We celebrate the first quantitative evidence for the stress concentration effect of flaws analyzed by Inglis. Stress concentration factor (SCF) studies have evolved ever since Inglis' 1913 result related to the problem of the elliptical hole in a plate, which also approximately applies to the half-elliptical notch case. We summarize a hundred years of development of the SCF with the exclusive focus on analytical solutions, with a very specific route: the series of works reviewed and presented herein include a parade of solutions beginning with (and those that followed) Inglis famous result, continue with periodic discrete discontinuities, sinusoidal periodic surfaces, and end with more complex continuous configurations such as random surfaces. Furthermore, we show that the form of Inglis' result is powerful enough to serve as first-order approximation for some cases of multiple discontinuities and even continuous rough topologies. Thus, we proposed the Modified Inglis formula (MIF), to estimate the SCF for a variety of configurations, in honor to Inglis' historical result. The impetus of this review stems from the fact that for many engineering problems involving multiphysical solid–fluid interactions, there is a broad interest to couple stress concentration relationships with thermodynamics, fluid dynamics, or even diffusion equations in order to expand understanding on stress-driven interactions at the solid–fluid interface. Additionally, a handy first-order estimate of the SCF can serve in the initial stage of designs of structures and parts containing discontinuities.

References

References
1.
Neuber
,
H.
, and
Hahn
,
H.
,
1966
, “
Stress Concentration in Scientific Research and Engineering
,”
ASME Appl. Mech. Rev.
,
19
(
3
), pp.
187
199
.
2.
Kolosov
,
G. V.
,
1909
, “
On an Application of Complex Function Theory to a Plane Problem of the Mathematical Theory of Elasticity (in Russian)
,” Dissertation, Dorpat University, Yuriev, 1909.
3.
Inglis
,
C. E.
,
1913
, “
Stresses in a Plate Due to the Presence of Cracks and Sharp Corners
,”
Trans. Inst. Naval Archit.
,
55
, pp.
219
241
.
4.
Hopkinson
,
B.
,
1921
,
1910 Collected Scientific Papers
,
Cambridge University Press
,
Cambridge, UK
.
5.
Griffith
,
A.
,
1921
, “
The Phenomenon of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. London, Ser. A
,
221
(582–593), pp.
163
198
.10.1098/rsta.1921.0006
6.
de Saint-Venant
,
A.
,
1856
, “
Memoire sur la torsion des prismes, avec des considerations sur leur flexion, Imprimerie nationale (read June 13, 1853)
,” [
Mem. Divers Savants
14
, pp.
233
560
(1855)].
7.
Anderson
,
T. L.
,
1991
,
Fracture Mechanics, Fundamentals and Applications
,
CRC Press
, Boca Raton, FL.
8.
Irwin
,
G.
,
1957
, “
Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate
,”
ASME J. Appl. Mech.
,
24
, pp.
361
364
.
9.
Le Tallec
,
P.
, and
Mouro
,
J.
,
2001
, “
Fluid Structure Interaction With Large Structural Displacements
,”
Comput. Meth. Appl. Mech. Eng.
,
190
(
24–25
), pp.
3039
3067
.10.1016/S0045-7825(00)00381-9
10.
Paidoussis
,
M. P.
,
Price
,
S. J.
, and
de Langre
,
E.
,
1998
,
Fluid-Structure Interactions: Slender Structures and Axial Flow
,
Academic Press
,
London, UK
.
11.
Belytschko
,
T.
,
1980
, “
Fluid-Structure Interaction
,”
Computers and Structures
,
12
(
4
), pp.
459
469
.10.1016/0045-7949(80)90121-2
12.
De Hart
,
J.
,
Peters
,
G.
,
Schreurs
,
P.
, and
Baaijens
,
F.
,
2003
, “
A Three-Dimensional Computational Analysis of Fluid–Structure Interaction in the Aortic Valve
,”
J. Biomech.
,
36
(
1
), pp.
103
112
.10.1016/S0021-9290(02)00244-0
13.
