
Maciel da Fonseca
,
A. M.
,
Santos
,
A.
,
Santos
,
L.
,
Mascarenhas
,
Natal Jorge
,
T.
,
R. M.
, and
Ferreira
,
A. J.
,
2012
, “
Biomechanical Properties of Vaginal Tissue in Women With Pelvic Organ Prolapse
,”
Gynecol. Obstet. Invest.
,
75
(
2
), pp.
85
92
.
252.
Martins
,
P. A.
,
Silva Filho
,
A. L.
,
Fonseca
,
A. M. R. M.
,
Santos
,
A.
,
Santos
,
L.
,
Mascarenhas
,
T.
,
Jorge
,
R. M. N.
, and
Ferreira
,
A. J.
,
2011
, “
Uniaxial Mechanical Behavior of the Human Female Bladder
,”
Int. Urogynecology J.
,
22
(
8
), pp.
991
995
.
253.
Pena
,
E.
,
Calvo
,
B.
,
Martinez
,
M.
,
Martins
,
P.
,
Mascarenhas
,
T.
,
Jorge
,
R. N.
,
Ferreira
,
A.
, and
Doblare
,
M.
,
2010
, “
Experimental Study and Constitutive Modeling of the Viscoelastic Mechanical Properties of the Human Prolapsed Vaginal Tissue
,”
Biomech. Model. Mechanobiol.
,
9
(
1
), pp.
35
44
.
254.
Calvo
,
B.
,
Pena
,
E.
,
Martins
,
P.
,
Mascarenhas
,
T.
,
Doblare
,
M.
,
Natal Jorge
,
R.
, and
Ferreira
,
A.
,
2009
, “
On Modelling Damage Process in Vaginal Tissue
,”
J. Biomech.
,
42
(
5
), pp.
642
651
.
255.
Cosson
,
M.
,
Lambaudie
,
E.
,
Boukerrou
,
M.
,
Lobry
,
P.
,
Crepin
,
G.
, and
Ego
,
A.
,
2004
, “
A Biomechanical Study of the Strength of Vaginal Tissues: Results on 16 Post-Menopausal Patients Presenting With Genital Prolapse
,”
Eur. J. Obstet. Gynecol. Reprod. Biol.
,
112
(
2
), pp.
201
205
.
256.
Egorov
,
V.
,
van Raalte
,
H.
, and
Lucente
,
V.
,
2012
, “
Quantifying Vaginal Tissue Elasticity Under Normal and Prolapse Conditions by Tactile Imaging
,”
Int. Urogynecology J.
,
23
(
4
), pp.
459
466
.
257.
Epstein
,
L. B.
,
Graham
,
C. A.
, and
Heit
,
M. H.
,
2007
, “
Systemic and Vaginal Biomechanical Properties of Women With Normal Vaginal Support and Pelvic Organ Prolapse
,”
Am. J. Obstet. Gynecol.
,
197
(
2
), pp.
165.e1
165.e6
.
258.
Epstein
,
L. B.
,
Graham
,
C. A.
, and
Heit
,
M. H.
,
2008
, “
Correlation Between Vaginal Stiffness Index and Pelvic Floor Disorder Quality-of-Life Scales
,”
Int. Urogynecology J.
,
19
(
7
), pp.
1013
1018
.
259.
Fu
,
X.
,
Siltberg
,
H.
,
Johnson
,
P.
, and
Ulmsten
,
U.
,
1995
, “
Viscoelastic Properties and Muscular Function of the Human Anterior Vaginal Wall
,”
Int. Urogynecology J.
,
6
(
4
), pp.
229
234
.
260.
Goh
,
J.
,
2002
, “
Biomechanical Properties of Prolapsed Vaginal Tissue in Pre- and Postmenopausal Women
,”
Int. Urogynecology J.
,
13
(
2
), pp.
76
79
.
261.
Jean-Charles
,
C.
,
Rubod
,
C.
,
Brieu
,
M.
,
Boukerrou
,
M.
,
Fasel
,
J.
, and
Cosson
,
M.
,
2010
, “
Biomechanical Properties of Prolapsed or Non-Prolapsed Vaginal Tissue: Impact on Genital Prolapse Surgery
,”
Int. Urogynecology J.
,
21
(
12
), pp.
1535
1538
.
262.
Kannan
,
K.
,
McConnell
,
A.
,
McLeod
,
M.
, and
Rane
,
A.
