A survey of several methods under the heading of strong formulation finite element method (SFEM) is presented. These approaches are distinguished from classical one, termed weak formulation finite element method (WFEM). The main advantage of the SFEM is that it uses differential quadrature method (DQM) for the discretization of the equations and the mapping technique for the coordinate transformation from the Cartesian to the computational domain. Moreover, the element connectivity is performed by using kinematic and static conditions, so that displacements and stresses are continuous across the element boundaries. Numerical investigations integrate this survey by giving details on the subject.

References

References
1.
Finlayson
,
B. A.
, and
Scriven
,
L. E.
,
1966
, “
The Method of Weighted Residual: A Review
,”
ASME Appl. Mech. Rev.
,
19
, pp.
735
748
.
2.
Bert
,
C. W.
, and
Malik
,
M.
,
1996
, “
Differential Quadrature Method in Computational Mechanics
,”
ASME Appl. Mech. Rev.
,
49
(
1
), pp.
1
27
.10.1115/1.3101882
3.
Bellman
,
R.
, and
Casti
,
J.
,
1971
, “
Differential Quadrature and Long-Term Integration
,”
J. Math. Anal. Appl.
,
34
(
2
), pp.
235
238
.10.1016/0022-247X(71)90110-7
4.
Bellman
,
R.
,
Kashef
,
B. G.
, and
Casti
,
J.
,
1972
, “
Differential Quadrature: A Technique for the Rapid Solution of Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
10
(
1
), pp.
40
52
.10.1016/0021-9991(72)90089-7
5.
Bellman
,
R.
, and
Roth
,
R. S.
,
1986
,
Methods in Approximation
,
D. Reidel Publishing Company
, Dordrecht, Holland.
6.
Villadsen
,
J. V.
, and
Stewart
,
W. E.
,
1967
, “
Solution of Boundary-Value Problems by Orthogonal Collocation
,”
Chem. Eng. Sci.
,
22
(
11
), pp.
1483
1501
.10.1016/0009-2509(67)80074-5
7.
Orszag
,
S. A.
,
1969
, “
Numerical Methods for the Simulation of Turbulence
,”
Phys. Fluids
,
12
(
12
), pp.
250
257
.10.1063/1.1692445
8.
Villadsen
,
J.
,
1978
,
Solution of Differential Equation Models by Polynomial Approximation (Physical & Chemical Engineering Science)
,
Prentice Hall
, Englewood Cliffs, NJ.
9.
Askey
,
R.
,
1975
, “
Orthogonal Polynomials and Special Functions
,” Virginia Polytechnic Institute (21st Edition of CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 21, National Science Foundation, Arrowsmith, Bristol, England, pp. 1–110.
10.
Gottlieb
,
D.
, and
Orszag
,
S. A.
,
1977
, “
Numerical Analysis of Spectral Methods. Theory and Applications
,” Old Dominion University, Aug. 2–6 (26th edition of CBMS–NSF Regional Conference Series in Applied Mathematics, Vol. 26, printed for the SIAM by Arrowsmith, Bristol England, pp. 1–172).
11.
Funaro
,
D.
,
1992
,
Polynomial Approximation of Differential Equations
,
Springer-Verlag
, Berlin.
12.
Boyd
,
J. P.
,
2001
,
Chebyshev and Fourier Spectral Methods
,
Dover Publications
, Mineola, NY.
13.
Canuto
,
C.
,
Hussaini
,
M. Y.
,
Quarteroni
,
A.
, and
Zang
,
T. A.
,
2006
,
Spectral Method. Fundamentals in Single Domains
,
Springer
, Berlin.
14.
Quarteroni
,
A.
, and
Valli
,
A.
,
2008
,
Numerical Approximation of Partial Differential Equations
,
Springer
, Berlin.
15.
Shen
,
J.
,
Tang
,
T.
, and
Wang
,
L.-L.
,
2011
,
Spectral Methods. Algorithms, Analysis and Applications
,
Springer
, Berlin.
16.
Trefethen
,
L. N.
,
2000
,
Spectral Methods in MATLAB
,
SIAM
, Philadelphia, PA.10.1137/1.9780898719598.fm
17.
Hughes
,
T. J. R.
,
1987
,
The Finite Element Method
,
Prentice-Hall
, Englewood Cliffs, NJ.
18.
Kardestuncer
,
H.
,
1987
,
Finite Element Handbook
,
McGraw Hill
, New York, NY.
19.
Zienkiewicz
,
O. C.
,
1995
, “
Origins, Milestones and Directions of the Finite Element Method—A Personal View
,”
Arch. Comput. Methods Eng.
,
2
(
1
), pp.
1
48
.10.1007/BF02736188
20.
Kythe
,
P. K.
, and
Schäferkotter
,
M. R.
,
2000
,
Handbook of Computational Methods for Integration
,
CRC Press
, Boca Raton, FL.10.1201/9780203490303
21.
Reddy
,
J. N.
,
2006
,
An Introduction to the Finite Element Method
, 3rd ed.,
McGraw Hill
, Singapore.
22.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Zhu
,
J. Z.
,
2013
, The Finite Element Method: Its Basis and Fundamentals
, 7th ed.,
Butterworth-Heinemann
, Oxford, UK.
23.
Quan
,
J. R.
,
1988
, “
A Unified Approach for Solving Nonlinear Partial Differential Equations in Chemical Engineering Applications
,” Master thesis, University of Nebraska-Lincoln, Lincoln, NE.
24.
Civan
,
F.
,
1978
, “
Solution of Transport Phenomena Type Models by the Method of Differential Quadratures as Illustrated on the LNG Vapor Dispersion Process Modeling
,” Ph.D. thesis, University of Oklahoma, Norman, OK.
25.
Civan
,
F.
, and
Sliepcevich
,
C. M.
,
1983
, “
Application of Differential Quadrature to Transport Processes
,”
J. Math. Anal. Appl.
,
93
(
1
), pp.
206
221
.10.1016/0022-247X(83)90226-3
26.
Civan
,
F.
, and
Sliepcevich
,
C. M.
,
1983
, “
Solution of the Poisson Equation by Differential Quadrature
,”
Int. J. Numer. Methods Eng.
,
19
, pp.
711
724
.10.1002/nme.1620190506
27.
Civan
,
F.
, and
Sliepcevich
,
C. M.
,
1984
, “
Differential Quadrature for Multi-Dimensional Problems
,”
J. Math. Anal. Appl.
,
101
(
2
), pp.
423
443
.10.1016/0022-247X(84)90111-2
28.
Civan
,
F.
, and
Sliepcevich
,
C. M.
,
1984
, “
On the Solution of the Thomas–Fermi Equation by Differential Equation
,”
J. Comput. Phys.
,
56
(
2
), pp.
343
348
.10.1016/0021-9991(84)90099-8
29.
Civan
,
F.
, and
Sliepcevich
,
C. M.
,
1985
, “
Application of Differential Quadrature in Solution of Pool Boiling in Cavities
,”
Proc. Okla. Acad. Sci.
,
65
, pp.
73
78
.
30.
Mingle
,
J. O.
,
1973
, “
Computational Considerations in Non-Linear Diffusion
,”
Int. J. Numer. Methods Eng.
,
7
(
2
), pp.
103
116
.10.1002/nme.1620070202
31.
Mingle
,
J. O.
,
1977
, “
The Method of Differential Quadrature for Transient Nonlinear Diffusion
,”
J. Math. Anal. Appl.
,
60
(
3
), pp.
559
569
.10.1016/0022-247X(77)90001-4
32.
Finlayson
,
B. A.
,
1980
,
Nonlinear Analysis in Chemical Engineering
,
McGraw-Hill
, New York.
33.
Quan
,
J. R.
, and
Chang
,
C. T.
,
1989
, “
New Insights in Solving Distributed System Equations by the Quadrature Method—I. Analysis
,”
Comput. Chem. Eng.
,
13
(
7
), pp.
779
788
.10.1016/0098-1354(89)85051-3
34.
Quan
,
J. R.
, and
Chang
,
C. T.
,
1989
, “
New Insights in Solving Distributed System Equations by the Quadrature Method—II. Numerical Experiments
,”
Comput. Chem. Eng.
,
13
(
9
), pp.
1017
1024
.10.1016/0098-1354(89)87043-7
35.
Bert
,
C. W.
,
Jang
,
S. K.
, and
Striz
,
A. G.
,
1988
, “
Two New Approximate Methods for Analyzing Free Vibration of Structural Components
,”
AIAA J.
,
26
(5), pp.
612
618
.10.2514/3.9941
36.
Bert
,
C. W.
,
Jang
,
S. K.
, and
Striz
,
A. G.
,
1989
, “
Nonlinear Bending Analysis of Orthotropic Rectangular Plates by the Method of Differential Quadrature
,”
Comput. Mech.
,
5
(
2–3
), pp.
217
226
.10.1007/BF01046487
37.
Bert
,
C. W.
, and
Malik
,
M.
,
1996
, “
The Differential Quadrature Method for Irregular Domains and Application for Plate Vibration
,”
Int. J. Mech. Sci.
,
38
(
6
), pp.
589
606
.10.1016/S0020-7403(96)80003-8
38.
Bert
,
C. W.
, and
Malik
,
M.
,
1996
, “
Free Vibration Analysis of Tapered Rectangular Plates by Differential Quadrature Method: A Semi-Analytical Approach
,”
J. Sound Vib.
,
190
(1), pp.
41
63
.10.1006/jsvi.1996.0046
39.
Bert
,
C. W.
, and
Malik
,
M.
,
1996
, “
Free Vibration Analysis of Thin Cylindrical Shells by the Differential Quadrature Method
,”
ASME J. Pressure Vessel Technol.
,
118
(1), pp.
1
12
.10.1115/1.2842156
40.
Bert
,
C. W.
,
Wang
,
X.
, and
Striz
,
A. G.
,
1993
, “
Differential Quadrature for Static and Free Vibration Analyses of Anisotropic Plates
,”
Int. J. Solids Struct.
,
30
(
13
), pp.
1737
1744
.10.1016/0020-7683(93)90230-5
41.
Bert
,
C. W.
,
Wang
,
X.
, and
Striz
,
A. G.
,
1994
, “
Static and Free Vibrational Analysis of Beams and Plates by Differential Quadrature Method
,”
Acta Mech.
,
102
(1–4), pp.
11
24
.10.1007/BF01178514
42.
Bert
,
C. W.
,
Wang
,
X.
, and
Striz
,
A. G.
,
1994
, “
Convergence of DQ Method in the Analysis of Anisotropic Plates
,”
J. Sound Vib.
,
170
(1), pp.
140
144
.10.1006/jsvi.1994.1051
43.
Chen
,
W. L.
,
1994
, “
A New Approach for Structural Analysis. The Quadrature Element Method
,” Ph.D. thesis, University of Oklahoma, Norman, OK.
44.
Chen
,
W. L.
,
Striz
,
A. G.
, and
Bert
,
C. W.
,
1997
, “
A New Approach to the Differential Quadrature Method for Fourth-Order Equations
,”
Int. J. Numer. Methods Eng.
,
40
, pp.
1941
1956
.10.1002/(SICI)1097-0207(19970615)40:11<1941::AID-NME145>3.0.CO;2-V
45.
Chen
,
W. L.
,
Striz
,
A. G.
, and
Bert
,
C. W.
,
2000
, “
High Accuracy Plane Stress and Plate Element in the Quadrature Element Method
,”
Int. J. Solids Struct.
,
37
(4), pp.
627
647
.10.1016/S0020-7683(99)00028-1
46.
Farsa
,
J.
,
1991
, “
Development of a Differential Quadrature Technique for the Fundamental Frequency Analysis of Tapered, Orthotropic, Anisotropic and Laminated Thin Plates
,” Ph.D. thesis, University of Oklahoma, Norman, OK.
47.
Jang
,
S. K.
,
1987
, “
Application of Differential Quadrature to the Analysis of Structural Components
,” Ph.D. thesis, University of Oklahoma, Norman, OK.
48.
Jang
,
S. K.
,
Bert
,
C. W.
, and
Striz
,
A. G.
,
1989
, “
Application of Differential Quadrature to Static Analysis of Structural Components
,”
Int. J. Numer. Methods Eng.
,
28
(3), pp.
561
577
.10.1002/nme.1620280306
49.
Kang
,
K.
, and
Bert
,
C. W.
,
1997
, “
Flexural-Torsional Buckling Analysis of Arches With Warping Using DQM
,”
Eng. Struct.
,
19
(
3
), pp.
247
254
.10.1016/S0141-0296(96)00057-0
50.
Kang
,
K.
,
Bert
,
C. W.
, and
Striz
,
A. G.
,
1995
, “
Vibration Analysis of Shear Deformable Circular Arches by the Differential Quadrature Method
,”
J. Sound Vib.
,
181
(
2
), pp.
353
360
.10.1006/jsvi.1995.0258
51.
Kang
,
K. J.
,
Bert
,
C. W.
, and
Striz
,
A. G.
,
1996
, “
Vibration and Buckling Analysis of Circular Arches Using DQM
,”
Comput. Struct.
,
60
(
3
), pp.
49
57
.10.1016/0045-7949(95)00375-4
52.
Kang
,
K.
,
Bert
,
C. W.
, and
Striz
,
A. G.
,
1996
, “
Vibration Analysis of Horizontally Curved Beams With Warping Using DQM
,”
J. Struct. Eng.
,
122
(
6
), pp.
657
662
.10.1061/(ASCE)0733-9445(1996)122:6(657)
53.
Malik
,
M.
,
1994
, “
Differential Quadrature Method in Computational Mechanics. New Developments and Applications
,” Ph.D. thesis, University of Oklahoma, Norman, OK.
54.
Malik
,
M.
, and
Bert
,
C. W.
,
2000
, “
Vibration Analysis of Plates With Curvilinear Quadrilateral Platforms by DQM Using Blending Functions
,”
J. Sound Vib.
,
230
(4), pp.
949
954
.10.1006/jsvi.1999.2584
55.
Striz
,
A. G.
,
Chen
,
W. L.
, and
Bert
,
C. W.
,
1994
, “
Static Analysis of Structures by the Quadrature Element Method (QEM)
,”
Int. J. Solids Struct.
,
31
(20), pp.
2807
2818
.10.1016/0020-7683(94)90070-1
56.
Striz
,
A. G.
,
Chen
,
W. L.
, and
Bert
,
C. W.
,
1997
, “
Free Vibration of Plates by the High Accuracy Element Method
,”
J. Sound Vib.
,
202
(5), pp.
689
702
.10.1006/jsvi.1996.0846
57.
Striz
,
A. G.
,
Wang
,
X.
, and
Bert
,
C. W.
,
1995
, “
Harmonic Differential Quadrature Method and Applications to Analysis of Structural Components
,”
Acta Mech.
,
111
(1–2), pp.
85
94
.10.1007/BF01187729
58.
Wang
,
X.
, and
Bert
,
C. W.
,
1993
, “
A New Approach in Applying Differential Quadrature to Static and Free Vibrational Analyses of Beams and Plates
,”
J. Sound Vib.
,
162
(3), pp.
566
572
.10.1006/jsvi.1993.1143
59.
Wang
,
X.
,
Striz
,
A. G.
, and
Bert
,
C. W.
,
1993
, “
Free Vibration Analysis of Annular Plates by the DQ Method
,”
J. Sound Vib.
,
164
(1), pp.
173
175
.10.1006/jsvi.1993.1202
60.
Wang
,
X.
,
Bert
,
C. W.
, and
Striz
,
A. G.
,
1993
, “
Differential Quadrature Analysis of Deflection, Buckling and Free Vibration of Beams and Rectangular Plates
,”
Comput. Struct.
,
48
(3), pp.
473
479
.10.1016/0045-7949(93)90324-7
61.
Wang
,
X.
,
Bert
,
C. W.
, and
Striz
,
A. G.
,
1994
, “
Buckling and Vibration Analysis of Skew Plates by Differential Quadrature Method
,”
AIAA J.
,
32
(4), pp.
886
889
.10.2514/3.12071
62.
Shu
,
C.
,
1991
, “
Generalized Differential-Integral Quadrature and Application to the Simulation of Incompressible Viscous Flows Including Parallel Computation
,” Ph.D. thesis, University of Glasgow, UK.
63.
Shu
,
C.
, and
Richards
,
B. E.
,
1992
, “
Parallel Simulation of Incompressible Viscous Flows by Generalized Differential Quadrature
,”
Comput. Syst. Eng.
,
3
(1–4), pp.
271
281
.10.1016/0956-0521(92)90112-V
64.
Shu
,
C.
, and
Richards
,
B. E.
,
1992
, “
Application of Generalized Differential Quadrature to Solve Two-Dimensional Incompressible Navier–Stokes Equations
,”
Int. J. Numer. Methods Fluids
,
15
(7), pp.
791
798
.10.1002/fld.1650150704
65.
Kukreti
,
A.
,
Farsa
,
J.
, and
Bert
,
C. W.
,
1992
, “
Fundamental Frequency of Tapered Plates by Differential Quadrature
,”
J. Eng. Mech.
,
118
(6), pp.
1221
1238
.10.1061/(ASCE)0733-9399(1992)118:6(1221)
66.
Civan
,
F.
,
1992
, “
Letter to Editor. Comment on ‘Application of Generalized Quadrature to Solve Two-Dimensional Incompressible Navier–Stokes Equations,' by C. Shu and B.E. Richards
,”
Int. J. Numer. Method Fluids
,
17
(10), pp.
921
922
.10.1002/fld.1650171007
67.
Chen
,
W.
, and
Yu
,
Y.
,
1993
, “
Calculation and Analysis of Weighting Coefficient Matrices in Differential Quadrature Method
,”
Proceedings of the 1st Pan-Pacific Conference Computer Engineering
, Seoul, Korea, Nov. 1–5, B.M. Kwak and M. Tanaka, Elsevier, Amsterdam, Netherlands, pp.
157
162
.
68.
Chen
,
W.
, and
Yu
,
Y.
,
1993
, “
Differential Quadrature Method for High Order Boundary Value Problems
,”
Proceedings of the 1st Pan-Pacific Conference Computer Engineering
, Seoul, Korea, Nov. 1–5, B.M. Kwak and M. Tanaka, Elsevier, Amsterdam, The Netherlands, pp.
163
168
.
69.
Civan
,
F.
,
1994
, “
Rapid and Accurate Solution of Reactor Models by the Quadrature Method
,”
Comput. Chem. Eng.
,
18
(10), pp.
