Under nanoconfinement, fluid molecules and ions exhibit radically different configurations, properties, and energetics from those of their bulk counterparts. These unique characteristics of nanoconfined fluids, along with the unconventional interactions with solids at the nanoscale, have provided many opportunities for engineering innovation. With properly designed nanoconfinement, several nanofluidic systems have been devised in our group in the past several years to achieve energy conversion functions with high efficiencies. This review is dedicated to elucidating the unique characteristics of nanofluidics, introducing several novel nanofluidic systems combining nanoporous materials with functional fluids, and to unveiling their working mechanisms. In all these systems, the ultra-large surface area available in nanoporous materials provides an ideal platform for seamlessly interfacing with nanoconfined fluids, and efficiently converting energy between the mechanical, thermal, and electrical forms. These systems have been demonstrated to have great potentials for applications including energy dissipation/absorption, energy trapping, actuation, and energy harvesting. Their efficiencies can be further enhanced by designing efforts based upon improved understanding of nanofluidics, which represents an important addition to classical fluid mechanics. Through the few systems exemplified in this review, the emerging research field of nanoscale fluid mechanics may promote more exciting nanofluidic phenomena and mechanisms, with increasing applications by encompassing aspects of mechanics, materials, physics, chemistry, biology, etc.

Reference

Reference
1.
Lu
,
G.
, and
Yu
,
T.
,
2003
,
Energy Absorption of Structures and Materials
,
CRC Press
,
Hong Kong
.
2.
Evans
,
A. G.
,
He
,
M. Y.
,
Deshpande
,
V. S.
,
Hutchinson
,
J. W.
,
Jacobsen
,
A. J.
, and
Carter
,
W. B.
,
2010
, “
Concepts for Enhanced Energy Absorption Using Hollow Micro-Lattices
,”
Int. J. Impact Eng.
,
37
, pp.
947
959
.10.1016/j.ijimpeng.2010.03.007
3.
McMeeking
,
R. M.
,
Spuskanyuk
,
A. V.
,
He
,
M. Y.
,
Deshpande
,
V. S.
,
Fleck
,
N. A.
, and
Evans
,
A. G.
,
2008
, “
An Analytic Model for the Response to Water Blast of Unsupported Metallic Sandwich Panels
,”
Int. J. Solids Struct.
,
45
, pp.
478
496
.10.1016/j.ijsolstr.2007.08.003
4.
Tagarielli
,
V. L.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2007
, “
The Dynamic Response of Composite Sandwich Beamsnext Term to Transverse Impact
,”
Int. J. Solids Struct.
,
44
, pp.
2442
2457
.10.1016/j.ijsolstr.2006.07.015
5.
Rathbun
,
H. J.
,
Radford
,
D. D.
,
Xue
,
Z.
,
He
,
M. Y.
,
Yang
,
J.
,
Deshpande
,
V.
,
Fleck
,
N. A.
,
Hutchinson
,
J. W.
,
Zok
,
F. W.
, and
Evans
,
A. G.
,
2006
, “
Performance of Metallic Honeycomb-Core Sandwich Beamsnext Term Under Shock Loading
,”
Int. J. Solids Struct.
,
43
, pp.
1746
1763
.10.1016/j.ijsolstr.2005.06.079
6.
Meo
,
M.
,
Vignjevic
,
R.
, and
Marengo
,
G.
,
2005
, “
The Response of Honeycombnext Herm Sandwich Panels Under Low-Velocity Impact Loading
,”
Int. J. Mech. Sci.
,
47
, pp.
1301
1325
.10.1016/j.ijmecsci.2005.05.006
7.
Boyle
,
G.
,
2012
,
Renewable Energy: Power for a Sustainable Future
,
3rd ed.
,
Oxford University Press
,
Oxford, UK
.
8.
Conti
,
J.
, and
Holtberg
,
P.
,
2011
, “
International Energy Outlook 2011
,” U.S. Energy Information Administration, Technical Report No. DOE/EIA-0484.
9.
Smalley
,
R. E.
,
2005
, “
Future Global Energy Prosperity: The Terawatt Challenge
,”
MRS Bull.
,
30
, pp.
412
417
.10.1557/mrs2005.124
10.
Wagner
,
H. D.
, and
Vaia
,
R. A.
,
2004
, “
Nanocomposites: Issues at the Interface
,”
Mater. Today
,
7
, pp.
38
42
.10.1016/S1369-7021(04)00507-3
11.
Eijkel
,
J. C. T.
, and
van den Berg
,
A.
,
2008
, “
Nanofluidics: What Is It and What Can We Expect From It?
