A major challenge for the aircraft industry in the future will be the development of effective strategies for maintaining and extending the service life of aging aircraft fleet. In this context, residual-stress-based approaches for extending the fatigue life of aircraft components are believed to have great potential for providing cost-effective solutions. This paper reviews residual-stress-based life extension techniques and published work on the use of these techniques in aerospace applications. The techniques reviewed include cold expansion, shot peening, laser shock peening, deep rolling, and heating. Comparisons of the various techniques with regard to current applications and limitations are given.

References

References
1.
McClug
,
R.
,
2007
, “
A Literature Survey on the Stability and Significance of Residual Stresses During Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
,
30
(3), pp.
173
205
.10.1111/j.1460-2695.2007.01102.x
2.
Ball
,
D. L.
, and
Lowry
,
D. R.
,
1998
, “
Experimental Investigation on the Effects of Cold Expansion of Fastener Holes
,”
Fatigue Fract. Eng. Mater. Struct.
,
21
(
1
), pp.
17
34
.10.1046/j.1460-2695.1998.00430.x
3.
Reid
,
L.
,
2003
, “
Sustaining an Aging Aircraft Fleet With Practical Life Enhancement Methods
,”
Proceedings at the RTO Applied Vehicle Technology Panel Specialists' Meeting
,
St. Joseph Print Group Inc.
, eds.,
Ottawa, ON, Canada
, October 8–11, Vol.
32
, pp.
1
10
.
4.
Department of Defence, USA,
2006
, “
Joint Service Specification Guide for Aircraft Structures
”, downloaded August 23, 2013, from http://www.everyspec.com
5.
Air Force Laboratory,
1958,
Handbook for Damage Tolerant Design
,” downloaded August 23, 2013, from http://www.afgrow.net
6.
Schulze
,
V.
,
2006
,
Modern Mechanical Surface Treatment: States Stability Effects
,
Wiley-VCH
,
Weinheim
.
7.
Liu
,
Q.
,
Baburamani
,
P.
, and
Loader
,
C.
,
2008
, “
Effect of High Temperature Exposure on the Mechanical Properties of Cold Expanded Open Holes in 7050-T7451 Aluminium Alloy
,” Air Vehicles Division, DSTO Defence Science and Technology Organisation, Report No. DSTO-TN-0844.
8.
Pavier
,
M. J.
,
Poussard
,
C. G. C.
, and
Smith
,
D. J.
,
1999
, “
Effect of Residual Stress Around Cold Worked Holes on Fracture Under Superimposed Mechanical Load
,”
Eng. Fract. Mech.
,
63
(6), pp.
751
773
.10.1016/S0013-7944(99)00050-8
9.
Yongshou
,
L.
,
Xiaojun
,
S.
,
Jun
,
L.
, and
Zhufeng
,
Y.
,
2010
, “
Finite Element Method and Experimental Investigation on the Residual Stress Fields and Fatigue Performance of Cold Expansion Hole
,”
Mater. Des.
,
31
(3), pp.
1208
1215
.10.1016/j.matdes.2009.09.031
10.
Zhang
,
X.
, and
Wang
,
Z.
,
2003
, “
Fatigue Life Improvement in Fatigue-Aged Fastener Holes Using the Cold Expansion Technique
,”
Int. J. Fatigue
,
25
(9–11), pp.
1249
1257
.10.1016/S0142-1123(03)00152-X
11.
Yan
,
W. Z.
,
Wang
,
X. S.
,
Gao
,
H. S.
, and
Yue
,
Z. F.
,
2012
, “
Effect of Split Sleeve Cold Expansion on Cracking Behaviours of Titanium Alloy TC4 Holes
,”
Eng. Fract. Mech.
,
88
, pp.
79
89
.10.1016/j.engfracmech.2012.04.008
12.
Metal Improvement Company,
2005
, “
Shot Peening Applications, Paramus
,” downloaded August 23, 2013, from http://www.metalimprovement.co.uk/documents/english_lit/MIC_Green_Book_9th_Edition.pdf
13.
Barter
,
S.
,
Molent
,
L.
,
Sharp
,
K.
, and
Clark
,
G.
