Migrating cells exert traction forces when moving. Amoeboid cell migration is a common type of cell migration that appears in many physiological and pathological processes and is performed by a wide variety of cell types. Understanding the coupling of the biochemistry and mechanics underlying the process of migration has the potential to guide the development of pharmacological treatment or genetic manipulations to treat a wide range of diseases. The measurement of the spatiotemporal evolution of the traction forces that produce the movement is an important aspect for the characterization of the locomotion mechanics. There are several methods to calculate the traction forces exerted by the cells. Currently the most commonly used ones are traction force microscopy methods based on the measurement of the deformation induced by the cells on elastic substrate on which they are moving. Amoeboid cells migrate by implementing a motility cycle based on the sequential repetition of four phases. In this paper, we review the role that specific cytoskeletal components play in the regulation of the cell migration mechanics. We investigate the role of specific cytoskeletal components regarding the ability of the cells to perform the motility cycle effectively and the generation of traction forces. The actin nucleation in the leading edge of the cell, carried by the ARP2/3 complex activated through the SCAR/WAVE complex, has shown to be fundamental to the execution of the cyclic movement and to the generation of the traction forces. The protein PIR121, a member of the SCAR/WAVE complex, is essential to the proper regulation of the periodic movement and the protein SCAR, also included in the SCAR/WAVE complex, is necessary for the generation of the traction forces during migration. The protein Myosin II, an important F-actin cross-linker and motor protein, is essential to cytoskeletal contractility and to the generation and proper organization of the traction forces during migration.

References

References
1.
Ausprunk
,
D. H.
, and
Folkman
,
J.
,
1977
, “
Migration and Proliferation of Endothelial Cells in Preformed and Newly Formed Blood Vessels During Tumor Angiogenesis
,”
Microvasc. Res.
,
14
(
1
), pp.
53
65
.10.1016/0026-2862(77)90141-8
2.
Bagorda
,
A.
,
Mihaylov
,
V.
, and
Parent
,
C. A.
,
2006
, “
Chemotaxis: Moving Forward and Holding on to the Past
,”
Thromb. Haemos.
,
95
(
1
), pp.
12
21
.
3.
Cooper
,
G. M.
, and
Hausman
,
R. E.
,
1997
,
The Cell: A Molecular Approach
,
Sinauer Associates
,
Sunderland, MA
.
4.
Lammermann
,
T.
, and
Six
,
M.
,
2009
, “
Mechanical Modes of ‘Amoeboid’ Cell Migration
,”
Curr. Opin. Cell Biol.
,
21
, pp.
636
644
.10.1016/j.ceb.2009.05.003
5.
Friedl
,
P.
, and
Wolf
,
K.
,
2009
, “
Plasticity of Cell Migration: A Multiscale Tunning Model
,”
J. Cell Biol.
,
188
(
1
), pp.
11
19
.10.1083/jcb.200909003
6.
Huttenlocher
,
A.
, and
Horwitz
,
A. R.
,
2011
, “
Integrins in Cell Migration
,”
Cold Spring Harbor Perspectives in Biology
,
3
(
9
), p. a005074.10.1101/cshperspect.a005074
7.
Mannherz
,
H. G.
,
Mach
,
M.
,
Nowak
,
D.
,
Malicka-Blaszkiewicz
,
M.
, and
Mazur
,
A.
,
2007
, “
Lamellipodial and Amoeboid Cell Locomotion: The Role of Actin-Cycling and Bleb Formation
,”
Biophys. Rev. Lett.
,
2
(
1
), pp.
5
22
.10.1142/S1793048007000404
8.
Meili
,
R.
,
Alonso-Latorre
,
B.
,
del Álamo
,
J. C.
,
Firtel
,
R. A.
, and
Lasheras
,
J. C.
,
2010
, “
Myosin II is Essential for the Spatiotemporal Organization of Traction Forces During Cell Motility
,”
Mol. Biol. Cell
,
21
, pp.
405
417
.10.1091/mbc.E09-08-0703
9.
Smith
,
L. A.
,
Aranda-Espinoza
,
H.
,
Haun
,
J. B.
,
Dembo
,
M.
