This paper reviews the state-of-the-art in numerical wave propagation analysis. The main focus in that regard is on guided wave-based structural health monitoring (SHM) applications. A brief introduction to SHM and SHM-related problems is given, and various numerical methods are then discussed and assessed with respect to their capability of simulating guided wave propagation phenomena. A detailed evaluation of the following methods is compiled: (i) analytical methods, (ii) semi-analytical methods, (iii) the local interaction simulation approach (LISA), (iv) finite element methods (FEMs), and (v) miscellaneous methods such as mass–spring lattice models (MSLMs), boundary element methods (BEMs), and fictitious domain methods. In the framework of the FEM, both time and frequency domain approaches are covered, and the advantages of using high order shape functions are also examined.

References

References
1.
Boller
,
C.
,
Chang
,
F.-K.
, and
Fijino
,
Y.
,
2009
,
Encyclopedia of Structural Health Monitoring
,
Wiley
,
Hoboken, NJ
.10.1002/9780470061626
2.
Boller
,
C.
,
Staszewski
,
W.
, and
Tomlinson
,
G.
,
2004
,
Health Monitoring of Aerospace Structures
,
Wiley
,
Hoboken, NJ
.
3.
Willberg
,
C.
,
2013
, “
Development of a New Isogeometric Finite Element and Its Application for Lamb Wave Based Structural Health
,” Ph.D. thesis, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany.
4.
Viktorov
,
I. A.
,
1967
,
Rayleigh and Lamb Waves
,
Plenum Press
,
5.
Lamb
,
H.
,
1917
, “
On Waves in an Elastic Plate
,”
R. Soc. London Proc. Ser. A
,
93
(
648
), pp.
114
128
.10.1098/rspa.1917.0008
6.
Love
,
A. E.
,
1911
,
Some Problems of Geodynamics
,
Cambridge University Press
,
Cambridge, UK
.
7.
Ahmad
,
Z. A. B.
,
2011
, “
Numerical Simulations of Lamb Waves in Plates Using a Semi-Analytical Finite Element Method
,” Ph.D. thesis, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany.
8.
Houmat
,
A.
,
2001
, “
A Sector Fourier p-Element Applied to Free Vibration Analysis of Sectorial Plates
,”
J. Sound Vib.
,
243
(
2
), pp.
269
282
.10.1006/jsvi.2000.3410
9.
Ahmad
,
Z.
, and
Gabbert
,
U.
,
2012
, “
Simulation of Lamb Wave Reflections at Plate Edges Using the Semi-Analytical Finite Element Method
,”
Ultrasonics
,
52
(
7
), pp.
815
820
.10.1016/j.ultras.2012.05.008
10.
Cho
,
Y.
,
2000
, “
Estimation of Ultrasonic Guided Wave Mode Conversion in a Plate With Thickness Variation
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
47
(
3
), pp.
591
603
.10.1109/58.842046
11.
Giurgiutiu
,
V.
,
2008
,
Structural Health Monitoring With Piezoelectric Wafer Active Sensors
,
Academic Press (Elsevier)
,
Waltham, MA
.
12.
Mindlin
,
R. D.
,
1960
, “
Waves and Vibrations in Isotropic Elastic Plates
,”
Structural Mechanics
,
J. N.
Goodier
and
N. J.
Hoff
, eds.,
Pergamon Press
,
New York
.
13.
Gazis
,
D. C.
,
1958
, “
Exact Analysis of the Plane-Strain Vibrations of Thick-Walled Hollow Cylinders
,”
J. Acoust. Soc. Am.
,
30
(
8
), pp.
786
794
.10.1121/1.1909761
14.
Vivar-Perez
,
J. M.
,
2012
, “
Analytical and Spectral Methods for the Simulation of Elastic Waves in Thin Plates
,” Ph.D. thesis, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany.
15.
Wang
,
L.
, and
Yuan
,
F.
,
2007
, “
Group Velocity and Characteristic Wave Curves of Lamb Waves in Composites: Modeling and Experiments
,”
Compos. Sci. Technol.
,
67
(
7–8
), pp.
1370
1384
.10.1016/j.compscitech.2006.09.023
16.
Hu
,
N.
,
Shimomukai
,
T.
,
Fukunaga
,
H.
, and
Su
,
Z.
,
2008
, “
Damage Identification of Metallic Structures Using A0 Mode of Lamb Waves
,”
Struct. Health Monit.
,
7
(
3
), pp.
271
285
.10.1177/1475921708090566
17.
Lee
,
B. C.
, and
Staszewski
,
W. J.
,
2003
, “
Modelling of Lamb Waves for Damage Detection in Metallic Structures: Part I. Wave Propagation
,”
Smart Mater. Struct.
,
12
(
5
), pp.
804
814
.10.1088/0964-1726/12/5/018
18.
Lee
,
B. C.
, and
Staszewski
,
W. J.
,
2003
, “
Modelling of Lamb Waves for Damage Detection in Metallic Structures: Part II. Wave Interactions With Damages
,”
Smart Mater. Struct.
,
12
(
5
), pp.
815
824
.10.1088/0964-1726/12/5/019
19.
Lee
,
B. C.
, and
Staszewski
,
W. J.
,
2007
, “
Lamb Wave Propagation Modelling for Damage Detection: II. Damage Monitoring Strategy
,”
Smart Mater. Struct.
,
16
(
2
), pp.
260
274
.10.1088/0964-1726/16/2/004
20.
Moll
,
J.
,
Schulte
,
R. T.
,
Hartmann
,
B.
,
Fritzen
,
C.-P.
, and
Nelles
,
O.
,
2010
, “
Multi-Site Damage Localization in Anisotropic Plate-Like Structures Using an Active Guided Wave Structural Health Monitoring System
,”
Smart Mater. Struct.
,
19
, p.
045022
.10.1088/0964-1726/19/4/045022
21.
Tian
,
J.
,
Gabbert
,
U.
,
Berger
,
H.
, and
Su
,
X.
,
2004
, “
Lamb Wave Interaction With Delaminations in CFRP Laminates
,”
Comput. Mater. Continua
,
1
(
4
), pp.
327
336
.10.3970/cmc.2004.001.327
22.
Yang
,
C.
,
Ye
,
L.
,
Su
,
Z.
, and
Bannister
,
M.
,
2006
, “
Some Aspects of Numerical Simulation for Lamb Wave Propagation in Composite Laminates
,”
Compos. Struct.
,
75
(
1–4
), pp.
267
275
.10.1016/j.compstruct.2006.04.034
23.
Duflo
,
H.
,
Morvan
,
B.
, and
Izbicki
,
J.-L.
,
2007
, “
Interaction of Lamb Waves on Bonded Composite Plates With Defects
,”
Compos. Struct.
,
79
(
2
), pp.
229
233
.10.1016/j.compstruct.2006.01.003
24.
Shelke
,
A.
,
Kundu
,
T.
,
Amjad
,
U.
,
Hahn
,
K.
, and
Grill
,
W.
,
2011
, “
Mode-Selective Excitation and Detection of Ultrasonic Guided Waves for Delamination Detection in Laminated Aluminum Plates
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
58
(
10
), pp.
567
577
.10.1109/TUFFC.2011.1839
25.
Ramadas
,
C.
,
Balasubramaniam
,
K.
,
Hood
,
A.
,
Joshi
,
M.
, and
Krishnamurthy
,
C.
,
2011
, “
Modelling of Attenuation of Lamb Waves Using Rayleigh Damping: Numerical and Experimental Studies
,”
Compos. Struct.
,
93
(
8
), pp.
2020
2025
.10.1016/j.compstruct.2011.02.021
26.
von Ende
,
S.
,
Lion
,
A.
, and
Lammering
,
R.
,
2011
, “
On the Thermodynamically Consistent Fractional Wave Equation for Viscoelastic Solids
,”
Acta Mechanica
,
221
(
1–2
), pp.
1
10
.10.1007/s00707-011-0484-0
27.
Weber
,
R.
,
Hosseini
,
S. M. H.
, and
Gabbert
,
U.
,
2012
, “
Numerical Simulation of the Guided Lamb Wave Propagation in Particle Reinforced Composites
,”
Compos. Struct.
,
94
(
10
), pp.
3064
3071
.10.1016/j.compstruct.2012.04.020
28.
Hosseini
,
S. M. H.
,
Kharaghani
,
A.
,
Kirsch
,
C.
, and
Gabbert
,
U.
,
2013
, “
Numerical Simulation of Lamb Wave Propagation in Metallic Foam Sandwich Structures: A Parametric Study
,”
Compos. Struct.
,
97
, pp.
387
400
.10.1016/j.compstruct.2012.10.039
29.
Hosseini
,
S. M. H.
, and
Gabbert
,
U.
,
2013
, “
Numerical Simulation of the Lamb Wave Propagation in Honeycomb Sandwich Panels: A Parametric Study
,”
Compos. Struct.
,
97
, pp.
189
201
.10.1016/j.compstruct.2012.09.055
30.
Crane
,
L. J.
,
Gilchrist
,
M. D.
, and
Miller
,
J. J. H.
,
1997
, “
Analysis of Rayleigh–Lamb Wave Scattering by a Crack in an Elastic Plate
,”
Comput. Mech.
,
19
(
6
), pp.
533
537
.10.1007/s004660050205
31.
Hennings
,
B.
,
Neumann
,
M.
, and
Lammering
,
R.
,
2013
, “
Continuous Mode Conversion of Lamb Waves in Carbon Fiber Composite Plastics—Occurrence and Modelling
,”
The 9th International Workshop in Structural Health Monitoring (IWSHM)
,
Standford, CA
.
32.
Willberg
,
C.
,
Koch
,
S.
,
Mook
,
G.
,
Gabbert
,
U.
, and
Pohl
,
J.
,
2012
, “
Continuous Mode Conversion of Lamb Waves in CFRP Plates
,”
Smart Mater. Struct.
,
21
(
7
), p.
075022
.10.1088/0964-1726/21/7/075022
33.
Konstantinidis
,
G.
,
Drinkwater
,
B. W.
, and
Wilcox
,
P. D.
,
2006
, “
The Temperature Stability of Guided Wave Structural Health Monitoring Systems
,”
Smart Mater. Struct.
,
15
(
4
), pp.
967
976
.10.1088/0964-1726/15/4/010
34.
Lee
,
B. C.
,
Manson
,
G.
, and
Staszewski
,
W.
,
2003
, “
Environmental Effects on Lamb Wave Responses From Piezoceramic Sensors
,”
Mater. Sci. Forum
,
440–441
, pp.
195
202
.10.4028/www.scientific.net/MSF.440-441.195
35.
Sohn
,
H.
,
2007
, “
Effects of Environmental and Operational Variability on Structural Health Monitoring
,”
Philos. Trans. R. Soc. A
,
365
, pp.