,
2011
, “
Microscopic Alterations of Vaginal Tissue in Women With Pelvic Organ Prolapse
,”
J. Obstet. Gynaecol.
,
31
(
3
), pp.
250
253
.
263.
Karam
,
J. A.
,
Vazquez
,
D. V.
,
Lin
,
V. K.
, and
Zimmern
,
P. E.
,
2007
, “
Elastin Expression and Elastic Fibre Width in the Anterior Vaginal Wall of Postmenopausal Women With and Without Prolapse
,”
BJU Int.
,
100
(
2
), pp.
346
350
.
264.
Kerkhof
,
M.
,
Hendriks
,
L.
, and
Brlmann
,
H.
,
2009
, “
Changes in Connective Tissue in Patients With Pelvic Organ Prolapse—A Review of the Current Literature
,”
Int. Urogynecology J.
,
20
(
4
), pp.
461
474
.
265.
Lei
,
L.
,
Song
,
Y.
, and
Chen
,
R.
,
2007
, “
Biomechanical Properties of Prolapsed Vaginal Tissue in Pre- and Postmenopausal Women
,”
Int. Urogynecology J.
,
18
(
6
), pp.
603
607
.
266.
Martins
,
P.
,
Pena
,
E.
,
Calvo
,
B.
,
Doblare
,
M.
,
Mascarenhas
,
T.
,
Natal Jorge
,
R.
, and
Ferreira
,
A.
,
2010
, “
Prediction of Nonlinear Elastic Behaviour of Vaginal Tissue: Experimental Results and Model Formulation
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
3
), pp.
327
337
.
267.
Mazza
,
E.
,
Nava
,
A.
,
Bauer
,
M.
,
Winter
,
R.
,
Bajka
,
M.
, and
Holzapfel
,
G. A.
,
2006
, “
Mechanical Properties of the Human Uterine Cervix: An In Vivo Study
,”
Med. Image Anal.
,
10
(
2
), pp.
125
136
.
268.
Mosier
,
E.
,
Jerome
,
R.
,
Xie
,
X.
,
Chuong
,
C.
, and
Yan
,
J.
,
2011
, “
In Vivo Btc-2000™ Measurement of Anterior Vaginal Wall Biomechanical Properties in Prolapse Patients Undergoing Surgical Repair
,”
J. Biotechnol. Biomater.
,
1
(
117
), pp.
2
6
.
269.
Myers
,
K. M.
,
Paskaleva
,
A.
,
House
,
M.
, and
Socrate
,
S.
,
2008
, “
Mechanical and Biochemical Properties of Human Cervical Tissue
,”
Acta Biomater.
,
4
(
1
), pp.
104
116
.
270.
Pena
,
E.
,
Martins
,
P.
,
Mascarenhas
,
T.
,
Natal Jorge
,
R.
,
Ferreira
,
A.
,
Doblar
,
M.
, and
Calvo
,
B.
,
2011
, “
Mechanical Characterization of the Softening Behavior of Human Vaginal Tissue
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
3
), pp.
275
283
.
271.
Poncet
,
S.
,
Meyer
,
S.
,
Richard
,
C.
,
Aubert
,
J.-D.
, and
Juillerat-Jeanneret
,
L.
,
2005
, “
The Expression and Function of the Endothelin System in Contractile Properties of Vaginal Myofibroblasts of Women With Uterovaginal Prolapse
,”
Am. J. Obstet. Gynecol.
,
192
(
2
), pp.
426
432
.
272.
Rahn
,
D. D.
,
Acevedo
,
J. F.
, and
Word
,
R. A.
,
2008
, “
Effect of Vaginal Distention on Elastic Fiber Synthesis and Matrix Degradation in the Vaginal Wall: Potential Role in the Pathogenesis of Pelvic Organ Prolapse
,”
Am. J. Physiol.: Regul., Integr. Comp. Physiol.
,
295
(
4
), pp.
R1351
R1358
.
273.
Rahn
,
D. D.
,
Ruff
,
M. D.
,
Brown
,
S. A.
,
Tibbals
,
H. F.
, and
Word
,
R.
,
2008
, “
Biomechanical Properties of the Vaginal Wall: Effect of Pregnancy, Elastic Fiber Deficiency, and Pelvic Organ Prolapse
,”
Am. J. Obstet. Gynecol.
,
198
(
5
), pp.
590.e1
590.e6
.
274.
Rubod
,
C.