Liang
,
J.
, and
Suo
,
Z.
,
2001
, “
Stress-Assisted Interactions at a Solid-Fluid Interface
,”
Interface Sci.
,
9
(1–2), pp.
93
104
.10.1023/A:1011283115948
14.
Srolovitz
,
D. J.
,
1989
, “
On the Stability of Surfaces of Stressed Solids
,”
Acta Metall.
,
37
(2), pp.
621
625
.10.1016/0001-6160(89)90246-0
15.
Hillig
,
W. B.
, and
Charles
,
R. J.
,
1965
,
Surface, Stress-Dependent Surface Reaction, and Strength in High Strength Materials
,
Wiley
,
New York
, pp.
682
703
.
16.
Yu
,
H.
,
2005
, “
Crack Nucleation From a Single Notch Caused by Stress-Dependent Surface Reactions
,”
Int. J. Solids Struct.
,
42
(13), pp.
3852
3866
.10.1016/j.ijsolstr.2004.11.010
17.
Peterson
,
R.
,
1974
,
Stress Concentration Factors
,
Wiley
,
New York
.
18.
Pilkey
,
W.
, and
Pilkey
,
D.
,
2008
,
Peterson's Stress Concentration Factors
,
3rd ed.
,
Wiley
,
New York
.
19.
Hardy
,
S.
, and
Malik
,
N.
,
1992
, “
A Survey of Post-Peterson Concentration Factor Data
,”
Int. J. Fatigue
,
14
(
3
), pp.
147
153
.10.1016/0142-1123(92)90367-L
20.
Noda
,
N.
, and
Takase
,
Y.
,
2002
, “
Stress Concentration Formulas Useful for All Notch Shapes in a Flat Test Specimen Under Tension and Bending
,”
J. Test. Eval.
,
30
(
5
), pp.
369
381
.10.1520/JTE12327J
21.
Noda
,
N.
, and
Takase
,
Y.
,
2006
, “
Stress Concentration Formula Useful for All Notch Shape in a Round Bar (Comparison Between Torsion, Tension and Bending)
,”
Int. J. Fatigue
,
28
(2), pp.
151
163
.10.1016/j.ijfatigue.2005.04.015
22.
Yang
,
Z.
,
Kim
,
C.
,
Cho
,
C.
, and
Beom
,
H. G.
,
2008
, “
The Concentration of Stress and Strain in Finite Thickness Elastic Plate Containing a Circular Hole
,”
Int. J. Solids Struct.
,
45
, pp.
713
731
.10.1016/j.ijsolstr.2007.08.030
23.
Green
,
A.
,
1948
, “
Three-Dimensional Stress Systems in Isotropic Plates, I
,”
Philos. Trans. R. Soc. London, Ser. A
,
240
(
825
), pp.
561
597
.10.1098/rsta.1948.0006
24.
Sternberg
,
E.
, and
Sadowsky
,
M.
,
1949
, “
Three-Dimensional Solution for the Stress Concentration Around a Circular Hole in a Plate of Arbitrary Thickness
,”
ASME J. Appl. Mech.
,
16
, pp.
27
38
.
25.
Youngdahl
,
C. K.
, and
Sternberg
,
E.
,
1966
, “
Three-Dimensional Stress Concentration Around a Cylindrical Hole in a Semi-Infinite Elastic Body
,”
ASME J. Appl. Mech.
,
33
(
4
), pp.
855
865
.10.1115/1.3625193
26.
Folias
,
E. S.
, and
Wang
,
J.
,
1990
, “
On the Three-Dimensional Stress Field Around a Circular Hole in a Plate of Arbitrary Thickness
,”
Comput. Mech.
,
6
(
5–6
), pp.
379
391
.10.1007/BF00350419
27.
Li
,
X.
,
Kasai
,
T.
,
Nakao
,
S.
,
Tanaka
,
H.
,
Ando
,
T.
,
Shikida
,
M.
, and
Sato
,
K.