,”
Microfluid. Nanofluid.
,
1
, pp.
249
267
.10.1007/s10404-004-0012-9
12.
Meng
,
D. D.
, and
Allen
,
J. S.
,
2008
, “
Micro and Nanofluidics for Energy Conversion
,”
IEEE Nanotechnol. Mag.
,
2
, pp.
19
23
.10.1109/MNANO.2008.930952
13.
Pennathur
,
S.
,
Eijkel
,
J. C. T.
, and
van den Berg
,
A.
,
2007
, “
Energy Conversion in Microsystems: Is There a Role for Micro/nanofluidics?
,”
Lab Chip
,
7
, pp.
1234
1237
.10.1039/b712893m
14.
Saidur
,
R.
,
Leong
,
I. K. Y.
, and
Mohammad
,
H. A.
,
2011
, “
A Review on Applications and Challenges of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
15
, pp.
1646
1668
.10.1016/j.rser.2010.11.035
15.
Kim
,
H.
,
Deng
,
W.-Q.
,
Goddard
,
W. A.
,
Jang
,
S. S.
,
Davis
,
M. E.
, and
Yan
,
Y.
,
2008
, “
Sodium Diffusion Through Aluminum-Doped Zeolite BEA System: Effect of Water Solvation
,”
J. Phys. Chem. C
,
113
(
3
), pp.
819
826
.10.1021/jp804873s
16.
Hummer
,
G.
,
Rasaiah
,
J. C.
, and
Noworyta
,
J. P.
,
2001
, “
Water Conduction Through the Hydrophobic Channel of a Carbon Nanotube
,”
Nature
,
414
(
6860
), pp.
188
190
.10.1038/35102535
17.
Mattia
,
D.
, and
Gogotsi
,
Y.
,
2008
, “
Review: Static and Dynamic Behavior of Liquids Inside Carbon Nanotubes
,”
Microfluid. Nanofluid.
,
5
(
3
), pp.
289
305
.10.1007/s10404-008-0293-5
18.
Hub
,
J. S.
, and
de Groot
,
B. L.
,
2008
, “
Mechanism of Selectivity in Aquaporins and Aquaglyceroporins
,”
Proc. Natl. Acad. Sci. USA
,
105
(
4
), pp.
1198
1203
.10.1073/pnas.0707662104
19.
Liu
,
L.
,
Zhang
,
L.
,
Sun
,
Z.
, and
Xi
,
G.
,
2012
, “
Graphene Nanoribbon-Guided Fluid Channel: A Fast Transporter of Nanofluids
,”
Nanoscale
,
4
(
20
), pp.
6279
6283
.10.1039/c2nr31847d
20.
Polarz
,
S.
, and
Smarsly
,
B.
,
2002
, “
Nanoporous Materials
,”
J. Nanosci. Nanotechnol.
,
2
(
6
), pp.
581
612
.10.1166/jnn.2002.151
21.
Li
,
H.
,
Eddaoudi
,
M.
,
O'Keeffe
,
M.
, and
Yaghi
,
O. M.
,
1999
, “
Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework
,”
Nature
,
402
(
6759
), pp.
276
279
.10.1038/46248
22.
El-Kaderi
,
H. M.
,
Hunt
,
J. R.
,
Mendoza-Cortes
,
J. L.
,
Cote
,
A. P.
,
Taylor
,
R. E.
,
O'Keeffe
,
M.
, and
Yaghi
,
O. M.
,
2007
, “
Designed Synthesis of 3D Covalent Organic Frameworks
,”
Science
,
316
(
5822
), pp.
268
272
.10.1126/science.1139915
23.
de Groot
,
B. L.
, and
Grubmuller
,
H.
,
2001
, “
Water Permeation Across Biological Membranes: Mechanism and Dynamics of Aquaporin-1 and GlpF
,”
Science
,
294
(
5550
), pp.
2353
2357
.10.1126/science.1062459
24.
Murata
,
K.
,
Mitsuoka
,
K.
,
Hirai
,
T.
,
Walz
,
T.
,
Agre
,
P.
,
Heymann
,
J. B.
,
Engel
,
A.
, and
Fujiyoshi
,
Y.
,
2000
, “
Structural Determinants of Water Permeation Through Aquaporin-1
,”
Nature
,
407
(
6804
), pp.
599
605
.10.1038/35036519
25.
Sui
,
H.
,
Han
,
B.-G.
,
Lee
,
J. K.
,
Walian
,
P.