,
Boukerrou
,
M.
,
Brieu
,
M.
,
C.
Jean-Charles
,
Dubois
,
P.
, and
Cosson
,
M.
,
2008
, “
Biomechanical Properties of Vaginal Tissue: Preliminary Results
,”
Int. Urogynecology J.
,
19
(
6
), pp.
811
816
.
275.
Rubod
,
C.
,
Boukerrou
,
M.
,
Brieu
,
M.
,
Dubois
,
P.
, and
Cosson
,
M.
,
2007
, “
Biomechanical Properties of Vaginal Tissue. Part 1: New Experimental Protocol
,”
J. Urol.
,
178
(
1
), pp.
320
325
.
276.
Beatty
,
M. F.
,
1987
, “
Topics in Finite Elasticity: Hyperelasticity of Rubber, Elastomers, and Biological Tissues With Examples
,”
ASME Appl. Mech. Rev.
,
40
(
12
), pp.
1699
1734
.
277.
Guerin
,
H. L.
, and
Elliott
,
D. M.
,
2007
, “
Quantifying the Contributions of Structure to Annulus Fibrosus Mechanical Function Using a Nonlinear, Anisotropic, Hyperelastic Model
,”
J. Orthop. Res.
,
25
(
4
), pp.
508
516
.
278.
Hirokawa
,
S.
, and
Tsuruno
,
R.
,
2000
, “
Three-Dimensional Deformation and Stress Distribution in an Analytical/Computational Model of the Anterior Cruciate Ligament
,”
J. Biomech.
,
33
(
9
), pp.
1069
1077
.
279.
Chabanas
,
M.
,
Payan
,
Y.
,
Marecaux
,
C.
,
Swider
,
P.
, and
Boutault
,
F.
,
2004
, “Comparison of Linear and Non-Linear Soft Tissue Models With Post-Operative CT Scan in Maxillofacial Surgery,”
Medical Simulation
,
Springer
,
Berlin
, pp.
19
27
.
280.
Kim
,
J.
, and
Srinivasan
,
M. A.
,
2005
, Characterization of Viscoelastic Soft Tissue Properties From In Vivo Animal Experiments and Inverse FE Parameter Estimation,
Springer
,
Berlin
, pp.
599
606
.
281.
Lally
,
C.
,
Dolan
,
F.
, and
Prendergast
,
P.
,
2005
, “
Cardiovascular Stent Design and Vessel Stresses: A Finite Element Analysis
,”
J. Biomech.
,
38
(
8
), pp.
1574
1581
.
282.
Lally
,
C.
,
Reid
,
A.
, and
Prendergast
,
P.
,
2004
, “
Elastic Behavior of Porcine Coronary Artery Tissue Under Uniaxial and Equibiaxial Tension
,”
Ann. Biomed. Eng.
,
32
(
10
), pp.
1355
1364
.
283.
Prendergast
,
P.
,
Lally
,
C.
,
Daly
,
S.
,
Reid
,
A.
,
Lee
,
T.
,
Quinn
,
D.
, and
Dolan
,
F.
,
2003
, “
Analysis of Prolapse in Cardiovascular Stents: A Constitutive Equation for Vascular Tissue and Finite Element Modelling
,”
ASME J. Biomech. Eng.
,
125
(
5
), pp.
692
699
.
284.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2003
,
Biomechanics of Soft Tissue in Cardiovascular Systems
, Vol.
441
,
Springer
,
Berlin
.
285.
O'Hagan
,
J. J.
, and
Samani
,
A.
,
2009
, “
Measurement of the Hyperelastic Properties of 44 Pathological Ex Vivo Breast Tissue Samples
,”
Phys. Med. Biol.
,
54
(
8
), pp.
2557
2569
.
286.
Miller
,
K.
,
2005
, “
Method of Testing Very Soft Biological Tissues in Compression
,”
J. Biomech.
,
38
(
1
), pp.
153
158
.
287.
Gao
,
Z.
,
Lister
,
K.
, and
Desai
,
J. P.
,
2010
, “
Constitutive Modeling of Liver Tissue: Experiment and Theory
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
505
516
.
288.
Velardi
,
F.
,
Fraternali
,
F.
, and
Angelillo
,
M.
,
2006
, “
Anisotropic Constitutive Equations and Experimental Tensile Behavior of Brain Tissue
,”
Biomech. Model. Mechanobiol.
,
5
(
1
), pp.