,
2000
, “
Repair and Life Assessment of Critical Fatigue Damaged Aluminium Alloy Structure Using a Peening Rework Method
,”
Proceedings of USAF ASIP Conference
, San Antonio, TX, December 5–7.
14.
Hatamleh
,
O.
,
Lyons
,
J.
, and
Forman
,
R.
,
2007
, “
Laser and Shot Peening Effects on Fatigue Crack Growth in Friction Stir Welded 7075-T7351 Aluminium Alloy Joints
,”
Int. J. Fatigue
,
29
(3), pp.
421
434
.10.1016/j.ijfatigue.2006.05.007
15.
Aghaie-Khafri
,
M.
,
Amin
,
M.
, and
Momeni
,
A. H.
,
2012
, “
Life Assessment and Life Extension of an Aircraft Wheel
,”
Adv. Mech. Eng.
,
2012
, p.
326971
.10.1155/2012/326971
16.
Frijia
,
M.
,
Hassine
,
T.
,
Fathallah
,
R.
,
Bouraoui
,
C.
, and
Dogui
,
A.
,
2006
, “
Finite Element Modelling of Shot Peening Process: Prediction of the Compressive Residual Stresses, the Plastic Deformations and the Surface Integrity
,”
Mater. Sci. Eng., A
,
426
(1–2), pp.
173
180
.10.1016/j.msea.2006.03.097
17.
Song
,
X.
,
Liu
,
W. C.
,
Belnoue
,
J. P.
,
Dong
,
J.
,
Wu
,
G. H.
,
Ding
,
W. J.
,
Kimber
,
S. A. J.
,
Buslaps
,
T.
,
Lunt
,
A. J. G.
, and
Korsunsky
,
A. M.
,
2012
, “
An Eigenstrain-Based Finite Element Model and the Evolution of Shot Peening Residual Stresses During Fatigue of GW103 Magnesium Alloy
,”
Int. J. Fatigue
,
42
, pp.
284
295
.10.1016/j.ijfatigue.2012.01.019
18.
H-Gangaraj
,
S. M.
,
Alvandi-Tabrizi
,
Y.
,
Farrahi
,
G. H.
,
Majzoobi
,
G. H.
, and
Ghadbeigi
,
H.
,
2011
, “
Finite Element Analysis of Shot-Peening Effect on Fretting Fatigue Parameters
,”
Tribol. Int.
,
44
(11), pp.
1583
1588
.10.1016/j.triboint.2010.11.023
19.
Kim
,
T.
,
Lee
,
H.
,
Kim
,
M.
, and
Jung
,
S.
,
2012
, “
A 3D FE Model for Evaluation of Peening Residual Stress Under Angled Multi-Shot Impacts
,”
Surf. Coat. Technol.
,
206
(19–20), pp.
3981
3988
.10.1016/j.surfcoat.2012.03.078
20.
Schulze
,
V.
,
Zimmermann
,
M.
, and
Klemenz
,
M.
,
2008
, “
State of the Art in Shot Peening Simulation
,”
Proceedings of 10th International Conference on Shot Peening, Tokyo, Japan, September 15–18
.
21.
Al-Obaid
,
Y. F.
,
1990
, “
A Rudimentary Analysis of Improving Fatigue Life of Metals by Shot-Peening
,”
ASME J. Appl. Mech.
,
57
(
2
), pp.
307
312
.10.1115/1.2891990
22.
Ding
,
K.
, and
Ye
,
L.
,
2006
,
Laser Shock Peening: Performance and Process Simulation
,
Woodhead Publishing Limited
,
Cambridge
.
23.
Sathyajith
,
S.
, and
Kalainathan
,
S.
,
2012
, “
Effect of Laser Shot Peening on Precipitation Hardened Aluminium Alloy 6061-T6 using Low Energy Laser
,”
Opt. Lasers Eng.
,
50
(3), pp.
345
348
.10.1016/j.optlaseng.2011.11.002
24.
LSP Technology, “
What is Laser Peening
,” August 21,
2013
, http://www.lsptechnologies.com/
25.
Liu
,
Q.
,
2008
, “
An Effective Life Extension Technology for 7xxx Series Aluminium Alloys by Laser Shock Peening
,” Technical Report, Air Vehicles Division, Australia, Report No. DSTO-TR-2177.
26.
Lykins
,
C.
,
Prevéy
,
P.