, and
Hammer
,
D. A.
,
2007
, “
Neutrophil Traction Stresses are Concentrated in the Uropod During Migration
,”
Biophys. J.
,
92
(
7
), pp.
58
60
.10.1529/biophysj.106.102822
10.
Shin
,
M. E.
,
He
,
Y.
,
Li
,
D.
,
Na
,
S.
,
Chowdhury
,
F.
,
Poh
,
Y.-C.
,
Collin
,
O.
,
Su
,
P.
,
de Lanerolle
,
P.
,
Schwartz
,
M. A.
,
Wang
,
N.
, and
Wang
,
F.
,
2010
, “
Spatiotemporal Organization, Regulspatiotemporal Organization, Regulation, and Functions of Tractions During Neutrophil Chemotaxis
,”
Blood
,
116
, pp.
3297
3310
.10.1182/blood-2009-12-260851
11.
Beningo
,
K. A.
,
Dembo
,
M.
,
Kaverina
,
I.
,
Small
,
J. V.
, and
Wang
,
Y.-L.
,
2001
, “
Nascent Focal Adhesions are Responsible for the Generation of Strong Propulsive Forces in Migrating Fibroblasts
,”
J. Cell Biol.
,
153
, pp.
881
888
.10.1083/jcb.153.4.881
12.
Friedl
,
P.
,
Borgmann
,
S.
, and
Brocker
,
E.-B.
,
2001
, “
Amoeboid Leukocyte Crawling Through Extracellular Matrix: Lessons from the Dictyostelium Paradigm of Cell Movement
,”
J. Leukocyte Biol.
,
70
(
4
), pp.
491
509
.
13.
Jannat
,
R. A.
,
Dembo
,
M.
, and
Hammer
,
D. A.
,
2011
, “
Traction Forces of Neutrophils Migrating on Compliant Substrates
,”
Biophys. J.
,
101
, pp.
575
584
.10.1016/j.bpj.2011.05.040
14.
Ricart
,
B. G.
,
Yang
,
M. T.
,
Hunter
,
C. A.
,
Chen
,
C. S.
, and
Hammer
,
D. A.
,
2011
, “
Measuring Traction Forces of Motile Dendritic Cells on Micropost Arrays
,”
Biophys. J.
,
101
, pp.
2620
2628
.10.1016/j.bpj.2011.09.022
15.
Lammermann
,
T.
,
Bader
,
B. L.
,
Monkley
,
S. J.
,
Worbs
,
T.
,
Wedlich-Soldner
,
R.
,
Hirsch
,
K.
,
Keller
,
M.
,
Forster
,
R.
,
Critchley
,
D. R.
,
Fassler
,
R.
, and
Six
,
M.
,
2008
, “
Rapid Leukocyte Migration by Integrin-Independent Flowing and Squeezing
,”
Nature
,
453
, pp.
51
55
.10.1038/nature06887
16.
del Álamo
,
J. C.
,
Meili
,
R.
,
Alonso-Latorre
,
B.
,
Rodriguez-Rodriguez
,
J.
,
Aliseda
,
A.
,
Firtel
,
R. A.
, and
Lasheras
,
J. C.
,
2007
, “
Spatiotemporal Analysis of Eukaryotic Cell Motility by Improved Force Cytometry
,”
Proc. Natl. Acad. Sci.
,
104
(
33
), pp.
13343
13348
.10.1073/pnas.0705815104
17.
Stricker
,
J.
,
Falzone
,
T.
, and
Gardel
,
M. L.
,
2010
, “
Mechanics of the F-Actin Cytoskeleton
,”
J. Biomech.
,
43
, pp.
9
14
.10.1016/j.jbiomech.2009.09.003
18.
Spiering
,
D.
, and
Hodgson
,
L.
,
2011
, “
Dynamics of the Rho-Family Small Gtpases in Actin Regulation and Motility
,”
Cell Adhes. Migrat.
,
5
(
2
), pp.
170
180
.10.4161/cam.5.2.14403
19.
Sasaki
,
A. T.
, and
Firtel
,
R. A.
,
2006
, “
Regulation of Chemotaxis by the Orchestrated Activation of RAS, PI3K, and TOR
,”
Eur. J. Cell Biol.
,
85
, pp.
