This is a survey of the interesting phenomenology and the prominent regimes of granular flow, followed by a unified mathematical synthesis of continuum modeling. The unification is achieved by means of “parametric” viscoelasticity and hypoplasticity based on elastic and inelastic potentials. Fully nonlinear, anisotropic viscoelastoplastic models are achieved by expressing potentials as functions of the joint isotropic invariants of kinematic and structural tensors. These take on the role of evolutionary parameters or “internal variables,” whose evolution equations are derived from the internal balance of generalized forces. The resulting continuum models encompass most of the mechanical constitutive equations currently employed for granular media. Moreover, these models are readily modified to include Cosserat and other multipolar effects. Several outstanding questions are identified as to the contribution of parameter evolution to dissipation; the distinction between quasielastic and inelastic models of material instability; and the role of multipolar effects in material instability, dense rapid flow, and particle migration phenomena.

References

References
1.
de Gennes
,
P.-G.
,
2008
, “
From Rice to Snow
,”
Nishina Memorial Lectures
,
Springer
,
New York
, pp.
297
318
.
2.
Goddard
,
J.
,
2012
, “
Playing in Sand for Engineering, Science and Fun (or ‘Life Without kT’)
,”
49th meeting of the Society of Engineering Science
.
3.
Guyon
,
E.
, and
Troadec
,
J.-P.
,
1994
,
Du Sac de Billes au Tas de Sable
,
Editions Odile Jacob, Paris
.
4.
Ennis
,
B.
,
Green
,
J.
, and
Davies
,
R.
,
1994
, “
The Legacy of Neglect in the US
,”
Chem. Eng. Prog.
,
90
(
4
), pp.
32
43
.
5.
Nedderman
,
R.
,
1992
,
Statics and Kinematics of Granular Materials
,
Cambridge University
,
Cambridge, UK
.
6.
Duran
,
J.
,
2000
,
Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials (Partially Ordered Systems)
,
Springer
,
New York
.
7.
Hill
,
J.
, and
Selvadurai
,
A.
, eds.,
2005
,
Mathematics and Mechanics of Granular Materials
,
Springer
,
New York
.
8.
Rao
,
K.
, and
Nott
,
P.
,
2008
,
An Introduction to Granular Flow
(Cambridge Series in Chemical Engineering),
Cambridge University
,
Cambridge, UK
.
9.
GDRMidi
,
2004
, “
On Dense Granular Flows
,”
Eur. Phys. J. E
,
14
(
4
), pp.
341
365
.10.1140/epje/i2003-10153-0
10.
Forterre
,
Y.
, and
Pouliquen
,
O.
,
2008
, “
Flows of Dense Granular Media
,”
Ann. Rev. Fluid Mech.
,
40
, pp.
1
24
.10.1146/annurev.fluid.40.111406.102142
11.
Tejchman
,
J.
,
2013
,
Confined Granular Flow in Silos Experimental and Numerical Investigations
(Springer Series in Geomechanics and Geoengineering), Springer
,
New York
.
12.
Budiansky
,
B.
, and
O'Connell
,
R.
,
1976
, “
Elastic Moduli of a Cracked Solid
,”
Int. J. Solids Struct.
,
12
(
2
), pp.
81
97
.10.1016/0020-7683(76)90044-5
13.
Sahimi
,
M.
,
2009
,
Applications of Percolation Theory
,
Taylor & Francis
,
London
.
14.
Tejchman
,
J.
,
2008
,
Shear Localization in Granular Bodies With Micro-polar Hypoplasticity
(Springer Series in Geomechanics and Geoengineering), Springer
,
Berlin
.
15.
Wu
,
W.
,
Bauer
,
E.
, and
Kolymbas
,
D.
,
1996
, “
Hypoplastic Constitutive Model With Critical State for Granular Materials
,”
Mech. Mater.
,
23
(
1
), pp.
45
69
.10.1016/0167-6636(96)00006-3
16.
Kolymbas
,
D.
, ed.,
2000
,
Constitutive Modelling of Granular Materials
(Engineering Online Library),
Springer-Verlag
,
Berlin
.
17.
Lanier
,
J.
,
Caillerie
,
D.