539
560
.10.1098/rsta.2006.1935
36.
Croxford
,
A. J.
,
Moll
,
J.
,
Wilcox
,
P. D.
, and
Michaels
,
J. E.
,
2010
, “
Efficient Temperature Compensation Strategies for Guided Wave Structural Health Monitoring
,”
Ultrasonics
,
50
(
4
), pp.
517
528
.10.1016/j.ultras.2009.11.002
37.
Dodson
,
J. C.
, and
Inman
,
D. J.
,
2013
, “
Thermal Sensitivity of Lamb Waves for Structural Health Monitoring Applications
,”
Ultrasonics
,
53
(
3
), pp.
677
685
.10.1016/j.ultras.2012.10.007
38.
Lu
,
Y.
, and
Michaels
,
J. E.
,
2005
, “
A Methodology for Structural Health Monitoring With Diffuse Ultrasonic Waves in the Presence of Temperature Variations
,”
Ultrasonics
,
43
(
9
), pp.
717
731
.10.1016/j.ultras.2005.05.001
39.
Clarke
,
T.
,
2009
, “
Guided Wave Health Monitoring of Complex Structures
,” Ph.D. thesis, Imperial College London, London, UK.
40.
Moll
,
J.
, and
Fritzen
,
C.-P.
,
2012
, “
Guided Waves for Autonomous Online Identification of Structural Defects Under Ambient Temperature Variations
,”
J. Sound Vib.
,
331
(
20
), pp.
4587
4597
.10.1016/j.jsv.2012.04.033
41.
Schubert
,
L.
,
2011
, “
Zustandsüberwachung an luftfahrttechnischen Faserverbundwerkstoffen durch Impakterkennung mittels geführter Wellen
,” Ph.D. thesis, Technical University Dresden, Dresden, Germany.
42.
Andrews
,
J. P.
,
Palazotto
,
A. N.
,
DeSimio
,
M. P.
, and
Olson
,
S. E.
,
2008
, “
Lamb Wave Propagation in Varying Isothermal Environments
,”
Struct. Health Monit.
,
7
(
3
), pp.
265
270
.10.1177/1475921708090564
43.
Mallet
,
L.
,
Lee
,
B. C.
,
Staszewski
,
W. J.
, and
Scarpa
,
F.
,
2004
, “
Structural Health Monitoring Using Scanning Laser Vibrometry: II. Lamb Waves for Damage Detection
,”
Smart Mater. Struct.
,
13
(
2
), pp.
261
269
.10.1088/0964-1726/13/2/003
44.
Staszewski
,
W. J.
,
Lee
,
B. C.
,
Mallet
,
L.
, and
Scarpa
,
F.
,
2004
, “
Structural Health Monitoring Using Scanning Laser Vibrometry: I. Lamb Wave Sensing
,”
Smart Mater. Struct.
,
13
(
2
), pp.
251
260
.10.1088/0964-1726/13/2/002
45.
Miller
,
T. H.
,
Kundu
,
T.
,
Huang
,
J.
, and
Grill
,
J. Y.
,
2012
, “
A New Guided Wave-Based Technique for Corrosion Monitoring in Reinforced Concrete
,”
Struct. Health Monit.
,
12
(
1
), pp.
35
47
.10.1177/1475921712462938
46.
Pruell
,
C.
,
Kim
,
J.-Y.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
2007
, “
Evaluation of Plasticity Driven Material Damage Using Lamb Waves
,”
Appl. Phys. Lett.
,
91
(
23
), p.
231911
.10.1063/1.2811954
47.
Pruell
,
C.
,
Kim
,
J.-Y.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
2009
, “
Evaluation of Fatigue Damage Using Nonlinear Guided Waves
,”
Smart Mater. Struct.
,
18
(
3
), p.
035003
.10.1088/0964-1726/18/3/035003
48.
Monnier
,
T.
,
2006
, “
Lamb Waves-Based Impact Damage Monitoring of a Stiffened Aircraft Panel Using Piezoelectric Transducers
,”
J. Intell. Mater. Syst. Struct.
,
17
(
5
), pp.
411
421
.10.1177/1045389X06058630
49.
Ramadas
,
C.
,
Balasubramaniam
,
K.
,
Joshi
,
M.
, and
Krishnamurthy
,
C. V.
,
2009
, “
Interaction of the Primary Anti-Symmetric Lamb Mode (A0) With Delaminations: Numerical and Experimental Studies
,”
Smart Mater. Struct.
,
18
, p.
085011
.10.1088/0964-1726/18/8/085011
50.
Tan
,
K. S.
,
Guo
,
N.
,
Wong
,
B. S.
, and
Tui
,
C. G.
,
1995
, “
Experimental Evaluation of Delaminations in Composite Plates by the Use of Lamb Waves
,”
Compos. Sci. Technol.
,
53
(
1
), pp.
77
84
.10.1016/0266-3538(94)00076-X
51.
Toyama
,
N.
, and
Tkatsubo
,
J.
,
2004
, “
Lamb Wave Method for Quick Inspection of Impact-Induced Delaminations in Composite Laminates
,”
Compos. Sci. Technol.
,
64
(
9
), pp.
1293
1300
.10.1016/j.compscitech.2003.10.011
52.
Liu
,
Y.
,
Ning
,
H.
,
Alamusi, Watanabe
,
T.
,
Koshin
,
Y.
,
Cao
,
Y.
, and
Fukunaga
,
H.
,
2011
, “
Relative Reflection Intensity of Lamb Waves From Elliptically-Shaped Damages in Metallic Plates
,”
Smart Mater. Struct.
,
20
(7), p.
075050
10.1088/0964-1726/20/7/075010.
53.
Senesi
,
M.
, and
Ruzzene
,
M.
,
2011
, “
A Frequency Selective Acoustic Transducer for Directional Lamb Wave Sensing
,”
J. Acoust. Soc. Am.
,
130
(
4
), pp.
1899
1907
.10.1121/1.3626165
54.
Ostachowicz
,
W. M.
,
Wandowski
,
T.
, and
Malinowski
,
P.
,
2008
, “
Elastic Wave Phased Array for Damage Localisation
,”
J. Theor. Appl. Mech.
,
46
(
4
), pp.
917
931
.
55.
Moulin
,
E.
,
Assaad
,
J.
, and
Delebarre
,
C.
,
1997
, “
Piezoelectric Transducer Embedded in a Composite Plate: Application to Lamb Wave Generation
,”
J. Appl. Phys.
,
82
(
5
), pp.
2049
2055
.10.1063/1.366015
56.
Calomfirescu
,
M.
,
2008
, “
Lamb Waves for Structural Health Monitoring in Viscoelastic Composite Materials
,” Ph.D. thesis, University of Bremen, Bremen, Germany.
57.
Qinga
,
X. P.
,
Chana
,
H.-L.
,
Bearda
,
S. J.
,
Ooib
,
T. K.
, and
Marottab
,
S. A.
,
2006
, “
Effect of Adhesive on the Performance of Piezoelectric Elements Used to Monitor Structural Health
,”
Int. J. Adhes. Adhes.
,
26
(
8
), pp.
622
628
.10.1016/j.ijadhadh.2005.10.002
58.
Rabinovitch
,
O.
, and
Vinson
,
J. R.
,
2002
, “
Adhesive Layer Effects in Surface Mounted Piezoelectric Actuators
,”
J. Intell. Mater. Syst. Struct.
,
13
(
11
), pp.
689
704
.10.1177/1045389X02013011001
59.
Sirohi
,
J.
, and
Chopra
,
I.
,
2000
, “
Fundamental Understanding of Piezoelectric Strain Sensors
,”
J. Intell. Mater. Syst. Struct.
,
11
(
4
), pp.
246
257
.10.1106/8BFB-GC8P-XQ47-YCQ0
60.
Ha
,
S.
,
2010
, “
Adhesive Interface Layer Effects in PZT-Induced Lamb Wave Propagation
,”
Smart Mater. Struct.
,
19
(
2
), p.
025006
.10.1088/0964-1726/19/2/025006
61.
Pohl
,
J.
,
Willberg
,
C.
,
Gabbert
,
U.
, and
Mook
,
G.
,
2012
, “
Theoretical Analysis and Experimental Determination of the Dynamic Behaviour of Piezoceramic Actuators for SHM
,”
Exp. Mech.
,
52
(
4
), pp.
429
438
.10.1007/s11340-011-9503-2
62.
Lanzara
,
G.
,
Yoon
,
Y.
,
Kim
,
Y.
, and
Chang
,
F.-K.
,
2009
, “
Influence of Interface Degradation on the Performance of Piezoelectric Actuators
,”
J. Intell. Mater. Syst. Struct.
,
20
(
14
), pp.
1699
1710
.10.1177/1045389X09341198
63.
Peters
,
K. J.
, ed.,
2007
, “
Sensor Systems and Networks: Phenomena, Technology, and Application for NDE and Health Monitoring
,”
Proc. SPIE
,
6530
, p.
65300L
. 10.1117/12.715760
64.
Peters
,
K. J.
, ed.,
2007
, “
Sensor Systems and Networks: Phenomena, Technology, and Application for NDE and Health Monitoring
,”
Proc. SPIE
,
6530
, p.
65300J
.10.1117/12.715312
65.
Huang
,
H.
,
Pamphile
,
T.
, and
Derriso
,
M.
,
2008
, “
The Effect of Actuator Bending on Lamb Wave Displacement Fields Generated by a Piezoelectric Patch
,”
Smart Mater. Struct.
,
17
(
5
), p.
055012
.10.1088/0964-1726/17/5/055012
66.
Giurgiutiu
,
V.
,
2005
, “
Tuned Lamb Wave Excitation and Detection With Piezoelectric Wafer Active Sensors for Structural Health Monitoring
,”
J. Intell. Mater. Syst. Struct.
,
16
(
4
), pp.
291
305
.10.1177/1045389X05050106
67.
Wilcox
,
P. D.
,
2003
, “
A Rapid Signal Processing Technique to Remove the Effect of Dispersion From Guided Wave Signals
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
50
(
14
), pp.
419
427
.10.1109/TUFFC.2003.1197965
68.
Michaels
,
J. E.
, and
Michaels
,
T. E.
,
2007
, “
Guided Wave Signal Processing and Image Fusion for In Situ Damage Localization in Plates
,”
Wave Motion
,
44
(
6
), pp.
482
492
.10.1016/j.wavemoti.2007.02.008
69.
Ng
,
C. T.
, and
Veidt
,
M.
,
2009
, “
A Lamb-Wave-Based Technique for Damage Detection in Composite Laminates
,”
Smart Mater. Struct.
,
18
(
7
), p.
074006
.10.1088/0964-1726/18/7/074006
70.
