The authors of the paper “Nanoscale Fluid Mechanics and Energy Conversion” have presented an overview of recent applications of nanofluidic phenomena for energy conversion and storage. The discussion given here aims to place this paper in a broader context of literature and theory.

References

References
1.
Chen
,
X.
,
Xu
,
B.
, and
Liu
,
L.
,
2014
, “
Nanoscale Fluid Mechanics and Energy Conversion
,”
ASME Appl. Mech. Rev.
,
66
(5), p. 050803.10.1115/1.4026913
2.
Eijkel
,
J. C. T.
, and
van den Berg
,
A.
,
2005
, “
Nanofluidics: What is it and What can we Expect From it?
Microfluid. Nanofluid.
,
1
, pp.
249
267
.10.1007/s10404-004-0012-9
3.
Eijkel
,
J. C. T.
,
2008
, “
Searching Lab on a Chip Literature: The Need for a Glossary of Terms and Concepts in a Multidisciplinary Environment
,”
Lab Chip
,
8
, pp.
1781
1783
.10.1039/b811701m
4.
Sparreboom
,
W.
,
van den Berg
,
A.
, and
Eijkel
,
J. C. T.
,
2009
, “
Principles and Applications of Nanofluidic Transport
,”
Nat. Nanotechnol.
,
4
, pp.
713
720
.10.1038/nnano.2009.332
5.
Eijkel
,
J. C. T.
, and
van den berg
,
A.
,
2010
, “
Nanofluidics and the Chemical Potential Applied to Solvent and Solute Transport
,”
Chem. Soc. Rev.
,
39
, pp.
957
973
.10.1039/b913776a
6.
Lamb
,
H.
,
1995
,
Hydrodynamics
,
Cambridge University
,
Cambridge, UK
.
7.
Vinogradova
,
O.
,
1999
, “
Slippage of Water Over Hydrophobic Surfaces
,”
Int. J. Miner. Process.
,
56
, pp.
31
60
.10.1016/S0301-7516(98)00041-6
8.
Eijkel
,
J. C. T.
,
2007
, “
Liquid Slip in Micro- and Nanofluidics: Recent Research and its Possible Implications
,”
Lab Chip
,
7
, pp.
1
4
.10.1039/b617755g
9.
Eroshenko
, V
.
,
Regis
,
R. C.
,
Soulard
,
M.
, and
Patarin
,
J.
,
2001
, “
Energetics: A New Field of Applications for Hydrophobic Zeolites
,”
J. Am. Chem. Soc.
,
123
, pp.
8129
8130
.10.1021/ja011011a
10.
Suciu
,
C. V.
,
Iwatsubo
,
T.
, and
De
,
S.
,
2003
, “
Investigation of a Colloidal Damper
,”
J. Colloid Interface Sci.
,
259
, pp.
62
80
.10.1016/S0021-9797(02)00076-0
11.
Eroshenko
, V
. A.
, and
Lazarev
,
Y. F.
,
2012
, “
Rheology and Dynamics of Repulsive Chlatrates
,”
J. Appl. Mech. Tech. Phys.
,
53
, pp.
98
112
.10.1134/S0021894412010130
12.
Suciu
,
C. V.
,
Iwatsuboa
,
T.
,
Yaguchi
,
K.
, and
Ikenaga
,
M.
,
2005
, “
Novel and Global Approach of the Complex and Interconnected Phenomena Related to the Contact Line Movement Past a Solid Surface From Hydrophobized Silica Gel
,”
J. Colloid Interface Sci.
,
283
, pp.
196
214
.10.1016/j.jcis.2004.08.034
13.
Eroshenko
, V
. A.
,
2007
, “
A New Paradigm of Mechanical Energy Dissipation. Part 1: Theoretical Aspects and Practical Solutions
,”
Proc. Inst. Mech. Eng., Part D
,
221
, pp.
285
300
.10.1243/09544070D01505
14.
Eroshenko
, V
. A.
,
Piatiletov
, I
.
,
Coiffard
,
L.
, and
Stoudenets
, V
.
,
2007
, “
A New Paradigm of Mechanical Energy Dissipation. Part 2: Experimental Investigation and Effectiveness of a Novel Car Damper
,”
Proc. Inst. Mech. Eng., Part D
,
221
, pp.
301
312
.10.1243/09544070D01605
15.
Grosu
,
Y.
,
Levtushenko
,
O.
,
Eroshenko
, V
.
,
Nedelec
,
J. M.
, and
Grolier
,
J. P. E.
,
2014
, “
Water Intrusion/Extrusion in Hydrophobized Mesoporous Silica Gel in a Wide Temperature Range: Capillarity, Bubble Nucleation and Line Tension Effects
,”
Colloids Surf., A
,
441
, pp.
549
555
.10.1016/j.colsurfa.2013.10.022
16.
Suciu
,
C. V.
,
Tani
,
S.
, and
Miyoshi
,
K.
,
2010
, “
Experimental Study on the Thermal Characteristics of a Colloidal Damper
,”
J. Syst. Des. Dyn.
,
4
(
6
), pp.
899
913
.