873
895
.10.1016/j.ejcb.2006.04.007
20.
Fey
,
P.
,
Stephens
,
S.
,
Titus
,
M.
, and
Chisholm
,
R.
,
2002
, “
Sada, A Novel Adhesion Receptor in Dictyostelium
,”
J. Cell Biol.
,
159
, pp.
1109
1119
.10.1083/jcb.200206067
21.
Uchida
,
K.
, and
Yumura
,
S.
,
2004
, “
Dynamics of Novel Feet of Dictyostelium Cells During Migration
,”
J. Cell Sci.
,
117
, pp.
1443
1455
.10.1242/jcs.01015
22.
Friedl
,
P.
,
Entschladen
,
F.
,
Conrad
,
C.
,
Niggemann
,
B.
, and
Zänker
,
K.
,
1998
, “
Cd4+ t Lymphocytes Migrating in Three-Dimensional Collagen Lattices Lack Focal Adhesions and Utilize Beta1 Integrin-Independent Strategies for Polarization, Interaction With Collagen Fibers and Locomotion
,”
Eur. J. Immunol.
,
28
(
8
), pp.
2331
2343
.10.1002/(SICI)1521-4141(199808)28:08<2331::AID-IMMU2331>3.0.CO;2-C
23.
Ananthakrishnan
,
R.
, and
Ehrlicher
,
A.
,
2007
, “
The Forces Behind Cell Movement
,”
Int. J. Biol. Sci.
,
3
(
5
), pp.
303
317
.10.7150/ijbs.3.303
24.
Li
,
B.
, and
Wang
,
J. H.-C.
,
2010
, “
Application of Sensing Techniques to Cellular Force Measurement
,”
Sensors
,
10
, pp.
9948
9962
.10.3390/s101109948
25.
Li
,
B.
,
Xie
,
L.
,
Starr
,
Z. C.
,
Yang
,
Z.
,
Lin
,
J.-S.
, and
Wang
,
J. H.-C.
,
2007
, “
Development of Micropost Force Sensor Array With Culture Experiments for Determination of Cell Traction Forces
,”
Cell Motil. Cytoskeleton
,
64
, pp.
509
518
.10.1002/cm.20200
26.
Mathur
,
A.
,
Roca-Cusachs
,
P.
,
Rossier
,
O. M.
,
Wind
,
S. J.
,
Sheetz
,
M. P.
, and
Hone
,
J.
,
2011
, “
New Approach for Measuring Protrusive Forces in Cells
,”
J. Vacuum Sci. Technol. B
,
29
(
6
),
06FA02
.
27.
Han
,
S. J.
,
Bielawski
,
K. S.
,
Ting
,
L. H.
,
Rodriguez
,
M. L.
, and
Sniadecki
,
N. J.
,
2012
, “
Decoupling Substrate Stiffness, Spread Area, and Micropost Density: A Close Spatial Relationship Between Traction Forces and Focal Adhesions
,”
Biophys. J.
,
103
, pp.
640
648
.10.1016/j.bpj.2012.07.023
28.
Yang
,
M. T.
,
Fu
,
J.
,
Wang
,
Y.-K.
,
Desai
,
R. A.
, and
Chen
,
C. S.
,
2011
, “
Assaying Stem Cell Mechanobiology on Microfabricated Elastomeric Substrates with Geometrically Modulated Rigidity
,”
Nat. Protoc.
,
6
(
2
), pp.
187
213
.10.1038/nprot.2010.189
29.
Sniadecki
,
N. J.
,
Lamb
,
C. M.
,
Liu
,
Y.
,
Chen
,
C. S.
, and
Reich
,
D. H.
,
2008
, “
Magnetic Microposts for Mechanical Stimulation of Biological Cells: Fabrication, Characterization, and Analysis
,”
Rev. Sci. Instrum.
,
79
, p.
044302
.10.1063/1.2906228
30.
Lin
,
Y.-C.
,
Kramer
,
C. M.
,
Chen
,
C. S.
, and
Reich
,
D. H.
,
2012
, “
Probing Cellular Traction Forces With Magnetic Nanowires and Microfabricated Force Sensor Arrays
,”
Nanotechnology
,
23
, p.