,
2005
, “
Measurement for Fracture Toughness of Single Crystal Silicon Film With Tensile Test
,”
Sens. Actuators, A
,
119
(
1
), pp.
229
235
.10.1016/j.sna.2003.10.063
28.
Timoshenko
,
S.
, and
Goodier
,
J. N.
,
1970
,
Theory of Elasticity
,
3rd ed.
,
Mcgraw-Hill
,
Maidenhead
.
29.
Dundurs
,
J.
,
1967
, “
Dependence of Stress on Poisson's Ratio in Plane Elasticity
,”
Int. J. Solids Struct.
,
3
(6), pp.
1013
1021
.10.1016/0020-7683(67)90026-1
30.
Grant
,
R.
,
Lorenzo
,
M.
, and
Smart
,
J.
,
2007
, “
The Effect of Poisson's Ratio on Stress Concentrations
,”
J. Strain Anal. Eng. Des.
,
42
(2), pp.
95
104
.10.1243/03093247JSA205
31.
Young
,
W. C.
, and
Budynas
,
R. G.
,
2001
,
Roark's Formulas for Stress and Strain
,
McGraw-Hill
,
Maidenhead
.
32.
Morris
,
I.
,
O’ Donnell
,
P.
,
Delassus
,
P.
, and
McGloughlin
,
T.
,
2004
, “
Experimental Assessment of Stress Patterns in Abdominal Aortic Aneurysms Using the Photoelastic Method
,”
Strain
,
40
(4), pp.
165
172
.10.1111/j.1475-1305.2004.tb01425.x
33.
ESDU Data Sheet 89048
,
1989
, Elastic Stress Concentration Factors, Geometric Discontinuities in Rods and Tubes of Isotropic Materials, Engineering Science Data Unit, London.
34.
Atzori
,
B.
,
Lazzarin
,
P.
, and
Meneghetti
,
G.
,
2003
, “
Fracture Mechanics and Notch Sensitivity
,”
Fatigue Fract. Eng. Mater. Struct.
,
26
(
3
), pp.
257
267
.10.1046/j.1460-2695.2003.00633.x
35.
Neuber
,
H.
,
1958
,
Kerbspannunglehre
,
2nd ed.
,
Springer-Verlag
,
Berlin, Germany
.
36.
Cotrell
,
A. H.
,
1963
, “
Mechanics of Fracture
,”
Tewksbury Symposium of Fracture
,
University of Melbourne, Australia
, pp.
1
27
.
37.
Hutchinson
,
J. W.
,
1968
, “
Singular Behaviour at the End of a Tensile Crack in a Hardening Material
,”
J. Mech. Phys. Solids
,
16
(
1
), pp.
13
31
.10.1016/0022-5096(68)90014-8
38.
Ashby
,
M. F.
,
1966
, “
Work Hardening of Dispersion-Hardened Crystals
,”
Philos. Mag.
,
14
(
132
), pp.
1157
1178
.10.1080/14786436608224282
39.
Xia
,
L.
, and
Shih
,
C. F.
,
1995
, “
Ductile Crack Growth-I. A Numerical Study Using Computational Cells With Microstructurally-Based Length Scales
,”
J. Mech. Phys. Solids
,
43
(
2
), pp.
233
259
.10.1016/0022-5096(94)00064-C
40.
Sieradzki
,
K.
, and
Newman
,
R. C.
,
1985
, “
Brittle Behavior of Ductile Metals During Stress-Corrosion Cracking
,”
Philos. Mag. A
,
51
(
1
), pp.
95
132
.10.1080/01418618508245272
41.
Suo
,
Z.
, and
Gong
,
X.
,
1993
, “
Notch Ductile-to-Brittle Transition Due to Localized Inelastic Band
,”
ASME J. Eng. Mater. Technol.
,
115
(3), pp.
319
326
.10.1115/1.2904225
42.
Balankin
,
A.
,
Susarrey
,
O.
,
Mora
,
C.
,
Patiño
,
J.
,
Yoguez
,
A.
