Advanced design methodologies enable lighter and more reliable composite structures or components. However, efforts to include fatigue delamination in the simulation of composites have not yet been consolidated. Besides that, there is a lack of a proper categorization of the published methods in terms of their predictive capabilities and the principles they are based on. This paper reviews the available experimental observations, the phenomenological models, and the computational simulation methods for the three phases of delamination (initiation, onset, and propagation). It compiles a synthesis of the current state-of-the-art while identifying the unsolved problems and the areas where research is missing. It is concluded that there is a lack of knowledge, or there are unsolved problems, in all categories in the field, but particularly in the category of computational methods, which in turn prevents its inclusion in the structural design process. Suggested areas where short-term and midterm research should be focused to overcome the current situation are identified.

References

References
1.
Pagano
,
N. J.
, and
Schoeppner
,
G. A.
,
2000
, “
Delamination of Polymer Matrix Composites: Problems and Assessment
,”
Compr. Compos. Mater.
,
2
, pp.
433
528
.10.1016/B0-08-042993-9/00073-5
2.
Davies
,
G. A. O.
, and
Olsson
,
R.
,
2004
, “
Impact on Composite Structures
,”
Aeronaut. J.
,
108
(
1089
), pp.
541
563
.
3.
SAE International
,
2012
, “
Polymer Matrix Composites: Materials Usage, Design, and Analysis
,”
Composite Materials Handbook
, Vol.
3
,
SAE International
, Warrendale, PA.
4.
Niu
,
C.
,
1999
, “Airframe Structural Design: Practical Design Information and Data on Aircraft Structures,” Adaso/Adastra Engineering Center, Granada Hills, CA.
5.
Pradhan
,
S. C.
, and
Tay
,
T. E.
,
1998
, “
Three-Dimensional Finite Element Modelling of Delamination Growth in Notched Composite Laminates Under Compression Loading
,”
Eng. Fract. Mech.
,
60
(
2
), pp.
157
171
.10.1016/S0013-7944(98)00007-1
6.
Yang
,
B.
,
Mall
,
S.
, and
Ravi-Chandar
,
K.
,
2001
, “
A Cohesive Zone Model for Fatigue Crack Growth in Quasibrittle Materials
,”
Int. J. Solids Struct.
,
38
(
22–23
), pp.
3927
3944
.10.1016/S0020-7683(00)00253-5
7.
Nguyen
,
O.
,
Repetto
,
E. A.
,
Ortiz
,
M.
, and
Radovitzky
,
R. A.
,
2001
, “
A Cohesive Model of Fatigue Crack Growth
,”
Int. J. Fract.
,
110
(
4
), pp.
351
369
.10.1023/A:1010839522926
8.
Roe
,
K. L.
, and
Siegmund
,
T.
,
2003
, “
An Irreversible Cohesive Zone Model for Interface Fatigue Crack Growth Simulation
,”
Eng. Fract. Mech.
,
70
(
2
), pp.
209
232
.10.1016/S0013-7944(02)00034-6
9.
Maiti
,
S.
, and
Geubelle
,
P. H.
,
2005
, “
A Cohesive Model for Fatigue Failure of Polymers
,”
Eng. Fract. Mech.
,
72
(
5
), pp.
691
708
.10.1016/j.engfracmech.2004.06.005
10.
Abdul-Baqi
,
A.
,
Schreurs
,
P. J. G.
, and
Geers
,
M. G. D.
,
2005
, “
Fatigue Damage Modeling in Solder Interconnects Using a Cohesive Zone Approach
,”
Int. J. Solids Struct.
,
42
(
3–4
), pp.
927
942
.10.1016/j.ijsolstr.2004.07.026
11.
Robinson
,
P.
,
Galvanetto
,
U.
,
Tumino
,
D.
,
Bellucci
,
G.
, and
Violeau
,
D.
,
2005
, “
Numerical Simulation of Fatigue-Driven Delamination Using Interface Elements
,”
Int. J. Numer. Methods Eng.
,
63
(
13
), pp.
1824
1848
.10.1002/nme.1338
12.
Koutsourelakis
,
P. S.
,
Kuntiyawichai
,
K.
, and
Schuëller
,
G. I.
,
2006
, “
Effect of Material Uncertainties on Fatigue Life Calculations of Aircraft Fuselages: A Cohesive Element Model
,”
Eng. Fract. Mech.
,
73
(
9
), pp.
1202
1219
.10.1016/j.engfracmech.2006.01.003
13.
Tumino
,
D.
, and
Cappello
,
F.
,
2007
, “
Simulation of Fatigue Delamination Growth in Composites With Different Mode Mixtures
,”
J. Compos. Mater.
,
41
(
20
), pp.
2415
2441
.10.1177/0021998307075439
14.
Turon
,
A.
,
Costa
,
J.
,
Camanho
,
P. P.
, and
Dávila
,
C. G.
,
2007
, “
Simulation of Delamination in Composites Under High-Cycle Fatigue
,”
Composites Part A
,
38
(
11
), pp.
2270
2282
.10.1016/j.compositesa.2006.11.009
15.
Mabson
,
G. E.
,
Deobald
,
L. R.
,
Dopker
,
B.
,
Hoyt
,
D. M.
,
Baylor
,
J. S.
, and
Graesser
,
D. L.
,
2007
, “
Fracture Interface Elements for Static and Fatigue Analysis
,”
16th International Conference on Composite Materials (ICCM 16)
.
16.
Abaqus 6.13,
2013
,
Abaqus 6.13 User's Manual
,
Dassault Systèmes Simulia Corp.
, Providence, RI.
17.
Khoramishad
,
H.