53
61
.
289.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2004
, “
Comparison of a Multi-Layer Structural Model for Arterial Walls With a Fung-Type Model, and Issues of Material Stability
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
264
275
.
290.
May-Newman
,
K.
, and
Yin
,
F.
,
1998
, “
A Constitutive Law for Mitral Valve Tissue
,”
ASME J. Biomech. Eng.
,
120
(
1
), pp.
38
47
.
291.
Raghavan
,
M.
, and
Vorp
,
D. A.
,
2000
, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability
,”
J. Biomech.
,
33
(
4
), pp.
475
482
.
292.
Seshaiyer
,
P.
, and
Humphrey
,
J. D.
,
2003
, “
A Sub-Domain Inverse Finite Element Characterization of Hyperelastic Membranes Including Soft Tissues
,”
ASME J. Biomech. Eng.
,
125
(
3
), pp.
363
371
.
293.
Van Loocke
,
M.
,
Lyons
,
C.
, and
Simms
,
C.
,
2006
, “
A Validated Model of Passive Muscle in Compression
,”
J. Biomech.
,
39
(
16
), pp.
2999
3009
.
294.
Wang
,
D. H.
,
Makaroun
,
M.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
,
2001
, “
Mechanical Properties and Microstructure of Intraluminal Thrombus From Abdominal Aortic Aneurysm
,”
ASME J. Biomech. Eng.
,
123
(
6
), pp.
536
539
.
295.
Kaster
,
T.
,
Sack
,
I.
, and
Samani
,
A.
,
2011
, “
Measurement of the Hyperelastic Properties of Ex Vivo Brain Tissue Slices
,”
J. Biomech.
,
44
(
6
), pp.
1158
1163
.
296.
Tan
,
T.
, and
Vita
,
R. D.
,
2015
, “
A Structural Constitutive Model for Smooth Muscle Contraction in Biological Tissues
,”
Int. J. Non-Linear Mech.
,
75
, pp.
46
53
.
297.
Fraenkel
,
J. R.
,
Wallen
,
N. E.
, and
Hyun
,
H. H.
,
1993
,
How to Design and Evaluate Research in Education
, Vol.
7
,
McGraw-Hill
,
New York
.
298.
Yin
,
H.
,
Sun
,
L.
,
Wang
,
G.
, and
Vannier
,
M. W.
,
2004
, “
Modeling of Elastic Modulus Evolution of Cirrhotic Human Liver
,”
IEEE Trans. Biomed. Eng.
,
51
(
10
), pp.
1854
1857
.
299.
Boreham
,
M. K.
,
Wai
,
C. Y.
,
Miller
,
R. T.
,
Schaffer
,
J. I.
, and
Word
,
R.
,
2002
, “
Morphometric Properties of the Posterior Vaginal Wall in Women With Pelvic Organ Prolapse
,”
Am. J. Obstet. Gynecol.
,
187
(
6
), pp.
1501
1509
.
300.
Bortolini
,
M. A.
,
Shynlova
,
O.
,
Drutz
,
H. P.
,
Castro
,
R. A.
,
Girao
,
M. J.
,
Lye
,
S.
, and
Alarab
,
M.
,
2012
, “
Expression of Genes Encoding Smooth Muscle Contractile Proteins in Vaginal Tissue of Women With and Without Pelvic Organ Prolapse
,”
Neurourol. Urodyn.
,
31
(
1
), pp.
109
114
.
301.
Almeida
,
E. S.
, and
Spilker
,
R. L.
,
1998
, “
Finite Element Formulations for Hyperelastic Transversely Isotropic Biphasic Soft Tissues
,”
Comput. Methods Appl. Mechan. Eng.
,
151
(
3
), pp.
513
538
.
302.
Bischoff
,
J.
,
Arruda
,
E.
, and
Grosh
,
K.
,
2002
, “
A Microstructurally Based Orthotropic Hyperelastic Constitutive Law
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
570
579
.
303.
El Sayed
,
T.
,
Mota
,
A.
,
Fraternali
,
F.
, and
Ortiz
,
M.
,
2008
, “
A Variational Constitutive Model for Soft Biological Tissues
,”
J. Biomech.
,
41
(
7
), pp.
1458
1466
.
304.
Freutel
,
M.
,
Schmidt
,
H.
,
Drselen
,
L.
,
Ignatius
,
A.
, and
Galbusera
,
F.