,
Chambon
,
R.
,
Viggiani
,
G.
,
Bésuelle
,
P.
, and
Desrues
,
J.
,
2004
, “
A General Formulation of Hypoplasticity
,”
Int. J. Numer. Analyt. Meth. Geomech.
,
28
(
15
), pp.
1461
1478
.10.1002/nag.394
18.
Muhunthan
,
B.
, and
Sasiharan
,
N.
,
2012
, “
Fabric Dilatancy and the Plasticity Modeling of Granular Media
,”
Int. J. Numer. Analyt. Meth. Geomech.
,
36
(
9
), pp.
1181
1193
.10.1002/nag.1045
19.
Avila
,
C.
, and
Andrade
,
J.
,
2012
, “
Advances in Multiscale Modeling and Characterization of Granular Matter
,”
Proc. IUTAM
,
3
(
0
), pp.
157
171
.10.1016/j.piutam.2012.03.011
20.
Kolymbas
,
D.
,
2000
,
Introduction to Hypoplasticity
,
A. A. Balkema
,
Rotterdam, The Netherlands
.
21.
Maugin
,
G. A.
,
1992
,
The Thermomechanics of Plasticity and Fracture
(Cambridge Texts in Applied Mathematics), Cambridge University
,
Cambridge, UK
.
22.
Lubarda
,
V. A.
,
2002
,
Elastoplasticity Theory
,
CRC Press, Boca Raton, FL
.
23.
Nemat-Nasser
,
S.
,
2004
,
Plasticity: A Treatise on Finite Deformation of Heterogeneous Inelastic Materials
,
Cambridge University
,
Cambridge, UK
.
24.
Hinrichsen
,
H.
, and
Wolf
,
D. E.
, eds.,
2006
,
The Physics of Granular Media
,
Wiley
,
New York
.
25.
Haff
,
P. K.
,
1983
, “
Grain Flow as a Fluid-Mechanical Phenomenon
,”
J. Fluid Mech.
,
134
(
1
), pp.
401
430
.10.1017/S0022112083003419
26.
Jenkins
,
J. T.
, and
Savage
,
S. B.
,
1983
, “
A Theory for the Rapid Flow of Identical, Smooth, Nearly Elastic, Spherical Particles
,”
J. Fluid Mech.
,
130
, pp.
187
202
.10.1017/S0022112083001044
27.
Agnolin
,
I.
, and
Roux
,
J.
,
2008
, “
On the Elastic Moduli of Three-Dimensional Assemblies of Spheres: Characterization and Modeling of Fluctuations in the Particle Displacement and Rotation
,”
Int. J. Solids Struct.
,
45
(
3
), pp.
1101
1123
.10.1016/j.ijsolstr.2007.07.016
28.
Sun
,
J.
, and
Sundaresan
,
S.
,
2011
, “
A Constitutive Model With Microstructure Evolution for Flow of Rate-Independent Granular Materials
,”
J. Fluid Mech.
,
682
(
1
), pp.
590
616
.10.1017/jfm.2011.251
29.
Radjai
,
F.
,
Delenne
,
J.-Y.
,
Azéma
,
E.
, and
Roux
,
S.
,
2012
, “
Fabric Evolution and Accessible Geometrical States in Granular Materials
,”
Granular Matter
,
14
(
2
), pp.
259
264
.10.1007/s10035-012-0321-8
30.
Truesdell
,
C.
, and
Noll
,
W.
,
1965
,
The Non-linear Field Theories of Mechanics
(Encyclopedia of Physics), Vol.
III
,
Springer-Verlag
,
Berlin
.
31.
Rajagopal
,
K.
,
2006
, “
On Implicit Constitutive Theories for Fluids
,”
J. Fluid Mech.
,
550
, pp.
243
249
.10.1017/S0022112005008025
32.
Campbell
,
C.
,
2005
, “
Stress-Controlled Elastic Granular Shear Flows
,”
J. Fluid Mech.
,
539
, pp.
273
298
.10.1017/S0022112005005616
33.
Savage
,
S. B.
, and
Hutter
,
K.
,
1989
, “
The Motion of a Finite Mass of Granular Material Down a Rough Incline
,”
J. Fluid Mech.
,
199
(
1
), pp.