, and
Garcia
,
E.
,
2011
, “
Stress Concentration and Size Effect in Fracture of Notched Heterogeneous Material
,”
Phys. Rev. E
,
83
(01), p.
015101 (R)
.10.1103/PhysRevE.83.015101
43.
Fichter
,
W. B.
,
1970
,
Stress Concentration in Filament-Stiffened Sheets of Finite Length
, NASA TN D-5947.
44.
Franklin
,
H.
,
1970
, “
Hole Stress Concentration in Filamentary Structures
,”
Fibre Sci. Technol.
,
2
(3), pp.
241
249
.10.1016/0015-0568(70)90005-9
45.
Pindera
,
J. T.
,
1999
, “
Actual Three-Dimensional Stresses in Notches, Crack Tips and Lamination Planes
,”
Composites Part B
,
30
, pp.
189
203
.10.1016/S1359-8368(98)00023-7
46.
Zweben
,
C.
,
1974
, “
An Approximate Method of Analysis for Notched Unidirectional Composites
,”
Eng. Fract. Mech.
,
6
(
1
), pp.
1
10
.10.1016/0013-7944(74)90042-3
47.
Van Dyke
,
P.
, and
Hedgepeth
,
J. M.
,
1969
, “
Stress Concentrations From Single-Filament Failures in Composite Materials
,”
Text. Res. J.
,
39
(
7
), pp.
618
626
.
48.
Chang
,
F. K.
, and
Chang
,
K. Y.
,
1987
, “
A Progressive Damage Model for Laminated Composites Containing Stress Concentrations
,”
J. Compos. Mater.
,
21
(
9
), pp.
834
855
.10.1177/002199838702100904
49.
Fukuda
,
H.
, and
Kawata
,
K.
,
1976
, “
On the Stress Concentration Factor in Fibrous Composites
,”
Fibre Sci. Technol.
,
9
(
3
), pp.
189
203
.10.1016/0015-0568(76)90003-8
50.
Hedgepeth
,
J. M.
,
1961
,
Stress Concentrations in Filamentary Structures
, NASA TN D-882.
51.
Hedgepeth
,
J. M.
, and
Van Dyke
,
P.
,
1967
, “
Local Stress Concentrations in Imperfect Filamentary Composite Materials
,”
J. Compos. Mater.
,
1
, pp.
294
309
.
52.
Sherman
,
D.
,
1961
, “
Weighty Medium Weakened by Periodically Located Circular and Noncircular Holes
,”
Inzh. Zh.
,
1
(
1
), pp.
92
103
.
53.
Nisitani
,
H.
,
1968
, “
Method of Approximate Calculation for Interference of Notch Effects and Its Application
,”
Bull. JSME
,
11
(
47
), pp.
725
738
.10.1299/jsme1958.11.725
54.
Savin
,
G.
,
1968
,
Distribution of Stresses Around Holes
[in Russian],
Naukova Dumka
,
Kiev
.
55.
Mironenko
,
N.
,
1988
, “
Periodic and Doubly Periodic Plane Problems of the Theory of Elasticity for Domains With Curvilinear Holes
,”
Prikl. Mekh.
,
24
(
6
), pp.
91
97
.
56.
Heywood
,
R.
,
1952
,
Designing by Photoelasticity
,
1st ed.
,
Chapman and Hall
,
London
.
57.
Castagnetti
,
D.
, and
Dragoni
,
E.
,
2013
, “
Stress Concentration in Periodic Notches: A Critical Investigation of Neuber's Method
,”
Materialwiss. Werkstofftech
,
44
(
5
), pp.
364
371
.10.1002/mawe.201300138
58.
Savruk
,
M. P.
, and
Kazberuk
,
A.
,
2009
, “
Stresses in an Elastic Plane With Periodic System of Closely Located Holes
,”
Mater. Sci.
,
45
(
6
), pp.
831
844
.10.1007/s11003-010-9250-z
59.
Belotserkovskii
,
C.
, and
Lifanov
,
I.
