The study of phononic materials and structures is an emerging discipline that lies at the crossroads of vibration and acoustics engineering and condensed matter physics. Broadly speaking, a phononic medium is a material or structural system that usually exhibits some form of periodicity, which can be in the constituent material phases, or the internal geometry, or even the boundary conditions. As such, its overall dynamical characteristics are compactly described by a frequency band structure, in analogy to an electronic band diagram. With roots extended to early studies of periodic systems by Newton and Rayleigh, the field has grown to encompass engineering configurations ranging from trusses and ribbed shells to phononic crystals and metamaterials. While applied research in this area has been abundant in recent years, treatment from a fundamental mechanics perspective, and particularly from the standpoint of dynamical systems, is needed to advance the field in new directions. For example, techniques already developed for the incorporation of damping and nonlinearities have recently been applied to wave propagation in phononic materials and structures. Similarly, numerical and experimental approaches originally developed for the characterization of conventional materials and structures are now being employed toward better understanding and exploitation of phononic systems. This article starts with an overview of historical developments and follows with an in-depth literature and technical review of recent progress in the field with special consideration given to aspects pertaining to the fundamentals of dynamics, vibrations, and acoustics. Finally, an outlook is projected onto the future on the basis of the current trajectories of the field.

References

References
1.
Newton
,
I.
,
1686
,
Principia—Book II
,
Imprimatur
S.
Pepys
,
Reg. Soc. Præses
, London.
2.
Rayleigh
,
J. W. S.
,
1945
,
The Theory of Sound
, Vol.
1
,
Dover
,
New York
.
3.
Sun
,
C. T.
,
Achenbach
,
J. D.
, and
Herrmann
,
G.
,
1968
, “
Time-Harmonic Waves in a Stratified Medium Propagating in the Direction of the Layering
,”
ASME J. Appl. Mech.
,
35
(2), pp. 408–411.10.1115/1.3601212
4.
Nemat-Nasser
,
S.
,
1972
, “
General Variational Methods for Waves in Elastic Composites
,”
J. Elasticity
,
2
(
2
), pp.
73
90
.10.1007/BF00046056
5.
Abrahamson
,
A. L.
,
1973
, “
The Response of Periodic Structures to Aero-Acoustic Pressures With Particular Reference to Aircraft Skin-Rib-Spar Structures
,” Ph.D. thesis, University of Southampton, Southampton, U.K.
6.
Mead
,
D. J.
,
1973
, “
A General Theory of Harmonic Wave Propagation in Linear Periodic Systems With Multiple Coupling
,”
J. Sound Vib.
,
27
(
2
), pp.
235
260
.10.1016/0022-460X(73)90064-3
7.
Ewins
,
D. J.
,
1973
, “
Vibration Characteristics of Bladed Disk Assemblies
,”
J. Mech. Eng. Sci.
,
15
, pp.
165
186
.10.1243/JMES_JOUR_1973_015_032_02
8.
Griffin
,
J. H.
, and
Hoosac
,
T. M.
,
1984
, “
Model Development and Statistical Investigation of Turbine Blade Mistuning
,”
J. Vib., Acoust., Stress Reliab. Des.
,
106
, pp.
204
210
.10.1115/1.3269170
9.
Castanier
,
M. P.
,
Ottarsson
,
G.
, and
Pierre
,
C.
,
1997
, “
A Reduced Order Modeling Technique for Mistuned Bladed Disks
,”
ASME J. Vib. Acoust.
,
119
(3), pp.
439
447
.10.1115/1.2889743
10.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2000
, “
High Strain Rate Compressive Behaviour of Aluminium Alloy Foams
,”
Int. J. Impact Eng.
,
24
, pp.
277
298
.10.1016/S0734-743X(99)00153-0
11.
Hazizan
,
M. A.
, and
Cantwell
,
W. J.
,
2002
, “
The Low Velocity Impact Response of Foam-Based Sandwich Structures
,”
Composites, Part B
,
33
, pp.
193
204
.10.1016/S1359-8368(02)00009-4
12.
Fleck
,
N. A.
, and
Deshpande
,
V. S.
,
2004
, “
The Resistance of Clamped Sandwich Beams to Shock Loading
,”
ASME J. Appl. Mech.
,
71
(3), pp.
386
401
.10.1115/1.1629109
13.
Talbot
,
J. P.
, and
Hunt
,
H. E. M.
,
2003
, “
A Computationally Efficient Piled-Foundation Model for Studying the Effects of Ground-Borne Vibration on Buildings
,”
Proc. Inst. Mech. Eng., Part C
,
217
, pp.
975
989
.10.1243/095440603322407227
14.
Bao
,
J.
,
Shi
,
Z. F.
, and
Xiang
,
H. J.
,
2012
, “
Dynamic Responses of a Structure With Periodic Foundations
,”
J. Eng. Mech.
,
138
, pp.
761
769
.10.1061/(ASCE)EM.1943-7889.0000383
15.
Brun
,
M.
,
Movchan
,
A. B.
, and
Jones
,
I. S.
,
2013
, “
Phononic Band Gap Systems in Structural Mechanics: Finite Slender Elastic Structures and Infinite Periodic Waveguides
,”
ASME J. Vib. Acoust.
,
135
(4), p.
041013
.10.1115/1.4023819
16.
Sigalas
,
M. M.
, and
Economou
,
E. N.
,
1992
, “
Elastic and Acoustic Wave Band Structure
,”
J. Sound Vib.
,
158
(
2
), pp.
377
382
.10.1016/0022-460X(92)90059-7
17.
Sigalas
,
M.
, and
Economou
,
E. N.
,
1993
, “
Band Structure of Elastic Waves in Two Dimensional Systems
,”
Solid State Commun.
,
86
, pp.
141
143
.10.1016/0038-1098(93)90888-T
18.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
(
13
), pp.
2022
2025
.10.1103/PhysRevLett.71.2022
19.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Martínez
,
G.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1994
, “
Theory of Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. B
,
49
(
4
), pp.
2313
2322
.10.1103/PhysRevB.49.2313
20.
Vasseur
,
J. O.
,
Djafari-Rouhani
,
B.
,
Dobrzynski
,
L.
,
Kushwaha
,
M. S.
, and
Halevi
,
P.
,
1994
, “
Complete Acoustic Band Gaps in Periodic Fibre Reinforced Composite Materials: The Carbodepoxy Composite and Some Metallic Systems
,”
J. Phys.: Condens. Matter
,
6
, pp.
8759
8770
.
21.
Kushwaha
,
M. S.
,
1996
, “
Classical Band Structure of Periodic Elastic Composites
,”
Int. J. Mod. Phys. B
,
10
, pp.
977
1094
.10.1142/S0217979296000398
22.
Liu
,
Z. Y.
,
Zhang
,
X. X.
,
Mao
,
Y. W.
,
Zhu
,
Y. Y.
,
Yang
,
Z. Y.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
.10.1126/science.289.5485.1734
23.
Kittel
,
C.
, and
Kittel
,
B. C.
,
1976
,
Introduction to Solid State Physics
,
Wiley
,
New York
.
24.
Brillouin
,
L.
,
1946
,
Wave Propagation in Periodic Structures Electric Filters and Crystal Lattices
,
Dover Publications, Inc.
,
New York
.
25.
Kelvin
,
W. T.
,
1881
,
Popular Lectures
, Vol.
1
,
Macmillan and Company
, London.
26.
Rytov
,
S. M.
,
1956
, “
Acoustical Properties of a Thinly Laminated Medium
,”
Sov. Phys.-Acoust.
,
2
, pp.
68
80
.
27.
Sun
,
C. T.
,
Achenbach
,
J. D.
, and
Herrmann
,
G.
,
1968
, “
Continuum Theory for a Laminated Medium
,”
ASME J. Appl. Mech.
,
35
(3), p. 467–475.10.1115/1.3601237
28.
Nemat-Nasser
,
S.
,
1972
, “
Harmonic Waves in Layered Composites
,”
ASME J. Appl. Mech.
,
39
(3), pp. 850–852.10.1115/1.3422814
29.
Nemat-Nasser
,
S.
, and
Fu
,
F. C. L.
,
1974
, “
Harmonic Waves in Layered Composites: Bounds on Frequencies
,”
ASME J. Appl. Mech.
,
41
(1), pp. 288–290.10.1115/1.3423245
30.
Nemat-Nasser
,
S.
, and
Minagawa
,
S.
,
1975
, “
Harmonic Waves in Layered Composites: Comparison Among Several Schemes
,”
ASME J. Appl. Mech.
,
42
(3), pp. 699–704.10.1115/1.3423665
31.
Nemat-Nasser
,
S.
,
Fu
,
F. C. L.
, and
Minagawa
,
S.
,
1975
, “
Harmonic Waves in One-, Two- and Three-Dimensional Composites: Bounds for Eigenfrequencies
,”
Int. J. Solids Struct.
,
11
(
5
), pp.
617
642
.10.1016/0020-7683(75)90034-7
32.
Nemat-Nasser
,
S.
, and
Yamada
,
M.
,
1981
, “
Harmonic Waves in Layered Transversely Isotropic Composites
,”
J. Sound Vib.
,
79
(
2
), pp.
161
170
.10.1016/0022-460X(81)90365-5
33.
Lee
,
E. H.
,
1972
, “
A Survey of Variational Methods for Elastic Wave Propagation Analysis in Composites With Periodic Structures
,”
Dynamics of Composite Materials
,
E. H.
Lee
, ed.,
ASME
,
New York
, pp.
122
138
.
34.
Hegemier
,
G. A.
, and
Nayfeh
,
A. H.
,
1973
, “
A Continuum Theory for Wave Propagation in Laminated Composites—Case 1: Propagation Normal to the Laminates
,”
ASME J. Appl. Mech.
,
40
, p.
503
.10.1115/1.3423013
35.
Nayfeh
,
A. H.
,
1974
, “
Time-Harmonic Waves Propagating Normal to the Layers of Multilayered Periodic Media
,”
ASME J. Appl. Mech.
,
41
(1), pp. 92–96.10.1115/1.3423282
36.
Nayfeh
,
A. H.
,
1991
, “
The General Problem of Elastic Wave Propagation in Multilayered Anisotropic Media
,”
J. Acoust. Soc. Am.
,
89
(
4
), pp.
1521
1531
.10.1121/1.400988
37.
Chimenti
,
D. E.
, and
Martin
,
R. W.
,
1991
, “
Nondestructive Evaluation of Composite Laminates by Leaky Lamb Waves
,”
Ultrasonics
,
29
(
1
), pp.
13
21
.10.1016/0041-624X(91)90168-8
38.
Shull
,
P. J.
,
Chimenti
,
D. E.
, and
Datta
,
S. K.
,
1994
, “
Elastic Guided Waves and the Floquet Concept in Periodically Layered Plates
,”
J. Acoust. Soc. Am.
,
95
, p.
99
.10.1121/1.408270
39.
Safaeinili
,
A.
, and
Chimenti
,
D. E.
,
1995
, “
Floquet Analysis of Guided Waves in Periodically Layered Composites
,”
J. Acoust. Soc. Am.
,
98
, p.
2336
.10.1121/1.413281
40.
Murakami
,
H.
, and
Akiyama
,
A.
,
1985
, “
A Mixture Theory for Wave Propagation in Angle-Ply Laminates, Part 2: Application
,”
ASME J. Appl. Mech.
,
52
, p.
338
.10.1115/1.3169050
41.
Murakami
,
H.
,
1985
, “
A Mixture Theory for Wave Propagation in Angle-Ply Laminates, Part 1: Theory
,”
ASME J. Appl. Mech.
,
52
(2), pp. 338–344.10.1115/1.3169049
42.
McDevitt
,
T. W.
,
Hulbert
,
G. M.
, and
Kikuchi
,
N.
,
1999
, “
Plane Harmonic Wave Propagation in Three-Dimensional Composite Media
,”
Finite Elem. Analysis Des.
,
33
(
4
), pp.
263
282
.10.1016/S0168-874X(99)00049-9
43.
McDevitt
,
T. W.
,
Hulbert
,
G. M.
, and
Kikuchi
,
N.
,
2001
, “
An Assumed Strain Method for the Dispersive Global-Local Modeling of Periodic Structures
,”
Computer Methods Appl. Mech. Eng.
,
190
(
48
), pp.
6425
6440
.10.1016/S0045-7825(00)00184-5
44.