177
215
.10.1017/S0022112089000340
34.
Goddard
,
J. D.
,
1986
, “
Dissipative Materials as Constitutive Models for Granular Media
,”
Acta Mech.
,
63
(
1–4
), pp.
3
13
.10.1007/BF01182537
35.
Goddard
,
J. D.
,
2006
, “
A Dissipative Anisotropic Fluid Model for Non-colloidal Particle Dispersions
,”
J. Fluid Mech.
,
568
, pp.
1
17
.10.1017/S0022112006002333
36.
Boyer
,
F.
,
Guazzelli
,
E.
, and
Pouliquen
,
O.
,
2011
, “
Unifying Suspension and Granular Rheology
,”
Phys. Rev. Lett.
,
107
(
18
), p.
188301
.10.1103/PhysRevLett.107.188301
37.
Goldhirsch
,
I.
,
2003
, “
Rapid Granular Flows
,”
Ann. Rev. Fluid Mech.
,
35
(
1
), pp.
267
293
.10.1146/annurev.fluid.35.101101.161114
38.
Johnson
,
P.
,
Nott
,
P.
, and
Jackson
,
R.
,
1990
, “
Frictional-Collisional Equations of Motion for Participate Flows and Their Application to Chutes
,”
J. Fluid Mech.
,
210
, pp.
501
535
.10.1017/S0022112090001380
39.
Ottino
,
J. M.
, and
Khakhar
,
D. V.
,
2000
, “
Mixing and Segregation of Granular Materials
,”
Ann. Rev. Fluid Mech.
,
32
, pp.
55
91
.10.1146/annurev.fluid.32.1.55
40.
Gray
,
J.
, and
Ancey
,
C.
,
2011
, “
Multi-Component Particle-Size Segregation in Shallow Granular Avalanches
,”
J. Fluid Mech.
,
678
, p.
535
.10.1017/jfm.2011.138
41.
Liu
,
A.
, and
Nagel
,
S.
,
1998
, “
Nonlinear Dynamics: Jamming Is Not Just Cool Any More
,”
Nature
,
396
(
6706
), pp.
21
22
.10.1038/23819
42.
Ehlers
,
W.
,
2010
, “
Homogenisation of Discrete Media Towards Micropolar Continua: A Computational Approach
,”
AIP Conference Proceedings
, Vol.
1227
, pp.
306
313
.
43.
Gudehus
,
G.
, and
Nübel
,
K.
,
2004
, “
Evolution of Shear Bands in Sand
,”
Geotechnique
,
54
, pp.
187
201
.10.1680/geot.2004.54.3.187
44.
Widuliński
,
L.
,
Tejchman
,
J.
,
Kozicki
,
J.
, and
Leśniewska
,
D.
,
2011
, “
Discrete Simulations of Shear Zone Patterning in Sand in Earth Pressure Problems of a Retaining Wall
,”
Int. J. Solids Struct.
,
48
(
7
), pp.
1191
1209
.10.1016/j.ijsolstr.2011.01.005
45.
Hall
,
S. A.
,
Bornert
,
M.
,
Desrues
,
J.
,
Pannier
,
Y.
,
Lenoir
,
N.
,
Viggiani
,
G.
, and
Bésuelle
,
P.
,
2010
, “
Discrete and Continuum Analysis of Localized Deformation in Sand Using X-ray, μCT and Volumetric Digital Image Correlation
,”
Geotechnique
,
60
(
5
), pp.
315
322
.10.1680/geot.2010.60.5.315
46.
Goddard
,
J. D.
,
2003
, “
Material Instability in Complex Fluids
,”
Ann. Rev. Fluid Mech.
,
35
, pp.
113
133
.10.1146/annurev.fluid.35.101101.161204
47.
Goddard
,
J. D.
, and
Didwania
,
A. K.
,
1998
, “
Computations of Dilatancy and Yield Surfaces for Assemblies of Rigid Frictional Spheres
,”
Q. J. Mech. Appl. Math.
,
51
, pp.
15
43
.10.1093/qjmam/51.1.15
48.
Gong
,
L.
,
Kyriakides
,
S.