17.
Zhou
,
G. Y.
, and
Sun
,
L. Z.
,
2008
, “
Smart Colloidal Dampers With On-Demand Controllable Damping Capability
,”
Smart Mater. Struct.
,
17
, p.
055023
.10.1088/0964-1726/17/5/055023
18.
Laouir
,
A.
,
Luo
,
L.
,
Tondeur
,
D.
,
Cachot
,
T.
, and
Le Goff
,
P.
,
2003
, “
Thermal Machines Based on Surface Energy of Wetting: Thermodynamic Analysis
,”
AIChE J.
49
, pp.
764
781
.10.1002/aic.690490320
19.
Xu
,
B.
,
Qiao
,
Y.
,
Park
,
T.
,
Tak
,
M.
,
Zhou
,
Q.
, and
Chen
,
X.
,
2011
, “
A Conceptual Thermal Actuation System Driven by Interface Tension of Nanofluids
,”
Energy Environ. Sci.
,
4
, pp.
3632
3639
.10.1039/c1ee01405f
20.
Kuiper
,
S.
, and
Hendriks
,
B. H. W.
,
2004
, “
Variable-Focus Liquid Lens for Miniature Cameras
,”
Appl. Phys. Lett.
,
85
, pp.
1128
1130
.10.1063/1.1779954
21.
Hayes
,
R. A.
, and
Feenstra
,
B. J.
,
2003
, “
Video-Speed Electronic Paper Based on Electrowetting
,”
Nature
,
425
, pp.
383
385
.10.1038/nature01988
22.
Quickenden
,
T. I.
, and
Mua
,
Y.
,
1995
, “
A Review of Power Generation in Aqueous Thermogalvanic Cells
,”
J. Electrochem. Soc.
,
142
, pp.
3986
3994
.10.1149/1.2048446
23.
Gunawan
,
A.
,
Lin
,
C. H.
,
Buttry
,
D. A.
,
Mujica
, V
.
,
Taylor
,
R. A.
,
Prasher
,
R. S.
, and
Phelan
,
P. E.
,
2013
, “
Liquid Thermoelectrics: Review of Recent And Limited New Data of Thermogalvanic Cell Experiments
,”
Nanosci. Microsci. Thermophys. Eng.
,
17
, pp.
304
323
.10.1080/15567265.2013.776149
24.
Hu
,
R.
,
Cola
,
B. A.
,
Haram
,
N.
,
Barisci
,
J. N.
,
Lee
,
S.
,
Stoughton
,
S.
,
Wallace
,
G.
,
Too
,
C.
,
Thomas
,
M.
,
Gestos
,
A.
,
dela Cruz
,
M. E.
,
Ferraris
,
J. P.
,
Zakhidov
,
A. A.
, and
Baughman
,
R. H.
,
2010
, “
Harvesting Waste Thermal Energy Using a Carbon-Nanotube-Based Thermo-Electrochemical Cell
,”
Nano Lett.
,
10
, pp.
838
846
.10.1021/nl903267n
25.
Kang
,
T. J.
,
Fang
,
S.
,
Kozlov
,
M. E.
,
Haines
,
C. S.
,
Li
,
N.
,
Kim
,
Y. H.
,
Chen
,
Y.
, and
Baughman
,
R. H.
,
2012
, “
Electrical Power From Nanotube and Graphene Electrochemical Thermal Energy Harvesters
,”
Adv. Funct. Mater.
,
22
, pp.
477
489
.10.1002/adfm.201101639
26.
Kuzminskii
,
Y. V.
,
Zasukha
,
V. A.
, and
Kuzminskaya
,
G. Y.
,
1994
, “
Thermoelectric Effects in Electrochemical Systems. Nonconventional Thermogalvanic Cells
,”
J. Power Sources
,
52
, pp.
231
242
.10.1016/0378-7753(94)02015-9
27.
Hudak
,
N. S.
, and
Amatucci
,
G. G.
,
2011
, “
Energy Harvesting and Storage With Lithium-Ion Thermogalvanic Cells
,”
J. Electrochem. Soc.
,
158
, pp.
A572
A579
.10.1149/1.3568820
28.
Lim
,
H.
,
Lu
,
W.
,
Chen
,
X.
, and
Qiao
,
Y.
,
2013
, “
Effects of Ion Concentration on Thermally-Chargeable Double-Layer Supercapacitors
,”
Nanotechnology
,
24
, p.
465401
.10.1088/0957-4484/24/46/465401
29.
Pennathur
,
S.
,
Eijkel
,
J. C. T.
, and
van den Berg
,
A.
,
2007
, “
Energy Conversion in Microsystems: Is There a Role for Micro/Nanofluidics?
Lab Chip
,
7
, pp.
1234
1237
.10.1039/b712893m
30.
Morrison
,
F. A.
, and
Osterle
,
J. F.
,
1965
, “
Electrokinetic Energy Conversion in Ultrafine Capillaries
,”
J. Chem. Phys.
,
43
, pp.
2111
2115
.10.1063/1.1697081
31.
van der Heyden
,
F. H. J.
,
Bonthuis
,
D. J.
,
Stein
,
D.