Hussein
,
M. I.
,
Hulbert
,
G. M.
, and
Scott
,
R. A.
,
2006
, “
Mode-Enriched Dispersion Models of Periodic Materials Within a Multiscale Mixed Finite Element Framework
,”
Finite Elem. Anal. Des.
,
42
, pp.
602
612
.10.1016/j.finel.2005.11.002
45.
Fish
,
J.
, and
Belsky
,
V.
,
1995
, “
Multi-Grid Method for Periodic Heterogeneous Media Part 2: Multiscale Modeling and Quality Control in Multidimensional Case
,”
Computer Methods Appl. Mech. Eng.
,
126
(
1–2
), pp.
17
38
.10.1016/0045-7825(95)00812-F
46.
Fish
,
J.
,
Chen
,
W.
, and
Nagai
,
G.
,
2002
, “
Non-Local Dispersive Model for Wave Propagation in Heterogeneous Media: Multi-Dimensional Case
,”
Int. J. Numer. Methods Eng.
,
54
(
3
), pp.
347
363
.10.1002/nme.424
47.
Fish
,
J.
,
Chen
,
W.
, and
Nagai
,
G.
,
2002
, “
Non-Local Dispersive Model for Wave Propagation in Heterogeneous Media: One-Dimensional Case
,”
Int. J. Numer. Methods Eng.
,
54
(
3
), pp.
331
346
.10.1002/nme.423
48.
Cremer
,
L.
, and
Leilich
,
H. O.
,
1953
, “
Zur theorie der biegekettenleiter
,”
(On Theory of Flexural Periodic Systems), Arch. Elektr. Uebertrag
,
7
, pp.
261
270
.
49.
Müller
,
H. L.
,
1957
, “
Biegewellen-Dämmung an Symmetrischen und Exzentrischen Sperrmassen
,”
Frequenz
,
11
(
10
), pp.
325
331
.
50.
Heckl
,
M.
,
1961
, “
Wave Propagation on Beam-Plate Systems
,”
J. Acoust. Soc. Am.
,
33
, pp. 640–651.10.1121/1.1908750
51.
Heckl
,
M. A.
,
1964
, “
Investigations on the Vibrations of Grillages and Other Simple Beam Structures
,”
J. Acoust. Soc. Am.
,
36
, pp. 1335–1343.10.1121/1.1919206
52.
Ungar
,
E. E.
,
1966
, “
Steady-State Responses of One-Dimensional Periodic Flexural Systems
,”
J. Acoust. Soc. Am.
,
39
, pp. 887–894.10.1121/1.1909967
53.
Lin
,
Y. K.
, and
McDaniel
,
T. J.
,
1969
, “
Dynamics of Beam-Type Periodic Structures
,”
J. Eng. Ind.
,
91
, pp. 1133–1141.10.1115/1.3591761
54.
Faulkner
,
M. G.
, and
Hong
,
D. P.
,
1985
, “
Free Vibrations of a Mono-Coupled Periodic System
,”
J. Sound Vib.
,
99
, pp. 29–42.10.1016/0022-460X(85)90443-2
55.
McDaniel
,
T. J.
,
1971
, “
Dynamics of Circular Periodic Structures (Periodically Supported and Damped Closed Circular Beam Structure, Determining Frequency Response Matrix)
,”
J. Aircraft
,
8
, pp.
143
149
.10.2514/3.44245
56.
McDaniel
,
T. J.
, and
Chang
,
K. J.
,
1980
, “
Dynamics of Rotationally Periodic Large Space Structures
,”
J. Sound Vib.
,
68
(
3
), pp.
351
368
.10.1016/0022-460X(80)90392-2
57.
Thomas
,
D. L.
,
1979
, “
Dynamics of Rotationally Periodic Structures
,”
Int. J. Numer. Methods Eng.
,
14
(
1
), pp.
81
102
.10.1002/nme.1620140107
58.
Williams
,
F. W.
,
1986
, “
An Algorithm for Exact Eigenvalue Calculations for Rotationally Periodic Structures
,”
Int. J. Numer. Methods Eng.
,
23
(
4
), pp.
609
622
.10.1002/nme.1620230407
59.
Pierre
,
C.
,
1988
, “
Mode Localization and Eigenvalue Loci Veering Phenomena in Disordered Structures
,”
J. Sound Vib.
,
126
(
3
), pp.
485
502
.10.1016/0022-460X(88)90226-X
60.
Kim
,
M.
,
Moon
,
J.
, and
Wickert
,
J. A.
,
2000
, “
Spatial Modulation of Repeated Vibration Modes in Rotationally Periodic Structures
,”
ASME J. Vib. Acoust.
,
122
(1), pp. 62–68.10.1115/1.568443
61.
Mead
,
D. M.
,
1996
, “
Wave Propagation in Continuous Periodic Structures: Research Contributions From Southampton, 1964–1995
,”
J. Sound Vib.
,
190
(
3
), pp.
495
524
.10.1006/jsvi.1996.0076
62.
Gupta
,
S.
,
1970
, “
Dynamics of Periodically Stiffened Structures Using a Wave Approach
,” USAF Report No. AFML-TR-70-13.
63.
Gupta
,
S.
,
1970
, “
Natural Flexural Waves and the Normal Modes of Periodically-Supported Beams and Plates
,”
J. Sound Vib.
,
13
, pp.
89
101
.10.1016/S0022-460X(70)80082-7
64.
Mead
,
D. J.
,
1975
, “
Wave Propagation and Natural Modes in Periodic Systems: I. Mono-Coupled Systems
,”
J. Sound Vib.
,
40
, pp. 1–18.10.1016/S0022-460X(75)80227-6
65.
Mead
,
D. J.
,
1975
, “
Wave Propagation and Natural Modes in Periodic Systems: II. Multi-Coupled Systems, With and Without Damping
,”
J. Sound Vib.
,
40
(
1
), pp.
19
39
.10.1016/S0022-460X(75)80228-8
66.
Mead
,
D. J.
,
1986
, “
A New Method of Analyzing Wave Propagation in Periodic Structures; Applications to Periodic Timoshenko Beams and Stiffened Plates
,”
J. Sound Vib.
,
104
, pp. 9–27.10.1016/S0022-460X(86)80128-6
67.
Mead
,
D. J.
,
1970
, “
Vibration Response and Wave Propagation in Periodic Structures
,”
J. Manuf. Sci. Eng.
,
93
, pp. 783–792.10.1115/1.3428014
68.
Mead
,
D. J.
, and
Pujara
,
K. K.
,
1971
, “
Space Harmonic Analysis of Periodically Supported Beams: Response to Convected Random Loading
,”
J. Sound Vib.
,
14
, pp. 525–532.10.1016/0022-460X(71)90579-7
69.
Mead
,
D. J.
, and
Mallik
,
A. K.
,
1973
, “
An Approximate Method of Predicting the Response of Periodically Supported Beams Subjected to Random Convected Loading
,”
J. Sound Vib.
,
47
, pp. 457–471.10.1016/0022-460X(76)90873-7
70.
Orris
,
R. M.
, and
Petyt
,
M.
,
1974
, “
A Finite Element Study of Harmonic Wave Propagation in Periodic Structures
,”
J. Sound Vib.
,
33
(
2
), pp.
223
236
.10.1016/S0022-460X(74)80108-2
71.
Åberg
,
M.
, and
Gudmundson
,
P.
,
1997
, “
The Usage of Standard Finite Element Codes for Computation of Dispersion Relations in Materials With Periodic Microstructure
,”
J. Acoust. Soc. Am.
,
102
, pp. 2007–2013.10.1121/1.419652
72.
Mace
,
B. R.
,
Duhamel
,
D.
,
Brennan
,
M. J.
, and
Hinke
,
L.
,
2005
, “
Finite Element Prediction of Wave Motion in Structural Waveguides
,”
J. Acoust. Soc. Am.
,
117
, pp. 2835–2843.10.1121/1.1887126
73.
Manconi
,
E.
, and
Mace
,
B. R.
,
2009
, “
Wave Characterization of Cylindrical and Curved Panels Using a Finite Element Method
,”
J. Acoust. Soc. Am.
,
125
, pp. 154–163.10.1121/1.3021418
74.
Mace
,
B. R.
, and
Manconi
,
E.
,
2008
, “
Modelling Wave Propagation in Two-Dimensional Structures Using Finite Element Analysis
,”
J. Sound Vib.
,
318
(
4–5
), pp.
884
902
.10.1016/j.jsv.2008.04.039
75.
Langley
,
R. S.
,
1994
, “
On the Modal Density and Energy Flow Characteristics of Periodic Structures
,”
J. Sound Vib.
,
4
(
172
), pp.
491
511
.10.1006/jsvi.1994.1191
76.
Langley
,
R. S.
,
1996
, “
The Response of Two-Dimensional Periodic Structures to Point Harmonic Forcing
,”
J. Sound Vib.
,
197
, pp. 447–469.10.1006/jsvi.1996.0542
77.
Langley
,
R. S.
,
Bardell
,
N. S.
, and
Ruivo
,
H. M.
,
1997
, “
The Response of Two-Dimensional Periodic Structures to Harmonic Point Loading: A Theoretical and Experimental Study of Beam Grillage
,”
J. Sound Vib.
,
207
, pp. 521–535.10.1006/jsvi.1997.1154
78.
Ruzzene
,
M.
,
Mazzarella
,
L.
,
Tsopelas
,
P.
, and
Scarpa
,
F.
,
2002
, “
Wave Propagation in Sandwich Plates With Periodic Auxetic Core
,”
J. Intell. Mater. Syst. Struct.
,
13
(
9
), pp.
587
597
.10.1106/104538902031865
79.
Martinsson
,
P. G.
, and
Movchan
,
A. B.
,
2003
, “
Vibrations of Lattice Structures and Phononic Band Gaps
,”
Q. J. Mech. Appl. Math.
,
56
, pp.
45
64
.10.1093/qjmam/56.1.45
80.
Ruzzene
,
M.
,
Scarpa
,
F.
, and
Soranna
,
F.
,
2003
, “
Wave Beaming Effects in Two-Dimensional Cellular Structures
,”
Smart Mater. Struct.
,
12
, pp. 363–372.10.1088/0964-1726/12/3/307
81.
Ruzzene
,
M.
, and
Scarpa
,
F.
,
2005
, “
Directional and Band-Gap Behavior of Periodic Auxetic Lattices
,”
Phys. Status Solidi B
,
242
(
3
), pp.
665
680
.10.1002/pssb.200460385
82.
Phani
,
A. S.
,
Woodhouse
,
J.
, and
Fleck
,
N. A.
,
2006
, “
Wave Propagation in Two-Dimensional Periodic Lattices
,”
J. Acoust. Soc. Am.
,
119
, pp. 1995–2005.10.1121/1.2179748
83.
Gonella
,
S.
, and
Ruzzene
,
M.
,
2008
, “
Homogenization and Equivalent In-Plane Properties of Two-Dimensional Periodic Lattices
,”
Int. J. Solids Struct.
,
45
(
10
), pp.
2897
2915
.10.1016/j.ijsolstr.2008.01.002
84.
Wolfe
,
J.
,
1998
,
Imaging Phonons: Acoustic Wave Propagation in Solid.
,
Cambridge University Press
, Cambridge, U.K.
85.
Elachi
,
C.
,
1976
, “
Waves in Active and Passive Periodic Structures: A Review
,”
Proc. IEEE
,
64
, pp.
1666
1698
.10.1109/PROC.1976.10409
86.
Yablonovitch
,
E.
,
1987
, “
Inhibited Spontaneous Emission in Solid-State Physics and Electronic
,”
Phys. Rev. Lett.
,
58
, pp.
2059
2062
.10.1103/PhysRevLett.58.2059
87.
John
,
S.
,
1987
, “
Strong Localization of Photons in Certain Disordered Dielectric Superlattices
,”
Phys. Rev. Lett.
,
58
, pp.
2486
2489
.10.1103/PhysRevLett.58.2486
88.
Mártinez-Sala
,
R.
,
Sancho
,
J.
,
Sánchez
,
J. V.
,
Gómez
,
V.
,
Llinares
,
J.
, and
Meseguer
,
F.
,
1995
, “
Sound Attenuation by a Sculpture
,”
Nature
,
378
, p.
241
.10.1038/378241a0
89.
Economou
,
E. N.
, and
Sigalas
,
M.
,
1994
, “
Stop Bands for Elastic Waves in Periodic Composite Materials
,”
J. Acoust. Soc. Am.
,
95
(
4
), pp.
1734
1740
.10.1121/1.408692
90.