, and
Triantafyllidis
,
N.
,
2005
, “
On the Stability of Kelvin Cell Foams Under Compressive Loads
,”
J. Mech. Phys. Solids
,
53
(
4
), pp.
771
794
.10.1016/j.jmps.2004.10.007
49.
Rudnicki
,
J. W.
, and
Sternlof
,
K. R.
,
2005
, “
Energy Release Model of Compaction Band Propagation
,”
Geophys. Res. Lett.
,
32
(
16
), p.
L16303
.10.1029/2005GL023602
50.
Taylor
,
D. W.
,
1948
,
Fundamentals of Soil Mechanics
,
Wiley
,
New York
.
51.
Harris
,
D.
, “
A Hyperbolic Augmented Elasto-Plastic Model for Pressure-Dependent Yield
,”
Acta. Mech.
(in press).
52.
Anand
,
L.
, and
Gu
,
C.
,
2000
, “
Granular Materials: Constitutive Equations and Strain Localization
,”
J. Mech. Phys. Solids
,
48
(
8
), pp.
1701
1733
.10.1016/S0022-5096(99)00066-6
53.
Chambon
,
R.
,
2005
, “
Some Theoretical Results About Second-Order Work, Uniqueness, Existence and Controllability Independent of the Constitutive Equation
,”
Mathematics Mechanics of Granular Materials
,
Springer
,
New York
, pp.
53
61
.
54.
Nicot
,
F.
,
Darve
,
F.
, and
Huynh
,
D.
,
2007
, “
Bifurcation and Second-Order Work in Geomaterials
,”
Int. J. Numer. Analyt. Meth. Geomech.
,
31
(
8
), pp.
1007
1032
.10.1002/nag.573
55.
Nicot
,
F.
,
Sibille
,
L.
, and
Darve
,
F.
,
2009
, “
Bifurcation in Granular Materials: An Attempt for a Unified Framework
,”
Int. J. Solids Struct.
,
46
(
22–23
), pp.
3938
3947
.10.1016/j.ijsolstr.2009.07.008
56.
Goddard
,
J.
, “
Edelen's Dissipation Potentials and the Visco-Plasticity of Particulate Media
,”
Acta Mech.
(in press).
57.
Mühlhaus
,
H.
, and
Vardoulakis
,
I.
,
1987
, “
The Thickness of Shear Bands in Granular Materials
,”
Geotechnique
,
37
, pp.
271
283
.10.1680/geot.1987.37.3.271
58.
Collins
,
I. F.
,
2005
, “
The Concept of Stored Plastic Work or Frozen Elastic Energy in Soil Mechanics
,”
Geotechnique
,
55
(
5
), pp.
373
382
.10.1680/geot.2005.55.5.373
59.
Rowe
,
P. W.
,
1962
, “
The Stress Dilatancy of Media Composed of Rigid Particles in Contact, With Experimental Illustrations
,”
Proc. R. Soc. London, Ser. A
,
269
, pp.
500
527
.10.1098/rspa.1962.0193
60.
Collins
,
I. F.
, and
Muhunthan
,
B.
,
2003
, “
On the Relationship Between Stress-Dilatancy, Anisotropy, and Plastic Dissipation for Granular Materials
,”
Geotechnique
,
53
(
7
), pp.
611
618
.10.1680/geot.2003.53.7.611
61.
Reynolds
,
O.
,
1885
, “
On the Dilatancy of Media Composed of Rigid Particles in Contact. With Experimental Illustrations
,”
Philos. Mag
,
20
, pp.
469
482
.10.1080/14786448508627791
62.
Peyneau
,
P.-E.
, and
Roux
,
J.-N.
,
2008
, “
Frictionless Bead Packs Have Macroscopic Friction, but No Dilatancy
,”
Phys. Rev. E
,
78
(
1
), p.
011307
.10.1103/PhysRevE.78.011307
63.
Darwin
,
G. H.
,
1883
, “
On the Horizontal Thrust of a Mass of Sand
,”
Proc. Inst. Civil Eng.
,
71
, pp.
350
378
.
64.
Vanel
,
L.
,
Howell
,
D.
,
Clark
,
D.