, and
Mason
,
P.
,
1995
, “
Laser Shock Peened Compressive Residual Profile After Exposure to Temperature
,” Wright-Patterson AFB, Aero Propulsion and Power Directorate, Technical Report No. WL-TR-95-2108.
27.
Prevey
,
P.
,
Hombach
,
D.
, and
Mason
,
P.
,
1998
, “
Thermal Residual Stress Relaxation and Distortion in Surface Enhanced Gas Turbine Engine Components
,” Lambda Research, Cincinnati, OH, Technical Report No. ADA447008.
28.
McElhone
,
M.
, and
Rugg
,
D.
,
2005
, “
Experimental Evaluation of the Fatigue Performance of Aero-Engine Fan Blade Dovetails
,” AeroMat, downloaded August 23, 2013, from
http://www.metalimprovement.com/premium/PDF/mce_aeromat_2005_V2.pdf.
29.
Clauer
,
A.
,
2001
, “
Laser Shock Peening as a Surface Enhancement Process
,”
Key Eng. Mater.
,
197
, pp.
121
144
.10.4028/www.scientific.net/KEM.197.121
30.
Rubio-Gonzales
,
C.
,
Felix-Martinez
,
C.
,
Gomez-Rosas
,
G.
,
Ocana
,
J. L.
,
Morales
,
M.
, and
Porro
,
J. A.
,
2011
, “
Effect of Laser Shock Processing on Fatigue Crack Growth of Duplex Stainless Steel
,”
Mater. Sci. Eng., A
,
528
(3), pp.
914
919
.10.1016/j.msea.2010.10.020
31.
Spanrad
,
S.
, and
Tong
,
J.
,
2011
, “
Characterisation of Foreign Object Damage (FOD) and Early Fatigue Crack Growth in Laser Shock Peened Ti-6Al-4V Aerofoil Specimens
,”
Mater. Sci. Eng., A
,
528
(4–5), pp.
2128
2136
.10.1016/j.msea.2010.11.045
32.
Metal Improvement Company, “Laser Peening,” August 21,
2013
, http://www.metalimprovement.com/laserpeening.php
33.
Spradlin
,
T. J.
,
2011
, “
Process Sequencing for Fatigue Life Extension of Large Scale Laser Peened Components
,” Ph.D. thesis, Wright State University, Dublin, OH.
34.
Tran
,
K. N.
,
Hill
,
M. R.
, and
Hackel
,
L. A.
,
2006
, “
Laser Shock Peening Improves Fatigue Life of Lightweight Alloys
,”
Welding J.
, pp.
28
31
.
35.
Ivetic
,
G.
,
Meneghin
,
I.
,
Troiani
,
E.
,
Molinari
,
G.
,
Ocaña
,
M. J. L.
,
Morales
,
F. M.
,
Porro
,
G. J. A.
,
Lanciotti
,
A.
,
Ristori
,
V.
,
Polese
,
C.
,
Plaisier
,
J.
, and
Lausi
,
A.
,
2012
, “
Fatigue in Laser Shock Peened Open-Hole Thin Aluminium Specimens
,”
Mater. Sci. Eng., A
,
534
, pp.
573
579
.10.1016/j.msea.2011.12.010
36.
Sano
,
Y.
,
Masaki
,
K.
,
Gushi
,
T.
, and
Sano
,
T.
,
2012
, “
Improvement in Fatigue Performance of Friction Stir Welded A6061-T6 Aluminium Alloy by Laser Peening Without Coating
,”
Mater. Des.
,
36
, pp.
809
814
.10.1016/j.matdes.2011.10.053
37.
Sano
,
Y.
,
Adachi
,
T.
,
Akita
,
K.
,
Altenberger
,
I.
,
Cherif
,
M. A.
,
Scholtes
,
B.
,
Masaki
,
K.
,
Ochi
,
Y.
, and
Inoue
,
T.
,
2007
, “
Enhancement of Surface Property by Low-Energy Laser Peening Without Protective Coating
,”
Key Eng. Mater.
,
345–346
, pp.
1589
1592
.10.4028/www.scientific.net/KEM.345-346.1589
38.
Hombergsmeier
,
E.
,
Furfari
,
D.
,
Ohrloff
,
N.