1005
1009
.10.1016/0098-1354(94)E0033-J
70.
Shu
,
C.
,
Chew
,
Y. T.
, and
Richards
,
B. E.
,
1995
, “
Generalized Differential and Integral Quadrature and Their Application to Solve Boundary Layer Equations
,”
Int. J. Numer. Methods Fluids
,
21
(9), pp.
723
733
.10.1002/fld.1650210903
71.
Gutierrez
,
R. H.
, and
Laura
,
P. A. A.
,
1995
, “
Analysis of Vibrating, Thin, Rectangular Plates With Point Supports by the Method of Differential Quadrature
,”
Ocean Eng.
,
22
(1), pp.
101
103
.10.1016/0029-8018(93)E0001-9
72.
Gutierrez
,
R. H.
, and
Laura
,
P. A. A.
,
1995
, “
Vibrations of Non-Uniform Rings Studied by Means of the Differential Quadrature Method
,”
J. Sound Vib.
,
185
(3), pp.
507
513
.10.1006/jsvi.1995.0396
73.
Laura
,
P. A. A.
, and
Gutierrez
,
R. H.
,
1995
, “
Analysis of Vibrating Circular Plates of Nonuniform Thickness by the Method of Differential Quadrature
,”
Ocean Eng.
,
22
(1), pp.
97
100
.10.1016/0029-8018(93)E0004-C
74.
Lam
,
K. Y.
, and
Loy
,
C. T.
,
1995
, “
Free Vibrations of a Rotating Multi-Layered Cylindrical Shell
,”
Int. J. Solids Struct.
,
32
(
5
), pp.
647
663
.10.1016/0020-7683(94)00143-K
75.
Shu
,
C.
,
Chew
,
Y. T.
,
Khoo
,
B. C.
, and
Yeo
,
K. S.
,
1995
, “
Application of GDQ Scheme to Simulate Incompressible Viscous Flows Around Complex Geometries
,”
Mech. Res. Commun.
,
22
(4), pp.
319
325
.10.1016/0093-6413(95)00031-L
76.
Wang
,
X.
,
Yang
,
J.
, and
Xiao
,
J.
,
1995
, “
On Free Vibration Analysis of Circular Annular Plates With Non-Uniform Thickness by the Differential Quadrature Method
,”
J. Sound Vib.
,
184
(3), pp.
547
551
.10.1006/jsvi.1995.0332
77.
Shu
,
C.
,
1996
, “
Free Vibration Analysis of Composite Laminated Conical Shells by Generalized Differential Quadrature
,”
J. Sound Vib.
,
194
(4), pp.
587
604
.10.1006/jsvi.1996.0379
78.
Shu
,
C.
,
1996
, “
An Efficient Approach for Free Vibration Analysis of Conical Shells
,”
Int. J. Mech. Sci.
,
38
(8–9), pp.
935
949
.10.1016/0020-7403(95)00096-8
79.
Shu
,
C.
,
Khoo
,
B. C.
,
Chew
,
Y. T.
, and
Yeo
,
K. S.
,
1996
, “
Numerical Studies of Unsteady Boundary Layer Flows Past an Impulsively Started Circular Cylinder by GDQ and GIQ Approaches
,”
Comput. Methods Appl. Mech. Eng.
,
135
(3–4), pp.
229
241
.10.1016/0045-7825(95)00959-0
80.
Chen
,
W.
,
1996
, “
Differential Quadrature Method and its Applications in Engineering
,” Ph.D. thesis, Shanghai Jiao Tong University, Shanghai, China.
81.
Chen
,
W.
,
Wang
,
X.
, and
Zhong
,
T.
,
1996
, “
The Structures of the Weighting Coefficient Matrices of the Harmonic Differential Quadrature and Its Applications
,”
Commun. Numer. Methods Eng.
,
12
, pp.
455
459
.10.1002/(SICI)1099-0887(199608)12:8<455::AID-CNM989>3.0.CO;2-M
82.
Chen
,
W.
,
Zhong
,
T. X.
, and
Liang
,
S. P.
,
1997
, “
On the DQ Analysis of Geometrically Non-Linear Vibration of Immovably Simply-Supported Beams
,”
J. Sound Vib.
,
206
(5), pp.
745
748
.10.1006/jsvi.1997.1136
83.
Lam
,
K. Y.
, and
Hua
,
L.
,
1997
, “
Vibration Analysis of a Rotating Truncated Circular Conical Shell
,”
Int. J. Solids Struct.
,
34
(17), pp.
2183
2197
.10.1016/S0020-7683(96)00100-X
84.
Bellomo
,
N.
,
1997
, “
Nonlinear Models and Problems in Applied Sciences From Differential Quadrature to Generalized Collocation Methods
,”
Math. Comput. Model.
,
26
(4), pp.
13
34
.10.1016/S0895-7177(97)00142-8
85.
Shu
,
C.
, and
Du
,
H.
,
1997
, “
Implementation of Clamped and Simply Supported Boundary Conditions in the GDQ Free Vibration Analysis of Beams and Plates
,”
Int. J. Solids Struct.
,
34
(7), pp.
819
835
.10.1016/S0020-7683(96)00057-1
86.
Shu
,
C.
, and
Du
,
H.
,
1997
, “
A Generalized Approach for Implementation General Boundary Conditions in the GDQ Free Vibration Analysis of Plates
,”
Int. J. Solids Struct.
,
34
(7), pp.
837
846
.10.1016/S0020-7683(96)00056-X
87.
Shu
,
C.
, and
Du
,
H.
,
1997
, “
Free Vibration Analysis of Laminated Composite Cylindrical Shells by DQM
,”
Compos. Part B
,
28
(
3
), pp.
267
274
.10.1016/S1359-8368(96)00052-2
88.
Shu
,
C.
, and
Chew
,
Y. T.
,
1997
, “
Fourier Expansion-Based Differential Quadrature and Its Application to Helmholtz Eigenvalue Problems
,”
Commun. Numer. Methods Eng.
,
13
(
8
), pp.
643
653
.10.1002/(SICI)1099-0887(199708)13:8<643::AID-CNM92>3.0.CO;2-F
89.
Shu
,
C.
,
Chew
,
Y. T.
, and
Liu
,
Y.
,
1997
, “
An Efficient Approach for Numerical Simulation of Flows in Czochralski Crystal Growth
,”
J. Cryst. Growth
,
181
(
4
), pp.
427
436
.10.1016/S0022-0248(97)00296-0
90.
Shu
,
C.
, and
Xue
,
H.
,
1997
, “
Explicit Computation of Weighting Coefficients in the Harmonic Differential Quadrature
,”
J. Sound Vib.
,
204
(
3
), pp.
549
555
.10.1006/jsvi.1996.0894
91.
Bonzani
,
I.
,
1997
, “
Solution of Nonlinear Evolution Problems by Parallelized Collocation-Interpolation Methods
,”
Comput. Math. Appl.
,
34
(
12
), pp.
71
79
.10.1016/S0898-1221(97)00235-6
92.
Chen
,
W.
,
Zhong
,
T. X.
, and
Shu
,
C.
,
1998
, “
Lyapunov Formulation for Efficient Solution of the Poisson and Convection-Diffusion Equations by the Differential Quadrature Method
,”
J. Comput. Phys.
,
141
(
1
), pp.
78
84
.10.1006/jcph.1998.5861
93.
Tomasiello
,
S.
,
1998
, “
Differential Quadrature Method: Application to Initial-Boundary-Value Problems
,”
J. Sound Vib.
,
218
(
4
), pp.
573
585
.10.1006/jsvi.1998.1833
94.
Shu
,
C.
, and
Xue
,
H.
,
1998
, “
Comparison of Two Approaches for Implementing Stream Function Boundary Conditions in DQ Simulation of Natural Convection in a Square Cavity
,”
Int. J. Heat Fluid Flow
,
19
(1), pp.
59
68
.10.1016/S0142-727X(97)10010-8
95.
Shu
,
C.
,
Yeo
,
K. S.
, and
Yao
,
Q.
,
1998
, “
On the Performance of Three Iterative Methods for Solution of GDQ Algebraic Equations
,”
Comput. Methods Appl. Mech. Eng.
,
167
(1–2), pp.
1
15
.10.1016/S0045-7825(98)00103-0
96.
Shu
,
C.
,
Chew
,
Y. T.
, and
Liu
,
Y.
,
1998
, “
Different Interface Approximations in Multi-Domain GDQ Simulation of Czochralski Bulk Flows
,”
Int. J. Numer. Methods Heat Fluid Flow
,
8
(4), pp.
424
444
.10.1108/09615539810213205
97.
Shu
,
C.
, and
Chew
,
Y. T.
,
1998
, “
On the Equivalence of Generalized Differential Quadrature and Highest Order Finite Difference Scheme
,”
Comput. Methods Appl. Mech. Eng.
,
155
(3–4), pp.
249
260
.10.1016/S0045-7825(97)00150-3
98.
Wang
,
X.
,
Wang
,
Y.-L.
, and
Chen
,
R.-B.
,
1998
, “
Static and Free Vibrational Analysis of Rectangular Plates by the Differential Quadrature Element Method
,”
Commun. Numer. Methods Eng.
,
14
, pp.
1133
1141
.10.1002/(SICI)1099-0887(199812)14:12<1133::AID-CNM213>3.0.CO;2-Q
99.
Liu
,
F. L.
, and
Liew
,
K. M.
,
1998
, “
Static Analysis of Reissner–Mindlin Plates by Differential Quadrature Element Method
,”
ASME J. Appl. Mech.
,
65
(3), pp.
705
710
.10.1115/1.2789114
100.
Liu
,
F. L.
, and
Liew
,
K. M.
,
1999
, “
Differential Quadrature Element Method for Static Analysis of Reissner–Mindlin Polar Plates
,”
Int. J. Solids Struct.
,
36
(33), pp.
5101
5123
.10.1016/S0020-7683(98)00245-5
101.
Liu
,
F. L.
, and
Liew
,
K. M.
,
1999
, “
Free Vibration Analysis of Mindlin Sector Plates: Numerical Solutions by Differential Quadrature Method
,”
Comput. Methods Appl. Mech. Eng.
,
177
(1–2), pp.
77
92
.10.1016/S0045-7825(98)00376-4
102.
Liu
,
F. L.
, and
Liew
,
K. M.
,
1999
, “
Differential Quadrature Element Method: A New Approach for Free Vibration Analysis of Polar Mindlin Plates Having Discontinuities
,”
Comput. Methods Appl. Mech. Eng.
,
179
(3–4), pp.
407
423
.10.1016/S0045-7825(99)00049-3
103.
Liu
,
F. L.
, and
Liew
,
K. M.
,
1999
, “
Analysis of Vibrating Thick Rectangular Plates With Mixed Boundary Constraints Using Differential Quadrature Element Method
,”
J. Sound Vib.
,
225
(5), pp.
915
934
.10.1006/jsvi.1999.2262
104.
Liu
,
F. L.
, and
Liew
,
K. M.
,
1999
, “
Vibration Analysis of Discontinuous Mindlin Plates by Differential Quadrature Element Method
,”
ASME J. Vib. Acoust.
,
121
(2), pp.
204
208
.10.1115/1.2893965
105.
Bonzani
,
I.
,
1999
, “
Domain Decomposition and Discretization of Continuous Mathematical Models
,”
Comput. Math. Appl.
,
38
(11–12), pp.
79
88
.10.1016/S0898-1221(99)00287-4
106.
Shu
,
C.
, and
Xue
,
H.
,
1999
, “
Solution of Helmholtz Equation by Differential Quadrature Method
,”
Comput. Methods Appl. Mech. Eng.
,
175
(1–2), pp.
203
212
.10.1016/S0045-7825(98)00370-3
107.
Shu
,
C.
, and
Chew
,
Y. T.
,
1999
, “
Application of Multi-Domain GDQ Method to Analysis of Waveguides With Rectangular Boundaries
,”
PIER
,
21
, pp.
1
19
.10.2528/PIER98052601
108.
Shu
,
C.
, and
Chew
,
Y. T.
,
1999
, “
Application of Multi-Domain GDQ Method to Analysis of Waveguides With Rectangular Boundaries
,”
J. Electromagn. Waves Appl.
,
13
(2), pp.
223
225
.10.1163/156939399X00853
109.
Lam
,
K. Y.
, and
Qian
,
W.
,
1999
, “
Vibration of Thick Rotating Laminated Composite Cylindrical Shells
,”
J. Sound Vib.
,
225
(
3
), pp.
483
501
.10.1006/jsvi.1999.2205
110.
Shu
,
C.
,
1999
, “
Application of Differential Quadrature Method to Simulate Natural Convection in a Concentric Annulus
,”
Int. J. Numer. Methods Fluids
,
30
(
8
), pp.
977
993
.10.1002/(SICI)1097-0363(19990830)30:8<977::AID-FLD873>3.0.CO;2-J
111.
Shu
,
C.
, and
Wang
,
C. M.
,
1999
, “
Treatment of Mixed and Nonuniform Boundary Conditions in GDQ Vibration Analysis of Rectangular Plates
,”
Eng. Struct.
,
21
(2), pp.
125
134
.10.1016/S0141-0296(97)00155-7
112.
Shu
,
C.
, and
Chen
,
W.
,
1999
, “
On Optimal Selection of Interior Points for Applying Discretized Boundary Conditions in DQ Vibration Analysis of Beams and Plates
,”
J. Sound Vib.
,
222
(2), pp.
239
257
.10.1006/jsvi.1998.2041
113.
Ng
,
T. Y.
,
Li
,
H.
,
Lam
,
K. Y.
, and
Loy
,
C. T.
,
1999
, “
Parametric Instability of Conical Shells by the Generalized Differential Quadrature Method
,”
Int. J. Numer. Methods Eng.
,
44
, pp.
819
837
.10.1002/(SICI)1097-0207(19990228)44:6<819::AID-NME528>3.0.CO;2-0
114.
Bert
,
C. W.
, and
Malik
,
M.
,
2001
, “
Letters to the Editor. Comments on ‘Differential Quadrature Method for Vibration Analysis of Shear Deformable Annular Sector Plates'
,”
J. Sound Vib.
,
239
(5), pp.
1073
1074
.10.1006/jsvi.2000.3093
115.
Shu
,
C.
,
2000
,
Differential Quadrature and Its Application in Engineering
,
Springer
, London.10.1007/978-1-4471-0407-0
116.
Carey
,
G. F.
, and
Finlayson
,
B. A.
,
1974
, “
Orthogonal Collocation on Finite Elements
,”
Chem. Eng. Sci.
,
30
(5–6), pp.
587
596
.10.1016/0009-2509(75)80031-5
117.
Orszag
,
S. A.
,
1980
, “
Spectral Methods for Problems in Complex Geometries
,”
J. Comput. Phys.
,
37
(1), pp.
70
92
.10.1016/0021-9991(80)90005-4
118.
Metivet
,
B.
, and
Morchoisne
,
Y.
,
1982
, “
Multi-Domain Spectral Technique for Viscous Flow Calculations
,”
Proceedings of the 4th GAMM Conference Numerical Methods Fluid Mechanics
, Paris, October, NNFM, October, Birkhauser Verlag, Basel, Vol.
5
, pp.
207
219
.
119.
Patera
,
A. T.
,
1984
, “
A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion
,”
J. Comput. Phys.
,
54
(3), pp.
468
488
.10.1016/0021-9991(84)90128-1
120.
Canuto
,
C.
,
Hussaini
,
M. Y.
,
Quarteroni
,
A.
, and
Zang
,
T. A.
,
2007
,
Spectral Methods. Evolution to Complex Geometries and Applications to Fluid Dynamics
,
Springer
, Berlin.
121.
Ostachowicz
,
W.
,
Kudela
,
P.
,
Krawczuk
,
M.
, and
Zak
,
A.
,
2011
,
Guided Waves in Structures for SHM. The Time-Domain Spectral Element Method
,
Wiley
, Chichester, West Sussex, UK.10.1002/9781119965855
122.
Franciosi
,
C.
, and
Tomasiello
,
S.
,
2004
, “
A Modified Quadrature Element Method to Perform Static Analysis of Structures
,”
Int. J. Mech. Sci.
,
46
(6), pp.
945
959
.10.1016/j.ijmecsci.2004.03.001
123.
Franciosi
,
C.
, and
Tomasiello
,
S.
,
2007
, “
Static Analysis of a Bickford Beam by Means of the DQEM
,”
Int. J. Mech. Sci.
,
49
(1), pp.
122
128
.10.1016/j.ijmecsci.2006.07.016
124.
Xing
,
Y.
, and
Liu
,
B.
,
2009
, “
High-Accuracy Differential Quadrature Finite Element Method and Its Application to Free Vibrations of Thin Plate With Curvilinear Domain
,”
Int. J. Numer. Methods Eng.
,
80
(13), pp.
1718
1742
.10.1002/nme.2685
125.
Zhong
,
H.-Z.
, and
Yu
,
T.
,
2009
, “
A Weak Form Quadrature Element Method for Plane Elasticity Problems
,”
Appl. Math. Model.
,
33
(
10
), pp.
3801
3814
.10.1016/j.apm.2008.12.007
126.
Xing
,
Y.
,
Liu
,
B.
, and
Liu
,
G.
,
2010
, “
A Differential Quadrature Finite Element Method
,”
Int. J. Appl. Mech.
,
2
(1), pp.
207
227
.10.1142/S1758825110000470
127.
Xing
,
Y.
, and
Liu
,
B.
,
2010
, “
A Differential Quadrature Analysis of Dynamic and Quasi-Static Magneto-Thermo-Elastic Stresses in a Conducting Rectangular Plate Subjected to an Arbitrary Variation of Magnetic Field
,”
Int. J. Eng. Sci.
,
48
(12), pp.
1944
1960
.10.1016/j.ijengsci.2010.06.010
128.
Zhong
,
H.-Z.
, and
Wang
,
Y.
,
2010
, “
Weak Form Quadrature Element Analysis of Bickford Beams
,”
Eur. J. Mech. A-Solid
,
29
(5), pp.
851
858
.10.1016/j.euromechsol.2010.03.012
129.
Zhong
,
H.-Z.
,
Pan
,
C.-L.
, and
Yu
,
H.
,
2011
, “
Buckling Analysis of Shear Deformable Plates Using the Quadrature Element Method
,”
Appl. Math. Model.
,
35
(10), pp.
5059
5074
.10.1016/j.apm.2011.04.030
130.
Xiao
,
N.
, and
Zhong
,
H.-Z.