, and
Jap
,
B. K.
,
2001
, “
Structural Basis of Water-Specific Transport Through the AQP1 Water Channel
,”
Nature
,
414
(
6866
), pp.
872
878
.10.1038/414872a
26.
Iijima
,
S.
,
1991
, “
Helical Microtubules of Graphitic Carbon
,”
Nature
,
354
(
6348
), pp.
56
58
.10.1038/354056a0
27.
Hilder
,
T. A.
,
Gordon
,
D.
, and
Chung
,
S.-H.
,
2009
, “
Salt Rejection and Water Transport Through Boron Nitride Nanotubes
,”
Small
,
5
(
19
), pp.
2183
2190
.10.1002/smll.200900349
28.
Cao
,
G.
,
Qiao
,
Y.
,
Zhou
,
Q.
, and
Chen
,
X.
,
2008
, “
Water Infiltration Behaviors in Carbon Nanotubes Under Static and Dynamic Loading Conditions
,”
Mol. Simul.
,
34
, pp.
1267
1274
.10.1080/08927020802175225
29.
Liu
,
L.
,
Chen
,
X.
,
Lu
,
W. Y.
,
Han
,
A. J.
, and
Qiao
,
Y.
,
2009
, “
Infiltration of Electrolytes in Molecular-Sized Nanopores
,”
Phys. Rev. Lett.
,
102
(
18
), p.
184501
.10.1103/PhysRevLett.102.184501
30.
Ling
,
L.
,
Xi
,
C.
,
Taewan
,
K.
,
Aijie
,
H.
, and
Yu
,
Q.
,
2010
, “
Effects of Anion Size and Concentration on Electrolyte Invasion Into Molecular-Sized Nanopores
,”
New J. Phys.
,
12
(
3
), p.
033021
.10.1088/1367-2630/12/3/033021
31.
Poynor
,
A.
,
Hong
,
L.
,
Robinson
,
I. K.
,
Granick
,
S.
,
Zhang
,
Z.
, and
Fenter
,
P. A.
,
2006
, “
How Water Meets a Hydrophobic Surface
,”
Phys. Rev. Lett.
,
97
(
26
), p.
266101
.10.1103/PhysRevLett.97.266101
32.
Zhao, J., Culligan, P., Qiao, Y., Zhou, Q., Li, Y., Tak, M., Park, T., and Chen, X., 2010, “Electrolyte Solution Transport in Electropolar Nanotubes,”
J. Phys.: Condens. Matter.
22
, p. 315301.
33.
Chen
,
X.
,
Cao
,
G. X.
,
Han
,
A. J.
,
Punyamurtula
,
V. K.
,
Liu
,
L.
,
Culligan
,
P. J.
,
Kim
,
T.
, and
Qiao
,
Y.
,
2008
, “
Nanoscale Fluid Transport: Size and Rate Effects
,”
Nano Lett.
,
8
(
9
), pp.
2988
2992
.10.1021/nl802046b
34.
Hanasaki
,
I.
, and
Nakatani
,
A.
,
2006
, “
Flow Structure of Water in Carbon Nanotubes: Poiseuille Type or Plug-Like?
,”
J. Chem. Phys.
,
124
, p.
144708
.10.1063/1.2187971
35.
Prakash
,
S.
,
2007
, “
Surface Mediated Transport and Reactions
,” Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana, IL.
36.
Falk,k., Sedlmeier, F., Joly, L., Netz, R.,and Bocquet, L.,2010, “Molecular Origin of Fast Water Transport in Carbon Nanotube Membranes: Superlubricity versus Curvature Dependent Friction,”
10
(10), pp, 4067–4073.
37.
Huang
,
D. M.
,
Sendner
,
C.
,
Horinek
,
D.
,
Netz
,
R. R.
, and
Bocquet
,
L.
,
2008
, “
Water Slippage versus Contact Angle: A Quasiuniversal Relationship
,”
Phys. Rev. Lett.
,
101
, p.
226101
.10.1103/PhysRevLett.101.226101
38.
Thomas
,
J. A.
, and
McGaughey
,
A. J. H.
,
2008
, “
Reassessing Fast Water Transport Through Carbon Nanotubes
,”
Nano Lett.
,
8
, pp.
2788
2793
.10.1021/nl8013617
39.
Skoulidas
,
A. I.
,
Ackerman
,
D. M.
,
Johnson
,
J. K.
, and
Sholl
,
D. S.
,
2002
, “
Rapid Transport of Gases in Carbon Nanotubes
,”
Phys. Rev. Lett.
,
89
(
18
), p.
185901
.10.1103/PhysRevLett.89.185901
40.