Psarobas
,
I. E.
,
Stefanou
,
N.
, and
Modinos
,
A.
,
2000
, “
Scattering of Elastic Waves by Periodic Arrays of Spherical Bodies
,”
Phys. Rev. B
,
62
, pp.
278
291
.10.1103/PhysRevB.62.278
91.
Sigalas
,
M. M.
, and
Garcia
,
N.
,
2000
, “
Theoretical Study of Three Dimensional Elastic Band Gaps With the Finite-Difference Time-Domain Method
,”
J. Appl. Phys.
,
87
, pp.
3122
3125
.10.1063/1.372308
92.
Kushwaha
,
M. S.
, and
Halevi
,
P.
,
1996
, “
Giant Acoustic Stop Bands in Two-Dimensional Periodic Arrays of Liquid Cylinders
,”
Appl. Phys. Lett.
,
69
(
1
), pp.
31
33
.10.1063/1.118108
93.
Kushwaha
,
M. S.
, and
Halevi
,
P.
,
1997
, “
Stop Bands for Cubic Arrays of Spherical Balloons
,”
J. Acoust. Soc. Am.
,
101
, pp.
619
622
.10.1121/1.417964
94.
Sánchez-Pérez
,
J. V.
,
Caballero
,
D.
,
Mártinez-Sala
,
R.
,
Rubio
,
C.
,
Sánchez-Dehesa
,
J.
,
Meseguer
,
F.
,
Llinares
,
J.
, and
Gálvez
,
F.
,
1998
, “
Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders
,”
Phys. Rev. Lett.
,
80
, pp.
5325
5328
.10.1103/PhysRevLett.80.5325
95.
Montero de Espinosa
,
F. R.
,
Jiménez
,
E.
, and
Torres
,
M.
,
1998
, “
Ultrasonic Band Gap in a Periodic Two-Dimensional Composite
,”
Phys. Rev. Lett.
,
80
, pp.
1208
1211
.10.1103/PhysRevLett.80.1208
96.
Economou
,
E. N.
, and
Sigalas
,
M. M.
,
1993
, “
Classical Wave Propagation in Periodic Structures: Cermet Versus Network Topology
,”
Phys. Rev. B
,
48
(
18
), pp.
13434
13438
.10.1103/PhysRevB.48.13434
97.
Sigmund
,
O.
, and
Jensen
,
J. S.
,
2003
, “
Systematic Design of Phononic Band–Gap Materials and Structures by Topology Optimization
,”
Philos. Trans. R. Soc. London, Ser. A
,
361
(
1806
), pp.
1001
1019
.10.1098/rsta.2003.1177
98.
Bilal
,
O. R.
, and
Hussein
,
M. I.
,
2011
, “
Ultrawide Phononic Band Gap for Combined In-Plane and Out-of-Plane Waves
,”
Phys. Rev. E
,
84
, p.
065701
.10.1103/PhysRevE.84.065701
99.
Kushwaha
,
M. S.
, and
Halevi
,
P.
,
1994
, “
Band-Gap Engineering in Periodic Elastic Composites
,”
Appl. Phys. Lett.
,
64
(
9
), pp.
1085
1087
.10.1063/1.110940
100.
Reinke
,
C. M.
,
Su
,
M. F.
,
Olsson
,
R. H.
, and
El-Kady
,
I.
,
2011
, “
Realization of Optimal Bandgaps in Solid-Solid, Solid-Air, and Hybrid Solid-Air-Solid Phononic Crystal Slabs
,”
Appl. Phys. Lett.
,
98
, p.
061912
.10.1063/1.3543848
101.
Psarobas
,
I. E.
,
Stefanou
,
N.
, and
Modinos
,
A.
,
1998
, “
Surface Acoustic Waves in Two-Dimensional Periodic Elastic Structures
,”
Phys. Rev. B
,
58
, pp.
7958
7965
.10.1103/PhysRevB.58.7958
102.
Meseguer
,
F.
,
Holgado
,
M.
,
Caballero
,
D.
,
Benaches
,
N.
,
Sánchez-Dehesa
,
J.
,
López
,
C.
, and
Llinares
,
J.
,
1999
, “
Rayleigh-Wave Attenuation by a Semi-Infinite Two-Dimensional Elastic-Band-Gap Crystal
,”
Phys. Rev. B
,
59
(
19
), pp.
12169
12172
.10.1103/PhysRevB.59.12169
103.
Manzanares-Martinez
,
B.
, and
Ramos-Mendieta
,
F.
,
2003
, “
Surface Elastic Waves in Solid Composites of Two-Dimensional Periodicity
,”
Phys. Rev. B
,
68
, p.
134303
.10.1103/PhysRevB.68.134303
104.
Wu
,
T. T.
,
Huang
,
Z. G.
, and
Lin
,
S.
,
2004
, “
Surface and Bulk Acoustic Waves in Two-Dimensional Phononic Crystal Consisting of Materials With General Anisotropy
,”
Phys. Rev. B
,
69
, p.
094301
.10.1103/PhysRevB.69.094301
105.
Chen
,
J. J.
,
Qin
,
B.
, and
Cheng
,
J. C.
,
2005
, “
Complete Band Gaps for Lamb Waves in Cubic Thin Plates With Periodically Placed Inclusions
,”
Chin. Phys. Lett.
,
22
, pp.
1706
1708
.10.1088/0256-307X/22/7/040
106.
Hsu
,
J. C.
, and
Wu
,
T. T.
,
2006
, “
Efficient Formulation for Band-Structure Calculations of Two-Dimensional Phononic-Crystal Plates
,”
Phys. Rev. B
,
74
, p.
144303
.10.1103/PhysRevB.74.144303
107.
Khelif
,
A.
,
Aoubiza
,
B.
,
Mohammadi
,
S.
,
Adibi
,
A.
, and
Laude
,
V.
,
2006
, “
Complete Band Gaps in Two-Dimensional Phononic Crystal Slabs
,”
Phys. Rev. B
,
74
, p.
046610
.10.1103/PhysRevE.74.046610
108.
Sainidou
,
R.
, and
Stefanou
,
N.
,
2006
, “
Guided and Quasiguided Elastic Waves in Phononic Crystal Slabs
,”
Phys. Rev. B
,
73
, p.
184301
.10.1103/PhysRevB.73.184301
109.
Charles
,
C.
,
Bonello
,
B.
, and
Ganot
,
G.
,
2006
, “
Propagation of Guided Elastic Waves in Two-Dimensional Phononic Crystals
,”
Ultrasonics
,
44
, pp.
E1209
E1213
.10.1016/j.ultras.2006.05.096
110.
Movchan
,
A. B.
,
Movchan
,
N. V.
, and
Mcphedran
,
R. C.
,
2007
, “
Bloch-Floquet Bending Waves in Perforated Thin Plates
,”
Proc. R. Soc. A
,
463
, pp.
45
64
.
111.
Deymier
,
J. O.
,
Deymier
,
P. A.
,
Djafari-Rouhani
,
B.
,
Pennec
,
Y.
, and
Hladky-Hennion
,
A.-C.
,
2008
, “
Absolute Forbidden Bands and Waveguiding in Two-Dimensional Phononic Crystal Plates
,”
Phys. Rev. B
,
77
, p.
085415
.10.1103/PhysRevB.77.085415
112.
Mohammadi
,
S.
,
Eftekhar
,
A. A.
,
Khelif
,
A.
,
Hunt
,
W. D.
, and
Adibi
,
A.
,
2009
, “
Evidence of Large High Frequency Complete Phononic Band Gaps in Silicon Phononic Crystal Plates
,”
Appl. Phys. Lett.
,
92
, p.
221905
.10.1063/1.2939097
113.
El-Kady
,
I.
,
Olsson
,
R. H.
, III
, and
Fleming
,
J. G.
,
2008
, “
Phononic Band-Gap Crystals for Radio Frequency Communications
,”
Appl. Phys. Lett.
,
92
, p.
233504
.10.1063/1.2938863
114.
Mohammadi
,
S.
,
Eftekhar
,
A. A.
,
Hunt
,
W. D.
, and
Adibi
,
A.
,
2009
, “
High-q Micromechanical Resonators in a Two-Dimensional Phononic Crystal Slab
,”
Appl. Phys. Lett.
,
94
, p.
051906
.10.1063/1.3078284
115.
Olsson
,
R. H.
, III
, and
El-Kady
,
I.
,
2009
, “
Microfabricated Phononic Crystal Devices and Applications
,”
Meas. Sci. Technol.
,
20
, p.
012002
.10.1088/0957-0233/20/1/012002
116.
Pennec
,
Y.
,
Vasseur
,
J. O.
,
Djafari-Rouhani
,
B.
,
Dobrzynski
,
L.
, and
Deymier
,
P. A.
,
2010
, “
Two-Dimensional Phononic Crystals: Examples and Applications
,”
Surf. Sci. Rep.
,
65
, pp.
229
291
.10.1016/j.surfrep.2010.08.002
117.
Wu
,
T. T.
,
Hsu
,
J. C.
, and
Sun
,
J. H.
,
2011
, “
Phononic Plate Waves
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
58
(
10
), pp.
2146
2161
.10.1109/TUFFC.2011.2064
118.
Wu
,
T. T.
,
Wu
,
L. C.
, and
Huang
,
Z. G.
,
2005
, “
Frequency Band-Gap Measurement of Two-Dimensional Air/Silicon Phononic Crystals Using Layered Slanted Finger Interdigital Transducers
,”
J. Appl. Phys.
,
97
, p.
094916
.10.1063/1.1893209
119.
Benchabane
,
S.
,
Khelif
,
A.
,
Rauch
,
J. Y.
,
Robert
,
L.
, and
Laude
,
V.
,
2006
, “
Evidence for Complete Surface Wave Band Gap in a Piezoelectric Phononic Crystal
,”
Phys. Rev. E
,
73
, p.
065601
.10.1103/PhysRevE.73.065601
120.
Torrent
,
D.
, and
Sánchez-Dehesa
,
J.
,
2009
, “
Radial Wave Crystals: Radially Periodic Structures From Anisotropic Metamaterials for Engineering Acoustic or Electromagnetic Waves
,”
Phys. Rev. Lett.
,
103
(
6
), p.
64301
.10.1103/PhysRevLett.103.064301
121.
Steurer
,
W.
, and
Sutter-Widmer
,
D.
,
2007
, “
Photonic and Phononic Quasicrystals
,”
J. Phys. D: Appl. Phys.
,
40
, pp.
R229
R247
.10.1088/0022-3727/40/13/R01
122.
Chen
,
A. L.
,
Wang
,
Y. S.
,
Guo
,
Y. F.
, and
Wang
,
Z. D.
,
2008
, “
Band Structures of Fibonacci Phononic Quasicrystals
,”
Solid State Commun.
,
145
, pp.
103
108
.10.1016/j.ssc.2007.10.023
123.
Castiñeira-Ibáñez
,
S.
,
Romero-García
,
V.
,
Sánchez-Pérez
,
J. V.
, and
Garcia-Raffi
,
L. M.
,
2010
, “
Overlapping of Acoustic Bandgaps Using Fractal Geometries
,”
Eur. Phys. Lett.
,
92
, p.
24007
.10.1209/0295-5075/92/24007
124.
Laude
,
V.
,
Achaoui
,
Y.
,
Benchabane
,
S.
, and
Khelif
,
A.
,
2009
, “
Evanescent Bloch Waves and the Complex Band Structure of Phononic Crystals
,”
Phys. Rev. B
,
80
(
9
), p.
092301
.10.1103/PhysRevB.80.092301
125.
Romero-García
,
V.
,
Sánchez-Pérez
,
J. V.
,
Castiñeira-Ibáñez
,
S.
, and
Garcia-Raffi
,
L. M.
,
2010
, “
Evidences of Evanescent Bloch Waves in Phononic Crystals
,”
Appl. Phys. Lett.
,
96
, p.
124102
.10.1063/1.3367739
126.
Jensen
,
J. S.
,
2003
, “
Phononic Band Gaps and Vibrations in One- and Two-Dimensional Mass-Spring Structures
,”
J. Sound Vib.
,
266
, pp.
1053
1078
.10.1016/S0022-460X(02)01629-2
127.
Hladky-Hennion
,
A.-C.
,
Allan
,
G.
, and
de Billy
,
M.
,
2005
, “
Localized Modes in a One-Dimensional Diatomic Chain of Coupled Spheres
,”
J. Appl. Phys.
,
98
, p.
054909
.10.1063/1.2034082
128.