,
2012
, “
Non-Linear Quadrature Element Analysis of Planar Frames Based on Geometrically Exact Beam Theory
,”
Int. J. Nonlinear Mech.
,
47
(5), pp.
481
488
.10.1016/j.ijnonlinmec.2011.09.021
131.
He
,
R.
, and
Zhong
,
H.-Z.
,
2012
, “
Large Deflection Elasto-Plastic Analysis of Frames Using the Weak-Form Quadrature Element Method
,”
Finite Elem. Anal. Des.
,
50
, pp.
125
133
.10.1016/j.finel.2011.09.003
132.
Zhong
,
H.-Z.
, and
Yue
,
Z. G.
,
2012
, “
Analysis of Thin Plates by the Weak Form Quadrature Element Method
,”
Sci. China Phys. Mech. Astron.
,
55
(
5
), pp.
861
871
.10.1007/s11433-012-4684-y
133.
Liu
,
B.
,
Xing
,
Y. F.
,
Eisenberger
,
M.
, and
Ferreira
,
A. J. M.
,
2014
, “
Thickness-Shear Vibration Analysis of Rectangular Quartz Plates by a Numerical Extended Kantorovich Method
,”
Compos. Struct.
,
107
, pp.
429
435
.10.1016/j.compstruct.2013.08.021
134.
Wang
,
Y.
,
Wang
,
X.
, and
Zhou
,
Y.
,
2004
, “
Static and Free Vibration Analysis of Rectangular Plates by the New Version of the Differential Quadrature Element Method
,”
Int. J. Numer. Methods Eng.
,
59
(9), pp.
1207
1226
.10.1002/nme.913
135.
Wu
,
X.
, and
Shen
,
Y.
,
2004
, “
Differential Quadrature Domain Decomposition Method for a Class of Parabolic Equations
,”
Comput. Math. Appl.
,
48
(1–2), pp.
1819
1832
.10.1016/j.camwa.2004.01.004
136.
Wu
,
T. Y.
, and
Liu
,
G. R.
,
1999
, “
A Differential Quadrature as a Numerical Method to Solve Differential Equations
,”
Comput. Mech.
,
24
(3), pp.
197
205
.10.1007/s004660050452
137.
Wu
,
T. Y.
, and
Liu
,
G. R.
,
2000
, “
Axisymmetric Bending Solution of Shells of Revolution by the Generalized Differential Quadrature Rule
,”
Int. J. Pressure Vessels Piping
,
77
(4), pp.
149
157
.10.1016/S0308-0161(00)00006-5
138.
Liu
,
G. R.
, and
Wu
,
T. Y.
,
2001
, “
Vibration Analysis of Beams Using the Generalized Differential Quadrature Rule and Domain Decomposition
,”
J. Sound Vib.
,
246
(3), pp.
461
481
.10.1006/jsvi.2001.3667
139.
Liu
,
G. R.
, and
Wu
,
T. Y.
,
2001
, “
In-Plane Vibration Analyses of Circular Arches by the Generalized Differential Quadrature Rule
,”
Int. J. Mech. Sci.
,
43
(11), pp.
2597
2611
.10.1016/S0020-7403(01)00052-2
140.
Liu
,
G. R.
, and
Wu
,
T. Y.
,
2001
, “
Application of Generalized Differential Quadrature Rule in Blasius and Osanger Equations
,”
Int. J. Numer. Methods Eng.
,
52
(9), pp.
1013
1027
.10.1002/nme.251
141.
Wu
,
T. Y.
, and
Liu
,
G. R.
,
2001
, “
Free Vibration Analysis of Circular Plates With Variable Thickness by the Generalized Differential Quadrature Rule
,”
Int. J. Solid Struct.
,
38
(44–45), pp.
7967
7980
.10.1016/S0020-7683(01)00077-4
142.
Wu
,
T. Y.
, and
Liu
,
G. R.
,
2001
, “
The Generalized Differential Quadrature Rule for Fourth-Order Differential Equations
,”
Int. J. Numer. Methods Eng.
,
50
(8), pp.
1907
1929
.10.1002/nme.102
143.
Liu
,
G. R.
, and
Wu
,
T. Y.
,
2002
, “
Multipoint Boundary Value Problems by Differential Quadrature Method
,”
Math. Comput. Model.
,
35
(1–2), pp.
215
227
.10.1016/S0895-7177(01)00160-1
144.
Liu
,
G. R.
, and
Wu
,
T. Y.
,
2002
, “
Differential Quadrature Solutions of Eighth-Order Boundary-Value Differential Equations
,”
J. Comput. Appl. Math.
,
145
(1), pp.
223
235
.10.1016/S0377-0427(01)00577-5
145.
Wu
,
T. Y.
,
Wang
,
Y. Y.
, and
Liu
,
G. R.
,
2002
, “
Free Vibration Analysis of Circular Plates Using Generalized Differential Quadrature Rule
,”
Comput. Methods Appl. Mech. Eng.
,
191
(46), pp.
5265
5380
.10.1016/S0045-7825(02)00463-2
146.
Wu
,
T. Y.
,
Liu
,
G. R.
, and
Wang
,
Y. Y.
,
2003
, “
Application of the Generalized Differential Quadrature Rule to Initial-Boundary-Value Problems
,”
J. Sound Vib.
,
264
(4), pp.
883
891
.10.1016/S0022-460X(02)01195-1
147.
Liu
,
F. L.
,
2000
, “
Rectangular Thick Plates on Winkler Foundation: Differential Quadrature Element Solution
,”
Int. J. Solid Struct.
,
37
(12), pp.
1743
1763
.10.1016/S0020-7683(98)00306-0
148.
Karami
,
G.
, and
Malekzadeh
,
P.
,
2002
, “
A New Differential Quadrature Methodology for Beam Analysis and the Associated Differential Quadrature Element Method
,”
Comput. Meth. Appl. Mech. Eng.
,
191
(32), pp.
3509
3526
.10.1016/S0045-7825(02)00289-X
149.
Karami
,
G.
, and
Malekzadeh
,
P.
,
2003
, “
Application of a New Differential Quadrature Methodology for Free Vibration Analysis of Plates
,”
Int. J. Numer. Methods Eng.
,
56
(6), pp.
847
868
.10.1002/nme.590
150.
Karami
,
G.
, and
Malekzadeh
,
P.
,
2003
, “
An Efficient Differential Quadrature Methodology for Free Vibration Analysis of Arbitrary Straight-Sided Quadrilateral Thin Plate
,”
J. Sound Vib.
,
263
(2), pp.
415
442
.10.1016/S0022-460X(02)01062-3
151.
Wang
,
X.
,
Liu
,
F.
,
Wang
,
X.
, and
Gan
,
L.
,
2005
, “
New Approaches in Application of Differential Quadrature Method to Fourth-Order Differential Equations
,”
Commun. Numer. Methods Eng.
,
21
(2), pp.
61
71
.10.1002/cnm.727
152.
Lam
,
S. S. E.
,
1993
, “
Application of the Differential Quadrature Method to Two-Dimensional Problems With Arbitrary Geometry
,”
Comput. Struct.
,
47
(3), pp.
459
464
.10.1016/0045-7949(93)90241-5
153.
Liu
,
G. R.
, and
Wu
,
T. Y.
,
2001
, “
Vibration Analysis of Beams Using the Generalized Differential Quadrature Rule and Domain Decomposition
,”
J. Sound Vib.
,
246
(3), pp.
461
481
.10.1006/jsvi.2001.3667
154.
Civalek
,
Ö.
,
2008
, “
Discrete Singular Convolution Methodology for Free Vibration and Stability Analyses of Arbitrary Straight-Sided Quadrilateral Plates
,”
Commun. Numer. Methods Eng.
,
24
(11), pp.
1475
1495
.10.1002/cnm.1046
155.
Civalek
,
Ö.
,
2009
, “
A Four-Node Discrete Singular Convolution for Geometric Transformation and Its Application to Numerical Solution of Vibration Problem of Arbitrary Straight Sided Quadrilateral Plates
,”
Appl. Math. Modell.
,
33
(
1
), pp.
300
314
.10.1016/j.apm.2007.11.003
156.
Civalek
,
Ö.
, and
Ozturk
,
B.
,
2010
, “
Vibration Analysis of Plates With Curvilinear Quadrilateral Domains by Discrete Singular Convolution Method
,”
Struct. Eng. Mech.
,
36
(3), pp.
279
299
.10.12989/sem.2010.36.3.279
157.
Liew
,
K. M.
, and
Han
,
J. B.
,
1997
, “
A Four-Node Differential Quadrature Method for Straight Sided Quadrilateral Reissner/Mindlin Plates
,”
Commun. Numer. Methods Eng.
,
13
, pp.
73
81
.10.1002/(SICI)1099-0887(199702)13:2<73::AID-CNM32>3.0.CO;2-W
158.
Han
,
J. B.
, and
Liew
,
K. M.
,
1997
, “
An Eight-Node Curvilinear Differential Quadrature Formulation for Reissner/Mindlin Plates
,”
Comput. Methods Appl. Mech. Eng.
,
141
(3–4), pp.
265
280
.10.1016/S0045-7825(96)01115-2
159.
Han
,
J. B.
, and
Liew
,
K. M.
,
1999
, “
Static Analysis of Mindlin Plates: The Differential Quadrature Element Method (DQEM)
,”
Comput. Methods Appl. Mech. Eng.
,
177
(1–2), pp.
51
75
.10.1016/S0045-7825(99)00371-0
160.
Shu
,
C.
,
Chen
,
W.
, and
Du
,
H.
,
2000
, “
Free Vibration Analysis of Curvilinear Quadrilateral Plates by the Differential Quadrature Method
,”
J. Comput. Phys.
,
163
(2), pp.
452
466
.10.1006/jcph.2000.6576
161.
Zhang
,
Y. Y.
,
2003
, “
Development of Differential Quadrature Methods and Their Applications to Plane Elasticity
,” Ph.D. thesis, National University of Singapore, Singapore.
162.
Zong
,
Z.
, and
Zhang
,
Y. Y.
,
2009
,
Advanced Differential Quadrature Methods
,
CRC
, Boca Raton, FL.10.1201/9781420082494
163.
Zhong
,
H.-Z.
, and
He
,
Y.
,
1998
, “
Solution of Poisson and Laplace Equations by Quadrilateral Quadrature Element
,”
Int. J. Solid Struct.
,
35
(21), pp.
2805
2819
.10.1016/S0020-7683(97)00277-1
164.
Chen
,
C.-N.
,
1998
, “
The Warping Torsion Bar Model of the Differential Quadrature Element Method
,”
Comput. Struct.
,
66
(2–3), pp.
249
257
.10.1016/S0045-7949(97)00066-7
165.
Chen
,
C.-N.
,
1999
, “
The Development of Irregular Elements for Differential Quadrature Element Method Steady-State Heat Conduction Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
170
(1–2), pp.
1
14
.10.1016/S0045-7825(98)00185-6
166.
Chen
,
C.-N.
,
1999
, “
Adaptive Differential Quadrature Element Refinement Analyses of Fluids Mechanics Problems
,”
Comput. Methods Appl. Mech. Eng.
,
180
(1–2), pp.
47
63
.10.1016/S0045-7825(99)00058-4
167.
Chen
,
C.-N.
,
1999
, “
The Differential Quadrature Element Method Irregular Element Torsion Analysis Model
,”
Appl. Math. Modell.
,
23
(4), pp.
309
328
.10.1016/S0307-904X(98)10083-5
168.
Chen
,
C.-N.
,
2000
, “
A Generalized Differential Quadrature Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
188
(1–3), pp.
553
566
.10.1016/S0045-7825(99)00283-2
169.
Chen
,
C.-N.
,
2000
, “
Vibration of Prismatic Beam on an Elastic Foundation by the Differential Quadrature Element Method
,”
Comput. Struct.
,
77
(1), pp.
1
9
.10.1016/S0045-7949(99)00216-3
170.
Chen
,
C.-N.
,
2000
, “
Differential Quadrature Element Analysis Using Extended Differential Quadrature
,”
Comput. Math. Appl.
,
39
(5–6), pp.
65
79
.10.1016/S0898-1221(00)00047-X
171.
Chen
,
C.-N.
,
2001
, “
Vibration of Nonuniform Shear Deformable Axisymmetric Orthotropic Circular Plates Solved by DQEM
,”
Compos. Struct.
,
53
(3), pp.
257
264
.10.1016/S0263-8223(01)00009-5
172.
Chen
,
C.-N.
,
2001
, “
Differential Quadrature Finite Difference Method for Structural Mechanics Problems
,”
Commun. Numer. Methods Eng.
,
17
(6), pp.
423
441
.10.1002/cnm.418
173.
Chen
,
C.-N.
,
2003
, “
DQEM and DQFDM for the Analysis of Composite Two-Dimensional Elasticity Problems
,”
Compos. Struct.
,
59
(1), pp.
3
13
.10.1016/S0263-8223(02)00231-3
174.
Chen
,
C.-N.
,
2003
, “
Buckling Equilibrium Equations of Arbitrarily Loaded Nonprismatic Composite Beams and the DQEM Buckling Analysis Using EDQ
,”
Appl. Math. Modell.
,
27
(1), pp.
27
46
.10.1016/S0307-904X(02)00084-7
175.
Chen
,
C.-N.
,
2003
, “
Out-of-Plane Deflection of Nonprismatic Curved Beams Structures Solved by the DQEM
,”
Adv. Eng. Software
,
34
(5), pp.
297
306
.10.1016/S0965-9978(02)00142-4
176.
Chen
,
C.-N.
,
2004
, “
Extended GDQ and Related Discrete Element Analysis Methods for Transient Analyses of Continuum Mechanics Problems
,”
Comput. Math. Appl.
,
47
(1), pp.
91
99
.10.1016/S0898-1221(04)90008-9
177.
Chen
,
C.-N.
,
2004
, “
Dynamic Response of Shear-Deformable Axisymmetric Orthotropic Circular Plate Structures Solved by the DQEM and EDQ Based Time Integration Schemes
,”
Compos. Struct.
,
64
(3–4), pp.
339
348
.10.1016/j.compstruct.2003.09.003
178.
Chen
,
C.-N.
,
2004
, “
DQEM and DQFDM Irregular Elements for Analyses of 2D Heat Conduction in Orthotropic Media
,”
Appl. Math. Modell.
,
28
(7), pp.
617
638
.10.1016/j.apm.2003.10.015
179.
Chen
,
C.-N.
,
2005
, “
DQEM Analysis of In-Plane Vibration of Curved Beam Structures
,”
Adv. Eng. Software
,
36
(6), pp.
412
424
.10.1016/j.advengsoft.2004.12.006
180.
Chen
,
C.-N.
,
2006
,
Discrete Element Analysis Methods of Generic Differential Quadratures
,
Springer
, Berlin.
181.
Fantuzzi
,
N.
,
2013
, “
Generalized Differential Quadrature Finite Element Method Applied to Advanced Structural Mechanics
,” Ph.D. thesis, University of Bologna, Bologna, Italy.
182.
Viola
,
E.
,
Tornabene
,
F.
, and
Fantuzzi
,
N.
,
2013
, “
Generalized Differential Quadrature Finite Element Method for Cracked Composite Structures of Arbitrary Shape
,”
Compos. Struct.
,
106
, pp.
815
834
.10.1016/j.compstruct.2013.07.034
183.
Viola
,
E.
,
Tornabene
,
F.
,
Ferretti
,
E.
, and
Fantuzzi
,
N.
,
2013
, “
Soft Core Plane State Structures Under Static Loads Using GDQFEM and Cell Method
,”
Comput. Model. Eng. Sci.
,
94
, pp.
301
329
.10.3970/cmes.2013.094.301
184.
Viola
,
E.
,
Tornabene
,
F.
,
Ferretti
,
E.
, and
Fantuzzi
,
N.
,
2013
, “
GDQFEM Numerical Simulations of Continuous Media With Cracks and Discontinuities
,”
Comput. Model. Eng. Sci.
,
94
, pp.
331
368
.10.3970/cmes.2013.094.331
185.
Viola
,
E.
,
Tornabene
,
F.
,
Ferretti
,
E.
, and
Fantuzzi
,
N.
,
2013
, “
On Static Analysis of Plane State Structures Via GDQFEM and Cell Method
,”
Comput. Model. Eng. Sci.
,
94
, pp.
421
458
.10.3970/cmes.2013.094.421
186.
Fantuzzi
,
N.
,
Tornabene
,
F.
, and
Viola
,
E.
,
2014
, “
Generalized Differential Quadrature Finite Element Method for Vibration Analysis of Arbitrarily Shaped Membranes
,”
Int. J. Mech. Sci.
,
79
, pp.
216
251
.10.1016/j.ijmecsci.2013.12.008
187.
Ng
,
T. Y.
, and
Lam
,
K. Y.
,
2000
, “
Free Vibration Analysis of Rotating Circular Cylindrical Shells on Elastic Foundation
,”
ASME J. Vib. Acoust.
,
122
(1), pp.
85
89
.10.1115/1.568445
188.
Lam
,
K. Y.
, and
Hua
,
L.
,
2000
, “
Influence of Initial Pressure on Frequency Characteristics of a Rotating Truncated Circular Conical Shell
,”
Int. J. Mech. Sci.
,
42
(2), pp.
213
236
.10.1016/S0020-7403(98)00125-8
189.
Lam
,
K. Y.
, and
Li
,
H.
,
2000
, “
Generalized Differential Quadrature Method for Frequency of Rotating Multilayered Conical Shell
,”
J. Eng. Mech.
,
126
(11), pp.
1156
1162
.10.1061/(ASCE)0733-9399(2000)126:11(1156)
190.
Shu
,
C.
,
Chen
,
W.
,
Xue
,
H.
, and
Du
,
H.
,
2001
, “
Numerical Study of Grid Distribution Effect on Accuracy of DQ Analysis of Beams and Plates by Error Estimation of Derivative Approximation
,”
Int. J. Numer. Methods Eng.
,
51
(2), pp.
159
179
.10.1002/nme.150
191.
Shu
,
C.
,
Xue
,
H.
, and
Zhu
,
Y. D.
,
2001
, “
Numerical Study of Natural Convection in an Eccentric Annulus Between a Square Outer Cylinder and a Circular Inner Cylinder Using DQ Method
,”
Int. J. Heat Mass Transfer
,
44
(17), pp.
3321
3333
.10.1016/S0017-9310(00)00357-4
192.
Bellomo
,
N.
,
De Angelis
,
E.
,
Graziano
,
L.
, and
Romano
,
A.