Qiao
,
Y.
,
Liu
,
L.
, and
Chen
,
X.
,
2009
, “
Pressurized Liquid in Nanopores: A Modified Laplace–Young Equation
,”
Nano Lett.
,
9
, pp.
984
988
.10.1021/nl8030136
41.
Alexiadis
,
A.
, and
Kassinos
,
S.
,
2008
, “
Molecular Simulation of Water in Carbon Nanotubes
,”
Chem. Rev.
,
108
(
12
), pp.
5014
5034
.10.1021/cr078140f
42.
Koga
,
K.
,
Gao
,
G. T.
,
Tanaka
,
H.
, and
Zeng
,
X. C.
,
2001
, “
Formation of Ordered Ice Nanotubes Inside Carbon Nanotubes
,”
Nature
,
412
(
6849
), pp.
802
805
.10.1038/35090532
43.
Lin, Y., Shiomi, j., Maruyama, S., and Amberg, G. 2009, “Dielectric Relaxation of Water Inside a Single-Walled Carbon Nanotube,” Phys. Rev. B.,
80
, p. 045419.
44.
Thomas
,
J. A.
, and
McGaughey
,
A. J. H.
,
2008
, “
Density, Distribution, and Orientation of Water Molecules Inside and Outside Carbon Nanotubes
,”
J. Chem. Phys.
,
128
(
8
), p.
084715
.10.1063/1.2837297
45.
Wang
,
J.
,
Zhu
,
Y.
,
Zhou
,
J.
, and
Lu
,
X. H.
,
2004
, “
Diameter and Helicity Effects on Static Properties of Water Molecules Confined in Carbon Nanotubes
,”
Phys. Chem. Chem. Phys.
,
6
(
4
), pp.
829
835
.10.1039/b313307a
46.
Gordillo
,
M. C.
, and
Marti
,
J.
,
2000
, “
Hydrogen Bond Structure of Liquid Water Confined in Nanotubes
,”
Chem. Phys. Lett.
,
329
(
5–6
), pp.
341
345
.10.1016/S0009-2614(00)01032-0
47.
Lynden-Bell
,
R. M.
, and
Rasaiah
,
J. C.
,
1996
, “
Mobility and Solvation of Ions in Channels
,”
J. Chem. Phys.
,
105
(
20
), pp.
9266
9280
.10.1063/1.472757
48.
Liu
,
L.
,
Zhao
,
J. B.
,
Yin
,
C.
,
Culligan
,
P. J.
, and
Chen
,
X.
,
2009
, “
Mechanisms of Water Infiltration Into Conical Hydrophobic Nanopores
,”
Phys. Chem. Chem. Phys.
,
11
, pp.
6520
6524
.10.1039/b905641f
49.
Werder
,
T.
,
Walther
,
J. H.
,
Jaffe
,
R. L.
,
Halicioglu
,
T.
, and
Koumoutsakos
,
P.
,
2003
, “
On the Water-Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes
,”
J. Phys. Chem. B
,
107
(
6
), pp.
1345
1352
.10.1021/jp0268112
50.
Chmiola
,
J.
,
Yushin
,
G.
,
Gogotsi
,
Y.
,
Portet
,
C.
,
Simon
,
P.
, and
Taberna
,
P. L.
,
2006
, “
Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer
,”
Science
,
313
(
5794
), pp.
1760
1763
.10.1126/science.1132195
51.
Liu
,
L.
,
Lim
,
H.
,
Lu
,
W.
,
Qiao
,
Y.
, and
Chen
,
X.
,
2012
, “
Mechanical-to-Electric Energy Conversion by Mechanically Driven Flow of Electrolytes Confined in Nanochannels
,”
Appl. Phys. Express
,
6
(
1
), p.
015202
.10.7567/APEX.6.015202
52.
Holt
,
J. K.
,
Park
,
H. G.
,
Wang
,
Y. M.
,
Stadermann
,
M.
,
Artyukhin
,
A. B.
,
Grigoropoulos
,
C. P.
,
Noy
,
A.
, and
Bakajin
,
O.
,
2006
, “
Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes
,”
Science
,
312
, pp.
1034
1037
.10.1126/science.1126298
53.
Majumder
,
M.
,
Chopra
,
N.
,
Andrews
,
R.
, and
Hinds
,
B. J.
,
2005
, “
Enhanced Flow in Carbon Nanotubes
,”
Nature
,
438
, p. 44.10.1038/438044a
54.
Kalra
,
A.
,
Garde
,
S.
, and
Hummer
,
G.