,
Behringer
,
R. P.
, and
Clément
,
E.
,
1999
, “
Memories in Sand: Experimental Tests of Construction History on Stress Distributions Under Sandpiles
,”
Phys. Rev. E
,
60
(
5
), p.
R5040-3
.
65.
Ai
,
J.
,
Chen
,
J. F.
,
Rotter
,
J. M.
, and
Ooi
,
J. Y.
,
2011
, “
Numerical and Experimental Studies of the Base Pressures Beneath Stockpiles
,”
Granular Matter
,
13
(
2
), pp.
133
141
.10.1007/s10035-010-0215-6
66.
Schaefer
,
M.
, and
Bugnion
,
L.
,
2013
, “
Velocity Profile Variations in Granular Flows With Changing Boundary Conditions: Insights From Experiments
,”
Phys. Fluids
,
25
(
6
), p.
063303
.10.1063/1.4810973
67.
Goddard
,
J. D.
,
1984
, “
Dissipative Materials as Models of Thixotropy and Plasticity
,”
J. Non-Newtonian Fluid Mech.
,
14
, pp.
141
160
.10.1016/0377-0257(84)80041-5
68.
Scheidler
,
M.
,
1994
, “
The Tensor Equation AX+XA=ϕ(A,H), With Applications to Kinematics of Continua
,”
J. Elast.
,
36
(
2
), pp.
117
153
.10.1007/BF00040962
69.
Casey
,
J.
, and
Naghdi
,
P.
,
1988
, “
On the Relationship Between the Eulerian and Lagrangian Descriptions of Finite Rigid Plasticity
,”
Arch. Ration. Mech. Anal.
,
102
(
4
), pp.
351
375
.
70.
Wu
,
W.
, and
Kolymbas
,
D.
,
2000
, “
Hypoplasticity Then and Now
,”
Constitutive Modelling of Granular Materials
,
D.
Kolymbas
, ed.,
Springer
,
Berlin
, pp.
57
101
.
71.
Rice
,
J. R.
,
1971
, “
Inelastic Constitutive Relations for Solids: An Internal-Variable Theory and Its Application to Metal Plasticity
,”
J. Mech. Phys. Solids
,
19
(
6
), pp.
433
455
.10.1016/0022-5096(71)90010-X
72.
Edelen
,
D. G. B.
,
1973
, “
On the Existence of Symmetry Relations and Dissipation Potentials
,”
Arch. Ration. Mech. Anal.
,
51
, pp.
218
227
.10.1007/BF00276075
73.
Shima
,
H.
,
2007
,
The Geometry of Hessian Structures
,
World Scientific
,
Singapore
.
74.
Weinhold
,
F.
,
2009
,
Classical and Geometrical Theory of Chemical and Phase Thermodynamics
,
Wiley
,
New York
.
75.
Ruppeiner
,
G.
,
2013
, “
Thermodynamic Curvature: Pure Fluids to Black Holes
,”
J. Phys.: Conf. Ser.
,
410
(
1
), p.
012138
.
76.
Truesdell
,
C.
,
1966
,
Six Lectures on Modern Natural Philosophy
,
Springer-Verlag
,
Berlin
.
77.
Kratochvíl
,
J.
, and
Šilhavý
,
M.
,
1977
, “
A Theory of Inelastic Behavior of Materials. Part II. Inelastic Materials
,”
Arch. Ration. Mech. Anal.
,
65
(
2
), pp.
131
152
.10.1007/BF00276553
78.
Cowin
,
S. C.
,
1986
, “
Fabric Dependence of an Anisotropic Strength Criterion
,”
Mech. Mater.
,
5
(
3
), pp.
251
260
.10.1016/0167-6636(86)90022-0
79.
Gurtin
,
M.
, and
Anand
,
L.
,
2005
, “
The Decomposition FeFp, Material Symmetry, and Plastic Irrotationality for Solids that are Isotropic-Viscoplastic or Amorphous
,”
Int. J. Plasticity
,
21
(
9
), pp.
1686
1719
.10.1016/j.ijplas.2004.11.007
80.
Xiao
,
H.
,
Bruhns
,
O. T.
, and
Meyers
,
A.