,
2001
, “
Solutions of Nonlinear Problems in Applied Sciences by Generalized Collocation Methods and Mathematica
,”
Comput. Math. Appl.
,
41
(10–11), pp.
1343
1363
.10.1016/S0898-1221(01)00101-8
193.
Fung
,
T. C.
,
2001
, “
Solving Initial Value Problems by Differential Quadrature Method—Part 1: First-Order Equations
,”
Int. J. Numer. Methods Eng.
,
50
, pp.
1411
1427
.10.1002/1097-0207(20010228)50:6<1411::AID-NME78>3.0.CO;2-O
194.
Fung
,
T. C.
,
2001
, “
Solving Initial Value Problems by Differential Quadrature Method—Part 2: Second- and Higher-Order Equations
,”
Int. J. Numer. Methods Eng.
,
50
, pp.
1429
1454
.10.1002/1097-0207(20010228)50:6<1429::AID-NME79>3.0.CO;2-A
195.
Liu
,
F. L.
,
2001
, “
Differential Quadrature Element Method for Buckling Analysis of Rectangular Mindlin Plates Having Discontinuities
,”
Int. J. Solid Struct.
,
38
(14), pp.
2305
2321
.10.1016/S0020-7683(00)00120-7
196.
Wang
,
Y.
,
Liu
,
R.
, and
Wang
,
X.
,
2001
, “
On Free Vibration Analysis of Non-Linear Piezoelectric Circular Shallow Spherical Shells by the Differential Quadrature Element Method
,”
J. Sound Vib.
,
245
(1), pp.
179
185
.10.1006/jsvi.2000.3538
197.
Mancuso
,
M.
, and
Ubertini
,
F.
,
2001
, “
Collocation Methods With Controllable Dissipation for Linear Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
190
(28), pp.
3607
3621
.10.1016/S0045-7825(00)00289-9
198.
Zeng
,
H.
, and
Bert
,
C. W.
,
2001
, “
A Differential Quadrature Analysis of Vibration for Rectangular Stiffened Plates
,”
J. Sound Vib.
,
241
(2), pp.
247
252
.10.1006/jsvi.2000.3295
199.
Lam
,
K. Y.
,
Li
,
H.
,
Ng
,
T. Y.
, and
Chua
,
C. F.
,
2002
, “
Generalized Differential Quadrature Method for the Free Vibration of Truncated Conical Panels
,”
J. Sound Vib.
,
251
(2), pp.
329
348
.10.1006/jsvi.2001.3993
200.
Shu
,
C.
,
Yao
,
Q.
, and
Yeo
,
K. S.
,
2002
, “
Block-Marching in Time With DQ Discretization: An Efficient Method for Time-Dependent Problems
,”
Comput. Methods Appl. Mech. Eng.
,
191
(41–42), pp.
4587
4597
.10.1016/S0045-7825(02)00387-0
201.
Shu
,
C.
, and
Zhu
,
Y. D.
,
2002
, “
Efficient Computation of Natural Convection in a Concentric Annulus Between an Outer Square Cylinder and an Inner Circular Cylinder
,”
Int. J. Numer. Methods Fluids
,
38
(5), pp.
429
445
.10.1002/fld.226
202.
Shu
,
C.
, and
Wee
,
K. H. A.
,
2002
, “
Numerical Simulation of Natural Convection in a Square Cavity by Simple-Generalized Differential Quadrature Method
,”
Comput. Fluids
,
31
(2), pp.
209
226
.10.1016/S0045-7930(01)00024-X
203.
Fung
,
T. C.
,
2002
, “
On Equivalence of the Time Domain Differential Quadrature Method and the Dissipative Runge–Kutta Collocation Method
,”
Int. J. Numer. Methods Eng.
,
53
(2), pp.
409
431
.10.1002/nme.283
204.
Fung
,
T. C.
,
2002
, “
Stability and Accuracy of Differential Quadrature Method in Solving Dynamic Problems
,”
Comput. Methods Appl. Mech. Eng.
,
191
(13–14), pp.
1311
1331
.10.1016/S0045-7825(01)00324-3
205.
Karami
,
G.
, and
Malekzadeh
,
P.
,
2002
, “
Static and Stability Analyses of Arbitrary Straight-Sided Quadrilateral Thin Plates by DQM
,”
Int. J. Solids Struct.
,
39
(19), pp.
4927
4947
.10.1016/S0020-7683(02)00403-1
206.
Wang
,
X.
, and
Wang
,
Y.
,
2002
, “
On Non-Linear Behaviour of Spherical Shallow Shells Bonded With Piezoelectric Actuators by the Differential Quadrature Element Method (DQEM)
,”
Int. J. Numer. Methods Eng.
,
53
(6), pp.
1477
1490
.10.1002/nme.349
207.
Malekzadeh
,
P.
, and
Karami
,
G.
,
2003
, “
Out-of-Plane Static Analysis of Circular Arches by DQM
,”
Int. J. Solids Struct.
,
40
(23), pp.
6527
6545
.10.1016/S0020-7683(03)00412-8
208.
Ng
,
T. Y.
,
Li
,
H.
, and
Lam
,
K. Y.
,
2003
, “
Generalized Differential Quadrature Method for the Free Vibration of Rotating Composite Laminated Conical Shell With Various Boundary Conditions
,”
Int. J. Mech. Sci.
,
45
(3), pp.
567
587
.10.1016/S0020-7403(03)00042-0
209.
Fung
,
T. C.
,
2003
, “
Imposition of Boundary Conditions by Modifying the Weighting Coefficient Matrices in the Differential Quadrature Method
,”
Int. J. Numer. Methods Eng.
,
56
(3), pp.
405
432
.10.1002/nme.571
210.
Fung
,
T. C.
,
2003
, “
Generalized Lagrange Functions and Weighting Coefficients Formulae for the Harmonic Differential Quadrature Method
,”
Int. J. Numer. Methods Eng.
,
57
(3), pp.
415
440
.10.1002/nme.692
211.
Karami
,
G.
,
Malekzadeh
,
P.
, and
Shahpari
,
S. A.
,
2003
, “
A DQEM for Vibration of Shear Deformable Nonuniform Beams With General Boundary Conditions
,”
Eng. Struct.
,
25
(9), pp.
1169
1178
.10.1016/S0141-0296(03)00065-8
212.
Karami
,
G.
,
Shahpari
,
S. A.
, and
Malekzadeh
,
P.
,
2003
, “
DQM Analysis of Skewed and Trapezoidal Plates
,”
Compos. Struct.
,
59
(3), pp.
393
402
.10.1016/S0263-8223(02)00188-5
213.
Tomasiello
,
S.
,
2003
, “
Stability and Accuracy of the Iterative Differential Quadrature Method
,”
Int. J. Numer. Methods Eng.
,
58
(9), pp.
1277
1296
.10.1002/nme.815
214.
Tomasiello
,
S.
,
2003
, “
Simulating Non-Linear Coupled Oscillators by an Iterative Differential Quadrature Method
,”
J. Sound Vib.
,
265
(3), pp.
507
525
.10.1016/S0022-460X(02)01525-0
215.
Wang
,
X.
,
Tan
,
M.
, and
Zhou
,
Y.
,
2003
, “
Buckling Analyses of Anisotropic Plates and Isotropic Skew Plates by the New Version Differential Quadrature Method
,”
Thin-Walled Struct.
,
41
(1), pp.
15
29
.10.1016/S0263-8231(02)00100-3
216.
Mancuso
,
M.
, and
Ubertini
,
F.
,
2003
, “
A Methodology for the Generation of Low-Cost Higher-Order Methods for Linear Dynamics
,”
Int. J. Numer. Methods Eng.
,
56
(13), pp.
1883
1912
.10.1002/nme.637
217.
Chen
,
W.
,
Shu
,
C.
,
He
,
W.
, and
Zhong
,
T.
,
2004
, “
The Application of Special Matrix Product to Differential Quadrature Solutions of Geometrically Nonlinear Bending of Orthotropic Rectangular Plates
,”
Comput. Struct.
,
74
(1), pp.
65
76
.10.1016/S0045-7949(98)00320-4
218.
Ng
,
C. H. W.
,
Zhao
,
Y. B.
, and
Wei
,
G. W.
,
2004
, “
Comparison of Discrete Convolution and Generalized Differential Quadrature for the Vibration Analysis of Rectangular Plates
,”
Comput. Methods Appl. Mech. Eng.
,
193
(23–26), pp.
2483
2506
.10.1016/j.cma.2004.01.013
219.
Malekzadeh
,
P.
, and
Karami
,
G.
,
2004
, “
Vibration of Non-Uniform Thick Plates on Elastic Foundation by Differential Quadrature Method
,”
Eng. Struct.
,
26
, pp.
1473
1482
.10.1016/j.engstruct.2004.05.008
220.
Civalek
,
Ö.
,
2004
, “
Application of Differential Quadrature (DQ) and Harmonic Differential Quadrature (HDQ) for Buckling Analysis of Thin Isotropic Plates and Elastic Columns
,”
Eng. Struct.
,
26
(10), pp.
171
186
.10.1016/j.engstruct.2003.09.005
221.
Wang
,
X.
, and
Wang
,
Y.
,
2004
, “
Re-Analysis of Free Vibration of Annular Plates by the New Version of Differential Quadrature Method
,”
J. Sound Vib.
,
278
(3), pp.
685
689
.10.1016/j.jsv.2003.12.008
222.
Karami
,
G.
, and
Malekzadeh
,
P.
,
2004
, “
In-Plane Free Vibration Analysis of Circular Arches With Varying Cross Sections Using Differential Quadrature Method
,”
J. Sound Vib.
,
274
(3–5), pp.
777
799
.10.1016/S0022-460X(03)00786-7
223.
Wang
,
X.
, and
Wang
,
Y.
,
2004
, “
Free Vibration Analyses of Thin Sector Plates by the New Version of Differential Quadrature Method
,”
Comput. Methods Appl. Mech. Eng.
,
193
(36–38), pp.
1133
1141
.10.1016/j.cma.2004.02.010
224.
Wang
,
X.
,
Wang
,
Y.
, and
Zhou
,
Y.
,
2004
, “
Application of a New Differential Quadrature Element Method to Free Vibration Analysis of Beams and Frame Structures
,”
J. Sound Vib.
,
269
(3–5), pp.
1133
1141
.10.1016/S0022-460X(03)00405-X
225.
Li
,
H.
,
Lam
,
K. Y.
, and
Ng
,
T. Y.
,
2005
,
Rotating Shell Dynamics
,
Elsevier
, Kidlington, Oxford, UK.
226.
Malekzadeh
,
P.
, and
Karami
,
G.
,
2005
, “
Polynomial and Harmonic Differential Quadrature Methods for Free Vibration of Variable Thickness Thick Skew Plates
,”
Eng. Struct.
,
27
(10), pp.
1563
1574
.10.1016/j.engstruct.2005.03.017
227.
Malekzadeh
,
P.
, and
Shahpari
,
S. A.
,
2005
, “
Free Vibration Analysis of Variable Thickness Thin and Moderately Thick Plates With Elastically Restrained Edges by DQM
,”
Thin-Walled Struct.
,
43
(7), pp.
1037
1050
.10.1016/j.tws.2004.11.008
228.
Civalek
,
Ö.
,
2005
, “
Geometrically Nonlinear Analysis of Doubly Curved Isotropic Shells Resting on Elastic Foundation by a Combination of Harmonic Differential Quadrature-Finite Difference Methods
,”
Int. J. Pressure Vessels Piping
,
82
(6), pp.
470
479
.10.1016/j.ijpvp.2004.12.003
229.
Viola
,
E.
, and
Tornabene
,
F.
,
2005
, “
Vibration Analysis of Damaged Circular Arches With Varying Cross Section
,”
SID-SDHM
,
1
, pp.
155
169
.
230.
Wang
,
X. H.
, and
Redekop
,
D.
,
2005
, “
Natural Frequencies and Mode Shapes for an Orthotropic Thin Shell of Revolution
,”
Thin-Walled Struct.
,
43
(5), pp.
735
750
.10.1016/j.tws.2004.12.001
231.
Govoni
,
L.
,
Manuso
,
M.
, and
Ubertini
,
F.
,
2006
, “
Hierarchical Higher-Order Dissipative Methods for Transient Analysis
,”
Int. J. Numer. Methods Eng.
,
67
(12), pp.
1730
1767
.10.1002/nme.1682
232.
Civalek
,
Ö.
,
2006
, “
Harmonic Differential Quadrature-Finite Differences Coupled Approaches Geometrically Nonlinear Static and Dynamic Analysis of Rectangular Plates on Elastic Foundation
,”
J. Sound Vib.
,
294
(4–5), pp.
966
980
.10.1016/j.jsv.2005.12.041
233.
Civalek
,
Ö.
,
2006
, “
An Efficient Method for Free Vibration Analysis of Rotating Truncated Conical Shells
,”
Int. J. Pressure Vessels Piping
,
83
(1), pp.
1
12
.10.1016/j.ijpvp.2005.10.005
234.
Viola
,
E.
, and
Tornabene
,
F.
,
2006
, “
Vibration Analysis of Conical Shell Structures Using GDQ Method
,”
Far East J. Appl. Math.
,
25
, pp.
23
39
.
235.
Malekzadeh
,
P.
, and
Karami
,
G.
,
2006
, “
Differential Quadrature Nonlinear Analysis of Skew Composite Plates Based on FSDT
,”
Eng. Struct.
,
28
(9), pp.
1307
1318
.10.1016/j.engstruct.2005.12.013
236.
Karami
,
G.
,
Malekzadeh
,
P.
, and
Mohebpour
,
S. R.
,
2006
, “
DQM Free Vibration Analysis of Moderately Thick Symmetric Laminated Plates With Elastically Restrained Edges
,”
Compos. Struct.
,
74
(1), pp.
115
125
.10.1016/j.compstruct.2006.02.014
237.
Wang
,
X. H.
,
Xu
,
B.
, and
Redekop
,
D.
,
2006
, “
Theoretical Natural Frequencies and Mode Shapes for Thin and Thick Curved Pipes and Toroidal Shells
,”
J. Sound Vib.
,
292
(1–2), pp.
424
434
.10.1016/j.jsv.2005.07.049
238.
Civalek
,
Ö.
,
2007
, “
Nonlinear Analysis of Thin Rectangular Plates on Winkler-Pasternak Elastic Foundation Differenti`al by DSC-HQM Methods
,”
Appl. Math. Modell.
,
31
(3), pp.
606
624
.10.1016/j.apm.2005.11.023
239.
Bellomo
,
N.
,
Lods
,
B.
,
Revelli
,
R.
, and
Ridolfi
,
L.
,
2007
,
Generalized Collocation Methods: Solution to Nonlinear Problems
,
Birkhäuser
, Boston, MA.
240.
Viola
,
E.
, and
Tornabene
,
F.
,
2007
, “
Dynamical Analysis of Spherical Shell Structural Elements Using the First Order Shear Deformation Theory
,”
Mechanical Vibration: Where Do We Stand?
,
CISM
, Vol.
488
,
Springer-Wien
,
NY
, pp.
17
41
.
241.
Tornabene
,
F.
,
2007
, “
Modellazione e Soluzione di Strutture a Guscio in Materiale Anisotropo
,” Ph.D. thesis, University of Bologna, Bologna, Italy.
242.
Tornabene
,
F.
, and
Viola
,
E.
,
2007
, “
Vibration Analysis of Spherical Structural Elements Using the GDQ Method
,”
Comput. Math. Appl.
,
53
(10), pp.
1538
1560
.10.1016/j.camwa.2006.03.039
243.
Viola
,
E.
,
Dilena
,
M.
, and
Tornabene
,
F.
,
2007
, “
Analytical and Numerical Results for Vibration Analysis of Multi-Stepped and Multi-Damaged Circular Arches
,”
J. Sound Vib.
,
299
(1–2), pp.
143
163
.10.1016/j.jsv.2006.07.001
244.
Wang
,
X.
,
2007
, “
Nonlinear Stability Analysis of Thin Doubly Curved Orthotropic Shallow Shells by the Differential Quadrature Method
,”
Comput. Methods Appl. Mech. Eng.
,
196
(17–20), pp.
2242
2251
.10.1016/j.cma.2006.11.009
245.
Marzani
,
A.
,
Tornabene
,
F.
, and
Viola
,
E.
,
2008
, “
Nonconservative Stability Problems via Generalized Differential Quadrature Method
,”
J. Sound Vib.
,
315
(1–2), pp.
176
196
.10.1016/j.jsv.2008.01.056
246.
Tornabene
,
F.
, and
Viola
,
E.
,
2008
, “
2D Solution for Free Vibrations of Parabolic Shells Using Generalized Differential Quadrature Method
,”
Eur. J. Mech. A-Solid
,
27
(6), pp.
1001
1025
.10.1016/j.euromechsol.2007.12.007
247.
Tornabene
,
F.
, and
Viola
,
E.
,
2009
, “
Free Vibration Analysis of Functionally Graded Panels and Shells of Revolution
,”
Meccanica
,
44
(3), pp.
255
281
.10.1007/s11012-008-9167-x
248.
Tornabene
,
F.
, and
Viola
,
E.
,
2009
, “
Free Vibrations of Four-Parameter Functionally Graded Parabolic Panels and Shell of Revolution
,”
Eur. J. Mech. A-Solid
,
28
(5), pp.
991
1013
.10.1016/j.euromechsol.2009.04.005
249.
Tornabene
,
F.
,
Viola
,
E.
, and
Inman
,
D. J.
,
2009
, “
2D Differential Quadrature Solution for Vibration Analysis of Functionally Graded Conical, Cylindrical and Annular Shell Structures
,”
J. Sound Vib.
,
328
(3), pp.
259
290
.10.1016/j.jsv.2009.07.031
250.
Tornabene
,
F.
,
2009
, “
Free Vibration Analysis of Functionally Graded Conical, Cylindrical Shell and Annular Plate Structures With a Four-Parameter Power-Law Distribution
,”
Comput. Methods Appl. Mech. Eng.
,
198
(37–40), pp.
2911
2935
.10.1016/j.cma.2009.04.011
251.
Viola
,
E.
, and
Tornabene
,
F.
,
2009
, “
Free Vibrations of Three Parameter Functionally Graded Parabolic Panels of Revolution
,”
Mech. Res. Commun.
,
36
(5), pp.
587
594
.10.1016/j.mechrescom.2009.02.001
252.
Tornabene
,
F.
,
Marzani
,
A.
,
Viola
,
E.
, and
Elishakoff
,
I.