,
Crocombe
,
A. D.
,
Katnam
,
K. B.
, and
Ashcroft
,
I. A.
,
2010
, “
Predicting Fatigue Damage in Adhesively Bonded Joints Using a Cohesive Zone Model
,”
Int. J. Fatigue
,
32
(
7
), pp.
1146
1158
.10.1016/j.ijfatigue.2009.12.013
18.
Naghipour
,
P.
,
Bartsch
,
M.
, and
Voggenreiter
,
H.
,
2011
, “
Simulation and Experimental Validation of Mixed Mode Delamination in Multidirectional CF/PEEK Laminates Under Fatigue Loading
,”
Int. J. Solids Struct.
,
48
(
6
), pp.
1070
1081
.10.1016/j.ijsolstr.2010.12.012
19.
Pirondi
,
A.
, and
Moroni
,
F.
,
2010
, “
A Progressive Damage Model for the Prediction of Fatigue Crack Growth in Bonded Joints
,”
J. Adhes.
,
86
(
5–6
), pp.
501
521
.10.1080/00218464.2010.484305
20.
Harper
,
P. W.
, and
Hallett
,
S. R.
,
2010
, “
A Fatigue Degradation Law for Cohesive Interface Elements—Development and Application to Composite Materials
,”
Int. J. Fatigue
,
32
(
11
), pp.
1774
1787
.10.1016/j.ijfatigue.2010.04.006
21.
Krueger
,
R.
,
2011
, “
Development and Application of Benchmark Examples for Mode II Static Delamination Propagation and Fatigue Growth Predictions
,” Langley Research Center, Technical Report No. NASA/CR-2011-217305.
22.
Krueger
,
R.
,
2011
, “
Development of Benchmark Examples for Static Delamination Propagation and Fatigue Growth Predictions
,” Langley Research Center, Technical Report No. NASA/NF-1676L-11493.
23.
Beaurepaire
,
P.
, and
Schuëller
,
G. I.
,
2011
, “
Modeling of the Variability of Fatigue Crack Growth Using Cohesive Zone Elements
,”
Eng. Fract. Mech.
,
78
(
12
), pp.
2399
2413
.10.1016/j.engfracmech.2011.05.011
24.
Kawashita
,
L. F.
, and
Hallett
,
S. R.
,
2012
, “
A Crack Tip Tracking Algorithm for Cohesive Interface Element Analysis of Fatigue Delamination Propagation in Composite Materials
,”
Int. J. Solids Struct.
,
49
(
21
), pp.
2898
2913
.10.1016/j.ijsolstr.2012.03.034
25.
Landry
,
B.
, and
LaPlante
,
G.
,
2012
, “
Modeling Delamination Growth in Composites Under Fatigue Loadings of Varying Amplitudes
,”
Composites Part B
,
43
(
2
), pp.
533
541
.10.1016/j.compositesb.2011.08.020
26.
Suresh
,
S.
,
1998
,
Fatigue of Materials
,
Cambridge University Press
, Cambridge, UK.
27.
ASTM D6115-97,
2011
, “
Standard Test Method for Mode I Fatigue Delamination Growth Onset of Unidirectional Fiber Reinforced Polymer Matrix Composites
,”
ASTM
International, West Conshohocken, PA.10.1520/D6115-97R11
28.
Qian
,
J.
, and
Fatemi
,
A.
,
1996
, “
Mixed Mode Fatigue Crack Growth: A Literature Survey
,”
Eng. Fract. Mech.
,
55
(
6
), pp.
969
990
.10.1016/S0013-7944(96)00071-9
29.
Bold
,
P. E.
,
Brown
,
M. W.
, and
Allen
,
R. J.
,
1992
, “
A Review of Fatigue Crack Growth in Steels Under Mixed Mode I and II Loading
,”
Fatigue Fract. Eng. Mater. Struct.
,
15
(
10
), pp.
965
977
.10.1111/j.1460-2695.1992.tb00025.x
30.
Decreuse
,
P.-Y.
,
Pommier
,
S.
,
Gentot
,
L.
, and
Pattofatto
,
S.
,
2009
, “
History Effect in Fatigue Crack Growth Under Mixed-Mode Loading Conditions
,”
Int. J. Fatigue
,
31
(
11
), pp.
1733
1741
.10.1016/j.ijfatigue.2009.03.014
31.
Paris
,
P. C.
,
Gomez
,
M. P.
, and
Anderson
,
W. E.
,
1961
, “
A Rational Analytic Theory of Fatigue
,”
Trend Eng.
,
13
(
1
), pp.
9
14
.
32.
Paris
,
P.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic Eng.
,
85
(
4
), pp.
528
533
.10.1115/1.3656900
33.
Williams
,
M.
,
1959
, “
The Stresses Around a Fault or Crack in Dissimilar Media
,”
Bull. Seismol. Soc. Am.
,
49
(
2
), pp.
199
204
.
34.
Hutchinson
,
J. W.
, and
Suo
,
Z.
,
1992
, “
Mixed Mode Cracking in Layered Materials
,”
Adv. Appl. Mech.
,
29
(
63
), pp.
63
191
.10.1016/S0065-2156(08)70164-9
35.
Barenblatt
,
G. I.
,
1959
, “
Concerning Equilibrium Cracks Forming During Brittle Fracture: The Stability of Isolated Cracks
,”
Appl. Math. Mech.
,
23
(3), pp.
622
636
.10.1016/0021-8928(59)90157-1
36.
Barenblatt
,
G.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Advances in Applied Mechanics
, Vol.
7
,
Elsevier
, Moscow, Russia, pp.
55
129
.
37.
Ortiz
,
M.
, and
Pandolfi
,
A.
,
1999
, “
Finite-Deformation Irreversible Cohesive Elements for Three-Dimensional Crack-Propagation Analysis
,”
Int. J. Numer. Methods Eng.