,
2003
, “
Osmotic Water Transport Through Carbon Nanotube Membranes
,”
Proc. Natl. Acad. Sci. USA
,
100
, pp.
10175
10180
.10.1073/pnas.1633354100
55.
Sokhan
,
V. P.
,
Nicholson
,
D.
, and
Quirke
,
N.
,
2002
, “
Fluid Flow in Nanopores: Accurate Boundary Conditions for Carbon Nanotubes
,”
J. Chem. Phys.
,
117
, pp. 8531–8539.10.1063/1.1512643
56.
Cottin-Bizonne
,
C.
,
Cross
,
B.
,
Steinberger
,
A.
, and
Charlaix
,
E.
,
2005
, “
Boundary Slip on Smooth Hydrophobic Surfaces: Intrinsic Effects and Possible Artifacts
,”
Phys. Rev. Lett.
,
94
, p.
056102
.10.1103/PhysRevLett.94.056102
57.
Xu
,
B.
,
Li
,
Y.
,
Park
,
T.
, and
Chen
,
X.
,
2011
, “
Effect of Wall Roughness on Fluid Transport Resistance in Nanopores
,”
J. Chem. Phys.
,
135
, p.
144703
.10.1063/1.3651158
58.
Joseph
,
S.
, and
Aluru
,
N. R.
,
2008
, “
Why Are Carbon Nanotubes Fast Transporters of Water?
,”
Nano Lett.
,
8
(
2
), pp.
452
458
.10.1021/nl072385q
59.
Tofighy
,
M. A.
, and
Mohammadi
,
T.
,
2010
, “
Salty Water Desalination Using Carbon Nanotube Sheets
,”
Desalination
,
258
, pp.
182
186
.10.1016/j.desal.2010.03.017
60.
Inglis
,
D. W.
,
Goldys
,
E. M.
, and
Calander
,
N. P.
,
2011
, “
Simultaneous Concentration and Separation of Proteins in a Nanochannel
,”
Angew. Chem. Int. Ed.
,
50
, pp.
7546
7550
.10.1002/anie.201100236
61.
Wang
,
Y. H.
,
Gong
,
C. M.
,
Sun
,
J. S.
,
Gao
,
H.
,
Zheng
,
S. A.
, and
Xu
,
S. M.
,
2010
, “
Separation of Ethanol/Water Azeotrope Using Compound Starch-Based Adsorbents
,”
Bioresour. Technol.
,
101
(
15
), pp.
6170
6176
.10.1016/j.biortech.2010.02.102
62.
Nachtigall
,
P.
,
Delgado
,
M. R.
,
Nachtigallova
,
D.
, and
Arean
,
C. O.
,
2012
, “
The Nature of Cationic Adsorption Sites in Alkaline Zeolites-Single, Dual and Multiple Cation Sites
,”
Phys. Chem. Chem. Phys.
,
14
(
5
), pp.
1552
1569
.10.1039/c2cp23237e
63.
Kim
,
S. J.
,
Ko
,
S. H.
,
Kang
,
K. H.
, and
Han
,
J.
,
2010
, “
Direct Seawater Desalination by Ion Concentration Polarization
,”
Nat. Nanotechnol.
,
5
(
4
), pp.
297
301
.10.1038/nnano.2010.34
64.
Xu
,
B.
,
2012
, “
Science of Nanofluidics and Energy Conversion
,” Ph.D. thesis, Columbia University, New York.
65.
Zhao
,
J.
,
2010
, “
Energy Conversion System Using Nanoporous Materials: A Joint Study of Experiments and Numerical Simulations
,” Ph.D. thesis, Columbia University, New York.
66.
Zhao
,
J. B.
,
Culligan
,
P. J.
,
Germain
,
J. T.
, and
Chen
,
X.
,
2009
, “
Experimental Study on Energy Dissipation of Electrolytes in Nanopores
,”
Langmuir
,
25
, pp.
12687
12696
.10.1021/la901696t
67.
Gupta
,
N.
, and
Maharsia
,
R.
,
2005
, “
Enhancement of Energy Absorption in Syntactic Foams by Nanoclay Incorporation for Sandwich Core Applications
,”
Appl. Compos. Mater.
12
, pp.
247
261
.10.1007/s10443-005-1130-6
68.
Evans
,
A. G.
,
Hutchinson
,
J. W.
,
Fleck
,
N. A.
,
Ashby
,
M. F.
, and
Wadley
,
H. N. G.
,
2001
, “
The Topological Design of Multifunctional Cellular Metals
,”
Prog. Mater. Sci.
,
46
, pp.