,
2010
, “
Critical Flow Speeds of Pipes Conveying Fluid by the Generalized Differential Quadrature Method
,”
Adv. Theor. Appl. Mech.
,
3
, pp.
121
138
.
253.
Tornabene
,
F.
,
2011
, “
Free Vibrations of Laminated Composite Doubly-Curved Shells and Panels of Revolution via the GDQ Method
,”
Comput. Methods Appl. Mech. Eng.
,
200
(9–12), pp.
931
952
.10.1016/j.cma.2010.11.017
254.
Tornabene
,
F.
,
2011
, “
2D GDQ Solution for Free Vibrations of Anisotropic Doubly-Curved Shells and Panels of Revolution
,”
Compos. Struct.
,
93
(7), pp.
1854
1876
.10.1016/j.compstruct.2011.02.006
255.
Tornabene
,
F.
,
2011
, “
Free Vibrations of Anisotropic Doubly-Curved Shells and Panels of Revolution With a Free-Form Meridian Resting on Winkler–Pasternak Elastic Foundations
,”
Compos. Struct.
,
94
(1), pp.
186
206
.10.1016/j.compstruct.2011.07.002
256.
Tornabene
,
F.
,
Liverani
,
A.
, and
Caligiana
,
G.
,
2011
, “
FGM and Laminated Doubly-Curved Shells and Panels of Revolution With a Free-Form Meridian: A 2D GDQ Solution for Free Vibrations
,”
Int. J. Mech. Sci.
,
53
(6), pp.
446
470
.10.1016/j.ijmecsci.2011.03.007
257.
Tornabene
,
F.
,
Liverani
,
A.
, and
Caligiana
,
G.
,
2012
, “
Laminated Composite Rectangular and Annular Plates: A GDQ Solution for Static Analysis With a Posteriori Shear and Normal Stress Recovery
,”
Compos. Part B
,
43
(4), pp.
1847
1872
.10.1016/j.compositesb.2012.01.065
258.
Tornabene
,
F.
,
Liverani
,
A.
, and
Caligiana
,
G.
,
2012
, “
Static Analysis of Laminated Composite Curved Shells and Panels of Revolution With a Posteriori Shear and Normal Stress Recovery Using Generalized Differential Quadrature Method
,”
Int. J. Mech. Sci.
,
61
(1), pp.
71
87
.10.1016/j.ijmecsci.2012.05.007
259.
Tornabene
,
F.
,
Liverani
,
A.
, and
Caligiana
,
G.
,
2012
, “
General Anisotropic Doubly-Curved Shell Theory: A Differential Quadrature Solution for Free Vibrations of Shells and Panels of Revolution With a Free-Form Meridian
,”
J. Sound Vib.
,
331
(22), pp.
4848
4869
.10.1016/j.jsv.2012.05.036
260.
Viola
,
E.
,
Rossetti
,
L.
, and
Fantuzzi
,
N.
,
2012
, “
Numerical Investigation of Functionally Graded Cylindrical Shells and Panels Using the Generalized Unconstrained Third Order Theory Coupled With the Stress Recovery
,”
Compos. Struct.
,
94
(12), pp.
3736
3758
.10.1016/j.compstruct.2012.05.034
261.
Tornabene
,
F.
, and
Ceruti
,
A.
,
2013
, “
Free-Form Laminated Doubly-Curved Shells and Panels of Revolution Resting on Winkler–Pasternak Elastic Foundations: A 2D GDQ Solution for Static and Free Vibration Analysis
,”
World J. Mech.
,
3
, pp.
1
25
.10.4236/wjm.2013.31001
262.
Tornabene
,
F.
, and
Ceruti
,
A.
,
2013
, “
Mixed Static and Dynamic Optimization of Four-Parameter Functionally Graded Completely Doubly-Curved and Degenerate Shells and Panels Using GDQ Method
,”
Math. Probl. Eng.
,
2013
(
1
), pp.
1
33
.10.1155/2013/867079
263.
Tornabene
,
F.
, and
Reddy
,
J. N.
,
2013
, “
FGM and Laminated Doubly-Curved and Degenerate Shells Resting on Nonlinear Elastic Foundations: A GDQ Solution for Static Analysis With a Posteriori Stress and Strain Recovery
,”
J. Indian Inst. Sci.
,
93
, pp.
635
688
.
264.
Tornabene
,
F.
, and
Viola
,
E.
,
2013
, “
Static Analysis of Functionally Graded Doubly-Curved Shells and Panels of Revolution
,”
Meccanica
,
48
(4), pp.
901
930
.10.1007/s11012-012-9643-1
265.
Tornabene
,
F.
,
Viola
,
E.
, and
Fantuzzi
,
N.
,
2013
, “
General Higher-Order Equivalent Single Layer Theory for Free Vibrations of Doubly-Curved Laminated Composite Shells and Panels
,”
Compos. Struct.
,
104
, pp.
94
117
.10.1016/j.compstruct.2013.04.009
266.
Viola
,
E.
,
Tornabene
,
F.
, and
Fantuzzi
,
N.
,
2013
, “
General Higher-Order Shear Deformation Theories for the Free Vibration Analysis of Completely Doubly-Curved Laminated Shells and Panels
,”
Compos. Struct.
,
95
, pp.
639
666
.10.1016/j.compstruct.2012.08.005
267.
Viola
,
E.
,
Tornabene
,
F.
, and
Fantuzzi
,
N.
,
2013
, “
Static Analysis of Completely Doubly-Curved Laminated Shells and Panels Using General Higher-Order Shear Deformation Theories
,”
Compos. Struct.
,
101
, pp.
59
93
.10.1016/j.compstruct.2013.01.002
268.
Ferreira
,
A. J. M.
,
Viola
,
E.
,
Tornabene
,
F.
,
Fantuzzi
,
N.
, and
Zenkour
,
A. M.
,
2013
, “
Analysis of Sandwich Plates by Generalized Differential Quadrature Method
,”
Math. Probl. Eng.
,
2013
, pp.
1
22
.10.1155/2013/964367
269.
Wang
,
X.
, and
Wang
,
Y.
,
2013
,”
Free Vibration Analysis of Multiple-Stepped Beams by the Differential Quadrature Element Method
,”
Appl. Math. Comput.
,
219
(11), pp.
5802
5810
.10.1016/j.amc.2012.12.037
270.
Ferreira
,
A. J. M.
,
Carrera
,
E.
,
Cinefra
,
M.
,
Viola
,
E.
,
Tornabene
,
F.
,
Fantuzzi
,
N.
, and
Zenkour
,
A. M.
,
2014
, “
Analysis of Thick Isotropic and Cross-Ply Laminated Plates by Generalized Differential Quadrature Method and a Unified Formulation
,”
Compos. Part B
,
58
, pp.
544
552
.10.1016/j.compositesb.2013.10.088
271.
Tornabene
,
F.
,
Fantuzzi
,
N.
,
Viola
,
E.
, and
Carrera
,
E.
,
2014
, “
Static Analysis of Doubly-Curved Anisotropic Shells and Panels Using CUF Approach, Differential Geometry and Differential Quadrature Method
,”
Compos. Struct.
,
107
, pp.
675
697
.10.1016/j.compstruct.2013.08.038
272.
Tornabene
,
F.
,
Fantuzzi
,
N.
,
Viola
,
E.
, and
Reddy
,
J. N.
,
2014
, “
Winkler–Pasternak Foundation Effect on the Static and Dynamic Analyses of Laminated Doubly-Curved and Degenerate Shells and Panels
,”
Compos. Part B
,
57
, pp.
269
296
.10.1016/j.compositesb.2013.06.020
273.
Fantuzzi
,
N.
, and
Tornabene
,
F.
,
2014
, “
Strong Formulation Finite Element Method for Arbitrarily Shaped Laminated Plates—I. Theoretical Analysis
,”
Adv. Aircr. Space Sci.
,
1
(2), pp.
125
143
.10.12989/aas.2014.1.2.125
274.
Fantuzzi
,
N.
, and
Tornabene
,
F.
,
2014
, “
Strong Formulation Finite Element Method for Arbitrarily Shaped Laminated Plates—II. Numerical Analysis
,”
Adv. Aircr. Space Sci.
,
1
(2), pp.
145
175
.10.12989/aas.2014.1.2.145
275.
Viola
,
E.
,
Rossetti
,
L.
,
Fantuzzi
,
N.
, and
Tornabene
,
F.
,
2014
, “
Static Analysis of Functionally Graded Conical Shells and Panels Using the Generalized Unconstrained Third Order Theory Coupled With the Stress Recovery
,”
Compos. Struct.
,
112
, pp.
44
65
.10.1016/j.compstruct.2014.01.039
276.
Tornabene
,
F.
,
2012
, “
Meccanica delle Strutture a Guscio in Materiale Composito. Il metodo Generalizzato di Quadratura Differenziale
,” Esculapio, Bologna, Italy.
277.
Tornabene
,
F.
, and
Fantuzzi
,
N.
,
2014
, “
Mechanics of Laminated Composite Doubly-Curved Shell Structures. The Generalized Differential Quadrature Method and the Strong Formulation Finite Element Method
,” Esculapio, Bologna, Italy.
278.
Kansa
,
E. J.
,
1990
, “
Multiquadrics—A Scattered Data Approximation Scheme With Applications to Computational Fluid-Dynamics—I Surface Approximations and Partial Derivative Estimates
,”
Comput. Math. Appl.
,
19
(8–9), pp.
127
145
.10.1016/0898-1221(90)90270-T
279.
Kansa
,
E. J.
,
1990
, “
Multiquadrics—A Scattered Data Approximation Scheme With Applications to Computational Fluid-Dynamics—II Solutions to Parabolic, Hyperbolic and Elliptic Partial Differential Equations
,”
Comput. Math. Appl.
,
19
(8–9), pp.
147
161
.10.1016/0898-1221(90)90271-K
280.
Fasshauer
,
G. E.
,
1999
, “
Solving Differential Equations With Radial Basis Functions: Multilevel Methods and Smoothing
,”
Adv. Comput. Math.
,
11
(2–3), pp.
139
159
.10.1023/A:1018919824891
281.
Fasshauer
,
G. E.
,
2007
, “
Meshfree Approximation Methods With MATLAB
,”
World Scientific
, Singapore.10.1142/6437
282.
Fasshauer
,
G. E.
, and
Zhang
,
J. G.
,
2007
, “
On Choosing ‘Optimal’ Shape Parameters for RBF Approximation
,”
Numer. Algorithms
,
45
(1–4), pp.
345
368
.10.1007/s11075-007-9072-8
283.
Ferreira
,
A. J. M.
, and
Fasshauer
,
G. E.
,
2006
, “
Computation of Natural Frequencies of Shear Deformable Beams and Plates by an RBF-Pseudospectral Method
,”
Comput. Methods Appl. Mech. Eng.
,
196
(1–3), pp.
134
146
.10.1016/j.cma.2006.02.009
284.
Ferreira
,
A. J. M.
,
Fasshauer
,
G. E.
,
Batra
,
R. C.
, and
Rodrigues
,
J. D.
,
2008
, “
Static Deformations and Vibration Analysis of Composite and Sandwich Plates Using a Layerwise Theory and RBF-PS Discretizations With Optimal Shape Parameter
,”
Compos. Struct.
,
86
(4), pp.
328
343
.10.1016/j.compstruct.2008.07.025
285.
Rippa
,
S.
,
1999
, “
An Algorithm for Selecting a Good Value for the Parameter c in Radial Basis Function Interpolation
,”
Adv. Comput. Math.
,
11
(2–3), pp.
193
210
.10.1023/A:1018975909870
286.
Wendland
,
H.
,
1999
, “
Meshless Galerkin Methods Using Radial Basis Functions
,”
Math. Comput.
,
68
, pp.
1521
1531
.10.1090/S0025-5718-99-01102-3
287.
Buhmann
,
M. D.
,
2000
, “
Radial Basis Functions
,”
Acta Numer.
,
9
, pp.
1
38
.10.1017/S0962492900000015
288.
Wang
,
J. G.
, and
Liu
,
G. R.
,
2002
, “
On the Optimal Shape Parameters of Radial Basis Functions Used for 2D Meshless Methods
,”
Comput. Methods Appl. Mech. Eng.
,
191
(23–24), pp.
2611
2630
.10.1016/S0045-7825(01)00419-4
289.
Ferreira
,
A. J. M.
,
Roque
,
C. M. C.
, and
Martins
,
P. A. L. S.
,
2003
, “
Analysis of Composite Plates Using Higher-Order Shear Deformation Theory and a Finite Point Formulation Based on the Multiquadric Radial Basis Function Method
,”
Compos. Part B
,
34
(7), pp.
627
636
.10.1016/S1359-8368(03)00083-0
290.
Shu
,
C.
,
Ding
,
H.
, and
Yeo
,
K. S.
,
2004
, “
Solution of Partial Differential Equations by a Global Radial Basis Function—Based Differential Quadrature Method
,”
Eng. Anal. Boundary Elem.
,
28
(
10
), pp.
1217
1226
.10.1016/j.enganabound.2003.02.001
291.
Ferreira
,
A. J. M.
,
Roque
,
C. M. C.
, and
Jorge
,
R. M. N.
,
2005
, “
Free Vibration Analysis of Symmetric Laminated Composite Plates by FSDT and Radial Basis Functions
,”
Comput. Methods Appl. Mech. Eng.
,
194
(39–41), pp.
4265
4278
.10.1016/j.cma.2004.11.004
292.
Ferreira
,
A. J. M.
,
Roque
,
C. M. C.
, and
Jorge
,
R. M. N.
,
2005
, “
Analysis of Composite Plates by Trigonometric Shear Deformation Theory and Multiquadrics
,”
Comput. Struct.
,
83
(27), pp.
2225
2237
.10.1016/j.compstruc.2005.04.002
293.
Roque
,
C. M. C.
,
Ferreira
,
A. J. M.
, and
Jorge
,
R. M. N.
,
2005
, “
Modelling of Composite and Sandwich Plates by a Trigonometric Layerwise Deformation Theory and Radial Basis Functions
,”
Compos. Part B
,
36
(8), pp.
559
572
.10.1016/j.compositesb.2005.05.003
294.
Ding
,
H.
,
Shu
,
C.
,
Yeo
,
K. S.
, and
Xu
,
D.
,
2006
, “
Numerical Computation of Three-Dimensional Incompressible Viscous Flows in the Primitive Variable Form by Local Multiquadratic Differential Quadrature Method
,”
Comput. Methods Appl. Mech. Eng.
,
195
(7–8), pp.
516
533
.10.1016/j.cma.2005.02.006
295.
Liu
,
L.
,
Chua
,
L. P.
, and
Ghista
,
D. N.
,
2007
, “
Mesh-Free Radial Basis Function Method for Static, Free Vibration and Buckling Analysis of Shear Deformable Composite Laminates
,”
Compos. Struct.
,
78
(1), pp.
58
69
.10.1016/j.compstruct.2005.08.010
296.
Wu
,
W. X.
,
Shu
,
C.
, and
Wang
,
C. M.
,
2007
, “
Vibration Analysis of Arbitrarily Shaped Membranes Using Local Radial Basis Function-Based Differential Quadrature Method
,”
J. Sound Vib.
,
306
(1–2), pp.
252
270
.10.1016/j.jsv.2007.05.015
297.
Xiang
,
S.
,
Wang
,
K. M.
,
Ai
,
Y. T.
,
Sha
,
Y. D.
, and
Shi
,
H.
,
2009
, “
Natural Frequencies of Generally Laminated Composite Plates Using the Gaussian Radial Basis Function and First-Order Shear Deformation Theory
,”
Thin-Walled Struct.
,
47
(11), pp.
1265
1271
.10.1016/j.tws.2009.04.002
298.
Bayona
,
V.
,
Moscoso
,
M.
,
Carretero
,
M.
, and
Kindelan
,
M.
,
2010
, “
RBF-FD Formulas and Convergence Properties
,”
J. Comput. Phys.
,
229
(22), pp.
8281
8295
.10.1016/j.jcp.2010.07.008
299.
Xiang
,
S.
,
Shi
,
H.
,
Wang
,
K. M.
,
Ai
,
Y. T.
, and
Sha
,
Y. D.
,
2010
, “
Thin Plate Spline Radial Basis Functions for Vibration Analysis of Clamped Laminated Composite Plates
,”
Eur. J. Mech. A-Solid
,
29
(5), pp.
844
850
.10.1016/j.euromechsol.2010.02.012
300.
Bayona
,
V.
,
Moscoso
,
M.
, and
Kindelan
,
M.
,
2011
, “
Optimal Constant Shape Parameter for Multiquadric Based RBF-FD Method
,”
J. Comput. Phys.
,
230
(19), pp.
7384
7399
.10.1016/j.jcp.2011.06.005
301.
Xiang
,
S.
,
Bi
,
Z. Y.
,
Jiang
,
S. X.
,
Jin
,
Y. X.
, and
Yang
,
M. S.
,
2011
, “
Thin Plate Spline Radial Basis Function for the Free Vibration Analysis of Laminated Composite Shells
,”
Compos. Struct.
,
93
(2), pp.
611
615
.10.1016/j.compstruct.2010.08.018
302.
Boyd
,
J. P.
, and
Xu
,
Z.
,
2011
, “
Comparison of Three Spectral Methods for the Benjamin–Ono Equation: Fourier Pseudospectral, Rational Christov Functions and Gaussian Radial Basis Functions
,”
Wave Motion
,
48
(8), pp.
702
706
.10.1016/j.wavemoti.2011.02.004
303.
Ferreira
,
A. J. M.
,
Carrera
,
E.
,
Cinefra
,
M.
,
Roque
,
C. M. C.
, and
Polit
,
O.
,
2011
, “
Analysis of Laminated Shells by a Sinusoidal Shear Deformation Theory and Radial Basis Functions Collocation, Accounting for Through-the-Thickness Deformations
,”
Compos. Part B
,
42
(5), pp.
1276
1284
.10.1016/j.compositesb.2011.01.031
304.
Roque
,
C. M. C.
,
Cunha
,
D.
,
Shu
,
C.
, and
Ferreira
,
A. J. M.
,
2011
, “
A Local Radial Basis Functions—Finite Differences Technique for the Analysis of Composite Plates
,”
Eng. Anal. Boundary Elem.
,
35
(3), pp.
363
374
.10.1016/j.enganabound.2010.09.012
305.