,
44
(
9
), pp.
1267
1282
.10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
38.
Turon
,
A.
,
Camanho
,
P. P.
,
Costa
,
J.
, and
Dávila
,
C. G.
,
2006
, “
A Damage Model for the Simulation of Delamination in Advanced Composites Under Variable-Mode Loading
,”
Mech. Mater.
,
38
(
11
), pp.
1072
1089
.10.1016/j.mechmat.2005.10.003
39.
Asp
,
L. E.
,
Sjögren
,
A.
, and
Greenhalgh
,
E. S.
,
2001
, “
Delamination Growth and Thresholds in a Carbon/Epoxy Composite Under Fatigue Loading
,”
J. Compos. Technol. Res.
,
23
(
2
), pp.
55
68
.10.1520/CTR10914J
40.
Sjögren
,
A.
, and
Asp
,
L. E.
,
2002
, “
Effects of Temperature on Delamination Growth in a Carbon/Epoxy Composite Under Fatigue Loading
,”
Int. J. Fatigue
,
24
, pp.
179
184
.10.1016/S0142-1123(01)00071-8
41.
O'Brien
,
T. K.
,
1984
, “
Mixed-Mode Strain Energy Release Rate Effects on Edge Delamination of Composites
,”
Effects of Defects on Composite Materials
,
American Society for Testing and Materials
, West Conshohocken, PA, pp.
125
142
.
42.
O'Brien
,
T. K.
,
1988
, “
Fatigue Delamination Behavior of PEEK Thermoplastic Composite Laminates
,”
J. Reinf. Plast. Compos.
,
7
, pp.
341
359
.10.1177/073168448800700403
43.
O'Brien
,
T. K.
,
Murri
,
G. B.
, and
Salpekar
,
S. A.
,
1989
, “
Interlaminar Shear Fracture Toughness and Fatigue Thresholds for Composite Materials
,”
Composite Materials: Fatigue and Fracture
, Vol.
2
,
American Society for Testing and Materials
, West Conshohocken, PA, pp.
222
250
.
44.
Argüelles
,
A.
,
Viña
,
J.
,
Canteli
,
A. F.
, and
Bonhomme
,
J.
,
2010
, “
Fatigue Delamination, Initiation, and Growth, Under Mode I and II of Fracture in a Carbon-Fiber Epoxy Composite
,”
Polym. Compos.
,
31
(
4
), pp.
700
706
.10.1002/pc.20855
45.
Martin
,
R. H.
, and
Murri
,
G. B.
,
1990
, “
Characterization of Mode I and Mode II Delamination Growth and Thresholds in AS4/PEEK Composites
,”
Composite Materials: Testing and Design
, Vol.
9
,
American Society for Testing and Materials
, Philadelphia, PA, pp.
251
270
.
46.
Zhang
,
J.
,
Peng
,
L.
,
Zhao
,
L.
, and
Fei
,
B.
,
2012
, “
Fatigue Delamination Growth Rates and Thresholds of Composite Laminates Under Mixed Mode Loading
,”
Int. J. Fatigue
,
40
, pp.
7
15
.10.1016/j.ijfatigue.2012.01.008
47.
Mall
,
S.
,
Yun
,
K.
, and
Kochnar
,
N. K.
,
1989
, “
Characterization of Matrix Toughness Effects on Cyclic Delamination Growth in Graphite Fiber Composites
,”
Composite Materials: Fatigue and Fracture
, Vol.
2.
, P. A. Lagace, ed., ASTM International, Ann Arbor, MI, pp. 296–310.
48.
König
,
M.
,
Krüger
,
R.
,
Kussmaul
,
K.
,
Von Alberti
,
M.
,
Gädke
, M.,
1997
, “
Characterizing Static and Fatigue Interlaminar Fracture Behavior of a First Generation Graphite/Epoxy Composite
,”
Composite Materials: Testing and Design
, Vol.
13
,
S. J.
Hooper
, ed.,
American Society for Testing and Materials
, West Conshohocken, PA, pp.
60
81
.
49.
Tanaka
,
H.
, and
Tanaka
,
K.
,
1995
, “
Mixed-Mode Growth of Interlaminar Cracks in Carbon/Epoxy Laminates Under Cyclic Loading
,”
Proceedings of the 10th International Conference on Composite Materials
, Vol.
1
, Whistler, Canada, pp.
181
189
.
50.
Dahlen
,
C.
, and
Springer
,
G. S.
,
1994
, “
Delamination Growth in Composites under Cyclic Loads
,”
J. Compos. Mater.
,
28
(
8
), pp.
732
781
.10.1177/002199839402800803
51.
Hansen
,
P.
, and
Martin
,
R.
,
1999
, “
DCB, 4ENF and MMB Delamination Characterisation of S2/8552 and IM7/8552
,” European Research Office of the U.S. Army, London, UK, Final Technical Report Contract Number N68171-98-M-5177.
52.
Kenane
,
M.
, and
Benzeggagh
,
M. L.
,
1997
, “
Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites Under Fatigue Loading
,”
Compos. Sci. Technol.
,
57
, pp.
597
605
.10.1016/S0266-3538(97)00021-3
53.
Matsuda
,
S.
,
Hojo
,
M.
, and
Ochiai
,
S.
,
1997
, “
Mesoscopic Fracture Mechanism of Mode II Delamination Fatigue Crack Propagation in Interlayer-Toughened CFRP
,”
JSME Int. J.
,
40
, pp.
423
429
.10.1299/jsmea.40.423
54.
Hojo
,
M.
,
Matsuda
,
S.
, and
Ochiai
,
S.