Hussein
,
M. I.
,
Hulbert
,
G. M.
, and
Scott
,
R. A.
,
2006
, “
Dispersive Elastodynamics of 1D Banded Materials and Structures: Analysis
,”
J. Sound Vib.
,
289
, pp.
779
806
.10.1016/j.jsv.2005.02.030
129.
Davis
,
B. L.
,
Tomchek
,
A. S.
,
Flores
,
E. A.
,
Liu
,
L.
, and
Hussein
,
M. I.
,
2011
, “
Analysis of Periodicity Termination in Phononic Crystals
,”
Proceedings of ASME 2011 International Mechanical Engineering Congress and Exposition
, Denver, CO, Nov. 11–17,
ASME
Paper No. IMECE2011-65666, pp. 973–977.10.1115/IMECE2011-65666
130.
Richards
,
D.
, and
Pines
,
D. J.
,
2003
, “
Passive Reduction of Gear Mesh Vibration Using a Periodic Drive Shaft
,”
J. Sound Vib.
,
264
, pp.
317
342
.10.1016/S0022-460X(02)01213-0
131.
Policarpo
,
H.
,
Neves
,
M. M.
, and
Ribeiro
,
A. M. R.
,
2010
, “
Dynamical Response of a Multi-Laminated Periodic Bar: Analytical, Numerical and Experimental Study
,”
Shock Vib.
,
17
, pp.
521
535
.10.1155/2010/134016
132.
Hussein
,
M. I.
,
Hulbert
,
G. M.
, and
Scott
,
R. A.
,
2007
, “
Dispersive Elastodynamics of 1D Banded Materials and Structures: Design
,”
J. Sound Vib.
,
307
, pp.
865
893
.10.1016/j.jsv.2007.07.021
133.
Sánchez-Dehesa
,
J.
,
Garcia-Chocano
,
V. M.
,
Torrent
,
D.
,
Cervera
,
F.
, and
Cabrera
,
S.
,
2011
, “
Noise Control by Sonic Crystal Barriers Made of Recycled Materials
,”
J. Acoust. Soc. Am.
,
129
, pp.
1173
1183
.10.1121/1.3531815
134.
Sigalas
,
M. M.
,
1997
, “
Elastic Wave Band Gaps and Defect States in Two-Dimensional Composites
,”
J. Acoust. Soc. Am.
,
101
(
3
), pp.
1256
1261
.10.1121/1.418156
135.
Sigalas
,
M. M.
,
1998
, “
Defect States of Acoustic Waves in a Two-Dimensional Lattice of Solid Cylinders
,”
J. Appl. Phys.
,
84
(
6
), pp.
2026
3030
.10.1063/1.368456
136.
Torres
,
M.
,
Montero de Espinosa
,
F. R.
,
Garcia-Pablos
,
D.
, and
Garcia
,
N.
,
1999
, “
Sonic Band Gaps in Finite Elastic Media: Surface States and Localization Phenomena in Linear and Point Defects
,”
Phys. Rev. Lett.
,
82
, pp.
3054
3057
.10.1103/PhysRevLett.82.3054
137.
Kafesaki
,
M.
,
Sigalas
,
M. M.
, and
Garcia
,
N.
,
2000
, “
Frequency Modulation in the Transmissivity of Wave Guides in Elastic-Wave Band-Gap Materials
,”
Phys. Rev. Lett.
,
85
, pp.
4044
4047
.10.1103/PhysRevLett.85.4044
138.
Khelif
,
A.
,
Djafari-Rouhani
,
B.
,
Vasseur
,
J. O.
, and
Deymier
,
P. A.
,
2003
, “
Transmission and Dispersion Relations of Perfect and Defect-Containing Waveguide Structures in Phononic Band Gap Materials
,”
Phys. Rev. B
,
68
(
2
), p.
024302
.10.1103/PhysRevB.68.024302
139.
Khelif
,
A.
,
Choujaa
,
A.
,
Benchabane
,
S.
,
Djafari-Rouhani
,
B.
, and
Laude
,
V.
,
2004
, “
Guiding and Bending of Acoustic Waves in Highly Confined Phononic Crystal Waveguides
,”
Appl. Phys. Lett.
,
84
, pp.
4400
4402
.10.1063/1.1757642
140.
Pennec
,
Y.
,
Djafari-Rouhani
,
B.
,
Vasseur
,
J. O.
,
Khelif
,
A.
, and
Deymier
,
P. A.
,
2004
, “
Tunable Filtering and Demultiplexing in Phononic Crystals With Hollow Cylinders
,”
Phys. Rev. E
,
69
(
4
), p.
046608
.10.1103/PhysRevE.69.046608
141.
Hussein
,
M. I.
,
Hulbert
,
G. M.
, and
Scott
,
R. A.
,
2005
, “
Hierarchical Design of Phononic Materials and Structures
,”
Proceedings of 2005 ASME International Mechanical Engineering Congress and Exposition
, Orlando, FL, Nov. 5–11,
ASME
Paper No. IMECE2005-81325, pp. 163–172.10.1115/IMECE2005-81325
142.
Mohammadi
,
S.
, and
Adibi
,
A.
,
2011
, “
On Chip Complex Signal Processing Devices Using Coupled Phononic Crystal Slab Resonators and Waveguides
,”
AIP Adv.
,
1
(
4
), p.
041903
.10.1063/1.3676168
143.
Swinteck
,
N.
,
Robillard
,
J.-F.
,
Bringuier
,
S.
,
Bucay
,
J.
,
Muralidaran
,
K.
,
Vasseur
,
J. O.
,
Runge
,
K.
, and
Deymier
,
P. A.
,
2011
, “
Phase Controlling Phononic Crystal
,”
Appl. Phys. Lett.
,
98
, p.
103508
.10.1063/1.3559599
144.
Bringuier
,
S.
,
Swinteck
,
N.
,
Vasseur
,
J. O.
,
Robillard
,
J. F.
,
Runge
,
K.
,
Muralidharan
,
K.
, and
Deymier
,
P. A.
,
2011
, “
Phase-Controlling Phononic Crystals: Realization of Acoustic Boolean Logic Gates
,”
J. Acoust. Soc. Am.
,
130
, pp. 1919–1925.10.1121/1.3631627
145.
Lucklum
,
R.
, and
Li
,
J.
,
2009
, “
Phononic Crystals for Liquid Sensor Applications
,”
Meas. Sci. Technol.
,
20
, p.
124014
.10.1088/0957-0233/20/12/124014
146.
Lucklum
,
R.
,
Ke
,
M.
, and
Zubtsov
,
M.
,
2012
, “
Two-Dimensional Phononic Crystal Sensor Based on a Cavity Mode
,”
Sens. Actuators B
,
171–172
, pp.
271
277
.10.1016/j.snb.2012.03.063
147.
Wilson
,
R.
,
Reboud
,
J.
,
Bourquin
,
Y.
,
Neale
,
S. L.
,
Zhang
,
Y.
, and
Cooper
,
J. M.
,
2011
, “
Phononic Crystal Structures for Acoustically Driven Microfluidic Manipulations
,”
Lab Chip
,
11
, pp.
323
328
.10.1039/c0lc00234h
148.
Nardi
,
D.
,
Zagato
,
E.
,
Ferrini
,
G.
,
Giannetti
,
C.
, and
Banfi
,
F.
,
2012
, “
Design of a Surface Acoustic Wave Mass Sensor in the 100 GHz Range
,”
Appl. Phys. Lett.
,
100
, p.
253106
.10.1063/1.4729624
149.
Chen
,
L. S.
,
Kuo
,
C. H.
, and
Ye
,
Z.
,
2004
, “
Acoustic Imaging and Collimating by Slabs of Sonic Crystals Made From Arrays of Rigid Cylinders in Air
,”
Appl. Phys. Lett.
,
85
, pp.
1072
1074
.10.1063/1.1781351
150.
Espinosa
,
V.
,
Sánchez-Morcillo
,
V. J.
,
Staliunas
,
K.
,
Isabel Pérez-Arjona
,
I.
, and
Redondo
,
J.
,
2007
, “
Subdiffractive Propagation of Ultrasound in Sonic Crystals
,”
Phys. Rev. B
,
76
, p.
140302(R)
.10.1103/PhysRevB.76.140302
151.
Christensen
,
J.
,
Fernandez-Dominguez
,
A. I.
,
de Leon-Perez
,
F.
,
Martin-Moreno
,
L.
, and
Garcia-Vida
,
F. J.
,
2007
, “
Collimation of Sound Assisted by Acoustic Surface Waves
,”
Nat. Phys.
,
3
, pp.
851
852
.10.1038/nphys774
152.
Shi
,
J. J.
,
Lin
,
S. C. S.
, and
Huang
,
T. J.
,
2008
, “
Wide-Band Acoustic Collimating by Phononic Crystal Composites
,”
Appl. Phys. Lett.
,
92
(
11
), p.
111901
.10.1063/1.2895019
153.
Cervera
,
F.
,
Sanchis
,
L.
,
Sánchez-Pérez
,
J. V.
,
Mártnez-Sala
,
R.
,
Rubio
,
C.
,
Meseguer
,
F.
,
López
,
C.
,
Caballero
,
D.
, and
Sánchez-Dehesa
,
J.
,
2002
, “
Refractive Acoustic Devices for Airborne Sound
,”
Phys. Rev. Lett.
,
88
(
2
), p.
023902
.10.1103/PhysRevLett.88.023902
154.
Gupta
,
B. C.
, and
Ye
,
Z.
,
2003
, “
Theoretical Analysis of the Focusing of Acoustic Waves by Two-Dimensional Sonic Crystals
,”
Phys. Rev. E
,
67
, p.
036603
.10.1103/PhysRevE.67.036603
155.
Torrent
,
D.
, and
Sánchez-Dehesa
,
J.
,
2007
, “
Acoustic Metamaterials for New Two-Dimensional Sonic Devices
,”
New J. Phys.
,
9
, p.
323
.10.1088/1367-2630/9/9/323
156.
Zhang
,
X. D.
, and
Liu
,
Z. Y.
,
2004
, “
Negative Refraction of Acoustic Waves in Two-Dimensional Phononic Crystals
,”
Appl. Phys. Lett.
,
85
, pp.
341
343
.10.1063/1.1772854
157.
Hu
,
X. H.
,
Shen
,
Y. F.
,
Liu
,
X. H.
,
Fu
,
R. T.
, and
Zi
,
J.
,
2004
, “
Superlensing Effect in Liquid Surface Waves
,”
Phys. Rev. E
,
69
, p.
030201(R)
.10.1103/PhysRevE.69.030201
158.
Yang
,
S. X.
,
Page
,
J. H.
,
Liu
,
Z. Y.
,
Cowan
,
M. L.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2004
, “
Focusing of Sound in a 3D Phononic Crystal
,”
Phys. Rev. Lett.
,
93
, p.
024301
.10.1103/PhysRevLett.93.024301
159.
Qui
,
C. Y.
,
Zhang
,
X. D.
, and
Liu
,
Z. Y.
,
2005
, “
Far-Field Imaging of Acoustic Waves by a Two-Dimensional Sonic Crystal
,”
Phys. Rev. B
,
71
, p.
054302
.
160.
Ke
,
M. Z.
,
Liu
,
Z. Y.
,
Qiu
,
C. Y.
,
Wang
,
W. G.
,
Shi
,
J.
,
Wen
,
W. J.
, and
Sheng
,
P.
,
2005
, “
Negative-Refraction Imaging With Two-Dimensional Phononic Crystals
,”
Phys. Rev. B
,
72
, p.
064306
.10.1103/PhysRevB.72.064306
161.
Feng
,
L.
,
Liu
,
X. P.
,
Chen
,
Y. B.
,
Huang
,
Z. P.
,
Mao
,
Y. W.
,
Chen
,
Y. F.
,
Zi
,
J.
, and
Zhu
,
Y. Y.
,
2005
, “
Negative Refraction of Acoustic Waves in Two-Dimensional Sonic Crystals
,”
Phys. Rev. B
,
72
, p.
033108
.10.1103/PhysRevB.72.033108
162.
Li
,
J.
,
Liu
,
Z. Y.
, and
Qiu
,
C. Y.
,
2006
, “
Negative Refraction Imaging of Acoustic Waves by a Two-Dimensional Three-Component Phononic Crystal
,”
Phys. Rev. B
,
73
, p.
054302
.10.1103/PhysRevB.73.054302
163.
Sukhovich
,
A.