Ferreira
,
A. J. M.
,
Roque
,
C. M. C.
,
Neves
,
A. M. A.
,
Jorge
,
R. M. N.
,
Soares
,
C. M. M.
, and
Liew
,
K. M.
,
2011
, “
Buckling and Vibration of Isotropic and Laminated Plates by Radial Basis Functions
,”
Compos. Part B
,
42
(3), pp.
592
606
.10.1016/j.compositesb.2010.08.001
306.
Jodaei
,
A.
,
Jalal
,
M.
, and
Yas
,
M. H.
,
2012
, “
Free Vibration Analysis of Functionally Graded Annular Plates by State-Space Based Differential Quadrature Method and Comparative Modeling by ANN
,”
Compos. Part B
,
43
(2), pp.
340
353
.10.1016/j.compositesb.2011.08.052
307.
Neves
,
A. M. A.
,
Ferreira
,
A. J. M.
,
Carrera
,
E.
,
Roque
,
C. M. C.
,
Cinefra
,
M.
,
Jorge
,
R. M. N.
, and
Soares
,
C. M. M.
,
2012
, “
A Quasi-3D Sinusoidal Shear Deformation Theory for the Static and Free Vibration Analysis of Functionally Graded Plates
,”
Compos. Part B
,
43
(2), pp.
711
725
.10.1016/j.compositesb.2011.08.009
308.
Setoodeh
,
A. R.
,
Tahani
,
M.
, and
Selahi
,
E.
,
2012
, “
Transient Dynamic and Free Vibration Analysis of Functionally Graded Truncated Conical Shells With Non-Uniform Thickness Subjected to Mechanical Shock Loading
,”
Compos. Part B
,
43
(5), pp.
2161
2171
.10.1016/j.compositesb.2012.02.031
309.
Neves
,
A. M. A.
,
Ferreira
,
A. J. M.
,
Carrera
,
E.
,
Cinefra
,
M.
,
Roque
,
C. M. C.
,
Jorge
,
R. M. N.
, and
Soares
,
C. M. M.
,
2012
, “
A Quasi-3D Hyperbolic Shear Deformation Theory for the Static and Free Vibration Analysis of Functionally Graded Plates
,”
Compos. Struct.
,
94
(5), pp.
1814
1825
.10.1016/j.compstruct.2011.12.005
310.
Gherlone
,
M.
,
Iurlaro
,
L.
, and
Di Sciuva
,
M.
,
2012
, “
A Novel Algorithm for Shape Parameter Selection in Radial Basis Functions Collocation Method
,”
Compos. Struct.
,
94
(2), pp.
453
461
.10.1016/j.compstruct.2011.08.001
311.
Ferreira
,
A. J. M.
,
Carrera
,
E.
,
Cinefra
,
M.
, and
Roque
,
C. M. C.
,
2013
, “
Radial Basis Functions Collocation for the Bending and Free Vibration Analysis of Laminated Plates Using the Reissner-Mixed Variational Theorem
,”
Eur. J. Mech. A-Solid
,
39
, pp.
104
112
.10.1016/j.euromechsol.2012.10.012
312.
Neves
,
A. M. A.
,
Ferreira
,
A. J. M.
,
Carrera
,
E.
,
Cinefra
,
M.
,
Roque
,
C. M. C.
,
Jorge
,
R. M. N.
, and
Soares
,
C. M. M.
,
2013
, “
Free Vibration Analysis of Functionally Graded Shells by a Higher-Order Shear Deformation Theory and Radial Basis Functions Collocation, Accounting for Through-the-Thickness Deformations
,”
Eur. J. Mech. A-Solid
,
37
, pp.
24
34
.10.1016/j.euromechsol.2012.05.005
313.
Sanyasiraju
,
Y. V. S. S.
, and
Satyanarayana
,
C.
,
2013
, “
On Optimization of the RBF Shape Parameter in a Grid-Free Local Scheme for Convection Dominated Problems Over Non-Uniform Centers
,”
Appl. Math. Modell.
,
37
(12–13), pp.
7245
7272
.10.1016/j.apm.2013.01.054
314.
Neves
,
A. M. A.
,
Ferreira
,
A. J. M.
,
Carrera
,
E.
,
Cinefra
,
M.
,
Roque
,
C. M. C.
,
Jorge
,
R. M. N.
, and
Soares
,
C. M. M.
,
2013
, “
Static, Free Vibration and Buckling Analysis of Isotropic and Sandwich Functionally Graded Plates Using a Quasi-3D Higher-Order Shear Deformation Theory and a Meshless Technique
,”
Compos. Part B
,
44
(1), pp.
657
674
.10.1016/j.compositesb.2012.01.089
315.
Tornabene
,
F.
,
Fantuzzi
,
N.
,
Viola
,
E.
, and
Ferreira
,
A. J. M.
,
2013
, “
Radial Basis Function Method Applied to Doubly-Curved Laminated Composite Shells and Panels With a General Higher-Order Equivalent Single Layer Theory
,”
Compos. Part B
,
55
, pp.
642
659
.10.1016/j.compositesb.2013.07.026
316.
Iurlaro
,
L.
,
Gherlone
,
M.
, and
Di Sciuva
,
M.
,
2014
, “
Energy Based Approach for Shape Parameter Selection in Radial Basis Functions Collocation Method
,”
Compos. Struct.
,
107
, pp.
70
78
.10.1016/j.compstruct.2013.07.041
317.
Dehghan
,
M.
, and
Nikpour
,
A.
,
2013
, “
Numerical Solution of the System of Second-Order Boundary Value Problem Using the Local Radial Basis Functions Based Differential Quadrature Collocation Method
,”
Appl. Math. Modell.
,
37
(18–19), pp.
8578
8599
.10.1016/j.apm.2013.03.054
318.
Ding
,
H.
,
Shu
,
C.
,
Yeo
,
K. S.
, and
Lu
,
Z. L.
,
2005
, “
Simulation of Natural Convection in Eccentric Annuli Between a Square Outer Cylinder and a Circular Inner Cylinder Using Local MQ-DQ Method
,”
Numer. Heat Tranfer Appl.
,
47
(3), pp.
291
313
.10.1080/10407780590889545
319.
Bararnia
,
H.
,
Jalaal
,
M.
,
Ghasemi
,
E.
,
Soleimani
,
S.
,
Ganji
,
D. D.
, and
Mohammadi
,
F.
,
2010
, “
Numerical Simulation of Joule Heating Phenomenon Using Meshless RBF-DQ Method
,”
Int. J. Therm. Sci.
,
49
(11), pp.
2117
2127
.10.1016/j.ijthermalsci.2010.06.008
320.
Soleimani
,
S.
,
Jalaal
,
M.
,
Bararnia
,
H.
,
Ghasemi
,
E.
,
Ganji
,
D. D.
, and
Mohammadi
,
F.
,
2010
, “
Local RBF-DQ Method for Two-Dimensional Transient Heat Conduction Problems
,”
Int. Commun. Heat Mass Transfer
,
37
(9), pp.
1411
1418
.10.1016/j.icheatmasstransfer.2010.06.033
321.
Shen
,
Q.
,
2010
, “
Local RBF-Based Differential Quadrature Collocation Method for the Boundary Layer Problems
,”
Eng. Anal. Boundary Elem.
,
34
(30), pp.
213
228
.10.1016/j.enganabound.2009.10.004
322.
Hashemi
,
M. R.
, and
Hatam
,
F.
,
2011
, “
Unsteady Seepage Analysis Using Local Radial Basis Function-Based Differential Quadrature Method
,”
Appl. Math. Modell.
,
35
(10), pp.
4934
4950
.10.1016/j.apm.2011.04.002
323.
Jalaal
,
M.
,
Soleimani
,
S.
,
Domairry
,
G.
,
Ghasemi
,
E.
,
Bararnia
,
H.
,
Mohammadi
,
F.
, and
Barari
,
A.
,
2011
, “
Numerical Simulation of Electric Field in Complex Geometries for Different Electrode Arrangements Using Meshless Local MQ-DQ Method
,”
J. Electrost.
,
69
(3), pp.
168
175
.10.1016/j.elstat.2011.03.005
324.
Soleimani
,
S.
,
Ganji
,
D. D.
,
Ghasemi
,
E.
,
Jalaal
,
M.
, and
Barar
,
H.
,
2011
, “
Meshless Local RBF-DQ for 2D Heat Condution: A Comparative Study
,”
Therm. Sci.
,
15
(Suppl. 1), pp.
S117
S121
.10.2298/TSCI11S1117S
325.
Hashemi
,
M. R.
, and
Hatam
,
F.
,
2011
, “
Unsteady Seepage Analysis Using Local Radial Basis Function-Based Differential Quadrature Method
,”
Appl. Math. Modell.
,
35
(10), pp.
4934
4950
.10.1016/j.apm.2011.04.002
326.
Soleimani
,
S.
,
Qajarjazi
,
A.
,
Bararnia
,
H.
,
Barari
,
A.
, and
Domairry
,
G.
,
2011
, “
Entropy Generation due to Natural Convection in a Partially Heated Cavity by Local RBF-DQ Method
,”
Meccanica
,
46
(5), pp.
1023
1033
.10.1007/s11012-010-9358-0
327.
Rodrigues
,
J. D.
,
Roque
,
C. M. C.
,
Ferreira
,
A. J. M.
,
Cinefra
,
M.
, and
Carrera
,
E.
,
2012
, “
Radial Basis Functions-Differential Quadrature Collocation and a Unified Formulation for Bending, Vibration and Buckling Analysis of Laminated Plates, According to Murakami's Zig-Zag Theory
,”
Comput. Struct.
,
90–91
, pp.
107
115
.10.1016/j.compstruc.2011.10.003
328.
Soleimani Kutanaei
,
S.
,
Roshan
,
N.
,
Vosoughi
,
A.
,
Saghafi
,
S.
,
Barari
,
A.
, and
Soleimani
,
S.
,
2012
, “
Numerical Solution of Stokes Flow in a Circular Cavity Using Mesh-Free Local RBF-DQ
,”
Eng. Anal. Boundary Elem.
,
36
(5), pp.
633
638
.10.1016/j.enganabound.2011.11.009
329.
Khoshfetrat
,
A.
, and
Abedini
,
M. J.
,
2012
, “
A Hybrid DQ/LMQRBF-DQ Approach for Numerical Solution of Poisson-Type and Burger's Equations in Irregular Domain
,”
Appl. Math. Modell.
,
36
(5), pp.
1885
1901
.10.1016/j.apm.2011.07.079
330.
Khoshfetrat
,
A.
, and
Abedini
,
M. J.
,
2013
, “
Numerical Modeling of Long Waves in Shallow Water Using LRBF-DQ and Hybrid DQ/LRBF-DQ
,”
Ocean Model.
,
65
, pp.
1
10
.10.1016/j.ocemod.2013.01.006
331.
Dehghan
,
M.
, and
Nikpour
,
A.
,
2013
, “
The Solitary Wave Solution of Coupled Klein–Gordon–Zakharov Equations via Two Different Numerical Methods
,”
Comput. Phys. Commun.
,
184
(9), pp.
2145
2158
.10.1016/j.cpc.2013.04.010
332.
Homayoon
,
L.
,
Abedini
,
M. J.
, and
Hashemi
,
S. M. R.
,
2013
, “
RBF-DQ Solution for Shallow Water Equations
,”
J. Waterw. Port Coastal Ocean Eng.
,
139
(1), pp.
45
60
.10.1061/(ASCE)WW.1943-5460.0000169
333.
Chan
,
Y. L.
,
Shen
,
L. H.
,
Wu
,
C. T.
, and
Young
,
D. L.
,
2014
, “
A Novel Upwind-Based Local Radial Basis Function Differential Quadrature Method for Convection-Dominated Flows
,”
Comput. Fluids
,
89
, pp.
157
166
.10.1016/j.compfluid.2013.10.032
334.
Roque
,
C. M. C.
,
Cunha
,
D.
,
Shu
,
C.
, and
Ferreira
,
A. J. M.
,
2011
, “
A Local Radial Basis Functions-Finite Differences Technique for the Analysis of Composite Plates
,”
Eng. Anal. Boundary Elem.
,
35
(3), pp.
363
374
.10.1016/j.enganabound.2010.09.012
335.
Rodrigues
,
J. D.
,
Roque
,
C. M. C.
,
Ferreira
,
A. J. M.
,
Carrera
,
E.
, and
Cinefra
,
M.
,
2011
, “
Radial Basis Functions-Finite Differences Collocation and a Unified Formulation for Bending, Vibration and Buckling Analysis of Laminated Plates, According to Murakami's Zig-Zag Theory
,”
Compos. Struct.
,
93
(7), pp.
1613
1620
.10.1016/j.compstruct.2011.01.009
336.
Roque
,
C. M. C.
,
Rodrigues
,
J. D.
, and
Ferreira
,
A. J. M.
,
2012
, “
Analysis of Thick Plates by Local Radial Basis Functions-Finite Differences Method
,”
Meccanica
,
47
(5), pp.
1157
1171
.10.1007/s11012-011-9501-6
337.
Bollig
,
E. F.
,
Flyer
,
N.
, and
Erlebacher
,
G.
,
2012
, “
Solution to PDEs Using Radial Basis Function Finite-Differences (RBF-FD) on Multiple GPUs
,”
J. Comput. Phys.
,
231
(21), pp.
7133
7151
.10.1016/j.jcp.2012.06.030
338.
Shu
,
C.
,
Ding
,
H.
, and
Zhao
,
N.
,
2006
, “
Numerical Comparison of Least Square-Based Finite-Difference (LSFD) and Radial Basis Function-Based Finite-Difference (RBFFD) Methods
,”
Comput. Math. Appl.
,
51
(8), pp.
1297
1310
.10.1016/j.camwa.2006.04.015
339.
Hashemi
,
M. R.
,
Abedini
,
M. J.
, and
Malekzadeh
,
P.
,
2006
, “
Numerical Modeling of Long Waves in Shallow Water Using Incremental Differential Quadrature Method
,”
Ocean Eng.
,
33
(13), pp.
1749
1764
.10.1016/j.oceaneng.2005.10.008
340.
Hashemi
,
M. R.
, and
Abedini
,
M. J.
,
2007
, “
Numerical Modelling of Water Hammer Using Differential Quadrature Method
,”
AIP Conf. Proc.
,
936
, p.
263
.10.1063/1.2790125
341.
Hashemi
,
M. R.
,
Abedini
,
M. J.
, and
Malekzadeh
,
P.
,
2007
, “
A Differential Quadrature Analysis of Unsteady Open Channel Flow
,”
Appl. Math. Modell.
,
31
(8), pp.
1594
1608
.10.1016/j.apm.2006.05.006
342.
Hashemi
,
M. R.
,
Abedini
,
M. J.
,
Neill
,
S. P.
, and
Malekzadeh
,
P.
,
2008
, “
Tidal and Surge Modelling Using Differential Quadrature: A Case Study in the Bristol Channel
,”
Coastal Eng.
,
55
(10), pp.
811
819
.10.1016/j.coastaleng.2008.02.030
343.
Zhang
,
L.
,
Xiang
,
Y.
, and
Wei
,
G. W.
,
2006
, “
Local Adaptive Differential Quadrature for Free Vibration Analysis of Cylindrical Shells With Various Boundary Conditions
,”
Int. J. Mech. Sci.
,
48
(10), pp.
1126
1138
.10.1016/j.ijmecsci.2006.05.005
344.
Ng
,
C. H. W.
,
Zhao
,
Y. B.
,
Xiang
,
Y.
, and
Wei
,
G. W.
,
2009
, “
On the Accuracy and Stability of a Variety of Differential Quadrature Formulations for the Vibration Analysis of Beams
,”
Int. J. Eng. Appl. Sci.
,
1
, pp.
1
25
.
345.
Wu
,
J.-Y.
,
Wang
,
H.-C.
,
Char
,
M.-I.
, and
Tai
,
B.-C.
,
2012
, “
A Local Adaptive Differential Quadrature Method for Multi-Dimensional Inverse Scattering Problem of Wave Propagation
,”
Comput. Mater. Contin.
,
28
, pp.
261
280
.10.3970/cmc.2012.028.261
346.
Wu
,
J. Y.
,
Wang
,
H. C.
,
Char
,
M. I.
, and
Tai
,
B. C.
,
2013
, “
A Local Adaptive Differential Quadrature Method for Solving Multi-Dimensional Heat Transport Equation at the Microscale
,”
Proc. Inst. Mech. Eng., Part E
,
227
(33–41), pp.
33
41
.10.1177/0954408912446122
347.
Wu
,
J.-Y.
, and
Lee
,
L.-T.
, “
Identification of Crack Locations and Depths in a Multi-Cracks Beam by Using Local Adaptive Differential Quadrature Method
,”
Proc. IMechE E J. Process Mech. Eng.
, in press.10.1177/0954408914525612
348.
Sun
,
J.-A.
, and
Zhu
,
Z.-Y.
,
2000
, “
Upwind Local Differential Quadrature Method for Solving Incompressible Viscous Flow
,”
Comput. Methods Appl. Mech. Eng.
,
188
(1–3), pp.
495
504
.10.1016/S0045-7825(99)00191-7
349.
Zong
,
Z.
, and
Lam
,
K. Y.
,
2002
, “
A Localized Differential Quadrature (LDQ) Method and Its Application to the 2D Wave Equation
,”
Comput. Mech.
,
29
(4–5), pp.
382
391
.10.1007/s00466-002-0349-4
350.
Lam
,
K. Y.
,
Zhang
,
J.
, and
Zong
,
Z.
,
2004
, “
A Numerical Study of Wave Propagation in a Poroelastic Medium by Use of Localized Differential Quadrature Method
,”
Appl. Math. Modell.
,
28
(5), pp.
487
511
.10.1016/j.apm.2003.10.018
351.
Shen
,
L. H.
,
Young
,
D. L.
,
Lo
,
D. C.
, and
Sun
,
C. P.
,
2009
, “
Local Differential Quadrature Method for 2D Flow and Forced-Convection Problems in Irregular Domains
,”
Numer. Heat Transfer Part B
,
55
(2), pp.
116
134
.10.1080/10407790802605430
352.
Tsai
,
C.
,
Young
,
D.
, and
Hsiang
,
C.
,
2011
, “
The Localized Differential Quadrature Method for Two-Dimensional Stream Function Formulation of Navier–Stokes Equations
,”
Eng. Anal. Boundary Elem.
,
35
(11), pp.
1190
1203
.10.1016/j.enganabound.2011.05.008
353.
Hamidi
,
M.
,
Hashemi
,
M.
,
Talebbeydokhti
,
N.