,
1997
, “
Delamination Fatigue Crack Growth in CFRP Laminates Under Mode I and II Loadings—Effect of Mesoscopic Structure on Fracture Mechanism
,”
Proceedings of the International Conference on Fatigue of Composites
, Goald Coast, Australia, pp.
15
26
.
55.
Hojo
,
M.
,
Tanaka
,
K.
,
Gustafson
,
C. G.
, and
Hayashi
,
R.
,
1987
, “
Effect of Stress Ratio on Near-Threshold Propagation of Delamination Fatigue Cracks in Unidirectional CFRP
,”
Compos. Sci. Technol.
,
29
, pp.
273
292
.10.1016/0266-3538(87)90076-5
56.
Hojo
,
M.
,
Ochiai
,
S.
,
Gustafson
,
C. G.
, and
Tanaka
,
K.
,
1994
, “
Effect of Matrix Resin on Delamination Fatigue Crack Growth in CFRP Laminates
,”
Eng. Fract. Mech.
,
49
(
1
), pp.
35
47
.10.1016/0013-7944(94)90109-0
57.
Matsubara
,
G.
,
Ono
,
H.
, and
Tanaka
,
K.
,
2006
, “
Mode II Fatigue Crack Growth From Delamination in Unidirectional Tape and Satin-Woven Fabric Laminates of High Strength GFRP
,”
Int. J. Fatigue
,
28
(
10
), pp.
1177
1186
.10.1016/j.ijfatigue.2006.02.006
58.
Adams
,
D. F.
,
Zimmermann
,
R. S.
, and
Odem
,
E. M.
,
1987
, “
Frequency and Load Ratio Effects on Critical Strain Energy Release Rate and Thresholds of Graphite Epoxy Composites
,”
Toughened Composites
,
American Society for Testing and Materials
, New York, pp.
242
242
.
59.
Trethewey
,
B. R.
,
Gillespie
,
J. W.
, and
Carlsson
,
L. A.
,
1988
, “
Mode II Cyclic Delamination Growth
,”
J. Compos. Mater.
,
22
(5), pp.
459
483
.10.1177/002199838802200506
60.
Allegri
,
G.
,
Jones
,
M. I.
,
Wisnom
,
M. R.
, and
Hallet
,
S. R.
,
2011
, “
A New Semi-Empirical Model for Stress Ratio Effect on Mode II Fatigue Delamination Growth
,”
Composites Part A
,
42
(7), pp.
733
740
.10.1016/j.compositesa.2011.02.013
61.
Hojo
,
M.
,
Matsushita
,
Y.
,
Tanaka
,
M.
, and
Adachi
,
T.
,
2012
, “
Interfacial Fatigue Crack Propagation in Microscopic Model Composite Using Bifiber Shear Specimens
,”
Composites Part A
,
43
(
2
), pp.
239
246
.10.1016/j.compositesa.2011.09.004
62.
Argüelles
,
A.
,
Viña
,
J.
,
Fernández-Canteli
,
A.
,
Viña
,
I.
, and
Bonhomme
,
J.
,
2011
, “
Influence of the Matrix Constituent on Mode I and Mode II Delamination Toughness in Fiber-Reinforced Polymer Composites Under Cyclic Fatigue
,”
Mech. Mater.
,
43
(
1
), pp.
62
67
.10.1016/j.mechmat.2010.10.001
63.
Shindo
,
Y.
,
Inamoto
,
A.
,
Narita
,
F.
, and
Horiguchi
,
K.
,
2006
, “
Mode I Fatigue Delamination Growth in GFRP Woven Laminates at Low Temperatures
,”
Eng. Fract. Mech.
,
73
(
14
), pp.
2080
2090
.10.1016/j.engfracmech.2006.03.015
64.
Hojo
,
M.
,
Matsuda
,
S.
,
Fiedler
,
B.
,
Kawada
,
T.
,
Moriya
,
K.
,
Ochiai
,
S.
, and
Aoyama
,
H.
,
2002
, “
Mode I and II Delamination Fatigue Crack Growth Behavior of Alumina Fiber/Epoxy Laminates in Liquid Nitrogen
,”
Int. J. Fatigue
,
24
(2–4), pp.
109
118
.10.1016/S0142-1123(01)00065-2
65.
Van Paepegem
,
W.
, and
Degrieck
,
J.
,
2002
, “
Effects of Load Sequence and Block Loading on the Fatigue Response of Fiber Reinforced Composites
,”
Mech. Adv. Mater. Struct.
,
9
(
1
), pp.
19
35
.10.1080/153764902317224851
66.
Beghini
,
M.
,
Bertini
,
L.
, and
Forte
,
P.
,
2006
, “
Experimental Investigation on the Influence of Crack Front to Fiber Orientation on Fatigue Delamination Growth Rate Under Mode II
,”
Compos. Sci. Technol.
,
66
(
2
), pp.
240
247
.10.1016/j.compscitech.2005.04.033
67.
Peng
,
L.
,
Zhang
,
J.
,
Zhao
,
L.
,
Bao
,
R.
,
Yang
,
H.
, and
Fei
,
B.
,
2011
, “
Mode I Delamination Growth of Multidirectional Composite Laminates Under Fatigue Loading
,”
J. Compos. Mater.
,
45
(
10
), pp.
1077
1090
.10.1177/0021998310385029
68.
Schön
,
J.
,
2000
, “
A Model of Fatigue Delamination in Composites
,”
Compos. Sci. Technol.
,
60
(4), pp.
553
558
.10.1016/S0266-3538(99)00156-6
69.
Nakai
,
Y.
, and
Hiwa
,
C.
,
2002
, “
Effects of Loading Frequency and Environment on Delamination Fatigue Crack Growth of CFRP
,”
Int. J. Fatigue
,
24
(2–4), pp.