309
327
.10.1016/S0079-6425(00)00016-5
69.
Wei
,
Z. G.
,
Sandstrom
,
R.
, and
Miyazaki
,
S.
,
1998
, “
Shape-Memory Materials and Hybrid Composites for Smart Systems
,”
J. Mater. Sci.
,
33
, pp.
3743
3762
.10.1023/A:1004692329247
70.
Liu
,
L.
,
2010
, “
Nanofluidics: Fundamentals and Applications in Energy Conversion
,” Ph.D. thesis, Columbia University, New York.
71.
Liu
,
L.
, and
Chen
,
X.
,
2009
, “
Nanofluidic Transport in Branching Nanochannels: A Molecular Sieve Based on Y-Junction Nanotubes
,”
J. Phys. Chem. B
,
113
, pp.
6468
6472
.10.1021/jp900721h
72.
Liu
,
L.
,
Qiao
,
Y.
, and
Chen
,
X.
,
2008
, “
Pressure-Driven Water Infiltration Into Carbon Nanotube: The Effect of Applied Charges
,”
Appl. Phys. Lett.
,
92
(
10
), p.
101927
.10.1063/1.2857474
73.
Liu
,
L.
,
Zhao
,
J.
,
Culligan
,
P. J.
,
Qiao
,
Y.
, and
Chen
,
X.
,
2009
, “
Thermally Responsive Fluid Behaviors in Hydrophobic Nanopores
,”
Langmuir
,
25
, pp.
11862
11868
.10.1021/la901516j
74.
Xu
,
B.
,
Qiao
,
Y.
,
Zhou
,
Q.
, and
Chen
,
X.
,
2011
, “
Effect of Electric Field on Liquid Infiltration Into Hydrophobic Nanopores
,”
Langmuir
,
27
, pp.
6349
6357
.10.1021/la200477y
75.
Xu
,
B.
,
Qiao
,
Y.
,
Park
,
T.
,
Tak
,
M.
,
Zhou
,
Q.
, and
Chen
,
X.
,
2011
, “
A Conceptual Thermal Actuation System Driven by Interface Tension of Nanofluids
,”
Energy Environ. Sci.
,
4
, pp.
3632
3639
.10.1039/c1ee01405f
76.
Zhao
,
J.
,
Liu
,
L.
,
Culligan
,
P. J.
, and
Chen
,
X.
,
2009
, “
Thermal Effect on the Dynamic Infiltration of Water Into Single-Walled Carbon Nanotubes
,”
Phys. Rev. E
,
80
(
6
), p.
061206
.10.1103/PhysRevE.80.061206
77.
Xu
,
B.
,
Wang
,
B.
,
Park
,
T.
,
Qiao
,
Y.
,
Zhou
,
Q.
, and
Chen
,
X.
,
2012
, “
Temperature Dependence of Fluid Transport in Nanopores
,”
J. Chem. Phys.
,
136
(
18
), p.
184701
.10.1063/1.4712034
78.
Liu
,
L.
, and
Chen
,
X.
,
2013
, “
Fast Ion Transport and Phase Separation in a Mechanically Driven Flow of Electrolytes Through Tortuous Sub-Nanometer Nanochannels
,”
ChemPhysChem
,
14
(
11
), pp.
2413
2418
.10.1002/cphc.201300201
79.
Zhao
,
J. B.
,
Qiao
,
Y.
,
Culligan
,
P. J.
, and
Chen
,
X.
,
2010
, “
Confined Liquid Flow in Nanotube: A Numerical Study and Implications for Energy Absorption
,”
J. Comput. Theor. Nanosci.
,
7
(
2
), pp.
379
387
.10.1166/jctn.2010.1369
80.
Xu
,
B.
,
Chen
,
X.
, and
Qiao
,
Y.
,
2014
, “
Mitigating Impact/Blast Energy Via a Novel Nanofluidic Energy Capture Mechanism
,”
J. Mech. Phys. Solids
,
62
, pp.
194
208
.10.1016/j.jmps.2013.09.022
81.
Good
,
R. J.
,
1992
, “
Contact Angle, Wetting, and Adhesion: A Critical Review
,”
J. Adhes. Sci. Technol.
,
6
, pp.
1269
1302
.10.1163/156856192X00629
82.
Kataoka
,
D. E.
, and
Troian
,
S. M.
,
1999
, “
Patterning Liquid Flow on the Microscopic Scale
,”
Nature
,
402
(
6763
), pp.
794
797
.10.1038/45521
83.
Squires
,
T. M.
, and
Quake
,
S. R.
,
2005
, “
Microfluidics: Fluid Physics at the Nanoliter Scale
,”
Rev. Mod. Phys.