,
Jing
,
L.
, and
Page
,
J. H.
,
2008
, “
Negative Refraction and Focusing of Ultrasound in Two-Dimensional Phononic Crystals
,”
Phys. Rev. B
,
77
, p.
014301
.10.1103/PhysRevB.77.014301
164.
Spadoni
,
A.
, and
Daraio
,
C.
,
2010
, “
Generation and Control of Sound Bullets With a Nonlinear Acoustic Lens
,”
Proc. Natl. Acad. Sci. USA
,
107
, pp.
7230
7234
.10.1073/pnas.1001514107
165.
Liang
,
B.
,
Yuan
,
B.
, and
Cheng
,
J. C.
,
2009
, “
Acoustic Diode: Rectification of Acoustic Energy Flux in One-Dimensional Systems
,”
Phys. Rev. Lett.
,
103
, p.
104301
.10.1103/PhysRevLett.103.104301
166.
Liang
,
B.
,
Guo
,
X. S.
,
Tu
,
J.
,
Zhang
,
D.
, and
Cheng
,
J. C.
,
2010
, “
An Acoustic Rectifier
,”
Nature Mater.
,
9
, pp.
989
992
.10.1038/nmat2881
167.
Boechler
,
N.
,
Theocharis
,
G.
, and
Daraio
,
C.
,
2011
, “
Bifurcation-Based Acoustic Switching and Rectification
,”
Nature Mater.
,
10
, pp.
665
668
.10.1038/nmat3072
168.
Li
,
X. F.
,
Ni
,
X.
,
Feng
,
L. A.
,
Lu
,
M. H.
,
He
,
C.
, and
Chen
,
Y. F.
,
2011
, “
Tunable Unidirectional Sound Propagation Through a Sonic-Crystal-Based Acoustic Diode
,”
Phys. Rev. Lett.
,
106
, p.
084301
.10.1103/PhysRevLett.106.084301
169.
Maldovan
,
M.
, and
Thomas
,
E. L.
,
2006
, “
Simultaneous Localization of Photons and Phonons in Two-Dimensional Periodic Structures
,”
Appl. Phys. Lett.
,
88
, p.
251907
.10.1063/1.2216885
170.
Akimov
,
A. V.
,
Tanaka
,
Y.
,
Pevtsov
,
A. B.
,
Kaplan
,
S. F.
,
Golubev
,
V. G.
,
Tamura
,
S.
,
Yakovlev
,
D. R.
, and
Bayer
,
M.
,
2008
, “
Hypersonic Modulation of Light in Three-Dimensional Photonic and Phononic Band-Gap Materials
,”
Phys. Rev. Lett.
,
101
, p.
033902
.10.1103/PhysRevLett.101.033902
171.
Sadat-Saleh
,
S.
,
Benchabane
,
S.
,
Baida
,
F. I.
,
Bernal
,
M. P.
, and
Laude
,
V.
,
2009
, “
Tailoring Simultaneous Photonic and Phononic Band Gaps
,”
J. Appl. Phys.
,
106
, p.
074912
.10.1063/1.3243276
172.
Pennec
,
Y.
,
Rouhani
,
B. D.
,
El Boudouti
,
E. H.
,
Li
,
C.
,
El Hassouani
,
Y.
,
Vasseur
,
J. O.
,
Papanikolaou
,
N.
,
Benchabane
,
S.
,
Laude
,
V.
, and
Martinez
,
A.
,
2010
, “
Simultaneous Existence of Phononic and Photonic Band Gaps in Periodic Crystal Slabs
,”
Opt. Express
,
18
, pp.
14301
14310
.10.1364/OE.18.014301
173.
Mohammadi
,
S.
,
Eftekhar
,
A. A.
,
Khelif
,
A.
, and
Adibi
,
A.
,
2010
, “
Simultaneous Two-Dimensional Phononic and Photonic Band Gaps in Opto-Mechanical Crystal Slabs
,”
Opt. Express
,
18
, pp.
9164
9172
.10.1364/OE.18.009164
174.
Laude
,
V.
,
Beugnot
,
J. C.
,
Benchabane
,
S.
,
Pennec
,
Y.
,
Djafari-Rouhani
,
B.
,
Papanikolaou
,
N.
,
Escalante
,
J. M.
, and
Martinez
,
A.
,
2011
, “
Simultaneous Guidance of Slow Photons and Slow Acoustic Phonons in Silicon Phoxonic Crystal Slabs
,”
Opt. Express
,
19
, pp.
9690
9698
.10.1364/OE.19.009690
175.
Eichenfield
,
M.
,
Chan
,
J.
,
Camacho
,
R. M.
,
Vahala
,
K. J.
, and
Painter
,
O.
,
2009
, “
Optomechanical Crystals
,”
Nature
,
462
, pp.
78
82
.10.1038/nature08524
176.
Psarobas
,
I. E.
,
Papanikolaou
,
N.
,
Stefanou
,
N.
,
Djafari-Rouhani
,
B.
,
Bonello
,
B.
, and
Laude
,
V.
,
2010
, “
Enhanced Acousto-Optic Interactions in a One-Dimensional Phoxonic Cavity
,”
Phys. Rev. B
,
82
, p.
174303
.10.1103/PhysRevB.82.174303
177.
Maldovan
,
M.
,
2013
, “
Sound and Heat Revolutions in Phononics
,”
Nature
,
503
, pp.
209
217
.10.1038/nature12608
178.
Goffaux
,
C.
, and
Vigneron
,
J. P.
,
2001
, “
Theoretical Study of a Tunable Phononic Band Gap System
,”
Phys. Rev. B
,
64
, p.
075118
.10.1103/PhysRevB.64.075118
179.
Thorp
,
O.
,
Ruzzene
,
M.
, and
Baz
,
A.
,
2001
, “
Attenuation and Localization of Wave Propagation in Rods With Periodic Shunted Piezoelectric Patches
,”
Smart Mater. Struct.
,
10
, pp.
979
989
.10.1088/0964-1726/10/5/314
180.
Hou
,
Z.
,
Wu
,
F.
, and
Liu
,
Y.
,
2004
, “
Phononic Crystals Containing Piezoelectric Material
,”
Solid State Commun.
,
130
, pp.
745
749
.10.1016/j.ssc.2004.03.052
181.
Laude
,
V.
,
Wilm
,
M.
,
Benchabane
,
S.
, and
Khelif
,
A.
,
2005
, “
Full Band Gap for Surface Acoustic Waves in a Piezoelectric Phononic Crystal
,”
Phys. Rev. E
,
71
, p.
036607
.10.1103/PhysRevE.71.036607
182.
Rupp
,
C. J.
,
Dunn
,
M. L.
, and
Maute
,
K.
,
2010
, “
Switchable Phononic Wave Filtering, Guiding, Harvesting, and Actuating in Polarization-Patterned Piezoelectric Solids
,”
Appl. Phys. Lett.
,
96
, p.
111902
.10.1063/1.3341197
183.
Baumgart
,
J.
,
Zvyagolskaya
,
M.
, and
Bechinger
,
C.
,
2007
, “
Tailoring of Phononic Band Structure in Colloidal Crystals
,”
Phys. Rev. Lett.
,
99
, p.
205503
.10.1103/PhysRevLett.99.205503
184.
Yeh
,
J. Y.
,
2007
, “
Control Analysis of the Tunable Phononic Crystal With Electrorheological Material
,”
Physica B
,
400
, pp.
137
144
.10.1016/j.physb.2007.06.030
185.
Wang
,
Y. Z.
,
Li
,
F. M.
,
Huang
,
W. H.
,
Jiang
,
X. A.
,
Wang
,
Y. S.
, and
Kishimoto
,
K.
,
2008
, “
Wave Band Gaps in Two-Dimensional Piezoelectric/Piezomagnetic Phononic Crystals
,”
Int. J. Solids Struct.
,
45
, pp.
4203
4210
.10.1016/j.ijsolstr.2008.03.001
186.
Wang
,
Y. Z.
,
Li
,
F. M.
,
Kishimoto
,
K.
,
Wang
,
Y. S.
, and
Huang
,
W. H.
,
2009
, “
Elastic Wave Band Gaps in Magnetoelectroelastic Phononic Crystals
,”
Wave Motion
,
46
, pp.
47
56
.10.1016/j.wavemoti.2008.08.001
187.
Robillard
,
J.-F.
,
Bou Matar
,
O.
,
Vasseur
,
J. O.
,
Deymier
,
P. A.
,
Stippinger
,
M.
,
Hladky-Hennion
,
A.-C.
,
Pennec
,
Y.
, and
Djafari-Rouhani
,
B.
,
2009
, “
Tunable Magnetoelastic Phononic Crystals
,”
Appl. Phys. Lett.
,
95
, p.
124104
.10.1063/1.3236537
188.
Ruzzene
,
M.
, and
Baz
,
A.
,
2000
, “
Control of Wave Propagation in Periodic Composite Rods Using Shape Memory Inserts
,”
ASME J. Vib. Acoust.
,
122
(2), pp.
151
159
.10.1115/1.568452
189.
Huang
,
Z. G.
, and
Wu
,
T. T.
,
2005
, “
Temperature Effect on the Band Gaps of Surface and Bulk Acoustic Waves in Two-Dimensional Phononic Crystals
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
,
52
, pp.
365
370
.10.1109/TUFFC.2005.1417258
190.
Jim
,
K. L.
,
Leung
,
C. W.
,
Lau
,
S. T.
,
Choy
,
S. H.
, and
Chan
,
H. L. W.
,
2009
, “
Thermal Tuning of Phononic Bandstructure in Ferroelectric Ceramic/Epoxy Phononic Crystal
,”
Appl. Phys. Lett.
,
94
, p.
193501
.10.1063/1.3136752
191.
Evgrafov
,
A.
,
Rupp
,
C. J.
,
Dunn
,
M. L.
, and
Maute
,
K.
,
2008
, “
Optimal Synthesis of Tunable Elastic Wave-Guides
,”
Comput. Methods Appl. Mech. Eng.
,
198
, pp.
292
301
.10.1016/j.cma.2008.08.001
192.
Bertoldi
,
K.
, and
Boyce
,
M. C.
,
2008
, “
Mechanically Triggered Transformations of Phononic Band Gaps in Periodic Elastomeric Structures
,”
Phys. Rev. B
,
77
, p.
052105
.10.1103/PhysRevB.77.052105
193.
Balandin
,
A. A.
, and
Wang
,
K. L.
,
1998
, “
Significant Decrease of the Lattice Thermal Conductivity Due to Phonon Confinement in a Free-Standing Semiconductor Quantum Well
,”
Phys. Rev. B
,
58
, pp.
1544
1549
.10.1103/PhysRevB.58.1544
194.
Chen
,
G.
,
2000
, “
Phonon Heat Conduction in Nanostructures
,”
Int. J. Therm. Sci.
,
39
, pp.
471
480
.10.1016/S1290-0729(00)00202-7
195.
McGaughey
,
A. J. H.
,
Hussein
,
M. I.
,
Landry
,
E. S.
,
Kaviany
,
M.
, and
Hulbert
,
G. M.
,
2006
, “
Phonon Band Structure and Thermal Transport Correlation in a Layered Diatomic Crystal
,”
Phys. Rev. B
,
74
, p.
104304
.10.1103/PhysRevB.74.104304
196.
Gillet
,
J. N.
,
Chalopin
,
Y.
, and
Volz
,
S.
,
2009
, “
Atomic-Scale Three-Dimensional Phononic Crystals With a Very Low Thermal Conductivity to Design Crystalline Thermoelectric Devices
,”
ASME J. Heat Transfer
,
131
(4), p.
043206
.10.1115/1.3072927
197.
He
,
Y. P.
,
Donadio
,
D.
,
Lee
,
J. H.
,
Grossman
,
J. C.
, and
Galli
,
G.
,
2011
, “
Thermal Transport in Nanoporous Silicon: Interplay Between Disorder at Mesoscopic and Atomic Scales
,”
ACS Nano
,
5
, pp.
1839
1844
.10.1021/nn2003184
198.
Robillard
,
J. F.
,
Muralidharan
,
K.
,
Bucay
,
J.
,
Deymier
,
P. A.
,
Beck
,
W.
, and
Barker
,
D.
,
2011
, “
Phononic Metamaterials for Thermal Management: An Atomistic Computational Study
,”
Chin. J. Phys.
,
49
, pp.
448
461
.
199.
Yu
,
J. K.
,
Mitrovic
,
S.
,
Tham
,
D.