Raghavan
,
A.
, and
Cesnik
,
C. E. S.
,
2007
, “
Review of Guided-Wave Structural Health Monitoring
,”
Shock Vib. Digest
,
39
(
2
), pp.
91
114
.10.1177/0583102406075428
71.
Sohn
,
H.
,
Farrar
,
C. R.
,
Hemez
,
F. M.
,
Shunk
,
D. D.
,
Stinemates
,
D. W.
,
Nadler
,
B. R.
, and
Czarnecki
,
J. J.
,
2001
, “A Review of Structural Health Monitoring Literature: 1996–2001,” Los Alamos National Laboratory, Los Alamos, NM, Technical Report.
72.
Su
,
Z.
, and
Ye
,
L.
,
2009
,
Identification of Damage Using Lamb Waves: From Fundamentals to Applications,
Springer
,
Berlin, Germany
.
73.
Su
,
Z.
,
Ye
,
L.
, and
Lu
,
Y.
,
2006
, “
Guided Lamb Waves for Identification of Damage in Composite Structures: A Review
,”
J. Sound Vib.
,
295
(
3–5
), pp.
753
780
.10.1016/j.jsv.2006.01.020
74.
Rayleigh
,
L.
,
1885
, “
Waves Propagated Along the Plane Surface of an Elastic Solid
,”
Proc. London Math. Soc.
,
20
, pp.
225
234
.10.1112/plms/s1-17.1.4
75.
Osborne
,
M. F. M.
, and
Hart
,
S. D.
,
1945
, “
Transmission, Reflection, and Guiding of an Exponential Pulse by a Steel Plate in Water. I. Theory
,”
J. Acoust. Soc. Am.
,
17
(
1
), pp.
1
18
.10.1121/1.1916293
76.
Holden
,
A.
,
1951
, “
Longitudinal Modes of Elastic Waves in Isotropic Cylinders and Slabs
,”
Bell Syst. Tech. J.
,
30
(
4
), pp.
956
969
.10.1002/j.1538-7305.1951.tb03691.x
77.
Mindlin
,
R. D.
,
1951
, “
Thickness-Shear and Flexural Vibrations of Crystal Plates
,”
J. Appl. Phys.
,
22
(
3
), pp.
316
323
.10.1063/1.1699948
78.
Onoe
,
M. A.
,
1955
, “
A Study of the Branches of the Velocity-Dispersion Equations of Elastica Plates and Rods
,” Report Joint Committee on Ultrasonics of the Institute of Electrical Communication Engineers and the Acoustical Society of Japan, Technical Report.
79.
Lyon
,
R. H.
,
1955
, “
Response of an Elastic Plate to Localized Driving Forces
,”
J. Acoust. Soc. Am.
,
27
(
2
), pp.
259
265
.10.1121/1.1907510
80.
Mindlin
,
R. D.
, and
Medick
,
M. A.
,
1959
, “
Extensional Vibrations of Elastic Plates
,”
ASME J. Appl. Mech.
,
26
, pp.
561
569
.10.1063/1.1699948
81.
Achenbach
,
J. D.
,
1973
, “
Wave Propagation in Elastic Solids
,”
North-Holland Series in Applied Mathematics and Mechanics
, Vol.
16
,
H. A.
Lauwerier
and
W. T.
Koiter
, eds., Springer-Verlag London.
82.
Graff
,
K. F.
,
1975
,
Wave Motion in Elastic Solids
,
Clarendon Press
,
Oxford, UK
.
83.
Achenbach
,
J.
,
1999
, “
Wave Motion in an Isotropic Elastic Layer Generated by a Time-Harmonic Point Load of Arbitrary Direction
,”
J. Acoust. Soc. Am.
,
106
(
1
), pp.
83
90
.10.1121/1.427037
84.
Achenbach
,
J.
,
2000
, “
Quantitative Nondestructive Evaluation
,”
Int. J. Solids Struct.
,
37
(
1
), pp.
13
27
.10.1016/S0020-7683(99)00074-8
85.
Achenbach
,
J.
, and
Xu
,
Y.
,
1999
, “
Use of Elastodynamic Reciprocity to Analyze Point-Load Generated Axisymmetric Waves in a Plate
,”
Wave Motion
,
30
(
1
), pp.
57
67
.10.1016/S0165-2125(98)00050-X
86.
Achenbach
,
J. D.
,
1998
, “
Lamb Waves as Thickness Vibrations Superimposed on a Membrane Carrier Wave
,”
J. Acoust. Soc. Am.
,
103
(
5
), pp.
2283
2286
.10.1121/1.422746
87.
Achenbach
,
J. D.
,
2003
, “
Reciprocity in Elastodynamics
,”
Cambridge Monographs on Mechanics
,
Cambridge University Press
,
Cambridge, UK
.10.1017/CBO9780511550485
88.
Gomilko
,
A. M.
,
Gorodetskaya
,
N. S.
, and
Meleshko
,
V. V.
,
1991
, “
Longitudinal Lamb Waves in a Semi-Infinite Elastic Layer
,”
Int. Appl. Mech.
,
27
(
6
), pp.
577
581
.10.1007/BF00896854
89.
Shia
,
Y.
,
Wooha
,
S.-C.
, and
Orwatb
,
M.
,
2003
, “
Laser-Ultrasonic Generation of Lamb Waves in the Reaction Force Range
,”
Ultrasonics
,
41
(
8
), pp.
623
633
.10.1016/S0041-624X(03)00178-1
90.
Raghavan
,
A.
, and
Cesnik
,
C. E. S.
,
2004
, “
Modeling of Piezoelectric-Based Lamb Wave Generation and Sensing for Structural Health Monitoring
,”
Proc. SPIE
,
5391
, pp.
419
430
.10.1117/12.540269
91.
Raghavan
,
A.
, and
Cesnik
,
C. E. S.
,
2005
, “
Finite-Dimensional Piezoelectric Transducer Modeling for Guided Wave Based Structural Health Monitoring
,”
Smart Mater. Struct.
,
14
(
6
), pp.
1448
1461
.10.1088/0964-1726/14/6/037
92.
von Ende
,
S.
,
Schäfer
,
I.
, and
Lammering
,
R.
,
2007
, “
Lamb Wave Excitation With Piezoelectric Wafers: An Analytical Approach
,”
Acta Mech.
,
193
(
3–4
), pp.
141
150
.10.1007/s00707-006-0434-4
93.
von Ende
,
S.
, and
Lammering
,
R.
,
2007
, “
Investigations on Piezoelectrically Induced Lamb Wave Generation and Propagation
,”
Smart Mater. Struct.
,
16
(
5
), pp.
1802
1809
.10.1088/0964-1726/16/5/035
94.
von Ende
,
S.
, and
Lammering
,
R.
,
2009
, “
Modeling and Simulation of Lamb Wave Generation With Piezoelectric Plates
,”
Mech. Adv. Mater. Struct.
,
16
(
3
), pp.
188
197
.10.1080/15376490902746780
95.
Wilcox
,
P.
,
2004
, “
Modeling the Excitation of Lamb and SH Waves by Point and Line Sources
,”
AIP Conf. Proc.
,
700
, pp.
206
213
.10.1063/1.1711626
96.
Jin
,
J.
,
Quek
,
S. T.
, and
Wang
,
Q.
,
2003
, “
Analytical Solution of Excitation of Lamb Waves in Plates by Inter-Digital Transducers
,”
Proc. R. Soc. A
,
459
(
2033
), pp.
1117
1134
.10.1098/rspa.2002.1071
97.
Yang
,
S.
, and
Yuan
,
F. G.
,
2005
, “
Transient Wave Propagation of Isotropic Plates Using a Higher-Order Plate Theory
,”
Int. J. Solids Struct.
,
42
(
14
), pp.
4115
4153
.10.1016/j.ijsolstr.2004.12.014
98.
Wang
,
C.-Y.
, and
Achenbach
,
J. D.
,
1996
, “
Lamb's Problem for Solid of General Anisotropy
,”
Wave Motion
,
24
(
3
), pp.
227
242
.10.1016/S0165-2125(96)00016-9
99.
Nayfeh
,
A. H.
,
1991
, “
The General Problem of Elastic Wave Propagation in Multilayered Anisotropic Media
,”
J. Acoust. Soc. Am.
,
89
(
4
), pp.
1521
1531
.10.1121/1.400988
100.
Nayfeh
,
A. H.
,
1995
, “
Wave Propagation in Layered Anisotropic Media With Applications to Composites
,”
North-Holland Series in Applied Mathematics and Mechanics
, Vol.
39
,
J. D.
Achenbach
,
B.
Budniansky
,
H. A.
Lauwerier
,
P. G.
Saffman
,
L. V.
Wijngaarden
, and
J. R.
Willis
, eds.,
Elsevier
,
Amsterdam, The Netherlands
.
101.
Lowe
,
M.
,
1995
, “
Matrix Techniques for Modeling Ultrasonic Waves in Multilayered Media
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
42
(
4
), pp.
525
542
.10.1109/58.393096
102.
Wang
,
L.
, and
Rokhlin
,
S. I.
,
2001
, “
Stable Reformulation of Transfer Matrix Method for Wave Propagation in Layered Anisotropic Media
,”
Ultrasonics
,
39
(
6
), pp.
413
424
.10.1016/S0041-624X(01)00082-8
103.
Karmazin
,
A.
,
Kirillova
,
E.
,
Seemann
,
W.
, and
Syromyatnikov
,
P.
,
2010
, “
Modelling of 3D Steady-State Oscillations of Anisotropic Multilayered Structures Applying the Green's Functions
,”
Adv. Theor. Appl. Mech.
,
3
(
9–12
), pp.
425
450
.
104.
Karmazin
,
A.
,
Kirillova
,
E.
,
Seemann
,
W.
, and
Syromyatnikov
,
P.
,
2011
, “
Investigation of Lamb Elastic Waves in Anisotropic Multilayered Composites Applying the Green's Matrix
,”
Ultrasonics
,
51
(
1
), pp.
17
28
.10.1016/j.ultras.2010.05.003
105.
Glushkov
,
E. V.
,
Glushkova
,
N. V.
,
Seemann
,
W.
, and
Kvasha
,
O. V.
,
2006
, “
Elastic Wave Excitation in a Layer by Piezoceramic Patch Actuators
,”
Acoust. Phys.
,
52
(
4
), pp.
398
407
.10.1134/S106377100604004X
106.
Glushkov
,
Y.
,
Glushkova
,
N.
, and
Krivonos
,
A.
,
2010
, “
The Excitation and Propagation of Elastic Waves in Multilayered Anisotropic Composites
,”
J. Appl. Math. Mech.
,
74
(
3
), pp.
297
305
.10.1016/j.jappmathmech.2010.07.005
107.