075101
.10.1088/0957-4484/23/7/075101
31.
McGarry
,
J. P.
,
Fu
,
J.
,
Yang
,
M. T.
,
Chen
,
C. S.
,
McMeeking
,
R. M.
,
Evans
,
A. G.
, and
Deshpande
,
V. S.
,
2009
, “
Simulation of the Contractile Response of Cells on an Array of Micro-Posts
,”
Philos. Trans. R. Soc. A
,
367
(
1902
), pp.
3477
3497
.10.1098/rsta.2009.0097
32.
Wang
,
J. H.-C.
, and
Lin
,
J.-S.
,
2007
, “
Cell Traction Force and Measurement Methods
,”
Biomech. Model. Mechanobiol.
,
6
, pp.
361
371
.10.1007/s10237-006-0068-4
33.
Schwarz
,
U.
,
Balaban
,
N.
,
Riveline
,
D.
,
Addadi
,
L.
,
Bershadsky
,
A.
,
Safran
,
S.
, and
Geiger
,
B.
,
2003
, “
Measurement of Cellular Forces at Focal Adhesions Using Elastic Micro-Patterned Substrates
,”
Mater. Sci. Eng.
,
23
(
3
), pp.
387
394
.10.1016/S0928-4931(02)00309-0
34.
Reinhart-King
,
C. A.
,
Dembo
,
M.
, and
Hammer
,
D. A.
,
2003
, “
Endothelial Cell Traction Forces on RGD-Derivatized Polyacrylamide Substrata
,”
Langmuir
,
19
(
5
), pp.
1573
1579
.10.1021/la026142j
35.
Han
,
S. J.
, and
Sniadecki
,
N. J.
,
2011
, “
Simulations of the Contractile Cycle in Cell Migration Using a Bio-Chemical-Mechanical Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
5
), pp.
459
468
.10.1080/10255842.2011.554412
36.
Banerjee
,
S.
, and
Marchetti
,
M. C.
,
2013
, “
Controlling Cell–Matrix Traction Forces by Extracellular Geometry
,”
New J. Phys.
,
15
, p.
035015
.10.1088/1367-2630/15/3/035015
37.
Zielinski
,
R.
,
Mihai
,
C.
,
Kniss
,
D.
, and
Ghadiali
,
S. N.
,
2013
, “
Finite Element Analysis of Traction Force Microscopy: Influence of Cell Mechanics, Adhesion, and Morphology
,”
ASME J. Biomech. Eng.
,
135
(
7
), p.
071009
.10.1115/1.4024467
38.
Holmes
,
W. R.
, and
Edelstein-Keshet
,
L.
,
2012
, “
A Comparison of Computational Models for Eukaryotic Cell Shape and Motility
,”
PLOS Comput. Biol.
,
8
(
12
),
e1002793
.10.1371/journal.pcbi.1002793
39.
Devreotes
,
P. N.
, and
Zigmond
,
S. H.
,
1988
, “
Chemotaxis in Eukaryotic Cells: A Focus on Leukocytes and Dictyostelium
,”
Ann. Rev. Cell Biol.
,
4
, pp.
649
686
.10.1146/annurev.cb.04.110188.003245
40.
Charest
,
P. G.
, and
Firtel
,
R. A.
,
2007
, “
Big Roles for Small Gtpases in the Control of Directed Cell Movement
,”
Biochem. J.
,
401
, pp.
377
390
.10.1042/BJ20061432
41.
Zigmond
,
S. H.
,
1993
, “
Recent Quantitative Studies of Actin Filament Turnover During Cell Locomotion
,”
Cell Motil. Cytoskeleton
,
25
, pp.
3309
3016
.10.1002/cm.970250402
42.
Borisy
,
G. G.
, and
Svitkina
,
T. M.
,
2000
, “
Actin Machinery: Pushing the Envelope
,”
Curr. Opin. Cell Biol.
,
12
, pp.
104
112
.10.1016/S0955-0674(99)00063-0
43.
Mullins
,
R. D.
,
Heuser
,
J. A.
, and
Pollard
,
T. D.
,
1998
, “
The Interaction of arp2y3 Complex with Actin: Nucleation, High Affinity Pointed End Capping, and Formation of Branching Networks of Filaments
,”
Proc. Natl. Acad. Sci.