,
2014
, “
Finite Element Modeling of Soft Tissues: Material Models, Tissue Interaction and Challenges
,”
Clin. Biomech.
,
29
(
4
), pp.
363
372
.
305.
Fung
,
Y.
,
1967
, “
Elasticity of Soft Tissues in Simple Elongation
,”
Am. J. Physiol.
,
213
(
6
), pp.
1532
1544
.
306.
Guo
,
Z.
,
Peng
,
X.
, and
Moran
,
B.
,
2006
, “
A Composites-Based Hyperelastic Constitutive Model for Soft Tissue With Application to the Human Annulus Fibrosus
,”
J. Mech. Phys. Solids
,
54
(
9
), pp.
1952
1971
.
307.
Kulkarni
,
S.
,
Gao
,
X.
,
Horner
,
S.
,
Mortlock
,
R.
, and
Zheng
,
J.
,
2014
, “
A Transversely Isotropic Visco-Hyperelastic Constitutive Model for Soft Tissues
,”
Math. Mech. Solids
, epub, p.
1081286514536921
.
308.
Mendis
,
K.
,
Stalnaker
,
R.
, and
Advani
,
S.
,
1995
, “
A Constitutive Relationship for Large Deformation Finite Element Modeling of Brain Tissue
,”
ASME J. Biomech. Eng.
,
117
(
3
), pp.
279
285
.
309.
Miller
,
K.
, and
Chinzei
,
K.
,
1997
, “
Constitutive Modelling of Brain Tissue: Experiment and Theory
,”
J. Biomech.
,
30
(
11
), pp.
1115
1121
.
310.
Natali
,
A.
,
Carniel
,
E.
,
Pavan
,
P.
,
Dario
,
P.
, and
Izzo
,
I.
,
2006
, “
Hyperelastic Models for the Analysis of Soft Tissue Mechanics: Definition of Constitutive Parameters
,” The First IEEE/RAS-EMBS
International Conference on Biomedical Robotics and Biomechatronics
(
BioRob 2006
), Pisa, Italy, Feb. 20–22, pp.
188
191
.
311.
Pena
,
E.
,
Calvo
,
B.
,
Martinez
,
M.
, and
Doblare
,
M.
,
2007
, “
An Anisotropic Visco-Hyperelastic Model for Ligaments at Finite Strains. Formulation and Computational Aspects
,”
Int. J. Solids Struct.
,
44
(
3
), pp.
760
778
.
312.
Sun
,
W.
, and
Sacks
,
M. S.
,
2005
, “
Finite Element Implementation of a Generalized Fung-Elastic Constitutive Model for Planar Soft Tissues
,”
Biomech. Model. Mechanobiol.
,
4
(
2–3
), pp.
190
199
.
313.
Taylor
,
Z. A.
,
Comas
,
O.
,
Cheng
,
M.
,
Passenger
,
J.
,
Hawkes
,
D. J.
,
Atkinson
,
D.
, and
Ourselin
,
S.
,
2009
, “
On Modelling of Anisotropic Viscoelasticity for Soft Tissue Simulation: Numerical Solution and GPU Execution
,”
Med. Image Anal.
,
13
(
2
), pp.
234
244
.
314.
Horgan
,
C. O.
,
2015
, “
The Remarkable Gent Constitutive Model for Hyperelastic Materials
,”
Int. J. Non-Linear Mech.
,
68
, pp.
9
16
.
315.
Damon
,
B. M.
,
Buck
,
A. K.
, and
Ding
,
Z.
,
2011
, “
Diffusion-Tensor MRI-Based Skeletal Muscle Fiber Tracking
,”
Imaging Med.
,
3
(
6
), pp.
675
687
.
316.
Fujimoto
,
K.
,
Kido
,
A.
,
Okada
,
T.
,
Uchikoshi
,
M.
, and
Togashi
,
K.
,
2013
, “
Diffusion Tensor Imaging (DTI) of the Normal Human Uterus In Vivo at 3 Tesla: Comparison of DTI Parameters in the Different Uterine Layers
,”
J. Magn. Reson. Imaging
,
38
(
6
), pp.
1494
1500
.
317.
Goh
,
V.
,
Tam
,
E.
,
Taylor
,
N. J.
,
Stirling
,
J. J.
,
Simcock
,
I. C.
,
Jones
,
R. G.
, and
Padhani
,
A. R.
,
2012
, “
Diffusion Tensor Imaging of the Anal Canal at 3 Tesla: Feasibility and Reproducibility of Anisotropy Measures
,”
J. Magn. Reson. Imaging
,
35
(
4
), pp.