Velichko
,
A.
, and
Wilcox
,
P. D.
,
2007
, “
Modeling the Excitation of Guided Waves in Generally Anisotropic Multilayered Media
,”
J. Acoust. Soc. Am.
,
121
(
2
), pp.
60
69
.10.1121/1.2390674
108.
Chapuis
,
B.
,
Terrien
,
N.
, and
Royer
,
D.
,
2010
, “
Excitation and Focusing of Lamb Waves in a Multilayered Anisotropic Plate
,”
J. Acoust. Soc. Am.
,
127
(
1
), pp.
198
203
.10.1121/1.3263607
109.
Demma
,
A.
,
Cawley
,
P.
,
Lowe
,
M.
, and
Pavlakovic
,
B.
,
2005
, “
The Effect of Bends on the Propagation of Guided Waves in Pipes
,”
ASME J. Pressure Vessel Technol.
,
127
(
3
), pp.
328
335
.10.1115/1.1990211
110.
Gridin
,
D.
, and
Craster
,
R. V.
,
2004
, “
Lamb Quasi-Modes in Curved Plates
,”
Proc. R. Soc. A
,
460
(
2046
), pp.
1831
1847
.10.1098/rspa.2003.1254
111.
Ratassepp
,
M.
, and
Klauson
,
A.
,
2006
, “
Curvature Effects on Wave Propagation in an Infinite Pipe
,”
Ultragarsas
,
2
(
59
), pp.
19
25
.
112.
Towfighi
,
S.
,
Kundu
,
T.
, and
Ehsani
,
M.
,
2002
, “
Elastic Wave Propagation in Circumferential Direction in Anisotropic Cylindrical Curved Plates
,”
ASME J. Appl. Mech.
,
69
, pp.
283
291
.10.1115/1.1464872
113.
Harris
,
J. G.
,
2002
, “
Rayleigh Wave Propagation in Curved Waveguides
,”
Wave Motion
,
36
(
4
), pp.
425
441
.10.1016/S0165-2125(02)00034-3
114.
Lowe
,
M.
,
Cawley
,
P.
, and
Pavlakovic
,
B.
,
2004
, “
A General Purpose Computer Model for Calculating Elastic Waveguide Properties, With Application to Non-Destructive Testing
,”
R.
Goldstein
and
G.
Maugin
, eds.,
Surface Waves in Anisotropic and Laminated Bodies and Defects Detection
,
Kluwer Academic Publishers
,
Norwell, MA
, pp.
241
256
.10.1007/1-4020-2387-1_14
115.
Barshinger
,
J. N.
, and
Rose
,
J. L.
,
2004
, “
Guided Wave Propagation in an Elastic Hollow Cylinder Coated With a Viscoelastic Material
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
51
(
11
), pp.
1547
1556
.10.1109/TUFFC.2004.1367496
116.
Vivar Perez
,
J. M.
,
Duczek
,
S.
, and
Gabbert
,
U.
,
2014
, “
Analytical and Higher Order Finite Element Hybrid Approaches for an Efficient Simulation of Ultrasonic Guided Waves. I: 2D-Analysis
,”
Smart Struct. Syst.
,
13
(
4
), pp.
587
614
.10.12989/sss.2014.13.4.587
117.
Thomson
,
W. T.
,
1950
, “
Transmission of Elastic Waves Through a Stratified Solid Medium
,”
J. Appl. Phys.
,
21
(
2
), pp.
89
93
.10.1063/1.1699629
118.
Dunkin
,
J. W.
,
1965
, “
Computation of Modal Solutions in Layered, Elastic Media at High Frequencies
,”
Bull. Seismol. Soc. Am.
,
55
(
2
), pp.
335
358
.
119.
Knopoff
,
L.
,
1964
, “
A Matrix Method for Elastic Wave Problems
,”
Bull. Seismol. Soc. Am.
,
54
(
1
), pp.
431
438
.
120.
Bai
,
H.
,
Zhu
,
J.
,
Shah
,
A.
, and
Popplewell
,
N.
,
2004
, “
Three-Dimensional Steady State Green Function for a Layered Isotropic Plate
,”
J. Sound Vib.
,
269
(
1–2
), pp.
251
271
.10.1016/S0022-460X(03)00071-3
121.
Kundu
,
T.
, and
Mal
,
A.
,
1985
, “
Elastic Waves in a Multilayered Solid due to a Dislocation Source
,”
Wave Motion
,
7
(
5
), pp.
459
471
.10.1016/0165-2125(85)90020-4
122.
Chen
,
Z.
, and
Dravinski
,
M.
,
2007
, “
Numerical Evaluation of Harmonic Green's Functions for Triclinic Half-Space With Embedded Sources—Part I: A 2D Model
,”
Int. J. Numer. Methods Eng.
,
69
(
2
), pp.
347
366
.10.1002/nme.1768
123.
Chen
,
Z.
, and
Dravinski
,
M.
,
2007
, “
Numerical Evaluation of Harmonic Green's Functions for Triclinic Half-Space With Embedded Sources—Part II: A 3D Model
,”
Int. J. Numer. Methods Eng.
,
69
(
2
), pp.
367
389
.10.1002/nme.1767
124.
Liu
,
G.
, and
Xi
,
Z.
,
2002
,
Elastic Waves in Anisotropic Laminates
,
CRC Press
,
Boca Raton, FL
.
125.
Sauter
,
T.
,
2000
, “
Integration of Highly Oscillatory Functions
,”
Comput. Phys. Commun.
,
125
(
1–3
), pp.
119
126
.10.1016/S0010-4655(99)00465-8
126.
Xu
,
P.-C.
, and
Mal
,
A. K.
,
1985
, “
An Adaptive Integration Scheme for Irregularly Oscillatory Functions
,”
Wave Motion
,
7
(
3
), pp.
235
243
.10.1016/0165-2125(85)90009-5
127.
Banerjee
,
S.
,
Prosser
,
W.
, and
Mal
,
A.
,
2005
, “
Calculation of the Response of a Composite Plate to Localized Dynamic Surface Loads Using a New Wave Number Integral Method
,”
ASME J. Appl. Mech.
,
72
(
1
), pp.
18
24
.10.1115/1.1828064
128.
Green
,
E. R.
,
1991
, “
Transient Impact Response of a Fiber Composite Laminate
,”
Acta Mech.
,
86
(
1–4
), pp.
153
185
.10.1007/BF01175954
129.
Gopalakrishnan
,
S.
,
Chakraborty
,
A.
, and
Mahapatra
,
D. R.
,
2008
,
Spectral Finite Element Method
,
Springer
,
New York
.
130.
Zhu
,
J.
, and
Shah
,
A.
,
1997
, “
A Hybrid Method for Transient Wave Scattering by Flaws in Composite Plates
,”
Int. J. Solids Struct.
,
34
(
14
), pp.
1719
1734
.10.1016/S0020-7683(96)00120-5
131.
Gavric
,
L.
,
1995
, “
Computation of Propagative Waves in Free Rail Using a Finite Element Technique
,”
J. Sound Vib.
,
185
(
3
), pp.
531
543
.10.1006/jsvi.1995.0398
132.
Hayashi
,
T.
,
Kawashima
,
K.
,
Sun
,
Z.
, and
Rose
,
J. L.
,
2003
, “
Analysis of Flexural Mode Focusing by a Semianalytical Finite Element Method
,”
J. Acoust. Soc. Am.
,
113
(
3
), pp.
1241
1248
.10.1121/1.1543931
133.
Loveday
,
P.
,
2007
, “
Analysis of Piezoelectric Ultrasonic Transducers Attached to Waveguides Using Waveguide Finite Elements
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
54
(
10
), pp.
2045
2051
.10.1109/TUFFC.2007.499
134.
Marzani
,
A.
,
Viola
,
E.
,
Bartoli
,
I.
,
di Scalea
,
F.
, and
Rizzo
,
P.
,
2008
, “
A Semi-Analytical Finite Element Formulation for Modeling Stress Wave Propagation in Axisymmetric Damped Waveguides
,”
J. Sound Vib.
,
318
(
3
), pp.
488
505
.10.1016/j.jsv.2008.04.028
135.
Treysséde
,
F.
,
2008
, “
Elastic Waves in Helical Waveguides
,”
Wave Motion
,
45
(
4
), pp.
457
470
.10.1016/j.wavemoti.2007.09.004
136.
Bartoli
,
I.
,
Marzani
,
A.
,
di Scalea
,
F.
, and
Viola
,
E.
,
2006
, “
Modeling Wave Propagation in Damped Waveguides of Arbitrary Cross-Section
,”
J. Sound Vib.
,
295
(
3–5
), pp.
685
707
.10.1016/j.jsv.2006.01.021
137.
Damljanovic
,
V.
, and
Weaver
,
R.
,
2004
, “
Forced Response of a Cylindrical Waveguide With Simulation of the Wavenumber Extraction Problem
,”
J. Acoust. Soc. Am.
,
115
(
4
), pp.
1582
1591
.10.1121/1.1675818
138.
Hayashi
,
T.
,
Song
,
W.
, and
Rose
,
J.
,
2003
, “
Guided Wave Dispersion Curves for a Bar With an Arbitrary Cross-Section, a Rod and Rail Example
,”
Ultrasonics
,
41
(
3
), pp.
175
183
.10.1016/S0041-624X(03)00097-0
139.
Loveday
,
P.
, and
Long
,
C.
,
2007
, “
Time Domain Simulation of Piezoelectric Excitation of Guided Waves in Rails Using Waveguide Finite Elements
,”
Proc. SPIE
,
6529
, p.
65290V
.10.1117/12.714744
140.
Ryue
,
J.
,
Thompson
,
D.
,
White
,
P.
, and
Thompson
,
D.
,
2009
, “
Decay Rates of Propagating Waves in Railway Tracks at High Frequencies
,”
J. Sound Vib.
,
320
(
4–5
), pp.
955
976
.10.1016/j.jsv.2008.09.025
141.
Loveday
,
P. W.
,
2009
, “
Semi-Analytical Finite Element Analysis of Elastic Waveguides Subjected to Axial Loads
,”
Ultrasonics
,
49
(
3
), pp.
298
300
.10.1016/j.ultras.2008.10.018
142.
Chitnis
,
M.
,
Desai
,
Y.
,
Shah
,
A.
, and
Kant
,
T.
,
2003
, “
Comparisons of Displacement-Based Theories for Waves and Vibrations in Laminated and Sandwich Composite Plates
,”
J. Sound Vib.
,
263
(
3
), pp.
617
642
.10.1016/S0022-460X(02)01106-9
143.
Moulin
,
E.
,
Assaad
,
J.
, and
Delebarre
,
C.