,
2006
, “
On Isotropic Extension of Anisotropic Constitutive Functions via Structural Tensors
,”
ZAMM
,
86
(
2
), pp.
151
161
.10.1002/zamm.200410226
81.
Pennisi
,
S.
,
1992
, “
On Third Order Tensor-Valued Isotropic Functions
,”
Int. J. Eng. Sci.
,
30
(
5
), pp.
679
692
.10.1016/0020-7225(92)90011-5
82.
Prantil
,
V. C.
,
Jenkins
,
J. T.
, and
Dawson
,
P. R.
,
1993
, “
An Analysis of Texture and Plastic Spin for Planar Polycrystals
,”
J. Mech. Phys. Solids
,
41
(
8
), pp.
1357
1382
.10.1016/0022-5096(93)90084-S
83.
Dafalias
,
Y.
, and
Manzari
,
M.
,
2004
, “
Simple Plasticity Sand Model Accounting for Fabric Change Effects
,”
J. Eng. Mech.
,
130
(
6
), pp.
622
634
.10.1061/(ASCE)0733-9399(2004)130:6(622)
84.
Goddard
,
J. D.
,
2008
, “
A Weakly Nonlocal Anisotropic Fluid Model for Inhomogeneous Stokesian Suspensions
,”
Phys. Fluids
,
20
(
4
), p.
040601
.10.1063/1.2911011
85.
Goddard
,
J.
,
2010
, “
Parametric Hypoplasticity as Continuum Model for Granular Media: From Stokesium to Mohr-Coulombium and Beyond
,”
Granular Matter
,
12
(
2
), pp.
145
150
.10.1007/s10035-010-0174-y
86.
Rubin
,
M. B.
,
2012
, “
Removal of Unphysical Arbitrariness in Constitutive Equations for Elastically Anisotropic Nonlinear Elastic Viscoplastic Solids
,”
Int. J. Eng. Sci.
,
53
(
0
), pp.
38
45
.10.1016/j.ijengsci.2011.12.008
87.
Coleman
,
B.
, and
Gurtin
,
M.
,
1967
, “
Thermodynamics With Internal State Variables
,”
J. Chem. Phys.
,
47
(
2
), pp.
597
613
.10.1063/1.1711937
88.
Noll
,
W.
,
1955
, “
A Mathematical Theory of the Mechanical Behavior of Continuous Media
,”
Arch. Ration. Mech. Anal.
,
2
, pp.
197
226
.10.1007/BF00277929
89.
Bernstein
,
B.
,
1960
, “
Hypo-Elasticity and Elasticity
,”
Arch. Ration. Mech. Anal.
,
6
(
1
), pp.
89
104
.10.1007/BF00276156
90.
Bernstein
,
B.
, and
Rajagopal
,
K.
,
2008
, “
Thermodynamics of Hypoelasticity
,”
ZAMP
,
59
(
3
), pp.
537
553
.10.1007/s00033-006-6057-8
91.
Toll
,
S.
,
2011
, “
The Dissipation Inequality in Hypoplasticity
,”
Acta Mech.
,
221
(
1–2
), pp.
39
47
.10.1007/s00707-011-0487-x
92.
Tokuoka
,
T.
,
1971
, “
Yield Conditions and Flow Rules Derived From Hypo-elasticity
,”
Arch. Ration. Mech. Anal.
,
42
(
4
), pp.
239
252
.
93.
Gurtin
,
M. E.
,
1983
, “
On the Hypoelastic Formulation of Plasticity Using the Past Maximum of Stress
,”
J. Appl. Mech.
,
50
(
4A
), pp.
894
896
.10.1115/1.3167165
94.
Xiao
,
H.
,
Bruhns
,
O. T.
, and
Meyers
,
A.
,
2007
, “
The Integrability Criterion in Finite Elastoplasticity and Its Constitutive Implications
,”
Acta Mech.
,
188
(
3–4
), pp.
227
244
.10.1007/s00707-006-0362-3
95.
Simo
,
J. C.
,
Kennedy
,
J. G.
, and
Govindjee
,
S.
,
1988
, “
Non-Smooth Multisurface Plasticity and Viscoplasticity. Loading/Unloading Conditions and Numerical Algorithms
,”
Int. J. Numer. Meth. Eng.