,
1985
,
Numerical Methods in Singular Integral Equations
[in Russian],
Nauka
,
Moscow
.
60.
Gao
,
H.
,
1991
, “
A Boundary Perturbation Analysis for Elastic Inclusions and Interfaces
,”
Int. J. Solids Struct.
,
28
(
6
), pp.
703
725
.10.1016/0020-7683(91)90151-5
61.
Gao
,
H.
,
1991
, “
Stress Concentration at Slightly Undulating Surfaces
,”
J. Mech. Phys. Solids
,
39
(
4
), pp.
443
458
.10.1016/0022-5096(91)90035-M
62.
Green
,
A. E.
, and
Zerna
,
W.
,
1968
,
Theoretical Elasticity
,
2nd ed.
,
Oxford University
,
London
.
63.
Medina
,
H.
, and
Hinderliter
,
B.
,
2013
, “
Method for Generating and Realising Replicates of Randomly Roughened Surfaces, Tested on Poly Methyl Methacrylate
,”
Experimental Techniques
, (published online).10.1111/ext.12033
64.
Hinderliter
,
B.
, and
Croll
,
S.
,
2008
, “
Predicting Coating Failure Using the Central Limit Theorem and Physical Modeling
,”
J. Mater. Sci.
, pp.
6630
6641
.10.1149/1.3453603
65.
Medina
,
H.
, and
Hinderliter
,
B.
, “
Stress Concentration at Slightly Roughened Random Surfaces: Analytical Solution
,”
Int. J. Solids Struct.
51
(
10
), pp.
2012
2018
.10.1016/j.ijsolstr.2014.02.011
66.
Hahn
,
S. L.
,
1996
,
Hilbert Transforms, in the Transforms and Applications Handbook
,
A.
Poularakis
, ed.,
CRC Press
,
Boca Raton, FL
, Chap. 7.
67.
Titchmarsh
,
E. C.
, “
Conjugate Trigonometric Integrals
,”
1924
,
Proc. London Math. Soc.
,
24
, pp.
109
130
.
68.
Medina
,
H.
, and
Hinderliter
,
B.
,
2012
, “
Use of Poly (Methyl Methacrylate) in the Study of Randomly Damaged Surfaces: I. Experimental Approach
,”
Polymer
,
53
, pp.
4525
4532
.10.1016/j.polymer.2012.08.012
69.
Medina
,
H.
, and
Hinderliter
,
B.
,
2013
, “
Stress, Strain, and Energy at Fracture of Degraded Surfaces: Study of Replicates of Rough Surfaces
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
032502
.10.1115/1.4025660
70.
Medina
,
H.
, and
Hinderliter
,
B.
,
2013
, “
Where Do Random Rough Surfaces Fail? Part I: Fracture Loci Safety Envelopes at Early Stages of Degradation
,”
J. Energy Power Eng.
,
7
, pp.
907
916
. Available at: http://davidpublishing.org/show.html?12885
71.
Chen
,
X.
, and
Gibson
,
J. M.
,
1998
, “
Experimental Evidence of a Gaussian Roughness at Si(111)/SiO2 Interfaces
,”
Phys. Rev. Lett.
,
81
(
22
), pp.
4919
4922
.10.1103/PhysRevLett.81.4919
72.
Bennet
,
H. E.
, and
Porteus
,
J. O.
,
1961
, “
Relation Between Surface Roughness and Specular Reflectance at Normal Incidence
,”
J. Opt. Soc. Am. A
,
51
(
2
), pp.
123
129
.10.1364/JOSA.51.000123
73.
Majumdar
,
A.
, and
Tien
,
C. L.
,
1990
, “
Fractal Characterization and Simulation of Rough Surfaces
,”
Wear
,
136
(
2
), pp.
313
327
.10.1016/0043-1648(90)90154-3
74.
Voss
,
R. F.
, 1988,
Fractals in Nature: From Characterization to Simulation
, H.-O. Peitgen, and D. Saupe, eds,
Springer
,
New York
, pp.