161
170
.10.1016/S0142-1123(01)00069-X
70.
Stutz
,
S.
,
Cugnoni
,
J.
, and
Botsis
,
J.
,
2011
, “
Studies of Mode I Delamination in Monotonic and Fatigue Loading Using FBG Wavelength Multiplexing and Numerical Analysis
,”
Compos. Sci. Technol.
,
71
(4), pp.
443
449
.10.1016/j.compscitech.2010.12.016
71.
Hwang
,
W.
, and
Han
,
K. S.
,
1989
, “
Interlaminar Fracture Behavior and Fiber Bridging of Glass-Epoxy Composite Under Mode I Static and Cyclic Loadings
,”
J. Compos. Mater.
,
23
, pp.
396
430
.10.1177/002199838902300407
72.
Bonhomme
,
J.
,
Argüelles
,
A.
,
Viña
,
J.
, and
Viña
,
I.
,
2009
, “
Fractography and Failure Mechanisms in Static Mode I and Mode II Delamination Testing of Unidirectional Carbon Reinforced Composites
,”
Polym. Test.
,
28
(
6
), pp.
612
617
.10.1016/j.polymertesting.2009.05.003
73.
Gilchrist
,
M.
, and
Svensson
,
N.
,
1995
, “
A Fractographic Analysis of Delamination Within Multidirectional Carbon/Epoxy Laminates
,”
Compos. Sci. Technol.
,
55
(2), pp.
195
207
.10.1016/0266-3538(95)00099-2
74.
Hojo
,
M.
,
Ando
,
T.
,
Tanaka
,
M.
,
Adachi
,
T.
,
Ochiai
,
S.
, and
Endo
,
Y.
,
2006
, “
Modes I and II Interlaminar Fracture Toughness and Fatigue Delamination of CF/Epoxy Laminates With Self-Same Epoxy Interleaf
,”
Int. J. Fatigue
,
28
(
10
), pp.
1154
1165
.10.1016/j.ijfatigue.2006.02.004
75.
Fernández
,
M.
,
de Moura
,
M.
,
da Silva
,
L.
, and
A. T.
Marques
,
2013
, “
Mixed-Mode I+II Fatigue/Fracture Characterization of Composite Bonded Joints Using the Single-Leg Bending Test
,”
Composites Part A
,
44
, pp.
63
69
.10.1016/j.compositesa.2012.08.009
76.
Fernández
,
M. V.
,
de Moura
,
M. F.
,
da Silva
,
L. F.
, and
Marques
,
A. T.
,
2013
, “
Characterization of Composite Bonded Joints Under Pure Mode II Fatigue Loading
,”
Compos. Struct.
,
95
, pp.
222
226
.10.1016/j.compstruct.2012.07.031
77.
Vinciquerra
,
A. J.
,
Davidson
,
B. D.
,
Schaff
,
J. R.
, and
Smith
,
S. L.
,
2002
, “
Determination of the Mode II Fatigue Delamination Toughness of Laminated Composites
,”
J. Reinf. Plast. Compos.
,
21
(7), pp.
663
677
.10.1177/0731684402021007473
78.
Shivakumar
,
K.
,
Chen
,
H.
,
Abali
,
F.
,
Le
,
D.
, and
Davis
,
C.
,
2006
, “
A Total Fatigue Life Model for Mode I Delaminated Composite Laminates
,”
Int. J. Fatigue
,
28
(
1
), pp.
33
42
.10.1016/j.ijfatigue.2005.04.006
79.
Brunner
,
A.
,
Murphy
,
N.
, and
Pinter
,
G.
,
2009
, “
Development of a Standardized Procedure for the Characterization of Interlaminar Delamination Propagation in Advanced Composites Under Fatigue Mode I Loading Conditions
,”
Eng. Fract. Mech.
,
76
(
18
), pp.
2678
2689
.10.1016/j.engfracmech.2009.07.014
80.
Wang
,
X.
, and
Chung
,
D. D. L.
,
1997
, “
Sensing Delamination in a Carbon Fiber Polymer-Matrix Composite During Fatigue by Electrical Resistance Measurement
,”
Polym. Compos.
,
18
(
6
), pp.
692
700
.10.1002/pc.10322
81.
Stelzer
,
S.
,
Brunner
,
A.
,
Argüelles
,
A.
,
Murphy
,
N.
, and
Pinter
,
G.
,
2011
, “
Mode I Delamination Fatigue Crack Growth in Unidirectional Fiber Reinforced Composites: Development of a Standardized Test Procedure
,”
Compos. Sci. Technol.
,
72
(
10
), pp.
1102
1107
.10.1016/j.compscitech.2011.11.033
82.
Barboni
,
R.
,
Carbonaro
,
R.
, and
Gaudenzi
,
P.
,
1999
, “
The Effects of Delamination on the Fatigue Behavior of Composite Structures
,”
J. Compos. Mater.
,
33
(
3
), pp.
267
303
.10.1177/002199839903300303
83.
Krueger
,
R.
,
Cvitkovich
,
M. K.
,
O'Brien
,
T. K.
, and
Minguet
,
P. J.
,
2000
, “
Testing and Analysis of Composite Skin/Stringer Debonding Under Multi-Axial Loading
,”
J. Compos. Mater.
,
34
(
15
), pp.
1263
1300
.10.1177/002199830003401502
84.
Krueger
,
R.
,
Paris
,
I. L.
,
O'Brien
,
T. K.
, and
Minguet
,
P. J.
,
2001
, “
Fatigue Life Methodology for Bonded Composite Skin/Stringer Configurations
,” Technical Report No. NASA/TM-2001-210842.
85.
Van Paepegem
,
W.
, and
Degrieck
,
J.