,
26
(
10
), pp.
2161
2185
.10.1002/nme.1620261003
96.
Dorfmann
,
A.
, and
Ogden
,
R. W.
,
2003
, “
A Pseudo-elastic Model for Loading, Partial Unloading and Reloading of Particle-Reinforced Rubber
,”
Int. J. Solids Struct.
,
40
(
11
), pp.
2699
2714
.10.1016/S0020-7683(03)00089-1
97.
Goddard
,
J. D.
,
1982
, “
Memory Materials Without Characteristic Time and Their Relation to the Rheology of Certain Particle Suspensions
,”
Adv. Colloid Interface Sci.
,
17
(AUG), pp.
241
262
.10.1016/0001-8686(82)80023-7
98.
Fang
,
C.
,
Wang
,
Y.
, and
Hutter
,
K.
,
2008
, “
A Unified Evolution Equation for the Cauchy Stress Tensor of an Isotropic Elasto-Visco-Plastic Material
,”
Continuum Mech. Thermodyn.
,
19
(
7
), pp.
423
440
.10.1007/s00161-007-0062-9
99.
Collins
,
I. F.
,
2003
, “
A Systematic Procedure for Constructing Critical State Models in Three Dimensions
,”
Int. J. Solids Struct.
,
40
(17 August), pp.
4379
4397
.10.1016/S0020-7683(03)00226-9
100.
Happel
,
J.
, and
Brenner
,
H.
,
1965
,
Low Reynolds Number Hydrodynamics
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
101.
Hill
,
R.
,
1956
,
The Mathematical Theory of Plasticity
(Oxford Engineering Science Series)
,
Clarendon, Oxford, UK
.
102.
Heeres
,
O.
,
Suiker
,
A.
, and
de Borst
,
R.
,
2002
, “
A Comparison Between the Perzyna Viscoplastic Model and the Consistency Viscoplastic Model
,”
Eur. J. Mech. A
,
21
(
1
), pp.
1
12
.10.1016/S0997-7538(01)01188-3
103.
Pipkin
,
A.
, and
Rivlin
,
R.
,
1965
, “
Mechanics of Rate-Independent Materials
,”
ZAMP
,
16
(
3
), pp.
313
326
.10.1007/BF01591911
104.
Perzyna
,
P.
,
1971
, “
Thermodynamic Theory of Viscoplasticity
,”
Adv. Appl. Mech.
,
11
, pp.
313
354
.10.1016/S0065-2156(08)70345-4
105.
Hill
,
R.
, and
Rice
,
J.
,
1973
, “
Elastic Potentials and the Structure of Inelastic Constitutive Laws
,”
SIAM J. Appl. Math.
,
25
(
3
), pp.
448
461
.10.1137/0125045
106.
Goddard
,
J. D.
,
2010
, “
Granular Hypoplasticity With Cosserat Effects
,”
AIP Conference Proceedings
, Vol.
1227
,
American Institute of Physics
,
New York
, pp.
323
332
.
107.
Lippmann
,
H.
,
1995
, “
Cosserat Plasticity and Plastic Spin
,”
ASME Appl. Mech. Rev.
,
48
(
11
), pp.
753
762
.10.1115/1.3005091
108.
Kolymbas
,
D.
,
2012
, “
Barodesy: A New Hypoplastic Approach
,”
Int. J. Numer. Analyt. Meth. Geomech.
,
36
(
9
), pp.
1220
1240
.10.1002/nag.1051
109.
Couturier
,
E.
,
Boyer
,
F.
,
Pouliquen
,
O.
, and
Guazzelli
,
É.
,
2011
, “
Suspensions in a Tilted Trough: Second Normal Stress Difference
,”
J. Fluid Mech.
,
686
, p.
26
.10.1017/jfm.2011.315
110.
McElwaine
,
J.
,
Takagi
,
D.
, and
Huppert
,
H.
,
2012
, “
Surface Curvature of Steady Granular Flows
,”
Granular Matter
,
14
, pp.
229
234
.10.1007/s10035-012-0339-y
111.
Boyer
,
F.