,
2000
, “
Modeling of Lamb Waves Generated by Integrated Transducers in Composite Plates Using a Coupled Finite Elementnormal Modes Expansion Method
,”
J. Acoust. Soc. Am.
,
107
(
1
), pp.
87
94
.10.1121/1.428294
144.
Ahmad
,
Z.
,
Vivar-Perez
,
J.
, and
Gabbert
,
U.
,
2013
, “
Semi-Analytical Finite Element Method for Modeling of Lamb Wave Propagation
,”
CEAS Aeronaut. J.
,
4
(1), pp.
21
33
.10.1007/s13272-012-0056-6
145.
Hayashi
,
T.
, and
Endoh
,
S.
,
2000
, “
Calculation and Visualization of Lamb Wave Motion
,”
Ultrasonics
,
38
(
1–8
), pp.
770
773
.10.1016/S0041-624X(99)00225-5
146.
Karunasena
,
W.
,
Liew
,
K.
, and
Kitipornchai
,
S.
,
1995
, “
Hybrid Analysis of Lamb Wave Reflection by a Crack at the Fixed Edge of a Composite Plate
,”
Comput. Methods Appl. Mech. Eng.
,
125
(
1–4
), pp.
221
233
.10.1016/0045-7825(95)00802-8
147.
Karunasena
,
W.
,
Liew
,
K. M.
, and
Kitipornchai
,
S.
,
1995
, “
Reflection of Plate Waves at the Fixed Edge of a Composite Plate
,”
J. Acoust. Soc. Am.
,
98
(
1
), pp.
644
651
.10.1121/1.413657
148.
Liu
,
G. R.
,
2002
, “
A Combined Finite Element/Strip Element Method for Analyzing Elastic Wave Scattering by Cracks and Inclusions in Laminates
,”
Comput. Mech.
,
28
(
1
), pp.
76
81
.10.1007/s00466-001-0272-0
149.
Terrien
,
N.
,
Osmont
,
D.
,
Royer
,
D.
,
Lepoutre
,
F.
, and
Déom
,
A.
,
2007
, “
A Combined Finite Element and Modal Decomposition Method to Study the Interaction of Lamb Modes With Micro-Defects
,”
Ultrasonics
,
46
(
1
), pp.
74
88
.10.1016/j.ultras.2006.11.001
150.
Datta
,
S.
,
Shah
,
A.
,
Bratton
,
R.
, and
Chakraborty
,
T.
,
1988
, “
Wave Propagation in Laminated Composite Plates
,”
J. Acoust. Soc. Am.
,
83
(
6
), pp.
2020
2026
.10.1121/1.396382
151.
Waas
,
G.
,
1972
, “
Earth Vibration Effects and Abatement for Military Facilities (s-71-14)—Analysis Report for Footing Vibrations Through Layered Media
,” U.S. Army Engineer Waterways Experiment Station, Technical Report.
152.
Ichchou
,
M.
,
Mencik
,
J.-M.
, and
Zhou
,
W.
,
2009
, “
Wave Finite Elements for Low and Mid-Frequency Description of Coupled Structures With Damage
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
15
), pp.
1311
1326
.10.1016/j.cma.2008.11.024
153.
Koreck
,
J.
,
2006
, “
Computational Characterization of Adhesive Bond Properties Using Guided Waves in Bonded Plates
,” Master's thesis, Georgia Institute of Technology, Atlanta, GA.
154.
Manconi
,
E.
,
2008
, “
Modelling Wave Propagation in Two-Dimensional Structures Using a Wave/finite Element Technique
,” Ph.D. thesis, University of Parma, Parma, Italy.
155.
Manconi
,
E.
, and
Mace
,
B.
,
2009
, “
Wave Characterization of Cylindrical and Curved Panels Using a Finite Element Method
,”
J. Acoust. Soc. Am.
,
125
(
1
), pp.
154
163
.10.1121/1.3021418
156.
Marchi
,
L.
,
Marzani
,
A.
, and
Miniaci
,
M.
,
2013
, “
A Dispersion Compensation Procedure to Extend Pulse-Echo Defects Location to Irregular Waveguides
,”
NDT & E Int.
,
54
, pp.
115
122
.10.1016/j.ndteint.2012.12.009
157.
Moulin
,
E.
,
Grondel
,
S.
,
Baouahi
,
M.
, and
Assaad
,
J.
,
2006
, “
Pseudo-3D Modeling of a Surface-Bonded Lamb Wave Source
,”
J. Acoust. Soc. Am.
,
119
(
5
), pp.
2575
2578
.10.1121/1.2189447
158.
Delsanto
,
P. P.
,
Whitcombe
,
T.
,
Chaskelis
,
H.
, and
Mignogna
,
R.
,
1992
, “
Connection Machine Simulation of Ultrasonic Wave Propagation in Materials. I: The One-Dimensional Case
,”
Wave Motion
,
16
(
1
), pp.
65
80
.10.1016/0165-2125(92)90047-6
159.
Delsanto
,
P. P.
,
Schechter
,
R. S.
,
Chaskelis
,
H.
,
Mignogna
,
R. B.
, and
Kline
,
R. B.
,
1994
, “
Connection Machine Simulations of Ultrasonic Wave Propagation in Materials. II: The Two-Dimensional Case
,”
Wave Motion
,
20
(
4
), pp.
295
314
.10.1016/0165-2125(94)90016-7
160.
Delsanto
,
P. P.
,
Schechter
,
R. S.
, and
Migogna
,
R. B.
,
1997
, “
Connection Machine Simulation of Ultrasonic Wave Propagation in Materials. III: The Three-Dimensional Case
,”
Wave Motion
,
26
(
4
), pp.
329
339
.10.1016/S0165-2125(97)00013-9
161.
Masserey
,
B.
, and
Fromme
,
P.
,
2013
, “
Fatigue Crack Growth Monitoring Using High-Frequency Guided Waves
,”
Struct. Health Monit.
,
12
(
5–6
), pp.
484
493
.10.1177/1475921713498532
162.
Lee
,
B. C.
,
Palacz
,
M.
,
Krawczuk
,
M.
,
Ostachowicz
,
W. M.
, and
Staszewski
,
W. J.
,
2004
, “
Wave Propagation in a Sensor/Actuator Diffusion Bond Model
,”
J. Sound Vib.
,
276
(
3
), pp.
671
687
.10.1016/j.jsv.2003.08.035
163.
Kluska
,
P.
,
Staszewski
,
W.
,
Leamy
,
M. J.
, and
Uhl
,
T.
,
2012
, “
Lamb Wave Propagation Modeling Using Cellular Automata
,”
6th European Workshop on Structural Health Monitoring
,
Dresden, Germany
, July 3–6.
164.
Kijanka
,
P.
,
Radecki
,
R.
,
Paćko
,
P.
,
Staszewski
,
W.
, and
Uhl
,
T.
,
2012
, “
GPU-Based Local Interaction Simulation Approach for Simplified Temperature Effect Modelling in Lamb Wave Propagation Used for Damage Detection
,”
Smart Mater. Struct.
,
22
(3), p.
035014
.10.1088/0964-1726/22/3/035014
165.
Paćko
,
P.
,
Bielak
,
T.
,
Spencer
,
A. B.
,
Staszewski
,
W.
,
Uhl
,
T.
, and
Worden
,
K.
,
2012
, “
Lamb Wave Propagation Modelling and Simulation Using Parallel Processing Architecture and Graphical Cards
,”
Smart Mater. Struct.
,
21
(
7
), p.
075001
.
166.
Reddy
,
J. N.
,
1993
,
An Introduction to the Finite Element Method
,
McGraw-Hill
,
New York
.
167.
Zienkiewicz
,
O. C.
, and
Taylor
,
R.
,
2000
,
The Finite Element Method. Basis
, Vol.
1
,
Butterworth-Heinemann
,
Oxford, UK
.10.1007/s13272-012-0056-6
168.
Bathe
,
K.-J.
,
2002
,
Finite-Elemente-Methoden
,
Springer
,
Berlin, Germany
.
169.
Hughes
,
T. J. R.
,
1987
,
The Finite Element Method
,
Prentice-Hall International (UK) Limited
,
London, UK
.10.1007/s13272-012-0056-6
170.
Zienkiewicz
,
O. C.
, and
Taylor
,
R.
,
2000
,
The Finite Element Method. Solid Mechanics
, Vol.
2
,
Butterworth-Heinemann
,
Oxford, UK
10.1007/s13272-012-0056-6.
171.
Zienkiewicz
,
O. C.
, and
Taylor
,
R.
,
2000
,
The Finite Element Method. Fluid Dynamics
, Vol.
3
,
Butterworth-Heinemann
,
Oxford, UK
.
172.
Szabó
,
B.
, and
Babuška
,
I.
,
1991
,
Finite Element Analysis
,
Wiley
,
Hoboken, NJ.
173.
Düster
,
A.
,
2002
, “
High Order Finite Elements for Three Dimensional, Thin-Walled Nonlinear Continua
,” Ph.D. thesis, Technical University of Munich, Munich, Germany.
174.
Düster
,
A.
,
Bröker
,
H.
, and
Rank
,
E.
,
2001
, “
The p-Version of the Finite Element Method for Three-Dimensional Curved Thin Walled Structures
,”
Int. J. Numer. Methods Eng.
,
52
(
7
), pp.
673
703
.10.1002/nme.222
175.
Dauksher
,
W.
, and
Emery
,
A. F.
,
1997
, “
Accuracy in Modeling the Acoustic Wave Equation With Chebyshev Spectral Finite Elements
,”
Finite Elem. Anal. Des.
,
26
(
2
), pp.
115
128
.10.1016/S0168-874X(96)00075-3
176.
Dauksher
,
W.
, and
Emery
,
A. F.
,
1999
, “
An Evaluation of the Cost Effectiveness of Chebyshev Spectral and p-Finite Element Solutions to the Scalar Wave Equation
,”
Int. J. Numer. Methods Eng.
,
45
(
8
), pp.
1099
1113
.10.1002/(SICI)1097-0207(19990720)45:8<1099::AID-NME622>3.0.CO;2-5
177.
Dauksher
,
W.
, and
Emery
,
A. F.
,
2000
, “
The Solution of Elastostatic and Elastodynamic Problems With Chebyshev Spectral Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
,
188
(
1
), pp.
217
233
.10.1016/S0045-7825(99)00149-8
178.
Komatitsch
,
D.
, and
Tromp
,
J.
,
2002
, “
Spectral-Element Simulations of Global Seismic Wave Propagation—I. Validation
,”
Int. J. Geophys.
,
149
(
2
), pp.
390
412
.10.1046/j.1365-246X.2002.01653.x
179.
Kuroishi
,
T.
,
Nishimura
,
H.
,
Matsumoto
,
N.
,
Shiibashi
,
A.
,
Sakata
,
F.