,
95
, pp.
6181
6186
.10.1073/pnas.95.11.6181
44.
Pollard
,
T. D.
,
2007
, “
Regulation of Actin Filament Assembly by arp2/3 Complex and Formins
,”
Ann. Rev. Biophys. Biomol. Struct.
,
36
, pp.
451
477
.10.1146/annurev.biophys.35.040405.101936
45.
Weiner
,
O. D.
,
Servant
,
G.
,
Welch
,
M. D.
,
Mitchison
,
T. J.
,
Sedat
,
J. W.
, and
Bourne
,
H. R.
,
1999
, “
Spatial Control of Actin Polymerization During Neutrophil Chemotaxis
,”
Nat. Cell Biol.
,
1
, pp.
75
81
.10.1038/10042
46.
Spudich
,
J. A.
,
1989
, “
In Pursuit of Myosin Function
,”
Cell Regul.
,
1
, pp.
1
11
.
47.
Stites
,
J.
,
Wessels
,
D.
,
Uhl
,
A.
,
Egelhoff
,
T.
,
Shutt
,
D.
, and
Soll
,
D. R.
,
1998
, “
Phosphorylation of the Dictyostelium Myosin ii Heavy Chain is Necessary for Maintaining Cellular Polarity and Suppressing Turning During Chemotaxis
,”
Cell Motil. Cytoskeleton
,
39
, pp.
31
51
.10.1002/(SICI)1097-0169(1998)39:1<31::AID-CM4>3.0.CO;2-J
48.
Yumura
,
S.
,
Mori
,
H.
, and
Fukui
,
Y.
,
1984
, “
Localization of Actin and Myosin for the Study of Ameboid Movement in Dictyostelium Using Improved Immunofluorescence
,”
J. Cell Biol.
,
99
(
3
), pp.
894
899
.10.1083/jcb.99.3.894
49.
Fukui
,
Y.
, and
Yumura
,
S.
,
1986
, “
Actomyosin Dynamics in Chemotactic Amoeboid Movement of Dictyostelium
,”
Cell Motil. Cytoskeleton
,
6
, pp.
662
673
.10.1002/cm.970060614
50.
Moores
,
S. L.
,
Sabry
,
J. H.
, and
Spudich
,
J. A.
,
1996
, “
Myosin Dynamics in Live Dictyostelium Cells
,”
Proc. Natl. Acad. Sci.
,
93
, pp.
443
446
.10.1073/pnas.93.1.443
51.
Dembo
,
M.
,
Oliver
,
T.
,
Ishihara
,
A.
, and
Jacobson
,
K.
,
1996
, “
Imaging the Traction Stresses Exerted by Locomoting Cells With Theelastic Substratum Method
,”
Biophys. J.
,
70
, pp.
2008
2022
.10.1016/S0006-3495(96)79767-9
52.
Dembo
,
M.
, and
Wang
,
Y.-L.
,
1999
, “
Stresses at the Cell-to-Substrate Interface During Locomotion of Fibroblasts
,”
Biophys. J.
,
76
, pp.
2307
2316
.10.1016/S0006-3495(99)77386-8
53.
Butler
,
J. P.
,
Tolić-Nørrelykke
, I
. M.
,
Fabry
,
B.
, and
Fredberg
,
J. J.
,
2002
, “
Traction Fields, Moments, and Strain Energy that Cells Exert on Their Surroundings
,”
Am. J. Cell Physiol.
,
282
, pp.
595
605
.10.1152/ajpcell.00270.2001
54.
Yang
,
Z.
,
Lin
,
J.-S.
,
Chen
,
J.
, and
Wang
,
J. H.-C.
,
2006
, “
Determining Substrate Displacement and Cell Traction Fields-A New Approach
,”
J. Theor. Biol.
,
242
, pp.
607
616
.10.1016/j.jtbi.2006.05.005
55.
Wang
,
Y. L.
, and,
Pelham
,
R. J.
, Jr
.,
1998
, “
Preparation of a Flexible, Porous Polyacrylamide Substrate for Mechanical Studies of Cultured Cells
,”
Methods Enzymol.