21
70
.
75.
Adler
,
R. J.
, and
Firman
,
D.
,
1981
, “
A Non-Gaussian Model for Random Surfaces
,”
Philos. Trans. R. Soc. London, Ser. A
,
303
(
1479
), pp.
433
462
.10.1098/rsta.1981.0214
76.
Cerit
,
M.
,
Genel
,
K.
, and
Eksi
,
S.
,
2009
, “
Numerical Investigation on Stress Concentration of Corrosion Pit
,”
Eng. Fail. Anal.
,
16
(
7
), pp.
2467
2472
.10.1016/j.engfailanal.2009.04.004
77.
Sun
,
K.
,
Samuel
,
G.
, and
Guo
,
B.
,
2005
, “
Effect of Stress Concentration Factors Due to Corrosion on Production String Design
,”
Old Prod. Facil.
,
20
(
4
), pp.
334
339
.10.2118/90094-PA
78.
Roberge, Pierre
,
R.
,
2008
,
Corrosion Engineering Principles and Practice
,
McGraw-Hill
,
New York
.
79.
Sasaki
,
K.
, and
Burstein
,
G. T.
,
1996
, “
The Generation of Surface Roughness During Slurry Erosion-Corrosion and Its Effect on the Pitting Potential
,”
Corros. Sci.
,
38
(
12
), pp.
2111
2120
.10.1016/S0010-938X(96)00066-2
80.
Pidaparti
,
R. M.
,
Koombua
,
K.
, and
Appajoysula
,
S. R.
,
2009
, “
Corrosion Pit Induced Stresses Prediction From SEM and Finite Element Analysis
,”
Int. J. Comput. Methods Eng. Sci. Mech.
10
(
2
), pp.
117
123
.10.1080/15502280802654920
81.
Turnbull
,
A.
,
Wright
,
L.
, and
Crocker
,
L.
,
2010
, “
New insight into the pit-to-crack transition from finite element analysis of the stress and strain distribution around a corrosion pit
,”
Corrosion Science
,
52
(
4
), pp.
1492
1498
.10.1016/j.corsci.2009.12.004
82.
Aoki
,
S.
, and
Kishimoto
,
K.
,
1990
, “
Application of BEM to Galvanic Corrosion and Cathodic Protection
,” Topics in Boundary Element Research,
Electrical Engineering Applications
, Vol.
7
, pp.
65
86
.10.1007/978-3-642-48837-5_4
83.
Brebbia
,
C. A.
,
Telles
,
J. C. F.
, and
Wrobel
,
L. C.
,
2012
,
Boundary Element Techniques: Theory and Applications in Engineering
,
Springer
,
London
.
84.
Ernst
,
P.
, and
Newman
,
R. C.
,
2001
, “
Pit Growth Studies in Stainless Steel Foils. I. Introduction and Pit Growth Kinetics
,”
Corros. Sci.
,
44
(5), pp.
927
941
.10.1016/S0010-938X(01)00133-0
85.
Benjamin
,
A. C.
,
Cunha
,
D. J. S.
,
Silva
,
R. C. C.
,
Guerreiro
,
J. N. C.
,
Campello
,
G. C.
, and
Roveri
,
F. E.
,
2007
, “
Stress Concentration Factors for a Drilling Riser Containing Corrosion Pits
,”
ASME
Paper No. OMAE2007-29281.10.1115/OMAE2007-29281
86.
Huang
,
X.-G.
, and
Xu
,
J.-Q.
,
2013
, “
3D Analysis for Pit Evolution and Pit-to-Crack Transition During Corrosion Fatigue
,”
J. Zhejiang Univ. Sci. A
,
14
(
4
), pp.
292
299
.10.1631/jzus.A1200273
87.
Xiao-Guang
,
H.
, and
Jin-Quan
,
X.
,
2012
, “
Pit Morphology Characterization and Corrosion Fatigue Crack Nucleation Analysis Based on Energy Principle
,”
Fatigue Fract. Eng. Mater. Struct.