, and
Guazzelli
,
E.
,
2011
, “
Dense Suspensions in Rotating-Rod Flows: Normal Stresses and Particle Migration
,”
J. Fluid Mech.
,
686
, p.
5
.10.1017/jfm.2011.272
112.
Radjai
,
F.
,
Jean
,
M.
,
Moreau
,
J. J.
and
Roux
,
S.
,
1996
, “
Force Distributions in Dense Two-Dimensional Granular Systems
,”
Phys. Rev. Lett.
,
77
(
2
), pp.
274
277
.10.1103/PhysRevLett.77.274
113.
Tordesillas
,
A.
,
Hunt
,
G.
, and
Shi
,
J.
,
2011
, “
A Characteristic Length Scale in Confined Elastic Buckling of a Force Chain
,”
Granular Matter
,
13
, pp.
215
218
.10.1007/s10035-011-0252-9
114.
Goddard
,
J. D.
,
1990
, “
Nonlinear Elasticity and Pressure-Dependent Wave Speeds in Granular Media
,”
Proc. R. Soc. London, Ser. A
,
430
(
1878
), pp.
105
131
.10.1098/rspa.1990.0083
115.
Goddard
,
J. D.
,
2008
, “
From Granular Matter to Generalized Continuum
,”
Mathematical Models of Granular Matter
(Lecture Notes in Mathematics), Vol.
1937
,
P.
Mariano
,
G.
Capriz
, and
P.
Giovine
, eds.,
Springer
,
Berlin
, pp.
1
20
.
116.
Mohan
,
S.
,
Rao
,
K.
, and
Nott
,
P. R.
,
2002
, “
A Frictional Cosserat Model for the Slow Shearing of Granular Materials
,”
J. Fluid Mech.
,
457
, pp.
377
409
.10.1017/S0022112002007796
117.
Kamrin
,
K.
, and
Koval
,
G.
,
2012
, “
Nonlocal Constitutive Relation for Steady Granular Flow
,”
Phys. Rev. Lett.
,
108
(
17
), p.
178301
.10.1103/PhysRevLett.108.178301
118.
Aifantis
,
E. C.
,
2011
, “
On the Gradient Approach - Relation to Eringen's Nonlocal Theory
,”
Int. J. Eng. Sci.
,
49
(
12
), pp.
1367
1377
.10.1016/j.ijengsci.2011.03.016
119.
Pouliquen
,
O.
, and
Forterre
,
Y.
,
2009
, “
A Non-local Rheology for Dense Granular Flows
,”
Phil. Trans. R. Soc. London, Ser. A
,
367
(
1909
), pp.
5091
5107
.10.1098/rsta.2009.0171
120.
Kruyt
,
N. P.
,
2003
, “
Statics and Kinematics of Discrete Cosserat-Type Granular Materials
,”
Int. J. Solids Struct.
,
40
(
3
), pp.
511
534
.10.1016/S0020-7683(02)00624-8
121.
Bardet
,
J. P.
, and
Vardoulakis
,
I.
,
2001
, “
The Asymmetry of Stress in Granular Media
,”
Int. J. Solids Struct.
,
38
(
2
), pp.
353
367
.10.1016/S0020-7683(00)00021-4
122.
Bardet
,
J. P.
, and
Vardoulakis
,
I.
,
2003
, “
Reply to Dr. Kuhn's Discussion
,”
Int. J. Solids Struct.
,
40
(
7
), p.
1809
.10.1016/S0020-7683(02)00555-3
123.
Fan
,
Y.
, and
Hill
,
K.
,
2011
, “
Theory for Shear-Induced Segregation of Dense Granular Mixtures
,”
New J. Phys.
,
13
(
9
), p.
095009
.10.1088/1367-2630/13/9/095009
124.
Alam
,
M.
,
Arakeri
,
V. H.
,
Nott
,
P. R.
,
Goddard
,
J. D.
, and
Herrmann
,
H. J.
,
2005
, “
Instability-Induced Ordering, Universal Unfolding and the Role of Gravity in Granular Couette Flow
,”
J. Fluid Mech.
,
523
(
25
), pp.
277
306
.10.1017/S0022112004002150
You do not currently have access to this content.