,
298
, pp.
489
496
.
56.
Engler
,
A.
,
Bacakova
,
L.
,
Newman
,
C.
,
Hategan
,
A.
,
Griffin
,
M.
, and
Discher
,
D.
,
2004
, “
Substrate Compliance Versus Ligand Density in Cell on Gel Responses
,”
Biophys. J.
,
86
, pp.
617
628
.10.1016/S0006-3495(04)74140-5
57.
Alonso-Latorre
,
B.
,
2010
, “
Force and Shape Coordination in Amoeboid Cell Motility
,” Ph.D. thesis, University of California, San Diego, CA.
58.
Keer
,
L. M.
,
1964
, “
Stress Distribution at the Edge of an Equilibrium Crack
,”
J. Mech. Phys. Solids
,
12
(
3
), pp.
149
163
.10.1016/0022-5096(64)90015-8
59.
Chippada
,
U.
,
Yurke
,
B.
, and
Langrana
,
N. A.
,
2011
, “
Simultaneous Determination of Young's Modulus, Shear Modulus, and Poisson's Ratio of Soft Hydrogels
,”
J. Mater. Res.
,
25
(
3
), pp.
545
555
.10.1557/JMR.2010.0067
60.
Takigawa
,
T.
,
Morino
,
Y.
,
Urayama
,
K.
, and
Masudab
,
T.
,
1996
, “
Poisson's Ratio of Polyacrylamide (Paam) Gels
,”
Polym. Gels Networks
,
4
(
1
), pp.
1
5
.
61.
Li
,
Y.
,
Hu
,
Z.
, and
Li
,
C.
,
1993
, “
New Method for Measuring Poisson's Ratio in Polymer Gels
,”
Appl. Polym. Sci.
,
50
(
6
), pp.
1107
1111
.10.1002/app.1993.070500619
62.
Willert
,
C. E.
, and
Gharib
,
M.
,
1991
, “
Digital Particle Image Velocimetry
,”
Exp. Fluids
,
10
(
4
), pp.
181
193
.10.1007/BF00190388
63.
Gui
,
L.
, and
Wereley
,
S. T.
,
2002
, “
A Correlation-Based Continuous Window-Shift Technique to Reduce the Peak-Locking Effect in Digital PIV Image Evaluation
,”
Exp. Fluids
,
32
, pp.
506
517
.10.1007/s00348-001-0396-1
64.
Hur
,
S. S.
,
Zhao
,
Y.
,
Li
,
Y.-S.
,
Botvinick
,
E.
, and
Chien
,
S.
,
2009
, “
Live Cells Exert 3-Dimensional Traction Forces on Their Substrata
,”
Cell. Mol. Bioeng.
,
2
(
3
), pp.
425
436
.10.1007/s12195-009-0082-6
65.
Franck
,
C.
,
Maskarinec
,
S. A.
,
Tirrell
,
D. A.
, and
Ravichandran
,
G.
,
2011
, “
Three-Dimensional Traction Force Microscopy: A New Tool for Quantifying Cell-Matrix Interactions
,”
PLOS ONE
,
6
(
3
),
317833
.
66.
Delanoë-Ayari
,
H.
, and
Rieu
,
J. P.
,
2010
, “
4D Traction Force Microscopy Reveals Asymmetric Cortical Forces in Migrating Dictyostelium Cells
,”
Phys. Rev. Lett.
,
105
(
24
), p.
248103
.10.1103/PhysRevLett.105.248103
67.
del Álamo
,
J. C.
,
Meili
,
R.
,
Álvarez-González
,
B.
,
Alonso-Latorre
,
B.
,
Bastounis
,
E.
,
Firtel
,
R.
, and
Lasheras
,
J. C.
,
2013
, “
Three-Dimensional Quantification of Cellular Traction Forces and Mechanosensing of Thin Substrata by Fourier Traction Force Microscopy
,”
PLOS ONE
,
8
(
9
),
e69850
.10.1371/journal.pone.0069850
68.
Legant
,
W. R.
,
Miller
,
J. S.
,
Blakely
,
B. L.
,
Cohen
,
D. M.
,
Genin
,
G. M.
, and
Chen
,
C. S.
,
2010
, “
Measurement of Mechanical Tractions Exerted by Cells in Three-Dimensional Matrices
,”
Nat. Methods
,
7
(
2
), pp.