,
Heckenberger
,
U. C.
, and
Holzinger
,
V.
,
2013
, “
Enhanced Fatigue and Damage Tolerance of Aircraft Components by Introduction of Residual Stresses–A Comparison of Different Process
,”
Proceedings of 27th ICAF Symposium
,
A.
Brot
, eds.,
Paragon Israel
,
Jerusalem
, June 5–7, Vol.
2
, pp.
597
611
.
39.
Toparli
,
M. B.
, and
Fitzpatrick
,
M. E.
,
2011
, “
Residual Stresses Induced by Laser Peening of Thin Aluminium Plates
,”
Mater. Sci. Forum
,
681
, pp.
504
509
.10.4028/www.scientific.net/MSF.681.504
40.
Zhou
,
J. Z.
,
Huang
,
S.
,
Sheng
,
J.
,
Lu
,
J. Z.
,
Wang
,
C. D.
,
Chen
,
K. M.
,
Ruan
,
H. Y.
, and
Chen
,
H. S.
,
2012
, “
Effect of Repeated Impacts on Mechanical Properties and Fatigue Fracture Morphologies of 6061-T6 Aluminum Subject to Laser Peening
,”
Mater. Sci. Eng., A
,
539
, pp.
360
368
.10.1016/j.msea.2012.01.125
41.
Huang
,
S.
,
Zhou
,
J. Z.
,
Sheng
,
J.
,
Lu
,
J. Z.
,
Sun
,
G. F.
,
Meng
,
X. K.
,
Zuo
,
L. D.
,
Ruan
,
H. Y.
, and
Chen
,
H. S.
,
2013
, “
Effects of Laser Energy on Fatigue Crack Growth Properties of 6061-T6 Aluminum Alloy Subjected to Multiple Laser Peening
,”
Eng. Fract. Mech.
,
99
, pp.
87
100
.10.1016/j.engfracmech.2013.01.011
42.
Huang
,
S.
,
Zhou
,
J. Z.
,
Sheng
,
J.
,
Luo
,
K. Y.
,
Lu
,
J. Z.
,
Xu
,
Z. C.
,
Meng
,
X. K.
,
Dai
,
L.
,
Zuo
,
L. D.
,
Ruan
,
H. Y.
, and
Chen
,
H. S.
,
2013
, “
Effects of Laser Peening With Different Coverage Areas on Fatigue Crack Growth Properties of 6061-T6 Aluminum Alloy
,”
Int. J. Fatigue
,
47
, pp.
292
299
.10.1016/j.ijfatigue.2012.09.010
43.
Ye
,
C.
,
Liao
,
Y.
, and
Cheng
,
G. J.
,
2012
, “
Warm Laser Shock Peening Driven Nanostructures and Their Effects on Fatigue Performance in Aluminium Alloy 6160
,”
Adv. Eng. Mater.
,
12
(
4
), pp.
291
297
.10.1002/adem.200900290
44.
Xu-dong
,
R.
,
Yong-kang
,
Z.
,
Jian-zhong
,
Z.
, and
Ai-xin
,
F.
,
2006
, “
Effect of Laser Shock Processing on Residual Stress and Fatigue Behavior of 6061-T651 Aluminum Alloy
,”
Trans. Nonferrous Met. Soc. China
,
16
, pp.
s1305
s1308
.10.1016/j.surfcoat.2013.01.035
45.
Tan
,
Y.
,
Wu
,
G.
,
Yang
,
J.-M.
, and
Pan
,
T.
,
2004
, “
Laser Shock Peening on Fatigue Crack Growth Behaviour of Aluminium Alloy
,”
Fatigue Fract. Eng. Mater. Struct.
,
27
, pp.
649
656
.10.1111/j.1460-2695.2004.00763.x
46.
Cellard
,
C.
,
Retraint
,
D.
,
Franois
,
M.
,
Rouhaud
,
E.
, and
Le Saunier
,
D.
,
2012
, “
Laser Shock Peening of Ti-17 Titanium Alloy: Influence of Process Parameters
,”
Mater. Sci. Eng., A
,
532
, pp.
362
372
.10.1016/j.msea.2011.10.104
47.
Jiang
,
S. Q.
,
Zhou
,
J. Z.
,
Fan
,
Y. J.
,
Huang
,
S.