, and
Neill
,
S.
,
2012
, “
Numerical Modelling of the Mild Slope Equation Using Localised Differential Quadrature Method
,”
Ocean Eng.
,
47
, pp.
88
103
.10.1016/j.oceaneng.2012.03.004
354.
Nassar
,
M.
,
Matbuly
,
M. S.
, and
Ragb
,
O.
,
2013
, “
Vibration Analysis of Structural Elements Using Differential Quadrature Method
,”
J. Adv. Res.
,
4
(1), pp.
93
102
.10.1016/j.jare.2012.01.009
355.
Wang
,
T.
,
Cao
,
S.
, and
Ge
,
Y.
,
2013
, “
Generation of Inflow Turbulence Using the Local Differential Quadrature Method
,”
J. Wind Eng. Ind. Aerodyn.
,
122
, pp.
96
104
.10.1016/j.jweia.2013.06.004
356.
Yilmaz
,
Y.
,
Girgin
,
Z.
, and
Evran
,
S.
,
2013
, “
Buckling Analyses of Axially Functionally Graded Nonuniform Columns With Elastic Restraint Using a Localized Differential Quadrature Method
,”
Math. Probl. Eng.
,
2013
, pp.
1
12
.10.1155/2013/793062
357.
Al-Saif
,
A. S. J.
, and
Al-Saadawi
,
F. A.
,
2013
, “
Bernstein Differential Quadrature Method for Solving the Unsteady State Convection-Diffusion Equation
,”
Indian J. Appl. Res.
,
3
(
9
), pp.
20
26
.10.15373/2249555X/SEPT2013/60
358.
Ahmed
,
H. M.
,
2013
, “
Solutions of 2nd-Order Linear Differential Equations Subject to Dirichlet Boundary Conditions in a Bernstein Polynomial Basis
,”
J. Egypt. Math. Soc.
,
22
(2), pp.
227
237
.10.1016/j.joems.2013.07.007
359.
Tornabene
,
F.
,
Fantuzzi
,
N.
, and
Bacciocchi
,
M.
,
2014
, “
The Local GDQ Method Applied to General Higher-Order Theories of Doubly-Curved Laminated Composite Shells and Panels: The Free Vibration Analysis
,”
Compos. Struct.
,
116
, pp.
637
660
.10.1016/j.compstruct.2014.05.008
360.
Farid
,
M.
,
Zahedinejad
,
P.
, and
Malekzadeh
,
P.
,
2010
, “
Three-Dimensional Temperature Dependent Free Vibration Analysis of Functionally Graded Material Curved Panels Resting on Two-Parameter Elastic Foundation Using a Hybrid Semi-Analytic, Differential Quadrature Method
,”
Mater. Des.
,
31
(1), pp.
2
13
.10.1016/j.matdes.2009.07.025
361.
Zahedinejad
,
P.
,
Malekzadeh
,
P.
,
Farida
,
M.
, and
Karami
,
G.
,
2010
, “
A Semi-Analytical Three-Dimensional Free Vibration Analysis of Functionally Graded Curved Panels
,”
Int. J. Pressure Vessels Piping
,
87
(8), pp.
470
480
.10.1016/j.ijpvp.2010.06.001
362.
Khalili
,
S. M. R.
,
Jafari
,
A. A.
, and
Eftekhari
,
S. A.
,
2010
, “
A Mixed Ritz-DQ Method for Forced Vibration of Functionally Graded Beams Carrying Moving Loads
,”
Compos. Struct.
,
92
(10), pp.
2497
2511
.10.1016/j.compstruct.2010.02.012
363.
Eftekhari
,
S. A.
, and
Jafari
,
A. A.
,
2012
, “
A Mixed Method for Free and Forced Vibration of Rectangular Plates
,”
Appl. Math. Modell.
,
36
(6), pp.
2814
2831
.10.1016/j.apm.2011.09.050
364.
Eftekhari
,
S. A.
, and
Jafari
,
A. A.
,
2013
, “
Modified Mixed Ritz-DQ Formulation for Free Vibration of Thick Rectangular and Skew Plates With General Boundary Conditions
,”
Appl. Math. Modell.
,
37
(12–13), pp.
7398
7426
.10.1016/j.apm.2013.02.040
365.
Eftekhari
,
S. A.
, and
Jafari
,
A. A.
,
2013
, “
A Simple and Accurate Mixed FE-DQ Formulation for Free Vibration of Rectangular and Skew Mindlin Plates With General Boundary Conditions
,”
Meccanica
,
48
(5), pp.
1139
1160
.10.1007/s11012-012-9657-8
366.
Wei
,
G. W.
,
1999
, “
Discrete Singular Convolution for the Solution of the Fokker–Planck Equation
,”
J. Chem. Phys.
,
110
(18), pp.
8930
8942
.10.1063/1.478812
367.
Wei
,
G. W.
,
2000
, “
Discrete Singular Convolution for the Sine–Gordon Equation
,”
Physica D
,
137
(3–4), pp.
247
259
.10.1016/S0167-2789(99)00186-4
368.
Wei
,
G. W.
,
2000
, “
Solving Quantum Eigenvalue Problems by Discrete Singular Convolution
,”
J. Phys. B
,
33
, pp.
343
352
.10.1088/0953-4075/33/3/304
369.
Wei
,
G. W.
,
2000
, “
Wavelets Generated by Using Discrete Singular Convolution Kernels
,”
J. Phys. A:Math. Gen.
,
33
, pp.
8577
8596
.10.1088/0305-4470/33/47/317
370.
Wan
,
D. C.
, and
Wei
,
G. W.
,
2000
, “
Numerical Solution of Incompressible Euler and Navier–Stokes Equations by Efficient Discrete Singular Convolution Method
,”
Acta Mech. Sin.
,
16
(3), pp.
223
239
.10.1007/BF02487664
371.
Wei
,
G. W.
,
2001
, “
Discrete Singular Convolution for Beam Analysis
,”
Eng. Struct.
,
23
(9), pp.
1045
1053
.10.1016/S0141-0296(01)00016-5
372.
Wei
,
G. W.
,
2001
, “
Vibration Analysis by Discrete Singular Convolution
,”
J. Sound Vib.
,
244
(3), pp.
535
553
.10.1006/jsvi.2000.3507
373.
Wei
,
G. W.
,
2001
, “
A New Algorithm for Solving Some Mechanical Problems
,”
Comput. Methods Appl. Mech. Eng.
,
190
(15–17), pp.
2017
2030
.10.1016/S0045-7825(00)00219-X
374.
Wei
,
G. W.
,
Zhao
,
Y. B.
, and
Xiang
,
Y.
,
2001
, “
The Determination of the Natural Frequencies of Rectangular Plates With Mixed Boundary Conditions by Discrete Singular Convolution
,”
Int. J. Mech. Sci.
,
43
(8), pp.
1731
1746
.10.1016/S0020-7403(01)00021-2
375.
Wan
,
D. C.
,
Patnaik
,
B. S. V.
, and
Wei
,
G. W.
,
2001
, “
A New Benchmark Quality Solution for the Buoyancy Driven Cavity by Discrete Singular Convolution
,”
Numer. Heat Transfer Part B
,
40
(3), pp.
199
228
.10.1080/104077901752379620
376.
Wei
,
G. W.
,
Zhao
,
Y. B.
, and
Xiang
,
Y.
,
2002
, “
A Novel Approach for the Analysis of High Frequency Vibrations
,”
J. Sound Vib.
,
257
(2), pp.
207
246
.10.1006/jsvi.2002.5055
377.
Zhao
,
Y. B.
,
Wei
,
G. W.
, and
Xiang
,
Y.
,
2002
, “
Discrete Singular Convolution for the Prediction of High Frequency Vibration of Plates
,”
Int. J. Solids Struct.
,
39
(1), pp.
65
88
.10.1016/S0020-7683(01)00183-4
378.
Yang
,
S. Y.
,
Zhou
,
Y. C.
, and
Wei
,
G. W.
,
2002
, “
Comparison of the Discrete Singular Convolution Algorithm and the Fourier Pseudospectral Methods for Solving Partial Differential Equations
,”
Comput. Phys. Commun.
,
143
(2), pp.
113
135
.10.1016/S0010-4655(01)00427-1
379.
Wan
,
D. C.
,
Zhou
,
Y. C.
, and
Wei
,
G. W.
,
2002
, “
Numerical Solution of Incompressible Flows by the Discrete Singular Convolution
,”
Int. J. Numer. Methods Fluids
,
38
(8), pp.
789
810
.10.1002/fld.253
380.
Feng
,
B. F.
, and
Wei
,
G. W.
,
2002
, “
A Comparison of the Spectral and the Discrete Singular Convolution Schemes for the KdV-Type Equations
,”
J. Comput. Appl. Math.
,
145
(1), pp.
183
188
.10.1016/S0377-0427(01)00543-X
381.
Wan
,
D. C.
,
Patnaik
,
B. S. V.
, and
Wei
,
G. W.
,
2002
, “
Discrete Singular Convolution-Finite Subdomain Method for the Solution of Incompressible Viscous Flows
,”
J. Comput. Phys.
,
180
(1), pp.
229
255
.10.1006/jcph.2002.7089
382.
Wei
,
G. W.
,
Zhao
,
Y. B.
, and
Xiang
,
Y.
,
2002
, “
Discrete Singular Convolution and Its Application to the Analysis of Plates With Internal Supports, I Theory and Algorithm
,”
Int. J. Numer. Methods Eng.
,
55
(8), pp.
913
946
.10.1002/nme.526
383.
Xiang
,
Y.
,
Zhao
,
Y. B.
, and
Wei
,
G. W.
,
2002
, “
Discrete Singular Convolution and Its Application to the Analysis of Plates With Internal Supports. II Complex Supports
,”
Int. J. Numer. Methods Eng.
,
55
(8), pp.
947
971
.10.1002/nme.527
384.
Zhao
,
S.
, and
Wei
,
G. W.
,
2003
, “
Comparison of the Discrete Singular Convolution and Three Other Numerical Schemes for Fisher's Equation
,”
SIAM J. Sci. Comput.
,
25
(1), pp.
127
147
.10.1137/S1064827501390972
385.
Zhao
,
Y. B.
,
Wei
,
G. W.
, and
Xiang
,
Y.
,
2002
, “
Discrete Singular Convolution for the Prediction of High Frequency Vibration of Plates
,”
Int. J. Solids Struct.
,
39
, pp.
65
88
.10.1016/S0020-7683(01)00183-4
386.
Ng
,
C. H.
,
2004
, “
Comparison of Discrete Singular Convolution and Generalized Differential Quadrature for the Vibration Analysis of Rectangular Plates
,” Master thesis, National University of Singapore, Singapore.
387.
Zhao
,
S.
, and
Wei
,
G. W.
,
2005
, “
Option Valuation by Using Discrete Singular Convolution
,”
Appl. Math. Comput.
,
167
(1), pp.
383
418
.10.1016/j.amc.2004.07.010
388.
Boyd
,
J. P.
,
2006
, “
A Proof That the Discrete Singular Convolution (DSC)/Lagrange-Distributed Approximating Function (LDAF) Method Is Inferior to High Order Finite Differences
,”
J. Comput. Phys.
,
214
(2), pp.
538
549
.10.1016/j.jcp.2005.10.010
389.
Wei
,
G. W.
, and
Zhao
,
S.
,
2008
, “
On the Validity of a Proof That the Discrete Singular Convolution (DSC)/Lagrange-Distributed Approximation Function (LDAF) Method is Inferior to High Order Finite Differences
,”
J. Comput. Phys.
,
226
(2), pp.
2389
2392
.10.1016/j.jcp.2007.05.036
390.
Civalek
,
Ö.
,
2013
, “
Nonlinear Dynamic Response of Laminated Plates Resting on Nonlinear Elastic Foundations by the Discrete Singular Convolution-Differential Quadrature Coupled Approaches
,”
Compos. Part B
,
50
, pp.
171
179
.10.1016/j.compositesb.2013.01.027
391.
Gürses
,
M.
,
Civalek
,
Ö.
,
Korkmaz
,
A. K.
, and
Ersoy
,
H.
,
2009
, “
Free Vibration Analysis of Symmetric Laminated Skew Plates by Discrete Singular Convolution Technique Based on First-Order Shear Deformation Theory
,”
Int. J. Numer. Methods Eng.
,
79
(3), pp.
290
313
.10.1002/nme.2553
392.
Civalek
,
Ö.
,
2007
, “
Nonlinear Analysis of Thin Rectangular Plates on Winkler–Pasternak Elastic Foundations by DSC–HDQ Methods
,”
Appl. Math. Modell.
,
31
(3), pp.
606
624
.10.1016/j.apm.2005.11.023
393.
Wu
,
X.
,
Du
,
H.
, and
Kong
,
W.
,
2008
, “
Differential Quadrature Trefftz Method for Poisson-Type Problems on Irregular Domains
,”
Eng. Anal. Boundary Elem.
,
32
(5), pp.
413
423
.10.1016/j.enganabound.2007.10.001
394.
Liu
,
X.
, and
Wu
,
X.
,
2009
, “
Differential Quadrature Trefftz Method for Irregular Plate Problems
,”
Eng. Anal. Boundary Elem.
,
33
(3), pp.
363
367
.10.1016/j.enganabound.2008.06.008
395.
Wu
,
X.
, and
Ren
,
Y.
,
2007
, “
Differential Quadrature Method Based on the Highest Derivative and Its Applications
,”
J. Comput. Appl. Math.
,
205
(1), pp.
239
250
.10.1016/j.cam.2006.04.055
396.
Liu
,
G. R.
,
2003
,
Mesh Free Methods. Moving Beyond the Finite Element Method
,
CRC
, Boca Raton, FL.10.1201/9781420040586
397.
Li
,
H.
, and
Mulay
,
S. S.
,
2013
,
Meshless Methods and Their Numerical Properties
,
CRC
, Boca Raton, FL.10.1201/b14492
398.
Fries
,
T.-P.
, and
Matthies
,
H.-G.
,
2004
,
Classification and Overview of Meshfree Methods
,
Technical University Braunschweig
,
Brunswick, Germany
.
399.
Mulay
,
S. S.
,
Li
,
H.
, and
See
,
S.
,
2009
, “
On the Random Differential Quadrature (RDQ) Method: Consistency Analysis and Application in Elasticity Problems
,”
Comput. Mech.
,
44
(4), pp.
563
590
.10.1007/s00466-009-0393-4
400.
Mulay
,
S. S.
,
Li
,
H.
, and
See
,
S.
,
2009
, “
On the Convergence of Random Differential Quadrature (RDQ) Method and Its Application in Solving Nonlinear Differential Equations in Mechanics
,”
Comput. Model. Eng. Sci.
,
48
, pp.
43
82
.
401.
Mulay
,
S.
, and
Li
,
H.
,
2009
, “
Analysis of Microelectromechanical Systems Using the Meshless Random Differential Quadrature Method
,”
Adv. Mater. Res.
,
74
, pp.
29
32
.10.4028/www.scientific.net/AMR.74.29
402.
Mulay
,
S. S.
,
Li
,
H.
, and
See
,
S.
,
2010
, “
On the Development of Adaptive Random Differential Quadrature Method With an Error Recovery Technique and Its Application in the Locally High Gradient Problems
,”
Comput. Mech.
,
45
(5), pp.
467
493
.10.1007/s00466-010-0468-2
403.
Mulay
,
S. S.
,
2011
, “
Development of a Novel Strong-Form Meshless Technique: Random Differential Quadrature (RDQ) Method With Applications for 2D Multiphysics Simulation of pH-Sensitive Hydrogel
,” Ph.D. thesis, Nanyang Technological University, Singapore.
404.
Li
,
H.
, and
Mulay
,
S. S.
,
2011
, “
2D Simulation of the Deformation of pH-Sensitive Hydrogel by Novel Strong-Form Meshless Random Differential Quadrature Method
,”
Comput. Mech.
,
48
(6), pp.
729
753
.10.1007/s00466-011-0622-5
405.
Li
,
H.
,
Mulay
,
S. S.
, and
See
,
S.
,
2009
, “
On the Location of Zeroes of Polynomials From the Stability Analysis of Novel Strong-Form Meshless Random Differential Quadrature Method
,”
Comput. Model. Eng. Sci.
,
54
, pp.
147
199
.10.3970/cmes.2009.054.147
406.
Li
,
H.
, and
Zou
,
H.
,
2013
, “
A Random Integral Quadrature Method for Numerical Analysis of the Second Kind of Volterra Integral Equations
,”
J. Comput. Appl. Math.
,
237
(1), pp.
35
42
.10.1016/j.cam.2012.06.041
407.
Shu
,
C.
, and
Fan
,
L. F.
,
2001
, “
A New Discretization Method and Its Application to Solve Incompressible Navier–Stokes Equations
,”
Comput. Mech.
,
27
(4), pp.
292
301
.10.1007/s004660100240
408.
Shu
,
C.
, and
Wu
,
Y. L.
,
2002
, “
Domain-Free Discretization Method for Doubly Connected Domain and Its Application to Simulate Natural Convection in Eccentric Annuli
,”
Comput. Methods Appl. Mech. Eng.
,
191
(17–18), pp.
1827
1841
.10.1016/S0045-7825(01)00355-3
409.
Wu
,
Y. L.
,
Shu
,
C.
,
Chen
,
H. Q.
, and
Zhao
,
N.
,
2004
, “
Radial Basis Function-Enhanced Domain-Free Discretization Method and Its Applications
,”
Numer. Heat Transfer Part B
,
46
(3), pp.
269
282
.10.1080/10407790490449462
410.
Zhou
,
C. H.
, and
Shu
,
C.
,
2012
, “
Simulation of Self-Propelled Anguilliform Swimming by Local Domain-Free Discretization Method
,”
Int. J. Numer. Methods Fluids
,
69
(
12
), pp.
1891
1906
.10.1002/fld.2670
411.
Chen
,
W. Q.
,
Lv
,
C. F.
, and
Bian
,
Z. G.
,
2003
, “
Elasticity Solution for Free Vibration of Laminated Beams
,”
Compos. Struct.
,
62
(1), pp.
75
82
.10.1016/S0263-8223(03)00086-2
412.
Lv
,
C. F.
,
2006
, “
State-Space-Based Differential Quadrature Method and Its Applications
,” Ph.D. thesis, Zhejiang University, People's Republic of China.
413.
,
C. F.
,
Zhang
,
Z. C.
, and
Chen
,
W. Q.
,
2007
, “
Free Vibration of Generally Supported Rectangular Kirchhoff Plates: State-Space-Based Differential Quadrature Method
,”
Int. J. Numer. Methods Eng.