969
971
.10.1038/nmeth.1531
69.
Ridley
,
A. J.
,
Schwartz
,
M. A.
,
Burridge
,
K.
,
Firtel
,
R. A.
,
Ginsberg
,
M. H.
,
Borisy
,
G.
,
Parsons
,
J. T.
, and
Horwitz
,
A. R.
,
2003
, “
Cell Migration: Integrating Signals from Front to Back
,”
Science
,
302
, pp.
1704
1709
.10.1126/science.1092053
70.
Bailly
,
M.
,
Condeelis
,
J. S.
, and
Segall
,
J. E.
,
1998
, “
Chemoattractant-Induced Lamellipod Extension
,”
Microscop. Res. Tech.
,
43
(
5
), pp.
433
443
.10.1002/(SICI)1097-0029(19981201)43:5<433::AID-JEMT9>3.0.CO;2-2
71.
Zhelev
,
D. V.
,
Alteraifi
,
A. M.
, and
Chodniewicz
,
D.
,
2004
, “
Controlled Pseudopod Extension of Human Neutrophils Stimulated With Different Chemoattractants
,”
Biophys. J.
,
87
(
1
), pp.
688
695
.10.1529/biophysj.103.036699
72.
Wessels
,
D.
,
Vawter-Hugart
,
H.
,
Murray
,
J.
, and
Soll
,
D. R.
,
1994
, “
Three-Dimensional Dynamics of Pseudopod Formation and the Regulation of Turning During the Motility Cycle of Dictyostelium
,”
Cell Motil. Cytoskeleton
,
27
, pp.
1
12
.10.1002/cm.970270102
73.
Murray
,
J.
,
Vawter-Hugart
,
H.
,
Voss
,
E.
, and
Soll
,
D. R.
,
1992
, “
Three-Dimensional Motility Cycle in Leukocytes
,”
Cell Motil. Cytoskeleton
,
22
, pp.
211
223
.10.1002/cm.970220308
74.
Ehrengruber
,
M. U.
,
Deranleau
,
D. A.
, and
Coates
,
T. D.
,
1996
, “
Shape Oscillations of Human Neutrophil Leukocytes: Characterization and Relationship to Cell Motility
,”
J. Exp. Biol.
,
199
, pp.
741
747
.
75.
Lauffenburger
,
D. A.
, and
Horwitz
,
A. F.
,
1996
, “
Cell Migration: A Physically Integrated Molecular Process
,”
Cell
,
84
, pp.
359
369
.10.1016/S0092-8674(00)81280-5
76.
Bastounis
,
E.
,
Meili
,
R.
,
Alonso-Latorre
,
B.
,
del Álamo
,
J. C.
,
Lasheras
,
J. C.
, and
Firtel
,
R. A.
,
2011
, “
The Scar/Wave Complex is Necessary for Proper Regulation of Traction Stresses During Amoeboid Motility
,”
Mol. Biol. Cell
,
22
, pp.
3995
4003
.10.1091/mbc.E11-03-0278
77.
Chen
,
T.
,
Kowalczyk
,
P.
,
Ho
,
G.
, and
Chisholm
,
R.
,
1995
, “
Targeted Disruption of the Dictyostelium Myosin Essential Light Chain Gene Produces Cells Defective in Cytokinesis and Morphogenesis
,”
J. Cell Sci.
,
108
, pp.
3207
3218
.
78.
Xu
,
X. S.
,
Lee
,
E.
,
Chen.
T.
,
Kuczmarski
,
E.
,
Chisholm
,
R. L.
, and
Knecht
,
D. A.
,
2001
, “
During Multicellular Migration, Myosin II Serves a Structural Role Independent of its Motor Function
,”
Develop. Biol.
,
232
, pp.
255
264
.10.1006/dbio.2000.0132
79.
Lozanne
,
A. D.
, and
Spudich
,
J. A.
,
1987
, “
Disruption of the Dictyostelium Myosin Heavy-Chain Gene by Homologous Recombination
,”
Science
,
237
(
4805
), pp.