,
Varghese
,
J.
, and
Heath
,
J. R.
,
2010
, “
Reduction of Thermal Conductivity in Phononic Nanomesh Structures
,”
Nat. Nanotechnol.
,
5
, pp.
718
721
.10.1038/nnano.2010.149
200.
Tang
,
J.
,
Wang
,
H. T.
,
Lee
,
D. H.
,
Fardy
,
M.
,
Huo
,
Z.
,
Russell
,
T. P.
, and
Yang
,
P.
,
2010
, “
Holey Silicon as an Efficient Thermoelectric Material
,”
Nano Lett.
,
10
, pp.
4279
4283
.10.1021/nl102931z
201.
Hopkins
,
P. E.
,
Reinke
,
C. M.
,
Su
,
M. F.
,
Olsson
,
R. H.
, III
,
Shaner
,
E. A.
,
Leseman
,
Z. C.
,
Serrano
,
J. R.
,
Phinney
,
L. M.
, and
El-Kady
,
I.
,
2011
, “
Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning
,”
Nano Lett.
,
11
, pp.
107
112
.10.1021/nl102918q
202.
Davis
,
B. L.
, and
Hussein
,
M. I.
,
2014
, “
Nanophononic Metamaterial: Thermal Conductivity Reduction by Local Resonance
,”
Phys. Rev. Lett.
, 112, p.
055505
.10.1103/PhysRevLett.112.055505
203.
Li
,
N. B.
,
Ren
,
J.
,
Wang
,
L.
,
Zhang
,
G.
,
Hanggi
,
P.
, and
Li
,
B. W.
,
2012
, “
Colloquium: Phononics: Manipulating Heat Flow With Electronic Analogs and Beyond
,”
Rev. Mod. Phys.
,
84
, pp.
1045
1066
.10.1103/RevModPhys.84.1045
204.
Liu
,
Z. Y.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2002
, “
Three-Component Elastic Wave Band-Gap Material
,”
Phys. Rev. B
,
65
, p.
165116
.10.1103/PhysRevB.65.165116
205.
Wang
,
G.
,
Wen
,
X. S.
,
Wen
,
J. H.
,
Shao
,
L. H.
, and
Liu
,
Y. Z.
,
2004
, “
Two-Dimensional Locally Resonant Phononic Crystals With Binary Structures
,”
Phys. Rev. Lett.
,
93
, p.
154302
.10.1103/PhysRevLett.93.154302
206.
Hsu
,
J. C.
, and
Wu
,
T. T.
,
2007
, “
Lamb Waves in Binary Locally Resonant Phononic Plates With Two-Dimensional Lattices
,”
Appl. Phys. Lett.
,
90
, p.
201904
.10.1063/1.2739369
207.
Sainidou
,
R.
,
Djafari-Rouhani
,
B.
,
Pennec
,
Y.
, and
Vasseur
,
J. O.
,
2006
, “
Locally Resonant Phononic Crystals Made of Hollow Spheres or Cylinders
,”
Phys. Rev. B
,
73
, p.
024302
.10.1103/PhysRevB.73.024302
208.
Guenneau
,
S.
,
Movchan
,
A.
,
Pétursson
,
G.
, and
Anantha Ramakrishna
,
S. A.
,
2007
, “
Acoustic Metamaterials for Sound Focusing and Confinement
,”
New J. Phys.
,
9
, p.
399
.10.1088/1367-2630/9/11/399
209.
Ding
,
C. L.
,
Zhao
,
X. P.
,
Hao
,
L. M.
, and
Zhu
,
W. R.
,
2011
, “
Acoustic Metamaterial With Split Hollow Spheres
,”
Acta Phys. Sin.
,
60
, p.
044301
.
210.
Yu
,
D. L.
,
Liu
,
Y. Z.
,
Zhao
,
H. G.
,
Wang
,
G.
, and
Qiu
,
J.
,
2006
, “
Flexural Vibration Band Gaps in Euler-Bernoulli Beams With Locally Resonant Structures With Two Degrees of Freedom
,”
Phys. Rev. B
,
73
, p.
064301
.10.1103/PhysRevB.73.064301
211.
Yu
,
D. L.
,
Liu
,
Y. Z.
,
Wang
,
G.
,
Zhao
,
H. G.
, and
Qiu
,
J.
,
2006
, “
Flexural Vibration Band Gaps in Timoshenko Beams With Locally Resonant Structures
,”
J. Appl. Phys.
,
100
, p.
124901
.10.1063/1.2400803
212.
Zhao
,
H. G.
,
Liu
,
Y. Z.
,
Wen
,
J. H.
,
Yu
,
D. L.
,
Wang
,
G.
, and
Wen
,
X. S.
,
2006
, “
Sound Absorption of Locally Resonant Sonic Materials
,”
Chin. Phys. Lett.
,
23
, pp.
2132
2134
.10.1088/0256-307X/23/8/047
213.
Pennec
,
Y.
,
Djafari-Rouhani
,
B.
,
Larabi
,
H.
,
Vasseur
,
J. O.
, and
Ladky Hennion
,
A.-C.
,
2008
, “
Low-Frequency Gaps in a Phononic Crystal Constituted of Cylindrical Dots Deposited on a Thin Homogeneous Plate
,”
Phys. Rev. B
,
78
, p.
104105
.10.1103/PhysRevB.78.104105
214.
Wu
,
T. T.
,
Huang
,
Z. G.
,
Tsai
,
T. C.
, and
Wu
,
T. C.
,
2008
, “
Evidence of Complete Band Gap and Resonances in a Plate With Periodic Stubbed Surface
,”
Appl. Phys. Lett.
,
93
, p.
111902
.10.1063/1.2970992
215.
Oudich
,
M.
,
Assouar
,
M. B.
, and
Hou
,
Z. L.
,
2010
, “
Propagation of Acoustic Waves and Waveguiding in a Two-Dimensional Locally Resonant Phononic Crystal Plate
,”
Appl. Phys. Lett.
,
97
, p.
193503
.10.1063/1.3513218
216.
Khelif
,
A.
,
Achaoui
,
Y.
,
Benchabane
,
S.
,
Laude
,
V.
, and
Aoubiza
,
B.
,
2010
, “
Locally Resonant Surface Acoustic Wave Band Gaps in a Two-Dimensional Phononic Crystal of Pillars on a Surface
,”
Phys. Rev. B
,
81
, p.
214303
.10.1103/PhysRevB.81.214303
217.
Yilmaz
,
C.
,
Hulbert
,
G. M.
, and
Kikuchi
,
N.
,
2007
, “
Phononic Band Gaps Induced by Inertial Amplification in Periodic Media
,”
Phys. Rev. B
,
76
, p.
054309
.10.1103/PhysRevB.76.054309
218.
Goffaux
,
C.
,
Sánchez-Dehesa
,
J.
,
Yeyati
,
A. L.
,
Lambin
,
P.
,
Khelif
,
A.
,
Vasseur
,
J. O.
, and
Djafari-Rouhani
,
B.
,
2002
, “
Evidence of Fano-Like Interference Phenomena in Locally Resonant Materials
,”
Phys. Rev. Lett.
,
88
, p.
225502
.10.1103/PhysRevLett.88.225502
219.
Xiao
,
Y.
,
Mace
,
B. R.
,
Wen
,
J. H.
, and
Wen
,
X. S.
,
2011
, “
Formation and Coupling of Band Gaps in a Locally Resonant Elastic System Comprising a String With Attached Resonators
,”
Phys. Lett. A
,
375
, pp.
1485
1491
.10.1016/j.physleta.2011.02.044
220.
Xiao
,
Y.
,
Wen
,
J. H.
, and
Wen
,
X. S.
,
2012
, “
Flexural Wave Band Gaps in Locally Resonant Thin Plates With Periodically Attached Spring-Mass Resonators
,”
J. Phys. D: Appl. Phys.
,
45
, p.
195401
.10.1088/0022-3727/45/19/195401
221.
Liu
,
L.
, and
Hussein
,
M. I.
,
2012
, “
Wave Motion in Periodic Flexural Beams and Characterization of the Transition Between Bragg Scattering and Local Resonance
,”
ASME J. Appl. Mech.
,
79
(1), p.
011003
.10.1115/1.4004592
222.
Sheng
,
P.
,
1995
,
Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena
,
Academic Press
,
New York
.
223.
Li
,
J.
, and
Chan
,
C. T.
,
2004
, “
Double-Negative Acoustic Metamaterial
,”
Phys. Rev. E
,
70
(
5
), p. 055602(R).10.1103/PhysRevE.70.055602
224.
Fang
,
N.
,
Xi
,
D.
,
Xu
,
J.
,
Ambati
,
M.
,
Srituravanich
,
W.
,
Sun
,
C.
, and
Zhang
,
X.
,
2006
, “
Ultrasonic Metamaterials With Negative Modulus
,”
Nature Mater.
,
5
(
6
), pp. 452–456.10.1038/nmat1644
225.
Zhang
,
S.
,
Yin
,
L.
, and
Fang
,
N.
,
2009
, “
Focusing Ultrasound With an Acoustic Metamaterial Network
,”
Phys. Rev. Lett.
,
102
(
19
), p.
194301
.10.1103/PhysRevLett.102.194301
226.
Lee
,
S. H.
,
Park
,
C. M.
,
Seo
,
Y. M.
,
Wang
,
Z. G.
, and
Kim
,
C. K.
,
2009
, “
Acoustic Metamaterial With Negative Modulus
,”
J. Phys.: Condens. Matter
,
21
, p.
175704
.
227.
Ding
,
C.
,
Hao
,
L.
, and
Zhao
,
X.
,
2010
, “
Two-Dimensional Acoustic Metamaterial With Negative Modulus
,”
J. Appl. Phys.
,
108
, p.
074911
.10.1063/1.3493155
228.
Liu
,
Z. Y.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2005
, “
Analytic Model of Phononic Crystals With Local Resonances
,”
Phys. Rev. B
,
71
, p.
014103
.10.1103/PhysRevB.71.014103
229.
Yang
,
Z. Y.
,
Mei
,
J.
,
Yang
,
M.
,
Chan
,
N. H.
, and
Sheng
,
P.
,
2008
, “
Membrane-Type Acoustic Metamaterial With Negative Dynamic Mass
,”
Phys. Rev. Lett.
,
101
(
20
), p.
204301
.10.1103/PhysRevLett.101.204301
230.
Avila
,
A.
,
Griso
,
G.
,
Miara
,
B.
, and
Rohan
,
E.
,
2008
, “
Multiscale Modeling of Elastic Waves: Theoretical Justification and Numerical Simulation of Band Gaps
,”
Multiscale Model. Simul.
,
7
, pp.
1
21
.10.1137/060677689
231.
Yao
,
S. S.
, and
Zhou
,
X. M.
;
Hu
,
G. K.
,
2008
, “
Experimental Study on Negative Effective Mass in a 1D Mass-Spring System
,”
New J. Phys.
,
10
, p.
043020
.10.1088/1367-2630/10/4/043020
232.
Park
,
C. M.
,
Park
,
J. J.
,
Lee
,
S. H.
,
Seo
,
Y. M.
,
Kim
,
C. K.
, and
Lee
,
S. H.
,
2011
, “
Amplification of Acoustic Evanescent Waves Using Metamaterial Slabs
,”
Phys. Rev. Lett.
,
107
, p.
093018
.
233.
Ding
,
Y. Q.
,
Liu
,
Z. Y.
,
Qiu
,
C. Y.
, and
Shi
,
J.
,
2007
, “
Metamaterial With Simultaneously Negative Bulk Modulus and Mass Density
,”
Phys. Rev. Lett.
,
99
(
9
), p.
093904
.10.1103/PhysRevLett.99.093904
234.
Cheng
,
Y.
,
Xu
,
J. Y.
, and
Liu
,
X. J.
,
2008
, “
One-Dimensional Structured Ultrasonic Metamaterials With Simultaneously Negative Dynamic Density and Modulus
,”
Phys. Rev. B
,
77
(
4
), p.
045134
.10.1103/PhysRevB.77.045134
235.
Lee
,
S. H.
,
Park
,
C. M.
,
Seo
,
Y. M.
,
Wang
,
Z. G.
, and
Kim
,
C. K.
,
2010
, “
Composite Acoustic Medium With Simultaneously Negative Density and Modulus
,”
Phys. Rev. Lett.
,
104
(
5
), p.
54301
.10.1103/PhysRevLett.104.054301
236.
Torrent
,
D.