,
Meyer
,
C.
, and
Dekker
,
C.
,
2007
, “
Power Generation by Pressure-Driven Transport of Ions in Nanofluidic Channels
,”
Nano Lett.
,
7
, pp.
1022
1025
.10.1021/nl070194h
32.
Xie
,
Y. B.
,
Wang
,
X. W.
,
Xue
,
J. M.
,
Jin
,
K.
,
Chen
,
L.
, and
Wang
,
Y. G.
,
2008
, “
Electric Energy Generation in Single Track-Etched Nanopores
,”
Appl. Phys. Lett.
,
93
, p.
163116
.10.1063/1.3001590
33.
Ren
,
Y.
, and
Stein
,
D.
,
2008
, “
Slip-Enhanced Electrokinetic Energy Conversion in Nanofluidic Channels
,”
Nanotechnology
,
19
, p.
195707
.10.1088/0957-4484/19/19/195707
34.
Gillespie
,
D.
,
2012
, “
High Energy Conversion Efficiency in Nanofluidic Channels
,”
Nano Lett.
,
12
, pp.
1410
1416
.10.1021/nl204087f
35.
Berli
,
C. L. A.
,
2010
, “
Electrokinetic Energy Conversion in Microchannels Using Polymer Solutions
,”
J. Colloid Interface Sci.
,
349
, pp.
446
448
.10.1016/j.jcis.2010.05.083
36.
Bandopadhyay
,
A.
, and
Chakraborty
,
S.
,
2012
, “
Giant Augmentations in Electro-Hydro-Dynamic Energy Conversion Efficiencies of Nanofluidic Devices Using Viscoelastic Fluids
,”
Appl. Phys. Lett.
,
101
, p.
043905
.10.1063/1.4739429
37.
Nguyen
,
T.
,
Xie
,
Y.
,
de Vreede
,
L. J.
,
van den Berg
,
A.
, and
Eijkel
,
J. C. T.
,
2013
, “
Highly Enhanced Energy Conversion From the Streaming Current by Polymer Addition
,”
Lab Chip
,
13
, pp.
3210
3216
.10.1039/c3lc41232f
38.
Kilsgaard
,
B. S.
,
Haldrup
,
S.
,
Catalano
,
J.
, and
Bentien
,
A.
,
2014
, “
High Figure of Merit for Electrokinetic Energy Conversion in Nafion Membranes
,”
J. Power Sources
,
247
, pp.
235
242
.10.1016/j.jpowsour.2013.08.067
39.
Siria
,
A.
,
Poncharal
,
P.
,
Biance
,
A. L.
,
Fulcrand
,
R.
,
Blase
,
X.
,
Purcell
,
S. T.
, and
Bocquet
,
L.
,
2013
, “
Giant Osmotic Energy Conversion Measured in a Single Transmembrane Boron Nitride Nanotube
,”
Nature
,
494
, pp.
455
458
.10.1038/nature11876
40.
Xie
,
Y.
,
Bos
,
D.
,
de Vreede
,
L. J.
,
de Boer
,
H. L.
,
van der Meulen
,
M. J.
,
Versluis
,
M.
,
Sprenkels
,
A. J.
,
van den Berg
,
A.
, and
Eijkel
,
J. C. T.
, 2014, “
High-efficiency Ballistic Electrostatic Generator Using Microdroplets
,”
Nat. Commun.
5, Paper No. 3575.10.1038/ncomms4575
41.
Veerman
,
J.
,
Saakes
,
M.
,
Metz
,
S. J.
, and
Harmsen
,
G. J.
,
2009
, “
Reverse Electrodialysis: Performance of a Laboratory Device With 50 Cells on the Mixing of Sea and River Water
,”
J. Membr. Sci.
,
327
, pp.
136
144
.10.1016/j.memsci.2008.11.015
42.
Yasuda
,
R.
,
Noji
,
H.
,
Kinosita
,
K.
, and
Yoshida
,
M.
,
1998
, “
F1-ATPase is a Highly Efficient Molecular Motor That Rotates With Discrete 120 deg Steps
,”
Cell
,
93
, pp.
1117
1124
.10.1016/S0092-8674(00)81456-7
43.
Kinosita
,
K.
,
Yasuda
,
R.
,
Noji
,
H.
, and
Adachi
,
K.
,
2000
, “
A Rotary Molecular Motor That can Work at Near 100% Efficiency
,”
Philos. Trans. R. Soc. London
, Ser. B,
355
, pp.
473
489
.10.1098/rstb.2000.0589
44.
Meister
,
M.
,
Lowe
,
G.
, and
Berg
,
H. C.
,
1987
, “
The Proton Flux Through the Bacterial Flagellar Motor
,”
Cell
,
49
, pp.
643
650
.10.1016/0092-8674(87)90540-X
45.
Eijkel
,
J. C. T.
, and
van den Berg
,
A.
,
2006
, “
Active Transport: A New Chemical Separation Method?
Lab Chip
,
6
, pp.
597
600
.10.1039/b605305j
You do not currently have access to this content.