, and
Aoki
,
K.
,
2005
, “
Guided Wave Pipe Inspection and Monitoring System
,” Mitsubishi Heavy Industries, Ltd. Technical Review, Vol.
42
, No.
3
.
180.
Hughes
,
T. J. R.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
39
), pp.
4135
4195
.10.1016/j.cma.2004.10.008
181.
Cottrell
,
J. A.
,
Hughes
,
T. J. R.
, and
Bazilevs
,
Y.
,
2009
,
Isogeometric Analysis: Toward Integration of CAD and FEA
,
Wiley
,
Hoboken, NJ
.
182.
Farin
,
G.
,
1999
,
NURBS From Projective Geometry to Practical Use
,
AK Peters
,
Natick, MA
.
183.
Hamilton
,
W. R.
,
2000
, “
On a General Method in Dynamic
,”
Philosophical Transactions of the Royal Society
, Vol.
1834
,
David R.
Wilkins
, ed., The Royal Society Publishing, London, UK, pp.
94
144
.
184.
Ostachowicz
,
W.
,
Kudela
,
P.
,
Krawczuk
,
M.
, and
Zak
,
A.
,
2012
,
Guided Waves in Structures for SHM: The Time-Domain Spectral Element Method
,
Wiley
,
Hoboken, NJ
.10.1002/9781119965855
185.
Willberg
,
C.
,
Duczek
,
S.
,
Vivar-Perez
,
J. M.
,
Schmicker
,
D.
, and
Gabbert
,
U.
,
2012
, “
Comparison of Different Higher Order Finite Element Schemes for the Simulation of Lamb Waves
,”
Comput. Methods Appl. Mech. Eng.
,
241–244
, pp.
246
261
.10.1016/j.cma.2012.06.011
186.
Flanagan
,
D. P.
, and
Belytschko
,
T.
,
1981
, “
A Uniform Strain Hexahedron and Quadrilateral With Orthogonal Hourglass Control
,”
Int. J. Numer. Methods Eng.
,
17
(
5
), pp.
679
706
.10.1002/nme.1620170504
187.
Bartoli
,
I.
,
di Scalea
,
F. L.
,
Fateh
,
M.
, and
Viola
,
E.
,
2005
, “
Modeling Guided Wave Propagation With Application to the Long-Range Defect Detection in Railroad Tracks
,”
NDT & E Int.
,
38
(
5
), pp.
325
334
.10.1016/j.ndteint.2004.10.008
188.
Gresil
,
M.
,
Giurgiutiu
,
V.
,
Shen
,
Y.
, and
Poddar
,
B.
,
2012
, “
Guidelines for Using the Finite Element Method for Modeling Guided Lamb Wave Propagation in SHM Process
,”
6th European Workshop on Structural Health Monitoring
,
Dresden, Germany
, July 3–6.
189.
Greve
,
D. W.
,
Zheng
,
P.
, and
Oppenheim
,
I. J.
,
2008
, “
The Transition From Lamb Waves to Longitudinal Waves in Plates
,”
Smart Mater. Struct.
,
17
(
3
), p.
035029
.10.1088/0964-1726/17/3/035029
190.
Bijudas
,
C. R.
,
Mitra
,
M.
, and
Mujumdar
,
P. M.
,
2013
, “
Time Reversed Lamb Wave for Damage Detection in a Stiffened Aluminum Plate
,”
Smart Mater. Struct.
,
22
(
10
), p.
105026
.10.1088/0964-1726/22/10/105026
191.
Vanli
,
O. A.
, and
Jung
,
S.
,
2013
, “
Statistical Updating of Finite Element Model With Lamb Wave Sensing Data for Damage Detection Problems
,”
Mech. Syst. Signal Process.
,
42
(
1–2
), pp.
137
151
.10.1016/j.ymssp.2013.06.015
192.
Luchinsky
,
D. G.
,
Hafiychuk
,
V.
,
Smelyanskiy
,
V. N.
,
Kessler
,
S.
,
Walker
,
J.
,
Miller
,
J.
, and
Watson
,
M.
,
2013
, “
Modeling Wave Propagation and Scattering From Impact Damage for Structural Health Monitoring of Composite Sandwich Plates
,”
Struct. Health Monit.
,
12
(
3
), pp.
296
308
.10.1177/1475921713483351
193.
Sause
,
M. G. R.
,
Hamstad
,
M. A.
, and
Horn
,
S.
,
2013
, “
Finite Element Modeling of Lamb Wave Propagation in Anisotropic Hybrid Materials
,”
Composites Part B
,
53
, pp.
249
257
.10.1016/j.compositesb.2013.04.067
194.
Kannajosyula
,
H.
,
Lissenden
,
C. J.
, and
Rose
,
J. L.
,
2013
, “
Analysis of Annular Phased Array Transducers for Ultrasonic Guided Wave Mode Control
,”
Smart Mater. Struct.
,
22
(
8
), p.
085019
.10.1088/0964-1726/22/8/085019
195.
Rogge
,
M. D.
, and
Leckey
,
C. A. C.
,
2013
, “
Characterization of Impact Damage in Composite Laminates Using Guided Wavefield Imaging and Local Wavenumber Domain Analysis
,”
Ultrasonics
,
53
(7), pp.
1217
1226
.10.1016/j.ultras.2012.12.015
196.
Oh
,
T.
,
Popovics
,
J. S.
,
Ham
,
S.
, and
Shin
,
S. W.
,
2012
, “
Practical Finite Element Based Simulations of Nondestructive Evaluation Methods for Concrete
,”
Comput. Struct.
,
98–99
, pp.
55
65
.10.1016/j.compstruc.2012.02.003
197.
Hosseini
,
S. M. H.
,
Duczek
,
S.
, and
Gabbert
,
U.
,
2013
, “
Non-Reflecting Boundary Condition for Lamb Wave Propagation Problems in Honeycomb and CFRP Plates Using Dashpot Elements
,”
Composites Part B
,
54
, pp.
1
10
.10.1016/j.compositesb.2013.04.061
198.
Liu
,
G. R.
, and
Jerry
,
S. S. Q.
,
2003
, “
A Non-Reflecting Boundary for Analyzing Wave Propagation Using the Finite Element Method
,”
Finite Elem. Anal. Des.
,
39
(
5–6
), pp.
403
417
.10.1016/S0168-874X(02)00081-1
199.
Duru
,
K.
, and
Kreiss
,
G.
,
2014
, “
Numerical Interaction of Boundary Waves With Perfectly Matched Layers in Two Space Dimensional Elastic Wavegiudes
,”
Wave Motion
,
51
(
3
), pp.
445
465
.10.1016/j.wavemoti.2013.11.002
200.
Komatitsch
,
D.
,
Michéa
,
D.
, and
Erlebacher
,
G.
,
2009
, “
Porting a High-Order Finite-Element Earthquake Modeling Application to NVIDIA Graphics Cards Using CUDA
,”
J. Parallel Distrib. Comput.
,
69
(
5
), pp.
451
460
.10.1016/j.jpdc.2009.01.006
201.
Komatitsch
,
D.
, and
Tromp
,
J.
,
1999
, “
Introduction to the Spectral Element Method for Three-Dimensional Seismic Wave Propagation
,”
Geophys. J. Int.
,
139
(
3
), pp.
806
822
.10.1046/j.1365-246x.1999.00967.x
202.
Komatitsch
,
D.
,
Tsuboi
,
S.
,
Ji
,
C.
, and
Tromp
,
J.
,
2003
, “
A 14.6 Billion Degrees of Freedom, 5 Teraflops, 2.5 Terabyte Earthquake Simulation on the Earth Simulator
,” 2003
ACM/IEEE
Conference on Supercomputing. 10.1145/1048935.1050155
203.
Komatitsch
,
D.
, and
Vilotte
,
J. P.
,
1998
, “
The Spectral-Element Method: An Efficient Tool to Simulate the Seismic Response of 2D and 3D Geological Structures
,”
Bull. Seismol. Soc. Am.
,
88
(
2
), pp.
368
392
.10.1046/j.1365-246x.1999.00967.x
204.
Lonkar
,
K.
, and
Chang
,
F.-K.
,
2014
, “
Modeling of Piezo-Induced Ultrasonic Wave Propagation in Composite Structures Using Layered Solid Spectral Element
,”
Struct. Health Monit.
,
13
(
1
), pp.
50
67
.10.1177/1475921713500514
205.
Moll
,
J.
,
Schulte
,
R. T.
,
Hartmann
,
B.
,
Fritzen
,
C.-P.
, and
Nelles
,
O.
,
2010
, “
Multi-Site Damage Localization in Anisotropic Plate-Like Structures Using an Active Guided Wave Structural Health Monitoring System
,”
Smart Mater. Struct.
,
19
(
4
), p.
045022
.10.1088/0964-1726/19/4/045022
206.
Ostachowicz
,
W.
, and
Kudela
,
P.
,
2010
, “
Wave Propagation Numerical Models in Damage Detection Based on the Time Domain Spectral Element Method
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
10
(
1
), p.
012068
.10.1088/1757-899X/10/1/012068
207.
Patera
,
A. T.
,
1984
, “
A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion
,”
J. Comput. Phys.
,
54
(
3
), pp.
468
488
.10.1016/0021-9991(84)90128-1
208.
Peng
,
H.
,
Meng
,
G.
, and
Li
,
F.
,
2009
, “
Modeling of Wave Propagation in Plate Structures Using Three-Dimensional Spectral Element Method for Damage Detection
,”
J. Sound Vib.
,
320
(
4–5
), pp.
942
954
.10.1016/j.jsv.2008.09.005
209.
Rucka
,
M.
,
2010
, “
Experimental and Numerical Study on Damage Detection in an L-Joint Using Guided Wave Propagation
,”
J. Sound Vib.
,
329
(
10
), pp.
1760
1779
.10.1016/j.jsv.2009.12.004
210.
Seriani
,
G.
, and
Oliveira
,
S. P.
,
2008
, “
Dispersion Analysis of Spectral Element Methods for Elastic Wave Propagation
,”
Wave Motion
,
45
(
6
), pp.
729
744
.10.1016/j.wavemoti.2007.11.007
211.
Sridhar
,
R.
,
Chakraborty
,
A.
, and
Gopalakrishnan
,
S.
,
2006
, “
Wave Propagation Analysis in Anisotropic and Inhomogeneous Uncracked and Cracked Structures Using Pseudospectral Finite Element Method
,”
Int. J. Solids Struct.
,
43
(
16
), pp.
4997
5031
.10.1016/j.ijsolstr.2005.10.005
212.
Demkowicz
,
L.
,
2006
,
Computing With hp-Adaptive Finite Elements: Volume 1: One and Two Dimensional Elliptic and Maxwell Problems
,
Chapman and Hall
,
Atlanta, GA
.10.1201/9781420011685
213.