, and
Sánchez-Dehesa
,
J.
,
2011
, “
Multiple Scattering Formulation of Two-Dimensional Acoustic and Electromagnetic Metamaterials
,”
New J. Phys.
,
13
, p.
093018
.10.1088/1367-2630/13/9/093018
237.
Avila
,
A.
,
Griso
,
G.
, and
Miara
,
B.
,
2005
, “
Phononic Band Gaps in Linearized Elasticity
,”
C. R. Math.
,
340
, pp.
933
938
.10.1016/j.crma.2005.04.026
238.
Pendry
,
J. B.
, and
Li
,
J.
,
2008
, “
An Acoustic Metafluid: Realizing a Broadband Acoustic Cloak
,”
New J. Phys.
,
10
, p.
115032
.10.1088/1367-2630/10/11/115032
239.
Torrent
,
D.
, and
Sánchez-Dehesa
,
J.
,
2008
, “
Anisotropic Mass Density by Two-Dimensional Acoustic Metamaterials
,”
New J. Phys.
,
10
, p.
023004
.10.1088/1367-2630/10/2/023004
240.
Huang
,
H. H.
, and
Sun
,
C. T.
,
2011
, “
Locally Resonant Acoustic Metamaterials With 2D Anisotropic Effective Mass Density
,”
Philos. Mag.
,
91
(
6
), pp.
981
996
.10.1080/14786435.2010.536174
241.
Lai
,
Y.
,
Wu
,
Y.
,
Sheng
,
P.
, and
Zhang
,
Z. Q.
,
2011
, “
Hybrid Elastic Solids
,”
Nature Mater.
,
10
, pp.
620
624
.10.1038/nmat3043
242.
Fokin
,
V.
,
Ambati
,
M.
,
Sun
,
C.
, and
Zhang
,
X.
,
2007
, “
Method for Retrieving Effective Properties of Locally Resonant Acoustic Metamaterials
,”
Phys. Rev. B
,
76
, p.
144302
.10.1103/PhysRevB.76.144302
243.
Huang
,
H. H.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2009
, “
On the Negative Effective Mass Density in Acoustic Metamaterials
,”
Int. J. Eng. Sci.
,
47
(
4
), pp.
610
617
.10.1016/j.ijengsci.2008.12.007
244.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1963
, “
A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials
,”
J. Mech. Phys. Solids
,
63
, pp.
127
140
.10.1016/0022-5096(63)90060-7
245.
Torrent
,
D.
,
Håkansson
,
A.
,
Cervera
,
F.
, and
Sánchez-Dehesa
,
J.
,
2011
, “
Homogenization of Two-Dimensional Clusters of Rigid Rods in Air
,”
J. Acoust. Soc. Am.
,
129
, pp.
1173
1183
.10.1121/1.3531815
246.
Milton
,
G. W.
, and
Willis
,
J. R.
,
2007
, “
On Modifications of Newton's Second Law and Linear Continuum Elastodynamics
,”
Proc. R. Soc. A
,
463
, pp.
855
880
.10.1098/rspa.2006.1795
247.
Willis
,
J. R.
,
2009
, “
Exact Effective Relations for Dynamics of a Laminated Body
,”
Mech. Mater.
,
41
, pp.
385
393
.10.1016/j.mechmat.2009.01.010
248.
Nemat-Nasser
,
S.
,
Willis
,
J. R.
,
Srivastava
,
A.
, and
Amirkhizi
,
A. V.
,
2011
, “
Homogenization of Periodic Elastic Composites and Locally Resonant Sonic Materials
,”
Phys. Rev. B
,
83
, p.
104103
.10.1103/PhysRevB.83.104103
249.
Norris
,
A. N.
,
Shuvalov
,
A. L.
, and
Kutsenko
,
A. A.
,
2012
, “
Analytical Formulation of Three-Dimensional Dynamic Homogenization for Periodic Elastic Systems
,”
Proc. R. Soc. A
,
468
, pp.
1629
1651
.10.1098/rspa.2011.0698
250.
Lu
,
M. H.
,
Feng
,
L.
, and
Chen
,
Y. F.
,
2009
, “
Phononic Crystals and Acoustic Metamaterials
,”
Mater. Today
,
12
(
12
), pp.
34
42
.10.1016/S1369-7021(09)70315-3
251.
Ho
,
K. M.
,
Cheng
,
C. K.
,
Yang
,
Z.
,
Zhang
,
X. X.
, and
Sheng
,
P.
,
2003
, “
Broadband Locally Resonant Sonic Shields
,”
Appl. Phys. Lett.
,
83
, pp.
5566
5568
.10.1063/1.1637152
252.
Ding
,
C. L.
, and
Zhao
,
X. P.
,
2011
, “
Multi-Band and Broadband Acoustic Metamaterial With Resonant Structures
,”
J. Phys. D: Appl. Phys.
,
44
, p.
215402
.10.1088/0022-3727/44/21/215402
253.
Bilal
,
O. R.
, and
Hussein
,
M. I.
,
2013
, “
Trampoline Metamaterial: Local Resonance Enhancement by Springboards
,”
Appl. Phys. Lett.
,
103
, p.
111901
.10.1063/1.4820796
254.
Romero-García
,
V.
,
Sanchez-Perez
,
J. V.
, and
Garcia-Raff
,
L. M.
,
2011
, “
Tunable Wideband Bandstop Acoustic Filter Based on Two-Dimensional Multiphysical Phenomena Periodic Systems
,”
J. Appl. Phys.
,
110
, p.
014904
.10.1063/1.3599886
255.
Mei
,
J.
,
Ma
,
G. C.
,
Yang
,
M.
,
Yang
,
Z. Y.
,
Wen
,
W. J.
, and
Sheng
,
P.
,
2012
, “
Dark Acoustic Metamaterials as Super Absorbers for Low-Frequency Sound
,”
Nature Commun.
,
3
, p.
756
.10.1038/ncomms1758
256.
Baz
,
A. M.
,
2010
, “
An Active Acoustic Metamaterial With Tunable Effective Density
,”
ASME J. Vib. Acoust.
,
132
(4), p.
041011
.10.1115/1.4000983
257.
Akl
,
W.
, and
Baz
,
A.
,
2012
, “
Analysis and Experimental Demonstration of an Active Acoustic Metamaterial Cell
,”
J. Appl. Phys.
,
111
, p.
044505
.10.1063/1.3686210
258.
Casadei
,
F.
,
Delpero
,
T.
,
Bergamini
,
A.
,
Ermanni
,
P.
, and
Ruzzene
,
M.
,
2012
, “
Piezoelectric Resonator Arrays for Tunable Acoustic Waveguides and Metamaterials
,”
J. Appl. Phys.
,
112
, p.
064902
.10.1063/1.4752468
259.
Ambati
,
M.
,
Fang
,
N.
,
Sun
,
C.
, and
Zhang
,
X.
,
2007
, “
Surface Resonant States and Superlensing in Acoustic Metamaterials
,”
Phys. Rev. B
,
75
(
19
), p.
195447
.10.1103/PhysRevB.75.195447
260.
Sukhovich
,
A.
,
Merheb
,
B.
,
Muralidharan
,
K.
,
Vasseur
,
J. O.
,
Pennec
,
Y.
,
Deymier
,
P. A.
, and
Page
,
J. H.
,
2009
, “
Experimental and Theoretical Evidence for Subwavelength Imaging in Phononic Crystals
,”
Phys. Rev. Lett.
,
102
, p.
154301
.10.1103/PhysRevLett.102.154301
261.
Bucay
,
J.
,
Roussel
,
E.
,
Vasseur
,
J. O.
,
Deymier
,
P. A.
,
Hladky-Hennion
,
A.-C.
,
Pennec
,
Y.
,
Muralidharan
,
K.
,
Djafari-Rouhani
,
B.
, and
Dubus
,
B.
,
2009
, “
Positive, Negative, Zero Refraction and Beam Splitting in a Solid/Air Phononic Crystal: Theoretical and Experimental Study
,”
Phys. Rev. B
,
79
, p.
214305
.10.1103/PhysRevB.79.214305
262.
Bonello
,
B.
,
Belliard
,
L.
,
Pierre
,
J.
,
Vasseur
,
J. O.
,
Perrin
,
B.
, and
Boyko
,
O.
,
2010
, “
Negative Refraction of Surface Acoustic Waves in the Subgigahertz Range
,”
Phys. Rev. B
,
82
, p.
104108
.10.1103/PhysRevB.82.104109
263.
Zhu
,
J.
,
Christensen
,
J.
,
Jung
,
J.
,
Martin-Moreno
,
L.
,
Yin
,
X.
,
Fok
,
L.
,
Zhang
,
X.
, and
Garcia-Vidal
,
F. J.
,
2011
, “
A Holey-Structured Metamaterial for Acoustic Deep-Subwavelength Imaging
,”
Nat. Phys.
,
7
, pp.
52
55
.10.1038/nphys1804
264.
Christensen
,
J.
, and
de Abajo
,
F. J. G.
,
2012
, “
Negative Refraction and Backward Waves in Layered Acoustic Metamaterials
,”
Phys. Rev. B
,
86
, p.
024301
.10.1103/PhysRevB.86.024301
265.
Li
,
J. S.
,
Fok
,
L.
,
Yin
,
X. B.
,
Bartal
,
G.
, and
Zhang
,
X.
,
2009
, “
Experimental Demonstration of an Acoustic Magnifying Hyperlens
,”
Nature Mater.
,
8
, pp.
931
934
.10.1038/nmat2561
266.
Milton
,
G. W.
,
Briane
,
M.
, and
Willis
,
J. R.
,
2006
, “
On Cloaking for Elasticity and Physical Equations With a Transformation Invariant Form
,”
New J. Phys.
,
8
, p.
248
.10.1088/1367-2630/8/10/248
267.
Cummer
,
S. A.
, and
Schurig
,
D.
,
2007
, “
One Path to Acoustic Cloaking
,”
New J. Phys.
,
9
, p.
45
.10.1088/1367-2630/9/3/045
268.
Chen
,
H.
, and
Chan
,
C. T.
,
2007
, “
Acoustic Cloaking in Three Dimensions Using Acoustic Metamaterials
,”
Appl. Phys. Lett.
,
91
(
18
), pp.
183518
183518
.10.1063/1.2803315
269.
Cummer
,
S. A.
,
Popa
,
B. I.
,
Schurig
,
D.
,
Smith
,
D. R.
,
Pendry
,
J.
,
Rahm
,
M.
, and
Starr
,
A.
,
2008
, “
Scattering Theory Derivation of a 3D Acoustic Cloaking Shell
,”
Phys. Rev. Lett.
,
100
(
2
), p.
24301
.10.1103/PhysRevLett.100.024301
270.
Norris
,
A. N.
,
2008
, “
Acoustic Cloaking Theory
,”
Proc. R. Soc. A
,
464
(
2097
), pp.
2411
2434
.10.1098/rspa.2008.0076
271.
Popa
,
B. I.
,
Zigoneanu
,
L.
, and
Cummer
,
S. A.
,
2011
, “
Experimental Acoustic Ground Cloak in Air
,”
Phys. Rev. Lett.
,
106
(
25
), p.
253901
.10.1103/PhysRevLett.106.253901
272.
Norris
,
A. N.
, and
Shuvalov
,
A. L.
,
2011
, “
Elastic Cloaking Theory
,”
Wave Motion
,
48
, pp.
525
538
.10.1016/j.wavemoti.2011.03.002
273.
Norris
,
A. N.
, and
Parnell
,
W. J.
,
2012
, “
Hyperelastic Cloaking Theory: Transformation Elasticity With Pre-Stressed Solids
,”
Proc. R. Soc. London, Ser. A
,
468
, pp.
2881
2903
.10.1098/rspa.2012.0123
274.
Norris
,
A. N.
,
2009
, “
Acoustic Metafluids
,”
J. Acoust. Soc. Am.
,
125
, pp. 839–849.10.1121/1.3050288
275.
Milton
,
G. W.
, and
Nicorovici
,
N. A. P.
,
2006
, “
On the Cloaking Effects Associated With Anomalous Localized Resonance
,”
Proc. R. Soc. London, Ser. A
,
462
, pp.
3027
3059
.10.1098/rspa.2006.1715
276.
Torrent
,
D.
, and
Sánchez-Dehesa
,
J.
,
2008
, “
Acoustic Cloaking in Two Dimensions: A Feasible Approach
,”
New J. Phys.
,
10
, p.
