The authors provide an extensive review of this field, outlining its multidisciplinary history, presenting a state-of-the-art review of current methods and applications, a description of the phenomena observed and projections for future research directions. This note provides additional comments and interpretation in various areas. Wave motion in periodic structures is discussed, with the emphasis being on multicoupled and continuous systems. The natural frequencies of finite structures are considered, including higher frequency issues such as asymptotic modal density and how periodic subsystems can be included in statistical energy analysis models. Comments are made on various computational and numerical issues. Media with periodic arrays of internal resonators—commonly referred to as acoustic metamaterials—are known to exhibit a stop band in the sub-Bragg frequency region around the resonator natural frequency: it is noted that the same effect can be produced by just a single resonator, rather than requiring a periodic array. Phenomena occasionally referred to in the literature as involving “negative group velocity” or “negative mass” are discussed and alternative physical interpretations provided.

References

References
1.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
, 2014, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
ASME Appl. Mech. Rev.
,
66
(4), p. 040802.10.1115/1.4026911
2.
Zhong
,
W. X.
, and
Williams
,
F. W.
,
1995
, “
On the Direct Solution of Wave Propagation for Repetitive Structures
,”
J. Sound Vib.
,
181
(
3
), pp.
485
501
.10.1006/jsvi.1995.0153
3.
Zhong
,
W. X.
,
Williams
,
F. W.
, and
Leung
,
A. Y. T.
,
2003
, “
Symplectic Analysis for Periodical Electro-Magnetic Waveguides
,”
J. Sound Vib.
,
267
(
2
), pp.
227
244
.10.1016/S0022-460X(02)01451-7
4.
Graff
,
K. F.
,
1975
,
Wave Motion in Elastic Solids
,
Dover
,
New York
.
5.
Jackson
,
M.
,
1982
,
Thriller, Billie-Jean Mini-Video
,
EPIC
, New York.
6.
Mead
,
D. J.
,
1994
, “
Waves and Modes in Finite Beams: Application of the Phase-Closure Principle
,”
J. Sound Vib.
,
171
(
5
), pp.
695
702
.10.1006/jsvi.1994.1150
7.
Lyon
,
R. H.
, and
DeJong
,
R. G.
,
1995
,
Theory and Application of Statistical Energy Analysis
,
Butterworth
,
London
.
8.
Cotoni
,
V.
,
Langley
,
R. S.
, and
Shorter
,
P. J.
,
2008
, “
A Statistical Energy Analysis Subsystem Formulation Using Finite Element and Periodic Structure Theory
,”
J. Sound Vib.
,
318
, pp.
1077
1108
.10.1016/j.jsv.2008.04.058
9.
Renno
,
J. M.
, and
Mace
,
B. R.
,
2014
, “
Vibration Modelling of Structural Networks Using a Hybrid Finite Element/Wave and Finite Element Approach
,”
Wave Motion
,
51
(
4
), pp.
566
580
.10.1016/j.wavemoti.2013.09.001
10.
Finnveden
,
S.
,
1994
, “
Exact Spectral Finite Element Analysis of Stationary Vibrations in a Railway Car Structure
,”
Acta Acust.
,
2
, pp.
461
482
.
11.
Lee
,
U.
,
Kim
,
J.
, and
Leung
,
A. Y. T.
,
2000
, “
The Spectral Element Method in Structural Dynamics
,”
Shock Vib. Dig.
,
32
, pp.
451
465
.10.1177/058310240003200601
12.
Golapalakrishnan
,
S.
,
Chakroborty
,
A.
, and
Mahapatra
,
D. R.
,
2008
,
Spectral Finite Element Method
,
Springer
, London.
13.
Waki
,
Y.
,
Mace
,
B. R.
, and
Brennan
,
M. J.
,
2009
, “
Numerical Issues Concerning the Wave and Finite Element Method for Free and Forced Vibrations of Waveguides
,”
J. Sound Vib.
,
327
, pp.
92
108
.10.1016/j.jsv.2009.06.005
14.
El-Khatib
,
H. M.
,
Mace
,
B. R.
, and
Brennan
,
M. J.
,
2005
, “
Suppression of Bending Waves in a Beam Using a Tuned Vibration Absorber
,”
J. Sound Vib.
,
288
, pp.
1157
1175
.10.1016/j.jsv.2005.01.024
You do not currently have access to this content.