Demkowicz
,
L.
,
Kurtz
,
J.
,
Pardo
,
D.
,
Paszynski
,
M.
,
Rachowicz
,
W.
, and
Zdunek
,
A.
,
2008
,
Computing With hp-Adaptive Finite Elements: Volume 2 Frontiers: Three Dimensional Elliptic and Maxwell Problems With Applications
,
Chapman and Hall
,
Atlanta, GA
.
214.
Solin
,
P.
,
Segeth
,
K.
, and
Dolezel
,
I.
,
2004
,
Higher-Order Finite Element Methods
,
Chapman and Hall
,
Atlanta, GA
.
215.
Szabó
,
B.
, and
Babuška
,
I.
,
2011
,
Introduction to Finite Element Analysis: Formulation, Verification and Validation
,
Wiley
,
Hoboken, NJ
.10.1002/9781119993834
216.
Dornisch
,
W.
,
Klinkel
,
S.
, and
Simeon
,
B.
,
2013
, “
Isogeometric Reissner–Mindlin Shell Analysis With Exactly Calculated Director Vectors
,”
Comput. Methods Appl. Mech. Eng.
,
253
, pp.
491
504
.10.1016/j.cma.2012.09.010
217.
Hughes
,
T. J. R.
,
Reali
,
A.
, and
Sangalli
,
G.
,
2008
, “
Duality and Unified Analysis of Discrete Approximations in Structural Dynamics and Wave Propagation: Comparison of p-Method Finite Elements With k-Method NURBS
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
49
), pp.
4104
4124
.10.1016/j.cma.2008.04.006
218.
Żak
,
A.
,
2009
, “
A Novel Formulation of a Spectral Plate Element for Wave Propagation in Isotropic Structures
,”
Finite Elem. Anal. Des.
,
45
(
10
), pp.
650
658
.10.1016/j.finel.2009.05.002
219.
Żak
,
A.
,
Krawczuk
,
M.
, and
Ostachowicz
,
W.
,
2012
, “
Spectral Finite Element Method for Propagation of Guided Elastic Waves in Wind Turbine Blades for SHM Purposes
,”
6th European Workshop on Structural Health Monitoring
.
220.
Kudela
,
P.
,
Żak
,
A.
,
Krawczuk
,
M.
, and
Ostachowicz
,
W.
,
2007
, “
Modelling of Wave Propagation in Composite Plates Using the Time Domain Spectral Element Method
,”
J. Sound Vib.
,
302
(
4
), pp.
728
745
.10.1016/j.jsv.2006.12.016
221.
Kudela
,
P.
, and
Ostachowicz
,
W.
,
2008
, “
Wave Propagation Modelling in Composite Plates
,”
J. Phys. Conf. Ser.
,
9
, pp.
89
104
.10.4028/www.scientific.net/AMM.9.89
222.
Kudela
,
P.
,
Ostachowicz
,
W.
, and
Żak
,
A.
,
2008
, “
Damage Detection in Composite Plates With Embedded PZT Transducers
,”
Mech. Syst. Signal Process.
,
22
(
6
), pp.
1327
1335
.10.1016/j.ymssp.2007.07.008
223.
Fritzen
,
C.-P.
,
Schulte
,
R. T.
, and
Jung
,
H.
,
2011
, “
A Modelling Approach for Virtual Development of Wave Based SHM Systems
,”
J. Phys. Conf. Ser.
,
305
, p.
012071
.10.1088/1742-6596/305/1/012071
224.
Schulte
,
R. T.
, and
Fritzen
,
C.-P.
,
2011
, “
Simulation of Wave Propagation in Damped Composite Structures With Piezoelectric Coupling
,”
J. Theor. Appl. Mech.
,
49
(
3
), pp.
879
903
.
225.
Schulte
,
R. T.
,
Fritzen
,
C.-P.
, and
Moll
,
J.
,
2010
, “
Spectral Element Modelling of Wave Propagation in Isotropic and Ansisotropic Shell-Structures Including Different Types of Damage
,”
IOP Conf. Ser.
,
10
, p.
012065
.10.1088/1757-899X/10/1/012065
226.
Żak
,
A.
,
Ostachowicz
,
W.
, and
Krawczuk
,
M.
,
2011
, “
Damage Detection Strategies for Aircraft Shell-Like Structures Based on Propagation Guided Eleastic Waves
,”
J. Phys. Conf. Ser.
,
305
(
1
), p.
012055
.10.1088/1742-6596/305/1/012055
227.
Żak
,
A.
,
Radzieński
,
M.
,
Krawczuk
,
M.
, and
Ostachowicz
,
W.
,
2012
, “
Damage Detection Strategies Based on Propagation of Guided Elastic Waves
,”
Smart Mater. Struct.
,
21
(
3
), p.
035024
.10.1088/0964-1726/21/3/035024
228.
Kudela
,
P.
, and
Ostachowicz
,
W.
,
2009
, “
3D Time-Domain Spectral Elements for Stress Waves Modelling
,”
J. Phys.: Conf. Ser.
,
181
, pp.
1
8
.
229.
Duczek
,
S.
,
2014
, “
Higher Order Finite Elements and the Fictitious Domain Concept for Wave Propagation Analysis
,” Ph.D. thesis, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany.
230.
Schillinger
,
D.
,
Dede
,
L.
,
Scott
,
M. A.
,
Evans
,
J. A.
,
Borden
,
M. J.
,
Rank
,
E.
, and
Hughes
,
T. J. R.
,
2012
, “
An Isogeometric Design-Through-Analysis Methodology Based on Adaptive Hierarchical Refinement of NURBS, Immersed Boundary Methods, and T-Spline CAD Surfaces
,”
Comput. Methods Appl. Mech. Eng.
,
249–252
, pp.
116
150
.10.1016/j.cma.2012.03.017
231.
Schmicker
,
D.
,
Duczek
,
S.
,
Liefold
,
S.
, and
Gabbert
,
U.
,
2014
, “
Wave Propagation Analysis Using High-Order Finite Element Methods: Spurious Oscillations Excited by Internal Element Eigenfrequencies
,”
Tech. Mech.
,
34
(
2
), pp.
51
71
.
232.
Demkowicz
,
L.
,
Kurtz
,
J.
,
Pardo
,
D.
,
Paszynski
,
M.
,
Rachowicz
,
W.
, and
Zdunek
,
A.
,
2008
,
Computing With hp-Adaptive Finite Elements: Volume 2 Frontiers: Three Dimensional Elliptic and Maxwell Problems With Applications
,
Chapman and Hall
,
Atlanta, GA
.
233.
Willberg
,
C.
, and
Gabbert
,
U.
,
2012
, “
Development of a Three-Dimensional Piezoelectric Isogeometric Finite Element for Smart Structure Applications
,”
Acta Mech.
,
223
(
8
), pp.
1837
1850
.10.1007/s00707-012-0644-x
234.
Duczek
,
S.
, and
Gabbert
,
U.
,
2013
, “
Anisotropic Hierarchic Finite Elements for the Simulation of Piezoelectric Smart Structures
,”
Eng. Comput.
,
30
(
5
), pp.
682
706
.10.1108/EC-08-2013-0005
235.
Yim
,
H.
, and
Sohn
,
Y.
,
2000
, “
Numerical Simulation and Visualization of Elastic Waves Using Mass–Spring Lattice Model
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
47
(
3
), pp.
549
558
.10.1109/58.842041
236.
Seriani
,
G.
,
2004
, “
Double-Grid Chebyshev Spectral Elements for Acoustic Wave Modeling
,”
Wave Motion
,
39
, pp.
351
360
.10.1016/j.wavemoti.2003.12.008
237.
Seriani
,
G.
, and
Su
,
C.
,
2012
, “
Wave Propagation Modeling in Highly Heterogeneous Media by a Poly-Grid Chebyshev Spectral Element Method
,”
J. Comput. Acoust.
,
20
(
2
), p.
1240004
.10.1142/S0218396X12400048
238.
Duczek
,
S.
,
Joulaian
,
M.
,
Düster
,
A.
, and
Gabbert
,
U.
,
2014
, “
Numerical Analysis of Lamb Waves Using the Finite and Spectral Cell Method
,”
Int. J. Numer. Methods Eng.
,
99
(
1
), pp.
26
53
.10.1002/nme.4663
239.
Seriani
,
G.
, and
Priolo
,
E.
,
1994
, “
Spectral Element Method for Acoustic Wave Simulation in Heterogeneous Media
,”
Finite Elem. Anal. Des.
,
16
(
3–4
), pp.
337
348
.10.1016/0168-874X(94)90076-0
240.
Ainsworth
,
M.
,
2004
, “
Discrete Dispersion Relation for hp-Version Finite Element Approximation at High Wave Number
,”
SIAM J. Numer. Anal.
,
42
(
2
), pp.
553
575
.10.1137/S0036142903423460
241.
Ainsworth
,
M.
, and
Wajid
,
H. A.
,
2009
, “
Dispersive and Dissipative Behavior of the Spectral Element Method
,”
SIAM J. Numer. Anal.
,
47
(
5
), pp.
3910
3937
.10.1137/080724976
242.
Ainsworth
,
M.
, and
Wajid
,
H. A.
,
2010
, “
Optimally Blended Spectral-Finite Element Scheme for Wave Propagation and Nonstandard Reduced Integration
,”
SIAM J. Numer. Anal.
,
48
(
1
), pp.
346
371
.10.1137/090754017
243.
Thompson
,
L. L.
, and
Pinsky
,
P. M.
,
1994
, “
Complex Wavenumber Fourier Analysis of the p-Version Finite Element Method
,”
Comput. Mech.
,
13
(
4
), pp.
255
275
.10.1007/BF00350228
244.
Li
,
F.
,
Peng
,
H.
,
Sun
,
X.
,
Wang
,
J.
, and
Meng
,
G.
,
2012
, “
Wave Propagation Analysis in Composite Laminates Containing a Delamination Using a Three-Dimensional Spectral Element Method
,”
Math. Probl. Eng.
,
2012
, pp.
1
19
.10.1155/2012/659849
245.
Peng
,
H.
,
Ye
,
L.
,
Meng
,
G.
,
Mustapha
,
S.
, and
Li
,
F.
,
2010
, “
Concise Analysis of Wave Propagation Using the Spectral Element Method and Identification of Delamination in CF/EP Composite Beams
,”
Smart Mater. Struct.
,
19
(
8
), p.
085018
.10.1088/0964-1726/19/8/085018
246.
Peng
,
H.
,
Ye
,
L.
,
Meng
,
G.
,
Sun
,
K.
, and
Li
,
F.
,
2011
, “
Characteristics of Elastic Wave Propagation in Thick Beams—When Guided Waves Prevail?