,
2001
, “
Fatigue Degradation Modelling of Plain Woven Glass/Epoxy Composites
,”
Composites Part A
,
32
(
10
), pp.
1433
1441
.10.1016/S1359-835X(01)00042-2
86.
Prinz
,
R.
, and
Cao
,
L.
,
1989
, “
Analysis of Strain-Energy-Release Rates for Unidirectional Graphite/Epoxy Laminates With Separated Central Plies Under Fatigue Loading
,”
Proceedings of Seventh International Conference on Composite Materials ICCM-VII
, Beijing, China.
87.
Casas-Rodriguez
,
J.
,
Ashcroft
,
I.
, and
Silberschmidt
,
V.
,
2008
, “
Delamination in Adhesively Bonded CFRP Joints: Standard Fatigue, Impact-Fatigue and Intermittent Impact
,”
Compos. Sci. Technol.
,
68
(
12
), pp.
2401
2409
.10.1016/j.compscitech.2007.11.006
88.
Kardomateas
,
G. A.
, and
Malik
,
B.
,
1997
, “
Fatigue Delamination Growth Under Cyclic Compression in Glass/Epoxy Composite Beam/Plates
,”
Polym. Compos.
,
18
(
2
), pp.
169
178
.10.1002/pc.10271
89.
Martin
,
R.
,
2003
, “
Delamination Fatigue
,”
Fatigue in Composites
,
B.
Harris
, ed.,
Woodhead Publishing Ltd and CRC
, Cambridge, UK, pp.
173
188
.
90.
ASTM E647-13,
2013
, “
Standard Test Method for Measurement of Fatigue Crack Growth Rates
,” ASTM International, West Conshohocken, PA.
91.
O'Brien
,
T. K.
,
Chawan
,
A. D.
,
Krueger
,
R.
, and
Paris
,
I. L.
,
2002
, “
Transverse Tension Fatigue Life Characterization Through Flexure Testing of Composite Materials
,”
Int. J. Fatigue
,
24
(2–4), pp.
127
145
.10.1016/S0142-1123(01)00104-9
92.
May
,
M.
, and
Hallett
,
S. R.
,
2010
, “
A Combined Model for Initiation and Propagation of Damage Under Fatigue Loading for Cohesive Interface Elements
,”
Composites Part A
,
41
(
12
), pp.
1787
1796
.10.1016/j.compositesa.2010.08.015
93.
Reifsnider
,
K.
,
1998
, “
Durability and Damage Tolerance of Fibrous Composite Systems
,”
Handbook of Composites
, Springer US, Vol.
35
, Springer, US, pp.
794
809
.10.1007/978-1-4615-6389-1_36
94.
Gdoutos
,
E. E.
,
2005
,
Fracture Mechanics
,
Springer
, The Netherlands.
95.
Martin
,
R. H.
,
1989
, “
Evaluation of the Split Cantilever Beam for Mode III Delamination Testing
,” Technical Report No. NASA/TM 101562.
96.
Jones
,
R.
,
Pitt
,
S.
,
A. J.
Bunner
, and
Hui
,
D.
,
2012
, “
Application of the Hartman-Schijve Equation to Represent Mode I and Mode II Fatigue Delamination Growth in Composites
,”
Compos. Struct.
,
94
(
4
), pp.
1343
1351
.10.1016/j.compstruct.2011.11.030
97.
Bennati
,
S.
, and
Valvo
,
P.
,
2006
, “
Delamination Growth in Composite Plates Under Compressive Fatigue Loads
,”
Compos. Sci. Technol.
,
66
(
2
), pp.
248
254
.10.1016/j.compscitech.2005.04.035
98.
Rans
,
C.
,
Alderliesten
,
R.
, and
Benedictus
,
R.
,
2011
, “
Misinterpreting the Results: How Similitude can Improve our Understanding of Fatigue Delamination Growth
,”
Compos. Sci. Technol.
,
71
(
2
), pp.
230
238
.10.1016/j.compscitech.2010.11.010
99.
Ramkumar
,
R.
, and
Whitcomb
,
J.
,
1985
, “
Characterization of Mode I and Mixed-Mode Delamination Growth in T300/5208 Graphite/Epoxy
,”
Delamination and Debonding of Materials
,
American Society for Testing and Materials
,
Philadelphia
, PA, pp.
315
335
.
100.
Gustafson
,
C.
, and
Hojo
,
M.
,
1987
, “
Delamination Fatigue Crack Growth in Unidirectional Graphite/Epoxy Laminates
,”
J. Reinf. Plast. Compos.
,
6
(
1
), pp.
36
52
.10.1177/073168448700600104
101.
Russell
,
A.
, and
Street
,
K.
,
1989
, “
Predicting Interlaminar Fatigue Crack Growth Rates in Compressively Loaded Laminates
,”
Delamination and Debonding of Materials
,
American Society for Testing and Materials
,
Philadelphia
, pp.
162
178
.
102.
Kardomateas
,
G. A.
,
Pelegri
,
A. A.
, and
Malik
,
B.
,
1995
, “
Growth of Internal Delaminations Under Cyclic Compression in Composite Plates
,”
J. Mech. Phys. Solids
,
43
(
6
), pp.
847
868
.10.1016/0022-5096(95)00012-8
103.
Blanco
,
N.
,
Gamstedt
,
E. K.
,
Asp
,
L. E.
, and
Costa
,
J.
,
2004
, “
Mixed-Mode Delamination Growth in Carbon-Fibre Composite Laminates Under Cyclic Loading
,”
Int. J. Solids Struct.
,
41
(
15
), pp.
4219
4235
.10.1016/j.ijsolstr.2004.02.040
104.
Allegri
,
G.
,
Wisnom
,
M.