, and
Zhao
,
J. F.
,
2009
, “
Prediction on Residual Stress and Fatigue Life of Magnesium Alloy Treated by Laser Shot Peening
,”
Mater. Sci. Forum
,
626–627
, pp.
393
398
.10.4028/www.scientific.net/MSF.626-627.393
48.
Zabeen
,
S.
,
Preuss
,
M.
, and
Withers
,
P. J.
,
2013
, “
Residual Stresses Caused by Head-On and 45° Foreign Object Damage for a Laser Shock Peened Ti-6Al-4V Alloy Aerofoil
,”
Mater. Sci. Eng., A
,
560
, pp.
518
527
.10.1016/j.msea.2012.09.097
49.
Hatamleh
,
O.
,
2009
, “
A Comprehensive Investigation on the Effects of Laser and Shot Peening on Fatigue Crack Growth in Friction Stir Welded AA2195 Joint
,”
Int. J. Fatigue
,
31
(
5
), pp.
974
988
.10.1016/j.ijfatigue.2008.03.029
50.
Hatamleh
,
O.
,
Mishra
,
R. S.
, and
Oliveras
,
O.
,
2009
,
Peening Effects on Mechanical Properties in Friction Stir Welded AA 2195 at Elevated and Cryogenic Temperatures
,”
Mater. Des.
,
30
, pp.
3165
3173
.10.1016/j.matdes.2008.11.010
51.
LAMBDA Technology Group, “Low Plasticity Burnishing,” August 23,
2013
, http://www.lambdatechs.com/low-plasticity-burnishing-LPB.html
52.
Tolga Bozdana
,
A.
,
2005
, “
On the Mechanical Surface Enhancement Techniques in Aerospace Industry–A Review of Technology
,”
Int. J. Aircr. Eng. Aerosp. Technol.
,
77
(
4
), pp.
279
292
.10.1108/00022660510606349
53.
Jayaraman
,
N.
,
Hornbach
,
D. J.
, and
Prevéy
,
P. S.
,
2007
, “
Mitigation of Fatigue and Pre-Cracking Damage in Aircraft Structures Through Low Plasticity Burnishing (LPB)
,”
Proceedings of ASIP
, Palm Springs, CA, December 4–6.
54.
Baecker
,
V.
,
Klocke
,
F.
,
Wegner
,
H.
,
Timmer
,
A.
,
Grzhibovskis
,
R.
, and
Rjasanow
,
S.
,
2010
, “
Analysis of the Deep Rolling Process on Turbine Blades Using the FEM/BEM-Coupling
,”
IOP Conf. Series: Mater. Sci. Eng.
,
10
, p.
012134
.10.1088/1757-899X/10/1/012134
55.
Gill
,
C. M.
,
Fox
,
N.
, and
Withers
,
P. J.
,
2008
, “
Shakedown of Deep Cold Rolling Residual Stresses in Titanium Alloys
,”
J. Phys. D: Appl. Phys.
,
41
(17), p.
174005
.10.1088/0022-3727/41/17/174005
56.
Majzoobi
,
G. H.
,
Azadikhah
,
K.
, and
Nemati
,
J.
,
2009
, “
The Effects of Deep Rolling and Shot Peening on Fretting Fatigue Resistance of Aluminum-7075-T6
,”
Mater. Sci. Eng., A
,
516
(1–2), pp.
235
247
.10.1016/j.msea.2009.03.020
57.
Schnubel
,
D.
,
Horstmann
,
M.
,
Ventzke
,
V.
,
Riekehr
,
S.
,
Staron
,
P.
,
Fischer
,
T.
, and
Huber
,
N.
,
2012
, “
Retardation of Fatigue Crack Growth in Aircraft Aluminium Alloys via Laser Heating-Experimental Proof of Concept
,”
Mater. Sci. Eng., A
,
546
, pp.
8
14
.10.1016/j.msea.2012.02.094
58.
Schnubel
,
D.
, and
Huber
,
N.
,
2012
, “
Retardation of Fatigue Crack Growth in Aircraft Aluminium Alloys via Laser Heating-Numerical Prediction of Fatigue Crack Growth
,”
Comput. Mater. Sci.
,
65
, pp.
461
469
.10.1016/j.commatsci.2012.07.047
59.