,
77
(
3
), pp.
977
1026
.10.1103/RevModPhys.77.977
84.
Sammarco
,
T. S.
, and
Burns
,
M. A.
,
1999
, “
Thermocapillary Pumping of Discrete Drops in Microfabricated Analysis Devices
,”
AIChE J.
,
45
(
2
), pp.
350
366
.10.1002/aic.690450215
85.
Darhuber
,
A. A.
,
Valentino
,
J. P.
,
Davis
,
J. M.
,
Troian
,
S. M.
, and
Wagner
,
S.
,
2003
, “
Microfluidic Actuation by Modulation of Surface Stresses
,”
Appl. Phys. Lett.
,
82
(
4
), pp.
657
659
.10.1063/1.1537512
86.
Pratap
,
V.
,
Moumen
,
N.
, and
Subramanian
,
R. S.
,
2008
, “
Thermocapillary Motion of a Liquid Drop on a Horizontal Solid Surface
,”
Langmuir
,
24
(
9
), pp.
5185
5193
.10.1021/la7036839
87.
Persson
,
B. N. J.
,
Tartaglino
,
U.
,
Tosatti
,
E.
, and
Ueba
,
H.
,
2004
, “
Electronic Friction and Liquid-Flow-Induced Voltage in Nanotubes
,”
Phys. Rev. B
,
69
, p.
235410
.10.1103/PhysRevB.69.235410
88.
Xu
,
B.
,
Qiao
,
Y.
,
Li
,
Y.
,
Zhou
,
Q.
, and
Chen
,
X.
,
2011
, “
An Electroactuation System Based on Nanofluids
,”
Appl. Phys. Lett.
,
98
, p.
221909
.10.1063/1.3597367
89.
Donelan
,
J. M.
,
Li
,
Q.
,
Naing
,
V.
,
Hoffer
,
J. A.
,
Weber
,
D. J.
, and
Kuo
,
A. D.
,
2008
, “
Biomechanical Energy Harvesting: Generating Electricity During Walking With Minimal User Effort
,”
Science
,
319
(
5864
), pp.
807
810
.10.1126/science.1149860
90.
Klauk
,
H.
,
Zschieschang
,
U.
,
Pflaum
,
J.
, and
Halik
,
M.
,
2007
, “
Ultralow-Power Organic Complementary Circuits
,”
Nature
,
445
(
7129
), pp.
745
748
.10.1038/nature05533
91.
Pottie
,
G. J.
, and
Kaiser
,
W. J.
,
2000
, “
Wireless Integrated Network Sensors
,”
Commun. ACM
,
43
(
5
), pp.
51
58
.10.1145/332833.332838
92.
Wise
,
K. D.
,
Anderson
,
D. J.
,
Hetke
,
J. F.
,
Kipke
,
D. R.
, and
Najafi
,
K.
,
2004
, “
Wireless Implantable Microsystems: High-Density Electronic Interfaces to the Nervous System
,”
Proc. IEEE
,
92
(
1
), pp.
76
97
.10.1109/JPROC.2003.820544
93.
Feng
,
G.
,
Qiao
,
R.
,
Huang
,
J.
,
Sumpter
,
B. G.
, and
Meunier
,
V.
,
2010
, “
Atomistic Insight on the Charging Energetics in Subnanometer Pore Supercapacitors
,”
J. Phys. Chem. C
,
114
(
41
), pp.
18012
18016
.10.1021/jp107125m
94.
Cole
,
D. J.
,
Ang
,
P. K.
, and
Loh
,
K. P.
,
2011
, “
Ion Adsorption at the Graphene/Electrolyte Interface
,”
J. Phys. Chem. Lett.
,
2
(
14
), pp.
1799
1803
.10.1021/jz200765z
95.
Xu
,
B.
, and
Chen
,
X.
,
2013
, “
Liquid Flow-Induced Energy Harvesting in Carbon Nanotubes: A Molecular Dynamics Study
,”
Phys. Chem. Chem. Phys.
,
15
, pp.
1164
1168
.10.1039/c2cp42204b
96.
Dhiman
,
P.
,
Yavari
,
F.
,
Mi
,
X.
,
Gullapalli
,
H.
,
Shi
,
Y.
,
Ajayan
,
P. M.
, and
Koratkar
,
N.
,
2011
, “
Harvesting Energy From Water Flow Over Graphene
,”
Nano Lett.
,
11
, pp.
3123
3127
.10.1021/nl2011559
97.
Daiguji
,
H.