820
826
.
318.
Lim
,
R. P.
,
Lee
,
V. S.
,
Bennett
,
G. L.
,
Chen
,
Q.
,
McGorty
,
K.
,
Taouli
,
B.
, and
Hecht
,
E. M.
,
2006
, “
Imaging the Female Pelvis at 3.0 T
,”
Top. Magn. Reson. Imaging
,
17
(
6
), pp.
427
443
.
319.
Rousset
,
P.
,
Delmas
,
V.
,
Buy
,
J.
,
Rahmouni
,
A.
,
Vadrot
,
D.
, and
Deux
,
J.
,
2012
, “
In Vivo Visualization of the Levator Ani Muscle Subdivisions Using MR Fiber Tractography With Diffusion Tensor Imaging
,”
J. Anat.
,
221
(
3
), pp.
221
228
.
320.
Zijta
,
F.
,
Froeling
,
M.
,
Van Der Paardt
,
M.
,
Lakeman
,
M.
,
Bipat
,
S.
,
van Swijndregt
,
A. M.
,
Strijkers
,
G.
,
Nederveen
,
A.
, and
Stoker
,
J.
,
2011
, “
Feasibility of Diffusion Tensor Imaging (DTI) With Fibre Tractography of the Normal Female Pelvic Floor
,”
Eur. Radiol.
,
21
(
6
), pp.
1243
1249
.
321.
Zijta
,
F.
,
Lakeman
,
M.
,
Froeling
,
M.
,
van der Paardt
,
M.
,
Borstlap
,
C.
,
Bipat
,
S.
,
van Swijndregt
,
A. M.
,
Strijkers
,
G.
,
Roovers
,
J.
, and
Nederveen
,
A.
,
2012
, “
Evaluation of the Female Pelvic Floor in Pelvic Organ Prolapse Using 3.0-Tesla Diffusion Tensor Imaging and Fibre Tractography
,”
Eur. Radiol.
,
22
(
12
), pp.
2806
2813
.
322.
Zijta
,
F. M.
,
Froeling
,
M.
,
Nederveen
,
A. J.
, and
Stoker
,
J.
,
2013
, “
Diffusion Tensor Imaging and Fiber Tractography for the Visualization of the Female Pelvic Floor
,”
Clin. Anat.
,
26
(
1
), pp.
110
114
.
323.
Berardi
,
M.
,
Martinez-Romero
,
O.
,
Elias-Zuniga
,
A.
,
Rodriguez
,
M.
,
Ceretti
,
E.
,
Fiorentino
,
A.
,
Donzella
,
G.
, and
Avanzini
,
A.
,
2014
, “
Levator Ani Deformation During the Second Stage of Labour
,”
Proc. Inst. Mech. Eng., Part H
:
228
(
5
), pp.
501
508
.
324.
DeLancey
,
J. O.
,
1993
, “
Anatomy and Biomechanics of Genital Prolapse
,”
Clin. Obstet. Gynecol.
,
36
(
4
), pp.
897
909
.
325.
Richardson
,
D.
,
Bent
,
A.
, and
Ostergard
,
D.
,
1983
, “
The Effect of Uterovaginal Prolapse on Urethrovesical Pressure Dynamics
,”
Am. J. Obstet. Gynecol.
,
146
(
8
), pp.
901
905
.
326.
Panayi
,
D. C.
,
Digesu
,
G. A.
,
Tekkis
,
P.
,
Fernando
,
R.
, and
Khullar
,
V.
,
2010
, “
Ultrasound Measurement of Vaginal Wall Thickness: A Novel and Reliable Technique
,”
Int. Urogynecology J.
,
21
(
10
), pp.
1265
1270
.
327.
Hahn
,
H. T.
, and
Tsai
,
S. W.
, 1980,
Introduction to Composite Materials
, Vol.
1
.
CRC Press
, Boca Raton, FL.
328.
Hull
,
D.
, and
Clyne
,
T.
,
1996
,
An Introduction to Composite Materials
,
Cambridge University Press
,
Cambridge
,
UK
.
329.
Reddy
,
J. N.
,
2008
,
Introduction to Continuum Mechanics: With Applications
,
Cambridge University Press
,
New York
.
You do not currently have access to this content.