,
70
(12), pp.
1430
1450
.10.1002/nme.1929
414.
,
C. F.
, and
Chen
,
W. Q.
,
2007
, “
A Hybrid Elasticity Method for Bending and Free Vibration of Composite Laminates
,” Computational Methods in Engineering and Science, Proceedings of the 10th International Conference on Enhancement and Promotion of Computational Methods in Engineering and Science (EPMESC X), Z.H. Yao, and M.W. Yuan, eds., Sanya, China, Aug. 21–23, pp.
327
327
.
415.
Li
,
Y.
, and
Shi
,
Z.
,
2009
, “
Free Vibration of a Functionally Graded Piezoelectric Beam via State-Space Based Differential Quadrature
,”
Compos. Struct.
,
87
(3), pp.
257
264
.10.1016/j.compstruct.2008.01.012
416.
Jodaei
,
A.
,
Jalal
,
M.
, and
Yas
,
M. H.
,
2012
, “
Free Vibration Analysis of Functionally Graded Annular Plates by State-Space Based Differential Quadrature Method and Comparative Modeling by ANN
,”
Compos. Part B
,
43
(2), pp.
340
353
.10.1016/j.compositesb.2011.08.052
417.
Wu
,
C.-P.
, and
Jiang
,
R.-Y.
,
2013
, “
A State Space Differential Reproducing Kernel Method for the 3D Analysis of FGM Sandwich Circular Hollow Cylinders With Combinations of Simply-Supported and Clamped Edges
,”
Compos. Struct.
,
94
(11), pp.
3401
3420
.10.1016/j.compstruct.2012.05.005
418.
Liew
,
K. M.
,
Huang
,
Y. Q.
, and
Reddy
,
J. N.
,
2002
, “
A Hybrid Moving Least Squares and Differential Quadrature (MLSDQ) Meshfree Method
,”
Int. J. Comput. Eng. Sci.
,
3
(
1
), pp.
1
12
.10.1142/S1465876302000526
419.
Liew
,
K. M.
,
Huang
,
Y. Q.
, and
Reddy
,
J. N.
,
2003
, “
Moving Least Squares Differential Quadrature Method and Its Application to the Analysis of Shear Deformable Plates
,”
Int. J. Numer. Methods Eng.
,
56
(15), pp.
2331
2351
.10.1002/nme.646
420.
Liew
,
K. M.
, and
Huang
,
Y. Q.
,
2003
, “
Bending and Buckling of Thick Symmetric Rectangular Laminates Using the Moving Least-Squares Differential Quadrature Method
,”
Int. J. Mech. Sci.
,
45
(1), pp.
95
114
.10.1016/S0020-7403(03)00037-7
421.
Liew
,
K. M.
,
Huang
,
Y. Q.
, and
Reddy
,
J. N.
,
2003
, “
Vibration Analysis of Symmetrically Laminated Plates Based on FSDT Using the Moving Least Squares Differential Quadrature Method
,”
Comput. Methods Appl. Mech. Eng.
,
192
(19), pp.
2203
2222
.10.1016/S0045-7825(03)00238-X
422.
Liew
,
K. M.
,
Huang
,
Y. Q.
, and
Reddy
,
J. N.
,
2004
, “
Analysis of General Shaped Thin Plates by the Moving Least-Squares Differential Quadrature Method
,”
Finite Elem. Anal. Des.
,
40
(11), pp.
1453
1474
.10.1016/j.finel.2003.10.002
423.
Li
,
Q. S.
, and
Huang
,
Y. Q.
,
2004
, “
Moving Least-Squares Differential Quadrature Method for Free Vibration of Antisymmetric Laminates
,”
J. Eng. Mech.
,
130
(12), pp.
1447
1457
.10.1061/(ASCE)0733-9399(2004)130:12(1447)
424.
Huang
,
Y. Q.
, and
Li
,
Q. S.
,
2004
, “
Bending and Buckling Analysis of Antisymmetric Laminates Using the Moving Least Square Differential Quadrature Method
,”
Comput. Methods Appl. Mech. Eng.
,
193
(33–35), pp.
3471
3492
.10.1016/j.cma.2003.12.039
425.
Lanhe
,
W.
,
Hua
,
L.
, and
Daobin
,
W.
,
2005
, “
Vibration Analysis of Generally Laminated Composite Plates by the Moving Least Squares Differential Quadrature Method
,”
Compos. Struct.
,
68
(3), pp.
319
330
.10.1016/j.compstruct.2004.03.025
426.
Lanhe
,
W.
,
Honghun
,
W.
, and
Daobin
,
W.
,
2007
, “
Dynamic Stability Analysis of FGM Plates by the Moving Least Squares Differential Quadrature Method
,”
Compos. Struct.
,
77
(3), pp.
383
394
.10.1016/j.compstruct.2005.07.011
427.
Sladek
,
V.
,
Sladek
,
J.
, and
Sator
,
L.
,
2013
, “
Physical Decomposition of Thin Plate Bending Problems and Their Solution by Mesh-Free Methods
,”
Eng. Anal. Boundary Elem.
,
37
(2), pp.
348
365
.10.1016/j.enganabound.2012.11.005
428.
Sator
,
L.
,
Sladek
,
V.
, and
Sladek
,
J.
,
2014
, “
Coupling Effects in Elastic Analysis of FGM Composite Plates by Mesh-Free Methods
,”
Compos. Struct.
,
115
, pp.
100
110
.10.1016/j.compstruct.2014.04.016
429.
Sator
,
L.
,
Sladek
,
V.
, and
Sladek
,
J.
,
2014
, “
Analysis of Beams With Transversal Gradations of the Young's Modulus and Variable Depths by the Meshless Method
,”
Slovak J. Civil Eng.
,
22
(1), pp.
23
36
.10.2478/sjce-2014-0004
430.
Ragb
,
O.
,
Matbuly
,
M. S.
, and,
Nassar
,
M.
,
2014
, “
Analysis of Composite Plates Using Moving Least Squares Differential Quadrature Method
,”
Appl. Math. Comput.
,
238
, pp.
225
236
.10.1016/j.amc.2014.02.101
431.
Belytschko
,
T.
,
Lu
,
Y. Y.
, and
Gu
,
L.
,
1994
, “
Element-Free Galerkin Methods
,”
Int. J. Numer. Methods Eng.
,
37
(2), pp.
229
256
.10.1002/nme.1620370205
432.
Belytschko
,
T.
,
Lu
,
Y. Y.
,
Gu
,
L.
, and
Tabbara
,
M.
,
1995
, “
Element-Free Galerkin Methods for Static and Dynamic Fracture
,”
Int. J. Solids Struct.
,
32
(17–18), pp.
2547
2570
.10.1016/0020-7683(94)00282-2
433.
Belytschko
,
T.
,
Lu
,
Y. Y.
, and
Gu
,
L.
,
1995
, “
Crack Propagation by Element-Free Galerkin Methods
,”
Eng. Fract. Mech.
,
51
(2), pp.
295
315
.10.1016/0013-7944(94)00153-9
434.
Belytschko
,
T.
,
Krongauz
,
Organ
,
D.
,
Fleming
,
M.
, and
Krysl
,
P.
,
1996
, “
Meshless Methods: An Overview and Recent Developments
,”
Comput. Methods Appl. Eng.
,
139
(1–4), pp.
3
47
.10.1016/S0045-7825(96)01078-X
435.
Krysl
,
P.
, and
Belytschko
,
T.
,
1997
, “
Element-Free Galerkin Method: Convergence
,”
Comput. Methods Appl. Mech. Eng.
,
148
(3–4), pp.
257
277
.10.1016/S0045-7825(96)00007-2
436.
Haussler-Combe
,
U.
, and
Korn
,
C.
,
1998
, “
An Adaptive Approach With the Element-Free-Galerkin Method
,”
Comput. Methods Appl. Mech. Eng.
,
162
(1–4), pp.
203
222
.10.1016/S0045-7825(97)00344-7
437.
Zhu
,
T.
, and
Atluri
,
S. N.
,
1998
, “
A Modified Collocation & Penalty Formulation for Enforcing the Essential Boundary Conditions in the Element Free Galerkin Method
,”
Comput. Mech.
,
21
(3), pp.
211
222
.10.1007/s004660050296
438.
Atluri
,
S. N.
, and
Zhu
,
T.
,
1998
, “
A New Meshless Local Petrov–Galerkin (MLPG) Approach to Nonlinear Problems in Computer Modeling & Simulation
,”
Comput. Model. Simul. Eng.
,
3
, pp.
187
196
.
439.
Atluri
,
S. N.
, and
Zhu
,
T.
,
1998
, “
A New Meshless Local Petrov–Galerkin (MLPG) Approach in Computational Mechanics
,”
Comput. Mech.
,
22
(2), pp.
117
127
.10.1007/s004660050346
440.
Cho
,
J. Y.
,
Kim
,
H. G.
, and
Atluri
,
S. N.
,
1999
, “
A Critical Assessment of the Truly Meshless Local Petrov Galerkin (MLPG) and Local Boundary Integral Equation (LBIE) Methods
,”
Comput. Mech.
,
24
(5), pp.
348
372
.10.1007/s004660050457
441.
Kim
,
H. G.
,
Cho
,
J. Y.
, and
Atluri
,
S. N.
,
1999
, “
Analysis of Thin Beams Using the Meshless Local Petrov–Galerkin Method With Generalized Moving Least Squares Interpolations
,”
Comput. Mech.
,
24
(5), pp.
334
347
.10.1007/s004660050456
442.
Atluri
,
S. N.
, and
Zhu
,
T.
,
2000
, “
New Concepts in Meshless Methods
,”
Int. J. Numer. Methods Eng.
,
47
, pp.
537
556
.10.1002/(SICI)1097-0207(20000110/30)47:1/3<537::AID-NME783>3.0.CO;2-E
443.
Atluri
,
S. N.
, and
Zhu
,
T. L.
,
2000
, “
The Meshless Local Petrov–Galerkin (MLPG) Approach for Solving Problems in Elasto-Statics
,”
Comput. Mech.
,
25
(2–3), pp.
169
179
.10.1007/s004660050467
444.
Kim
,
H. G.
, and
Atluri
,
S. N.
,
2000
, “
Arbitrary Placement of Secondary Nodes, and Error Control, in the Meshless Local Petrov–Galerkin (MLPG) Method
,”
Comput. Model. Eng. Sci.
,
1
, pp.
11
32
.10.3970/cmes.2000.001.313
445.
Lin
,
H.
, and
Atluri
,
S. N.
,
2000
, “
Meshless Local Petrov–Galerkin (MLPG) Method for Convection-Diffusion
,”
Comput. Model. Eng. Sci.
,
1
, pp.
45
60
.10.3970/cmes.2000.001.205
446.
Lin
,
H.
, and
Atluri
,
S. N.
,
2001
, “
The Meshless Local Petrov–Galerkin (MLPG) Method for Solving Incompressible Navier–Stokes Equations
,”
Comput. Model. Eng. Sci.
,
2
, pp.
117
142
.10.3970/cmes.2001.002.117
447.
Long
,
S. Y.
, and
Atluri
,
S. N.
,
2002
, “
A Meshless Local Petrov–Galerkin Method for Solving the Bending Problem of a Thin Plate
,”
Comput. Model. Eng. Sci.
,
3
, pp.
53
63
.10.3970/cmes.2002.003.053
448.
Atluri
,
S. N.
, and
Shen
,
S. P.
,
2002
, “
The Meshless Local Petrov–Galerkin (MLPG) Method: A Simple & Less-Costly Alternative to the Finite Element and Boundary Element Methods
,”
Comput. Model. Eng. Sci.
,
3
, pp.
11
51
.10.3970/cmes.2002.003.011
449.
Soric
,
J.
,
Li
,
Q.
,
Jarak
,
T.
, and
Atluri
,
S. N.
,
2004
, “
Meshless Local Petrov–Galerkin (MLPG) Formulation for Analysis of Thick Plates
,”
Comput. Model. Eng. Sci.
,
6
, pp.
349
357
.10.3970/cmes.2004.006.349
450.
Atluri
,
S. N.
, and
Shen
,
S. P.
,
2005
, “
The Basis of Meshless Domain Discretization: The Meshless Local Petrov–Galerkin (MLPG) Method
,”
Adv. Comput. Math.
,
23
, pp.
73
93
.10.1007/s10444-004-1813-9
451.
Sladek
,
J.
,
Stanak
,
P.
,
Han
,
Z.-D.
,
Sladek
,
V.
, and
Atluri
,
S. N.
,
2013
, “
Applications of the MLPG Method in Engineering & Sciences: A Review
,”
Comput. Model. Eng. Sci.
,
92
, pp.
423
475
.10.3970/cmes.2013.092.423
452.
Zhu
,
T.
,
Zhang
,
J.
, and
Atluri
,
S. N.
,
1998
, “
A Meshless Local Boundary Integral Equation (LBIE) Method for Solving Nonlinear Problems
,”
Comput. Mech.
,
22
(2), pp.
174
176
.10.1007/s004660050351
453.
Zhu
,
T.
,
Zhang
,
J. D.
, and
Atluri
,
S. N.
,
1998
, “
A Local Boundary Integral Equation (LBIE) Method in Computational Mechanics, and a Meshless Discretization Approach
,”
Comput. Mech.
,
21
(3), pp.
223
235
.10.1007/s004660050297
454.
Zhu
,
T.
,
Zhang
,
J.
, and
Atluri
,
S. N.
,
1999
, “
A Meshless Numerical Method Based on the Local Boundary Integral Equation (LBIE) to Solve Linear and Nonlinear Boundary Value Problems
,”
Eng. Anal. Boundary Elem.
,
23
(5–6), pp.
375
389
.10.1016/S0955-7997(98)00096-4
455.
Atluri
,
S. N.
,
Sladek
,
J.
,
Sladek
,
V.
, and
Zhu
,
T.
,
2000
, “
The Local Boundary Integral Equation (LBIE) and Its Meshless Implementation for Linear Elasticity
,”
Comput. Mech.
,
25
(2–3), pp.
180
198
.10.1007/s004660050467
456.
Sladek
,
J.
,
Sladek
,
V.
, and
Atluri
,
S. N.
,
2000
, “
Local Boundary Integral Equation (LBIE) Method for Solving Problems of Elasticity With Nonhomogeneous Material Properties
,”
Comput. Mech.
,
24
(6), pp.
456
462
.10.1007/s004660050005
457.
Sladek
,
V.
,
Sladek
,
J.
, and
Atluri
,
S. N.
,
2000
, “
Numerical Integration of Singularities in Meshless Implementation of Local Boundary Integral Equations
,”
Comput. Mech.
,
25
(4), pp.
394
403
.10.1007/s004660050486
458.
Sladek
,
J.
,
Sladek
,
V.
, and
Atluri
,
S. N.
,
2001
, “
A Pure Contour Formulation for the Meshless Local Boundary Integral Equation Method in Thermoelasticity
,”
Comput. Model. Eng. Sci.
,
2
, pp.
423
433
.10.3970/cmes.2001.002.423
459.
Reed
,
W. H.
, and
Hill
,
T. R.
,
1973
, “
Triangular Mesh Methods for the Neutron Transport Equation
,” Los Alamos Scientific Laboratory, Technical Report No. LA-UR-73-479.
460.
Lesaint
,
P.
, and
Raviart
,
P.-A.
,
1974
, “
On a Finite Element Method for Solving the Neutron Transport Equation
,”
Mathematical Aspects of Finite Elements in Partial Differential Equations
,
C.
de Boor
, ed.,
Academic
,
NY
.
461.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
,
Sherwin
,
S. J.
, and
Peiro
,
J.
,
2003
, “
On Discontinuous Galerkin Methods
,”
Int. J. Numer. Methods Eng.
,
58
(8), pp.
1119
1148
.10.1002/nme.884
462.
Zhong
,
H.
,
2004
, “
Spline-Based Differential Quadrature for Fourth Order Differential Equations and Its Application to Kirchhoff Plates
,”
Appl. Math. Modell.
,
28
(4), pp.
353
366
.10.1016/j.apm.2003.10.003
463.
Guo
,
Q.
, and
Zhong
,
H.
,
2004
, “
Non-Linear Vibration Analysis of Beams by a Spline-Based Differential Quadrature Method
,”
J. Sound Vib.
,
269
(1–2), pp.
413
420
.10.1016/S0022-460X(03)00328-6
464.
Zhong
,
H.
, and
Guo
,
Q.
,
2004
, “
Vibration Analysis of Rectangular Plates With Free Corners Using Spline-Based Differential Quadrature
,”
Shock Vib.
,
11
, pp.
119
128
.10.1155/2004/948153
465.
Zhong
,
H.
, and
Lan
,
M.
,
2006
, “
Solution of Nonlinear Initial-Value Problems by the Spline-Based Differential Quadrature Method
,”
J. Sound Vib.
,
296
(4–5), pp.
908
918
.10.1016/j.jsv.2006.03.018
466.
Krowiak
,
A.
,
2006
, “
Symbolic Computing in Spline-Based Differential Quadrature Method
,”
Commun. Numer. Methods Eng.
,
22
(11), pp.
1097
1107
.10.1002/cnm.872
467.
Krowiak
,
A.
,
2008
, “
Methods Based on the Differential Quadrature in Vibration Analysis of Plates
,”
J. Theor. Appl. Mech.
,
46
, pp.
123
139
.
468.
Korkmaz
,
A.
,
Aksoy
,
A. M.
, and
Dag
,
I.
,
2011
, “
Quartic B-Spline Differential Quadrature Method
,”
Int. J. Nonlinear Sci.
,
11
, pp.
403
411
.
469.
Gupta
,
B.
, and
Kukreja
,
V. K.
,
2012
, “
Numerical Approach for Solving Diffusion Problems Using Cubic B-Spline Collocation Method
,”
Appl. Math. Comput.
,
219
(4), pp.
2087
2099
.10.1016/j.amc.2012.08.053
470.
Krowiak
,
A.
,
2012
, “
Modified Spline-Based Differential Quadrature Method Applied to Vibration Analysis of Truncated Conical Shells
,”
Eng. Comput.
,
29
(8), pp.
856
874
.10.1108/02644401211271627
471.
Krowiak
,
A.
,
2013
, “
Determination of the Weighting Coefficients for Differential Quadrature Method Based on Spline Interpolation
,”
Tech. Trans. Mech.
,
1-M
, pp.
199
204
.