,
Yang
,
P.
,
Szeri
,
A. J.
, and
Majumdar
,
A.
,
2004
, “
Electrochemomechanical Energy Conversion in Nanofluidic Channels
,”
Nano Lett.
,
4
, pp.
2315
2321
.10.1021/nl0489945
98.
Pablo
,
P. J. d.
,
Gómez-Navarro
,
C.
,
Colchero
,
J.
,
Serena
,
P. A.
,
Gómez-Herrero
,
J.
, and
Baró
,
A. M.
,
2002
, “
Nonlinear Resistance Versus Length in Single-Walled Carbon Nanotubes
,”
Phys. Rev. Lett.
,
88
, p.
036804
.10.1103/PhysRevLett.88.036804
99.
Mahanandia
,
P.
, and
Nanda
,
K. K.
,
2008
, “
Controllable Resistance and Temperature Dependency of Carbon Nanotube Bundles
,”
Appl. Phys. Lett.
,
93
, p.
063105
.10.1063/1.2970033
100.
Ghosh
,
S.
,
Sood
,
A. K.
, and
Kumar
,
N.
,
2003
, “
Carbon Nanotube Flow Sensors
,”
Science
,
299
, pp.
1042
1044
.10.1126/science.1079080
101.
Subramaniam
,
C.
,
Pradeep
,
T.
, and
Chakrabarti
,
J.
,
2007
, “
Transverse Electrokinetic Effect: Experiments and Theory
,”
J. Phys. Chem. C
111
, pp.
19103
19110
.10.1021/jp074238m
102.
Qiao
,
Y.
,
Punyamurtula
,
V. K.
, and
Han
,
A.
,
2007
, “
Thermally Induced Capacitive Effect of a Nanoporous Monel
,”
Appl. Phys. Lett.
,
91
, p.
153102
.10.1063/1.2798245
103.
Lee
,
D.
,
2007
, “
Thermophysical Properties of Interfacial Layer in Nanofluids
,”
Langmuir
23
, pp.
6011
6018
.10.1021/la063094k
104.
Vaitheeswaran
,
S.
,
Rasaiah
,
J. C.
, and
Hummer
,
G.
,
2004
, “
Electric Field and Temperature Effects on Water in the Narrow Nonpolar Pores of Carbon Nanotubes
,”
J. Chem. Phys.
,
121
, pp.
7955
7965
.10.1063/1.1796271
105.
Xu
,
B.
,
Liu
,
L.
,
Lim
,
H.
,
Qiao
,
Y.
, and
Chen
,
X.
,
2012
, “
Harvesting Energy From Low-Grade Heat Based Onnanofluids
,”
Nano Energy
,
1
, pp.
805
811
.10.1016/j.nanoen.2012.07.013
106.
Chandra
,
A.
,
2000
, “
Static Dielectric Constant of Aqueous Electrolyte Solutions: Is There Any Dynamic Contribution?
,”
J. Chem. Phys.
,
113
, pp.
903
905
.10.1063/1.481870
107.
Qiao
,
Y.
,
Punyamurtual
,
V. K.
,
Han
,
A.
, and
Lim
,
H.
,
2008
, “
Thermal-to-Electric Energy Conversion of a Nanoporous Carbon
,”
J. Power Sources
,
183
, pp.
403
405
.10.1016/j.jpowsour.2008.05.008
108.
Snyder
,
G. J.
, and
Toberer
,
E. S.
,
2008
, “
Complex Thermoelectric Materials
,”
Nat. Mater.
,
7
, pp.
105
114
.10.1038/nmat2090
109.
Szczech
,
J. R.
,
Higgins
,
J. M.
, and
Jin
,
S.
,
2011
, “
Enhancement of the Thermoelectric Properties in Nanoscale and Nanostructured Materials
,”
J. Mater. Chem.
,
21
, pp.
4037
4055
.10.1039/c0jm02755c
110.
Minnich
,
A. J.
,
Dresselhaus
,
M. S.
,
Ren
,
Z. F.
, and
Chen
,
G.
,
2009
, “
Bulk Nanostructured Thermoelectric Materials: Current Research and Future Prospects
,”
Energy Environ. Sci
,
2
, pp.
466
479
.10.1039/b822664b
111.
Huang
,
J.
,
Sumpter
,
B. G.
, and
Meunier
,
V.
,
2008
, “
Theoretical Model for Nanoporous Carbon Supercapacitors
,”
Angew. Chem. Int. Ed.
,
47
, pp.
520
524
.10.1002/anie.200703864
You do not currently have access to this content.