1086
1091
.10.1126/science.3576222
80.
Chen
,
P.
,
Ostrow
,
B.
,
Tafuri
,
S.
, and
Chisholm
,
R.
,
1994
, “
Targeted Disruption of the Dictyostelium RMLC Gene Produces Cells Defective in Cytokinesis and Development
,”
J. Cell Biol.
,
127
, pp.
1933
1944
.10.1083/jcb.127.6.1933
81.
Laevsky
,
G.
, and
Knecht
,
D. A.
,
2003
, “
Cross-Linking of Actin Filaments by Myosin II is a Major Contributor to Cortical Integrity and Cell Motility in Restrictive Environments
,”
J. Cell Sci.
,
116
, pp.
3761
3770
.10.1242/jcs.00684
82.
Griffith
,
L. M.
,
Downs
,
S. M.
, and
Spudich
,
J. A.
,
1987
, “
Myosin Light Chain Kinase and Myosin Light Chain Phosphatase from Dictyostelium: Effects of Reversible Phosphorylation on Myosin Structure and Function
,”
J. Cell Biol.
,
104
(
5
), pp.
1309
1323
.10.1083/jcb.104.5.1309
83.
Alonso-Latorre
,
B.
,
del Álamo
,
J.
,
Meili
,
R.
,
Firtel
,
R.
, and
Lasheras.
,
J.
,
2011
, “
Strain Energy Modes in Migrating Amoeboid Cells
,”
J. Cell. Mol. Biol.
,
4
(
4
), pp.
603
615
.
84.
Weber
,
I.
,
Wallraff
,
E.
,
Albrecht
,
R.
, and
Gerisch
,
G.
,
1995
, “
Motility and Substratum Adhesion of Dictyostelium Wild-Type and Cytoskeletal Mutant Cells: A Study by Ricm/Bright-Field Double-View Image Analysis
,”
J. Cell Sci.
,
108
, pp.
1519
1530
.
85.
Lombardi
,
M. L.
,
Knecht
,
D. A.
,
Dembo
,
M.
, and
Lee
,
J.
,
2007
.
“Traction Force Microscopy in Dictyostelium Reveals Distinct Roles for Myosin Ii Motor and Actin Crosslinking Activity in Polarized Cell Movement,”
J. Cell Sci.
,
120
, pp.
1624
1634
.10.1242/jcs.002527
86.
Delanoe-Ayari
,
H.
,
Iwaya
,
S.
,
Maeda
,
Y. T.
,
Inose
,
J.
,
Riviere
,
C.
,
Sano
,
M.
, and
Rieu
,
J.-P.
,
2008
, “
Changes in the Magnitude and Distribution of Forces at Different Dictyostelium Developmental Stages
,”
Cell Motil. Cytoskeleton
,
65
, pp.
314
331
.10.1002/cm.20262
87.
Steffen
,
A.
,
Rottner
,
K.
,
Ehinger
,
J.
,
Innocenti
,
M.
,
Scita
,
G.
,
Wehland
,
J.
, and
Stradal
,
T. E.
,
2004
, “
Sra-1 and Nap1 Link RAC to Actin Assembly Driving Lamellipodia Formation
,”
EMBO J.
,
23
, pp.
749
759
.10.1038/sj.emboj.7600084
88.
Cory
,
G. O. C.
, and
Ridley
,
A. J.
,
2002
, “
Cell Motility: Braking Waves
,”
Nature
,
418
, pp.
732
733
.10.1038/418732a
89.
Basu
,
D.
,
El-Assal
,
S. E.-D.
,
Le
,
J.
,
Mallery
,
E.
, and
Szymanski
,
D. B.
,
2004
, “
Interchangeable Functions of Arabidopsis Pirogi and the Human Wave Complex Subunit Sra1 During Leaf Epidermal Development
,”
Developmental
,
131
, pp.
4345
4355
.10.1242/dev.01307
90.
Davidson
,
A. J.
, and
Insall
,
R. H.
,
2011
, “
Actin-Based Motility: Wave Regulatory Complex Structure Reopens Old Scars
,”
Curr. Biol.
,
21
(
2
), pp.
R66
R68
.10.1016/j.cub.2010.12.001
You do not currently have access to this content.