Schnubel
,
D.
,
Horstmann
,
M.
,
Staron
,
P.
,
Fischer
,
T.
, and
Huber
,
N.
,
2012
, “
Laser Heating as Approach to Retard Fatigue Crack Growth in Aircraft Aluminium Structures
,”
Proceedings of 1st International Conference of the International Journal of Structural Integrity
, Porto (P), June 25–28, pp.
52
59
.
60.
Soundarapandian
,
S.
, and
Narendra
,
B. D.
,
2013
, “
Laser Surface Hardening
,”
ASM Handbook, Vol. 4A: Steel Heat Treating Fundamentals and Process
,
J.
Donssett
and
G. E.
Totten
, eds.
ASM International
,
Materials Park, OH
.
61.
Schnubel
,
D.
,
Horstmann
,
M.
, and
Huber
,
N.
,
2013
, “
Retardation of Fatigue Crack Growth in Aircraft Aluminium Alloys via Laser Heating
,”
Int. J. Struct. Integrity
,
4
(
4
), pp.
429
445
.10.1108/IJSI-08-2012-0020
62.
Gurney
,
T. R.
,
1960
, “
Influence of Residual Stresses on Fatigue Strength of Plates With Fillet Welded Attachments
,”
Br. Weld. J.
,
7
, pp.
415
431
.
63.
Harrison
,
J. D.
,
1965
, “
Exploratory Fatigue Tests on Local Heating as Repair Technique
,”
Br. Weld. J.
,
12
, pp.
258
260
.
64.
Verma
,
B. B.
, and
Ray
,
P. K.
,
2002
, “
Fatigue Crack Growth Retardation in Spot Heated Mild Steel Sheet
,”
Bull. Mater. Sci.
,
25
(
4
), pp.
301
307
.10.1007/BF02704122
65.
Ray
,
P. K.
,
Verma
,
B. B.
, and
Mohanthy
,
P. K.
,
2002
, “
Spot Heating Induced Fatigue Crack Growth Retardation
,”
Int. J. Press. Vessels Pip.
,
79
(5), pp.
373
376
.10.1016/S0308-0161(02)00019-4
66.
Ray
,
P. K.
, and
Verma
,
B. B.
,
2005
, “
A Study on Spot Heating Induced Fatigue Crack Growth Retardation
,”
Fatigue Fract. Eng. Mater. Struct.
,
28
(7), pp.
579
585
.10.1111/j.1460-2695.2005.00901.x
67.
Lam
,
Y. C.
, and
Griffiths
,
J. R.
,
1990
, “
The Effect of Intermittent Heating on Fatigue Crack Growth
,”
Theor. Appl. Fract. Mech.
,
14
(1), pp.
37
41
.10.1016/0167-8442(90)90042-X
68.
Cole
,
G. K.
, and
Lam
,
Y. C.
,
1991
, “
Fatigue Life Enhancement of Specimens With Stress Concentrators Using a Thermo-Mechanical Technique
,”
Scr. Metall. Mater.
,
25
(12), pp.
2849
2853
.10.1016/0956-716X(91)90168-Z
69.
Lam
,
Y. C.
, and
Cole
,
G. K.
,
1993
, “
Fatigue Life Enhancement of Butt Welds Using a Thermo-Mechanical Technique
,”
Fatigue Fract. Eng. Mater. Struct.
,
16
(
9
), pp.
983
994
.10.1111/j.1460-2695.1993.tb00133.x
70.
Chen
,
B. D.
,
Griffiths
,
J. R.
, and
Lam
,
Y. C.
,
1993
, “
The Effects of Simultaneous Overload and Spot Heating on Crack Growth Retardation in Fatigue
,”
Eng. Fract. Mech.
,
44
(
4
), pp.
567
572
.10.1016/0013-7944(93)90098-D
71.
Ibrahim
,
R. N.
,
Sayers
,
R. S. D.
, and
Ischenko
,
D.
,
1998
, “
Retardation of Crack Growth Next Term in an Aluminium Alloy Using a Thermo-Mechanical Conditioning Cycle
,”
Eng. Fract. Mech.
,
59
(
2
), pp.
215
224
.10.1016/S0013-7944(97)00081-7
72.
Singh Raman
,
R. K.
,
Ibrahim
,
R. N.
,
Wu
,
F.