, and
Hallett
,
S.
,
2013
, “
A New Semi-Empirical Law for Variable Stress-Ratio and Mixed-Mode Fatigue Delamination Growth
,”
Composites Part A
,
48
, pp.
192
200
.10.1016/j.compositesa.2013.01.018
105.
Andersons
,
J.
,
Hojo
,
M.
, and
Ochiai
,
S.
,
2004
, “
Empirical Model for Stress Ratio Effect on Fatigue Delamination Growth Rate in Composite Laminates
,”
Int. J. Fatigue
,
26
(6), pp.
597
604
.10.1016/j.ijfatigue.2003.10.016
106.
Martin
,
R. H.
,
1991
, “
Characterizing Mode I Fatigue Delamination of Composite Materials
,”
Proceedings/Em Div/ASCE Mechanics Computing in 1990s and Beyond
, Columbus, OH, May 20–22, pp.
943
948
.
107.
Murri
,
G. B.
,
Schaff
,
J. R.
, and
Dobyns
,
A. L.
,
2001
, “
Fatigue and Damage Tolerance Analysis of a Hybrid Composite Tapered Flexbeam
,” American Helicopter Society, 57th Annual Forum, Washington, DC, Technical Report No. 20010059024, http://ntrs.nasa.gov.
108.
Krueger
,
R.
,
2010
, “
Development of a Benchmarck Example for Delamination Fatigue Growth Prediction
,” Technical Report No. NASA/CR-2010-216723.
109.
May
,
M.
, and
Hallett
,
S. R.
,
2011
, “
An Advanced Model for Initiation and Propagation of Damage Under Fatigue Loading—Part I: Model Formulation
,”
Compos. Struct.
,
93
(
9
), pp.
2340
2349
.10.1016/j.compstruct.2011.03.022
110.
Donadon
,
M. V.
,
Lauda
,
D. P.
, and
de Almeida
,
S. F. M.
,
2012
, “
A Damage Model for Prediction of Static and Fatigue-Driven Delamination in Composite Laminates
,” 6th Workshop on Computational Approaches to Material Modelling and Optimisation, Joinville, Brasil.
111.
Siegmund
,
T.
,
2004
, “
A Numerical Study of Transient Fatigue Crack Growth by Use of an Irreversible Cohesive Zone Model
,”
Int. J. Fatigue
,
26
(
9
), pp.
929
939
.10.1016/j.ijfatigue.2004.02.002
112.
Moroni
,
F.
, and
Pirondi
,
A.
,
2011
, “
A Procedure for the Simulation of Fatigue Crack Growth in Adhesively Bonded Joints Based on the Cohesive Zone Model and Different Mixed-Mode Propagation Criteria
,”
Eng. Fract. Mech.
,
78
(
8
), pp.
1808
1816
.10.1016/j.engfracmech.2011.02.004
113.
Maiti
,
S.
, and
Geubelle
,
P. H.
,
2006
, “
Cohesive Modeling of Fatigue Crack Retardation in Polymers: Crack Closure Effect
,”
Eng. Fract. Mech.
,
73
(
1
), pp.
22
41
.10.1016/j.engfracmech.2005.07.005
114.
Peerlings
,
R. H. J.
,
Brekelmans
,
W. A. M.
,
de Borst
,
R.
, and
Geers
,
M. G. D.
,
2000
, “
Gradient-Enhanced Damage Modelling of High-Cycle Fatigue
,”
Int. J. Numer. Methods Eng.
,
49
(
12
), pp.
1547
1569
.10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D
115.
Serebrinsky
,
S.
, and
Ortiz
,
M.
,
2005
, “
A Hysteretic Cohesive-Law Model of Fatigue-Crack Nucleation
,”
Scr. Mater.
,
53
(
10
), pp.
1193
1196
.10.1016/j.scriptamat.2005.07.015
116.
Rybicki
,
E. F.
, and
Kanninen
,
M. F.
,
1977
, “
A Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral
,”
Eng. Fract. Mech.
,
9
(
4
), pp.
931
938
.10.1016/0013-7944(77)90013-3
117.
Krueger
,
R.
,
2004
, “
Virtual Crack Closure Technique: History, Approach, and Applications
,”
Appl. Mech. Rev.
,
57
(
2
), pp.
109
143
.10.1115/1.1595677
118.
Matos
,
P. P. L.
,
McMeeking
,
R. M.
,
Charalambides
,
P. G.
, and
Drory
,
M. D.
,
1989
, “
A Method for Calculating Stress Intensities in Bimaterial Fracture
,”
Int. J. Fract.
,
40
(
4
), pp.
235
254
.10.1007/BF00963659
119.
Berggreen
,
C.
,
2004
, “
Damage Tolerance of Debonded Sandwich Structures
,” Ph.D. thesis, Technical University of Denmark, Department of Mechanical Engineering, Maritime Engineering, Lyngby.
120.
Dugdale
,
D. C.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
, pp.
100
104
.10.1016/0022-5096(60)90013-2
121.
Needleman
,
A.
,
1987
, “
A Continuum Model for Void Nucleation by Inclusion Debonding
,”
ASME J. Appl. Mech.
,
54
(
3
), pp.
525
531
.10.1115/1.3173064
122.
Elices
,
M.
,
Guinea
,
G. V.
,
Gómez
,
J.
, and
Planas
,
J.
,
2002
, “
The Cohesive Zone Model: Advantages, Limitations and Challenges
,”
Eng. Fract. Mech.
,
69
(
2
), pp.
137
163
.10.1016/S0013-7944(01)00083-2
123.
Park
,
K.
, and
Paulino
,
G. H.
,
2011
, “
Cohesive Zone Models: a Critical Review of Traction-Separation Relationships Across Fracture Surfaces
,”
Appl. Mech. Rev.