,
35
(
7
), pp.
606
613
.10.1111/j.1460-2695.2011.01654.x
88.
Acuna
,
N.
,
Gonzalez-Sanchez
,
J.
,
Ku-Basulto
,
G.
, and
Dominguez
,
L.
,
2006
, “
Analysis of the Stress Intensity Factor Around Corrosion Pits Developed on Structures Subjected to Mixed Loading
,”
Scr. Mater.
,
55
(
4
), pp.
363
366
.10.1016/j.scriptamat.2006.04.024
89.
Sharma
,
M. M.
, and
Ziemian
,
C. W.
,
2008
, “
Pitting and Stress Corrosion Cracking Susceptibility of Nanostructured Al-Mg Alloys in Natural and Artificial Environments
,”
J. Mater. Eng. Perform.
,
17
(
6
), pp.
870
878
.10.1007/s11665-008-9215-7
90.
Turnbull
,
A.
,
Wright
,
L.
, and
Crocker
,
L.
,
2010
, “
New Insight Into the Pit-to-Crack Transition From Finite Element Analysis of the Stress and Strain Distribution Around a Corrosion Pit
,”
Corros. Sci.
,
52
, pp.
1492
1498
.10.1016/j.corsci.2009.12.004
91.
Turnbull
,
A.
,
Horner
,
D. A.
, and
Connolly
,
B. J.
,
2009
, “
Challenges in Modelling the Evolution of Stress Corrosion Cracks From Pits
,”
Eng. Fract. Mech.
,
76
(
5
), pp.
633
640
.10.1016/j.engfracmech.2008.09.004
92.
Horner
,
D. A.
,
Connolly
,
B. J.
,
Zhou
,
S.
,
Crocker
,
L.
, and
Turnbull
,
A.
,
2011
, “
Novel Images of the Evolution of Stress Corrosion Cracks From Corrosion Pits
,”
Corros. Sci.
,
53
(
11
), pp.
3466
3485
.10.1016/j.corsci.2011.05.050
93.
Pidaparti
,
R. M.
, and
Patel
,
R. K.
,
2010
, “
Investigation of a Single Pit/Defect Evolution During the Corrosion Process
,”
Corros. Sci.
,
52
(
9
), pp.
3150
3153
.10.1016/j.corsci.2010.05.029
94.
Pidaparti
,
R. M.
, and
Appajoysula
,
S. R.
,
2008
, “
Analysis of Pits Induced Stresses Due to Metal Corrosion
,”
Corros. Sci.
,
50
(
7
), pp.
1932
1938
.10.1016/j.corsci.2008.05.003
95.
Pidaparti
,
R.
, and
Patel
,
R.
,
2008
, “
Correlation Between Corrosion Pits and Stresses in Al Alloys
,”
J. Mater. Lett.
,
62
(
30
), pp.
4497
4499
.10.1016/j.matlet.2008.08.013
96.
Pidaparti
,
R.
, and
Patel
,
R.
,
2011
, “
Modeling the Evolution of Stresses Induced by Corrosion Damage in Metals
,”
J. Mater. Eng. Perform.
,
20
(
7
), pp.
1114
1120
.10.1007/s11665-010-9753-7
97.
Pidaparti
,
R. M.
, and
Johnson
,
A. C.
,
2013
, “
Evaluation of Stress Environment Around Pits in Nickel Aluminum Bronze Metal Under Corrosion and Cyclic Stresses
,”
Struct. Durability Health Monit.
,
9
(
1
), pp.
87
98
.10.3970/sdhm.2013.009.087
98.
Rhinoceros 4.0
,
2012
, Rhino 4.0 Tutorial, McNeel North America WA.
99.
SolidWorks 2012
,
2012
, SolidWorks Tutorial, SolidWorks Corporation, Concord, MA.
100.
ansys 14.0
,
2012
, ansys Tutorial, ANSYS, Inc., Canonsburg, P.
You do not currently have access to this content.