J. Theor. Appl. Mech.
,
49
(
3
), pp.
807
823
.10.1155/2012/659849
247.
Komatitsch
,
D.
, and
Tromp
,
J.
,
2002
, “
Spectral-Element Simulations of Global Seismic Wave Propagation. II—Three-Dimensional Models, Oceans, Rotation and Self-Gravitation
,”
Int. J. Geophys.
,
150
(
1
), pp.
303
318
.10.1046/j.1365-246X.2002.01716.x
248.
Komatitsch
,
D.
,
Vilotte
,
J.-P.
,
Vai
,
R.
,
Castillo-Covarrubias
,
J. M.
, and
Sanchez-Sesma
,
F. J.
,
1999
, “
The Spectral Element Method for Elastic Wave Equations—Application to 2-D and 3-D Seismic Problems
,”
Int. J. Numer. Methods Eng.
,
45
(
9
), pp.
1139
1164
.10.1002/(SICI)1097-0207(19990730)45:9<1139::AID-NME617>3.0.CO;2-T
249.
Ha
,
S.
,
2009
, “
Modeling Lamb Wave Propagation Induced by Adhesively Bonded PZTs on Thin Plates
,” Ph.D. thesis, Stanford University, Stanford, CA.
250.
Ha
,
S.
, and
Chang
,
F.-K.
,
2010
, “
Optimizing a Spectral Element for Modeling PZT-Induced Lamb Wave Propagation in Thin Plates
,”
Smart Mater. Struct.
,
19
(
1
), p.
015015
.10.1088/0964-1726/19/1/015015
251.
Jensen
,
M. S.
,
1996
, “
High Convergence Order Finite Elements With Lumped Mass Matrix
,”
Int. J. Numer. Methods Eng.
,
39
(
11
), pp.
1879
1888
.10.1002/(SICI)1097-0207(19960615)39:11<1879::AID-NME933>3.0.CO;2-2
252.
Christon
,
M. A.
,
1999
, “
The Influence of the Mass Matrix on the Dispersive Nature of the Semi-Discrete, Second-Order Wave Equation
,”
Comput. Methods Appl. Mech. Eng.
,
173
(
1–2
), pp.
147
166
.10.1016/S0045-7825(98)00266-7
253.
Ihlenburg
,
F.
, and
Babuška
,
I.
,
1995
, “
Dispersion Analysis and Error Estimation of Galerkin Finite Element Methods for the Numerical Computation of Waves
,”
Int. J. Numer. Methods Eng.
,
38
(
22
), pp.
3745
3774
.10.1002/nme.1620382203
254.
Ihlenburg
,
F.
, and
Babuška
,
I.
,
1997
, “
Reliability of Finite Element Methods for the Numerical Computation of Waves
,”
Adv. Eng. Software
,
28
(
7
), pp.
417
424
.10.1016/S0965-9978(97)00007-0
255.
Seriani
,
G.
,
1998
, “
3-D Large-Scale Wave Propagation Modeling by Spectral Element Method on Cray T3E Multiprocessor
,”
Comput. Methods Appl. Mech. Eng.
,
164
(
1
), pp.
235
247
.10.1016/S0045-7825(98)00057-7
256.
Seriani
,
G.
, and
Oliveira
,
S. P.
,
2008
, “
DFT Modal Analysis of Spectral Element Methods for Acoustic Wave Propagation
,”
J. Comput. Acoust.
,
16
(
4
), pp.
531
561
.10.1142/S0218396X08003774
257.
Banerjee
,
J. R.
,
1997
, “
Dynamic Stiffness Formulation for Structural Elements: A General Approach
,”
Comput. Struct.
,
63
(
1
), pp.
101
103
.10.1016/S0045-7949(96)00326-4
258.
Leung
,
A. Y.-T.
,
1978
, “
An Accurate Method of Dynamic Condensation in Structural Analysis
,”
Int. J. Numer. Methods Eng.
,
12
(
11
), pp.
1705
1715
.10.1002/nme.1620121108
259.
Leung
,
A. Y.-T.
,
1979
, “
An Accurate Method of Dynamic Substructuring With Simplified Computation
,”
Int. J. Numer. Methods Eng.
,
14
(
8
), pp.
1241
1256
.10.1002/nme.1620140809
260.
Leung
,
A. Y. T.
, and
Zeng
,
S. P.
,
1994
, “
Analytical Formulation of Dynamic Stiffness
,”
J. Sound Vib.
,
177
(
4
), pp.
555
564
.10.1006/jsvi.1994.1451
261.
Richards
,
T. H.
, and
Leung
,
Y. T.
,
1977
, “
An Accurate Method in Structural Vibration Analysis
,”
J. Sound Vib.
,
55
(
3
), pp.
363
376
.10.1016/S0022-460X(77)80019-9
262.
Chakraborty
,
A.
,
Gopalakrishnan
,
S.
, and
Reddy
,
J. N.
,
2003
, “
A New Finite Element for the Analysis of Functionally Graded Materials
,”
Int. J. Mech. Sci.
,
45
(
3
), pp.
519
539
.10.1016/S0020-7403(03)00058-4
263.
Chakraborty
,
A.
,
Mahapatra
,
D. R.
, and
Gopalakrishnan
,
S.
,
2002
, “
Finite Analysis of Free Vibration and Wave Propagation in Asymmetric Composite Beams With Structural Discontinuities
,”
Compos. Struct.
,
55
(
1
), pp.
23
26
.10.1016/S0263-8223(01)00130-1
264.
Gopalakrishnan
,
S.
,
2000
, “
A Deep Rod Finite Element for Structural Dynamics and Wave Propagation Problems
,”
Int. J. Numer. Methods Eng.
,
48
(
5
), pp.
731
744
.10.1002/(SICI)1097-0207(20000620)48:5<731::AID-NME901>3.0.CO;2-#
265.
Mitra
,
M.
,
Gopalakrishnan
,
S.
, and
Bhat
,
M. S.
,
2004
, “
A New Super Convergent Thin Walled Composite Beam Element for Analysis of Box Beam Structures
,”
Int. J. Solids Struct.
,
41
(
5
), pp.
1491
1518
.10.1016/j.ijsolstr.2003.10.024
266.
Gopalakrishnan
,
S.
, and
Mitra
,
M.
,
2010
,
Wavelet Methods for Dynamical Problems
,
CRC Press
,
Boca Raton, FL
.10.1201/9781439804629
267.
Bazilevs
,
Y.
,
2006
, “
Isogeometric Analysis of Turbulence and Fluid-Structure Interaction
,” Ph.D. thesis, The University of Texas at Austin, Austin, TX.
268.
Bazilevs
,
Y.
,
Beirão da Veiga
,
L.
,
Cottrell
,
J. A.
,
Hughes
,
T. J. R.
, and
Sangalli
,
G.
,
2006
, “
Isogeometric Analysis: Approximation, Stability and Error Estimates for h-Refined Meshes
,”
Math. Models Methods Appl. Sci.
,
16
(
7
), pp.
1031
1090
.10.1142/S0218202506001455
269.
Cottrell
,
J. A.
,
Reali
,
A.
,
Bazilevs
,
Y.
, and
Hughes
,
T. J. R.
,
2006
, “
Isogeometric Analysis of Structural Vibrations
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
41–43
), pp.
5257
5296
.10.1016/j.cma.2005.09.027
270.
Qian
,
X.
,
2010
, “
Full Analytical Sensitivities in NURBS Based Isogeometric Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
29–32
), pp.
2059
2071
.10.1016/j.cma.2010.03.005
271.
Becker
,
C.
,
2007
, “
Finite Elemente Methoden zur räumlichen Diskretisierung von Mehrfeldproblemen der Strukturmechanik unter Berücksichtigung diskreter Risse
,” Ph.D. thesis, Ruhr-University of Bochum, Bochum, Germany.
272.
Su
,
J.
, and
Wang
,
Y.
,
2013
, “
Equivalent Dynamic Infinite Element for Soil–Structure Interaction
,”
Finite Elem. Anal. Design
,
63
, pp.
1
7
.10.1016/j.finel.2012.08.006
273.
Düster
,
A.
,
Parvizian
,
J.
,
Yang
,
Z.
, and
Rank
,
E.
,
2008
, “
The Finite Cell Method for Three-Dimensional Problems of Solid Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
45
), pp.
3768
3782
.10.1016/j.cma.2008.02.036
274.
Parvizian
,
J.
,
Düster
,
A.
, and
Rank
,
E.
,
2007
, “
Finite Cell Method: h- and p-Extension for Embedded Domain Problems in Solid Mechanics
,”
Comput. Mech.
,
41
(
1
), pp.
121
133
.10.1007/s00466-007-0173-y
275.
Schillinger
,
D.
,
Ruess
,
M.
,
Zander
,
N.
,
Bazilevs
,
Y.
,
Düster
,
A.
, and
Rank
,
E.
,
2012
, “
Small and Large Deformation Analysis With the p- and B-Spline Version of the Finite Cell Method
,”
Comput. Mech.
,
50
(
4
), pp.
445
478
.10.1007/s00466-012-0684-z
276.
Duczek
,
S.
,
Liefold
,
S.
, and
Gabbert
,
U.
,
2014
, “
The Finite and Spectral Cell Methods for Smart Structure Applications: Transient Analysis
,”
Acta Mech.
10.1007/s00707-014-1227-9
277.
Joulaian
,
M.
,
Duczek
,
S.
,
Gabbert
,
U.
, and
Düster
,
A.
,
2014
, “
Finite and Spectral Cell Method for Wave Propagation in Heterogeneous Materials
,”
Comput. Mech.
,
54
(
3
), pp.
661
675
.10.1007/s00466-014-1019-z
278.
Zander
,
N.
,
Kollmannsberger
,
S.
,
Ruess
,
M.
,
Yosibash
,
Z.
, and
Rank
,
E.
,
2012
, “
The Finite Cell Method for Linear Thermoelasticity
,”
Comput. Math. Appl.
,
64
(
11
), pp.
3527
3541
.10.1016/j.camwa.2012.09.002
279.
Leckey
,
C. A.
,
Rogge
,
M. D.
,
Miller
,
C. A.
, and
Hinders
,
M. K.
,
2012
, “
Multiple-Mode Lamb Wave Scattering Simulations Using 3D Elastodynamic Finite Integration Technique
,”
Ultrasonics
,
52
(
2
), pp.
193
207
.10.1016/j.ultras.2011.08.003
280.
Ham
,
S.
, and
Bathe
,
K.-J.
,
2012
, “
A Finite Element Method Enriched for Wave Propagation Problems
,”
Comput. Struct.
,
94–95
, pp.
1
12
.10.1016/j.compstruc.2012.01.001
You do not currently have access to this content.