,
64
(
6
), p.
060802
.10.1115/1.4023110
124.
Goutianos
,
S.
, and
Sørensen
,
B. F.
,
2012
, “
Path Dependence of Truss-Like Mixed Mode Cohesive Laws
,”
Eng. Fract. Mech.
,
91
, pp.
117
132
.10.1016/j.engfracmech.2012.02.011
125.
de Andrés
,
A.
,
Pérez
,
J. L.
, and
Ortiz
,
M.
,
1999
, “
Elastoplastic Finite Element Analysis of Three-Dimensional Fatigue Crack Growth in Aluminum Shafts Subjected to Axial Loading
,”
Int. J. Solids Struct.
,
36
(
15
), pp.
2231
2258
.10.1016/S0020-7683(98)00059-6
126.
Van Paepegem
,
W.
,
Degrieck
,
J.
, and
De Baets
,
P.
,
2001
, “
Finite Element Approach for Modelling Fatigue Damage in Fibre-Reinforced Composite Materials
,”
Composites Part B
,
32
(
7
), pp.
575
588
.10.1016/S1359-8368(01)00038-5
127.
Rice
,
J. R.
,
1980
, “
The Mechanics of Earthquake Rupture
,”
Physics of the Earth's Interior, Proc. Int. Sch. Phys. Enrico Fermi
, A. M. Dziewonski and E. Boschi, eds., North-Holland, Amsterdam, pp.
555
649
.
128.
Turon
,
A.
,
Costa
,
J.
,
Camanho
,
P.
, and
Maimí
,
P.
,
2008
, “
Analytical and Numerical Investigation of the Length of the Cohesive Zone in Delaminated Composite Materials
,”
Mechanical Response of Composites (Vol. 10 of Computational Methods in Applied Sciences)
,
Springer
,
Netherlands
, pp.
77
97
.
129.
Turon
,
A.
,
Camanho
,
P. P.
,
Costa
,
J.
, and
Renart
,
J.
,
2010
, “
Accurate Simulation of Delamination Growth Under Mixed-Mode Loading Using Cohesive Elements: Definition of Interlaminar Strengths and Elastic Stiffness
,”
Compos. Struct.
,
92
(
8
), pp.
1857
1864
.10.1016/j.compstruct.2010.01.012
130.
Sarrado
,
C.
,
Turon
,
A.
,
Renart
,
J.
, and
Urresti
,
I.
,
2012
, “
Assessment of Energy Dissipation During Mixed-Mode Delamination Growth Using Cohesive Zone Models
,”
Composites Part A
,
43
(
11
), pp.
2128
2136
.10.1016/j.compositesa.2012.07.009
131.
López-Armas
,
C. A.
,
Galvanetto
,
U.
, and
Robinson
,
P.
,
2007
, “
A Simple Model for the Evaluation of Fatigue Degradation Laws for Interface Elements
,”
16th International Conference on Composite Materials
, Kyoto, Japan.
132.
López Armas
,
C. A.
,
2008
, “
Evaluation of Constitutive Laws for the Computer Simulation of Fatigue-Driven Delamination in Composite Materials
,” Ph.D. thesis, Imperial College London, Department of Aeronautics, London.
133.
Turon
,
A.
,
Davila
,
C.
,
Camanho
,
P.
, and
Costa
,
J.
,
2007
, “
An Engineering Solution for Mesh Size Effects in the Simulation of Delamination Using Cohesive Zone Models
,”
Eng. Fract. Mech.
,
74
(
10
), pp.
1665
1682
.10.1016/j.engfracmech.2006.08.025
134.
Towashiraporn
,
P.
,
Subbarayan
,
G.
, and
Desai
,
C. S.
,
2005
, “
A Hybrid Model for Computationally Efficient Fatigue Fracture Simulations at Microelectronic Assembly Interfaces
,”
Int. J. Solids Struct.
,
42
(
15
), pp.
4468
4483
.10.1016/j.ijsolstr.2004.12.012
135.
Beaurepaire
,
P.
,
2013
, Personal Correspondence With the Author About the Work in Ref. [23].
136.
Needleman
,
A.
,
1990
, “
An Analysis of Tensile Decohesion Along an Interface
,”
J. Mech. Phys. Solids
,
38
(
3
), pp.
289
324
.10.1016/0022-5096(90)90001-K
137.
Gower
,
M.
,
Sims
,
G.
,
Lee
,
R.
,
Frost
,
S.
,
Stone
,
M.
, and
Wall
,
M.
,
2005
, “
Assessment and Criticality of Defects and Damage in Material Systems
,” National Physical Laboratory, Measurement Good Practice Guide Technical Report No. 78.
138.
Krueger
,
R.
,
Paris
,
I. L.
,
O'Brien
,
T. K.
, and
Minguet
,
P. J.
,
2002
, “
Fatigue Life Methodology for Bonded Composite Skin/Stringer Configurations
,”
J. Compos. Technol. Res.
,
24
(
2
), pp.
56
79
.10.1520/CTR10971J
139.
O'Brien
,
T. K.
,
2007
, “
Towards a Delamination Fatigue Methodology for Composite Materials
,” 16th International Conference on Composite Materials., Kyoto, Japan.
140.
Camanho
,
P.
,
Turon
,
A.
, and
Costa
,
J.
,
2008
, “
Delamination Propagation Under Cyclic Loading
,”
Delamination Behaviour of Composites
,
Woodhead Publishing in Materials
, Cambridge, UK., pp.
485
513
.
141.
Wöhler
,
A.
,
1870
, “Über die Festigkeits-versuche mit Eisen und Stahl,” Ernst & Korn, Berlin.
You do not currently have access to this content.