, and
Rihan
,
R.
,
2008
, “
Thermo-Mechanical Manipulation of Crack-Tip Stress Field for Resistance to Stress Corrosion Crack Propagation
,”
Metall. Mater. Trans. A
,
39
(13), pp.
3217
3223
.10.1007/s11661-008-9665-4
73.
Tsay
,
L. W.
,
Liu
,
Y. C.
,
Lin
,
D. Y.
, and
Young
,
M. C.
,
2004
, “
The Use of Laser Surface-Annealed Treatment to Retard Fatigue Crack Growth of Austenitic Stainless Steel
,”
Mater. Sci. Eng., A
,
384
(1–2), pp.
177
183
.10.1016/j.msea.2004.06.010
74.
Tsay
,
L. W.
,
Young
,
M. C.
,
Chou
,
F. Y.
, and
Shiue
,
R. K.
,
2004
, “
The Effect of Residual Thermal Stresses on the Fatigue Crack Growth of Laser Annealed 304 Stainless Steels
,”
Mater. Chem. Phys.
,
88
, pp.
348
352
.10.1016/j.matchemphys.2004.07.020
75.
Tsay
,
L. W.
,
Yang
,
T. Y.
, and
Young
,
M. C.
,
2001
, “
Embrittlement of Laser Surface Annealed 17-4 PH Stainless Steel
,”
Mater. Sci. Eng., A
,
311
(1–2), pp.
64
73
.10.1016/S0921-5093(01)00941-8
76.
Shiue
,
R. K.
,
Chang
,
C. T.
,
Young
,
M. C.
, and
Tsay
,
L. W.
,
2004
, “
The Effect of Residual Thermal Stresses on the Fatigue Crack Growth of Laser Surface Annealed AISI-304 Stainless Steel—Part I Computer Simulation
,”
Mater. Sci. Eng., A
,
364
(1–2), pp.
101
108
.10.1016/j.msea.2003.07.003
77.
Jang
,
C. D.
,
Song
,
H. C.
, and
Lee
,
C. H.
,
2002
, “
Fatigue Life Extension of a Through-Thickness Crack Using Local Heating
,”
Proceedings of the 12th International Offshore and Polar Engineering Conference
, Kitakyushu, Japan, May 26–31, pp.
224
229
.
78.
Yee
,
R. K.
, and
Sidhu
,
K. S.
,
2005
, “
Innovative Laser Heating Methodology Study for Crack Growth Retardation in Aircraft Structures
,”
Int. J. Fatigue
,
27
(3), pp.
245
253
.10.1016/j.ijfatigue.2004.07.003
79.
Schnubel
,
D.
,
Horstmann
,
M.
, and
Huber
,
N.
,
2013
, “
Retardation of Fatigue Crack Growth in Aircraft Aluminium Structures via Heating Induced Residual Stresses–Experiments, Numerical Prediction and Design Optimization
,”
Proceedings of 27th Symposium of the International Committee on Aeronautical Fatigue
, ICAF 2013, Vol.
2
, Jerusalem (IL), June 5–7, pp.
583
596
.
80.
Schnubel
,
D.
,
Horstmann
,
M.
, and
Huber
,
N.
,
2011
, “
Prediction of Fatigue Crack Growth Propagation Rates in Compressive Residual Stress Fields
,”
Review of Aeronautical Fatigue Investigations in Germany During the Period 2009-2011
,
C.
Dalle Donne
and
K.
Schmidtke
, eds.,
EADS Innovation Works
, Munich, Germany, pp.
40
42
.
81.
Schnubel
,
D.
, and
Huber
,
N.
,
2012
, “
The Influence of Crack Face Contact on the Prediction of Fatigue Crack Propagation in Residual Stress Fields
,”
Eng. Fract. Mech.
,
84
, pp.
15
24
.10.1016/j.engfracmech.2011.12.008
82.
Farrahi
,
G. H.
,
Majzoobi
,
G. H.
,
Mahmoudi
,
A. H.
, and
Habibi
,
N.
,
2012
, “
Fatigue Life of Shot Peened Welded Tubular Joint
,”
Proceedings of the World Congress on Engineering
, Vol.
III
. London, UK, July 4–6.
You do not currently have access to this content.