063015
.10.1088/1367-2630/10/6/063015
277.
Farhat
,
M.
,
Enoch
,
S.
,
Guenneau
,
S.
, and
Movchan
,
A. B.
,
2008
, “
Broadband Cylindrical Acoustic Cloak for Linear Surface Waves in a Fluid
,”
Phys. Rev. Lett.
,
101
, p.
134501
.10.1103/PhysRevLett.101.134501
278.
Cheng
,
Y.
,
Yang
,
F.
,
Xu
,
J. Y.
, and
Liu
,
X. J.
,
2008
, “
A Multilayer Structured Acoustic Cloak With Homogeneous Isotropic Materials
,”
Appl. Phys. Lett.
,
92
, p.
151913
.10.1063/1.2903500
279.
Farhat
,
M.
,
Guenneau
,
S.
, and
Enoch
,
S.
,
2009
, “
Ultrabroadband Elastic Cloaking in Thin Plates
,”
Phys. Rev. Lett.
,
103
(
2
), p.
24301
.10.1103/PhysRevLett.103.024301
280.
Zhang
,
S.
,
Xia
,
C. G.
, and
Fang
,
N.
,
2011
, “
Broadband Acoustic Cloak for Ultrasound Waves
,”
Phys. Rev. Lett.
,
106
, p.
024301
.10.1103/PhysRevLett.106.024301
281.
Stenger
,
N.
,
Wilhelm
,
M.
, and
Wegener
,
M.
,
2012
, “
Experiments on Elastic Cloaking in Thin Plates
,”
Phys. Rev. Lett.
,
108
, p.
014301
.10.1103/PhysRevLett.108.014301
282.
Liang
,
Z. X.
, and
Li
,
J. S.
,
2012
, “
Extreme Acoustic Metamaterial by Coiling Up Space
,”
Phys. Rev. Lett.
,
108
, p.
114301
.10.1103/PhysRevLett.108.114301
283.
Torrent
,
D.
, and
Sánchez-Dehesa
,
J.
,
2010
, “
Anisotropic Mass Density by Radially Periodic Fluid Structures
,”
Phys. Rev. Lett.
,
105
(
17
), p.
174301
.10.1103/PhysRevLett.105.174301
284.
Spiousas
,
I.
,
Torrent
,
D.
, and
Sánchez-Dehesa
,
J.
,
2011
, “
Experimental Realization of Broadband Tunable Resonators Based on Anisotropic Metafluids
,”
Appl. Phys. Lett.
,
98
(
24
), pp.
244102
244102
.10.1063/1.3599849
285.
Fok
,
L.
,
Ambati
,
M.
, and
Zhang
,
X.
,
2008
, “
Acoustic Metamaterials
,”
MRS Bull.
,
33
, pp.
931
934
.10.1557/mrs2008.202
286.
Norris
,
A. N.
,
2011
, “
Introduction to the Special Issue on Cloaking of Wave Motion
,”
Wave Motion
,
48
, pp.
453
454
.10.1016/j.wavemoti.2011.05.001
287.
Bloch
,
F.
,
1928
, “
Über die Quantenmechanik der Elektronen in Kristallgittern
,”
Z. Phys.
,
52
, pp.
555
600
.10.1007/BF01339455
288.
Bendat
,
J. S.
, and
Piersol
,
A. G.
,
2011
,
Random Data: Analysis and Measurement Procedures
, Vol.
729
,
Wiley
,
New York
.
289.
Airoldi
,
L.
, and
Ruzzene
,
M.
,
2011
, “
Design of Tunable Acoustic Metamaterials Through Periodic Arrays of Resonant Shunted Piezos
,”
New J. Phys.
,
13
(
11
), p.
113010
.10.1088/1367-2630/13/11/113010
290.
Ruzzene
,
M.
, and
Scarpa
,
F.
,
2003
, “
Control of Wave Propagation in Sandwich Beams With Auxetic Core
,”
J. Intell. Mater. Syst. Struct.
,
14
(
7
), pp.
443
453
.10.1177/1045389X03035515
291.
Zhong
,
W. X.
, and
Williams
,
F. W.
,
1992
, “
Wave Problems for Repetitive Structures and Symplectic Mathematics
,”
Proc. Inst. Mech. Eng., Part C
,
206
(
6
), pp.
371
379
.10.1243/PIME_PROC_1992_206_143_02
292.
Zhong
,
W. X.
, and
Williams
,
F. W.
,
1995
, “
On the Direct Solution of Wave Propagation for Repetitive Structures
,”
J. Sound Vib.
,
181
(
3
), pp.
485
501
.10.1006/jsvi.1995.0153
293.
Romeo
,
F.
, and
Luongo
,
A.
,
2002
, “
Invariant Representation of Propagation Properties for Bi-Coupled Periodic Structures
,”
J. Sound Vib.
,
257
(
5
), pp.
869
886
.10.1006/jsvi.2002.5065
294.
Romeo
,
F.
, and
Luongo
,
A.
,
2003
, “
Vibration Reduction in Piecewise Bi-Coupled Periodic Structures
,”
J. Sound Vib.
,
268
(
3
), pp.
601
615
.10.1016/S0022-460X(03)00375-4
295.
Luongo
,
A.
, and
Romeo
,
F.
,
2005
, “
Real Wave Vectors for Dynamic Analysis of Periodic Structures
,”
J. Sound Vib.
,
279
(
1
), pp.
309
325
.10.1016/j.jsv.2003.11.011
296.
Huang
,
H. H.
, and
Sun
,
C. T.
,
2009
, “
Wave Attenuation Mechanism in an Acoustic Metamaterial With Negative Effective Mass Density
,”
New J. Phys.
,
11
, p.
013003
.10.1088/1367-2630/11/1/013003
297.
Vines
,
R. E.
,
Wolfe
,
J. P.
, and
Every
,
A. V.
,
1999
, “
Scanning Phononic Lattices With Ultrasound
,”
Phys. Rev.: Condens. Matter
,
60
(
17
), pp. 11871–11874.10.1103/PhysRevB.60.11871
298.
Spadoni
,
A.
,
Ruzzene
,
M.
,
Gonella
,
S.
, and
Scarpa
,
F.
,
2009
, “
Phononic Properties of Hexagonal Chiral Lattices
,”
Wave Motion
,
46
(
7
), pp.
435
450
.10.1016/j.wavemoti.2009.04.002
299.
Gonella
,
S.
, and
Ruzzene
,
M.
,
2008
, “
Analysis of In-Plane Wave Propagation in Hexagonal and Re-Entrant Lattices
,”
J. Sound Vib.
,
312
(
1
), pp.
125
139
.10.1016/j.jsv.2007.10.033
300.
Ke
,
M.
,
Liu
,
Z.
,
Cheng
,
Z.
,
Li
,
J.
,
Peng
,
P.
, and
Shi
,
J.
,
2007
, “
Flat Superlens by Using Negative Refraction in Two-Dimensional Phononic Crystals
,”
Solid State Commun.
,
142
(
3
), pp.
177
180
.10.1016/j.ssc.2007.01.046
301.
Morvan
,
B.
,
Tinel
,
A.
,
Hladky-Hennion
,
A. C.
,
Vasseur
,
J.
, and
Dubus
,
B.
,
2010
, “
Experimental Demonstration of the Negative Refraction of a Transverse Elastic Wave in a Two-Dimensional Solid Phononic Crystal
,”
Appl. Phys. Lett.
,
96
(
10
), pp.
101905
101905
.10.1063/1.3302456
302.
Deymier
,
P. A.
,
Merheb
,
B.
,
Vasseur
,
J. O.
,
Sukhovich
,
A.
, and
Page
,
J. H.
,
2008
, “
Focusing of Acoustic Waves by Flat Lenses Made From Negatively Refracting Two-Dimensional Phononic Crystals
,” Rev. Mex. Fís.,
54
, pp.
74
81
. Available at: http://www.redalyc.org/pdf/570/57019061011.pdf
303.
Cao
,
Y.
,
Hou
,
Z.
, and
Liu
,
Y.
,
2004
, “
Convergence Problem of Plane-Wave Expansion Method for Phononic Crystals
,”
Phys. Lett. A
,
327
(
2
), pp.
247
253
.10.1016/j.physleta.2004.05.030
304.
Garcia-Pablos
,
D.
,
Sigalas
,
M.
,
Montero de Espinosa
,
F. R.
,
Torres
,
M.
,
Kafesaki
,
M.
, and
Garcia
,
N.
,
2000
, “
Theory and Experiments on Elastic Band Gaps
,”
Phys. Rev. Lett.
,
84
, pp.
4349
4352
.10.1103/PhysRevLett.84.4349
305.
Yang
,
W. H.
, and
Lee
,
E. H.
,
1974
, “
Modal Analysis of Floquet Waves in Composite Materials
,”
ASME J. Appl. Mech.
,
41
(2), pp. 429–433.10.1115/1.3423305
306.
Tanaka
,
Y.
,
Tomoyasu
,
Y.
, and
Tamura
,
S.-I.
,
2000
, “
Band Structure of Acoustic Waves in Phononic Lattices: Two-Dimensional Composites With Large Acoustic Mismatch
,”
Phys. Rev. B
,
62
, pp.
7387
7392
.10.1103/PhysRevB.62.7387
307.
Langley
,
R. S.
,
1993
, “
A Note on the Force Boundary Conditions for Two-Dimensional Periodic Structures With Corner Freedoms
,”
J. Sound Vib.
,
167
, pp.
377
381
.10.1006/jsvi.1993.1341
308.
Farzbod
,
F.
, and
Leamy
,
M. J.
,
2009
, “
The Treatment of Forces in Bloch Analysis
,”
J. Sound Vib.
,
325
(
3
), pp.
545
551
.10.1016/j.jsv.2009.03.035
309.
Hussein
,
M. I.
,
2009
, “
Reduced Bloch Mode Expansion for Periodic Media Band Structure Calculations
,”
Proc. R. Soc. London, Ser. A
,
465
(
2109
), pp.
2825
2848
.10.1098/rspa.2008.0471
310.
Kafesaki
,
M.
, and
Economou
,
E. N.
,
1999
, “
Multiple-Scattering Theory for Three-Dimensional Periodic Acoustic Composites
,”
Phys. Rev. B
,
60
(
17
), p.
11993
.10.1103/PhysRevB.60.11993
311.
Kafesaki
,
M.
,
Penciu
,
R. S.
, and
Economou
,
E. N.
,
2000
, “
Air Bubbles in Water: A Strongly Multiple Scattering Medium for Acoustic Waves
,”
Phys. Rev. Lett.
,
84
(
26
), pp.
6050
6053
.10.1103/PhysRevLett.84.6050
312.
Liu
,
Z.
,
Chan
,
C. T.
,
Sheng
,
P.
,
Goertzen
,
A. L.
, and
Page
,
J. H.
,
2000
, “
Elastic Wave Scattering by Periodic Structures of Spherical Objects: Theory and Experiment
,”
Phys. Rev. B
,
62
(
4
), pp. 2446–2457.10.1103/PhysRevB.62.2446
313.
Sigalas
,
M.
,
Kushwaha
,
M. S.
,
Economou
,
E. N.
,
Kafesaki
,
M.
,
Psarobas
,
I. E.
, and
Steurer
,
W.
,
2005
, “
Classical Vibrational Modes in Phononic Lattices: Theory and Experiment
,”
Z. Kristallogr.
,
220
(
9–10
), pp.
765
809
.10.1524/zkri.2005.220.9-10.765
314.
Busch
,
K.
,
Von Freymann
,
G.
,
Linden
,
S.
,
Mingaleev
,
S. F.
,
Tkeshelashvili
,
L.
, and
Wegener
,
M.
,
2007
, “
Periodic Nanostructures for Photonics
,”
Phys. Rep.
,
444
(
3
), pp.
101
202
.10.1016/j.physrep.2007.02.011
315.
Chern
,
R. L.
,
Chang
,
C. C.
,
Chang
,
C. C.
, and
Hwang
,
R. R.
,
2003
, “
Large Full Band Gaps for Photonic Crystals in Two Dimensions Computed by an Inverse Method With Multigrid Acceleration
,”
Phys. Rev. E
,
68
(
2
), p.
026704
.10.1103/PhysRevE.68.026704
316.
Dobson
,
D. C.
,
1999
, “
An Efficient Method for Band Structure Calculations in 2D Photonic Crystals
,”
J. Comput. Phys.
,
149
(
2
), pp.
363
376
.10.1006/jcph.1998.6157
317.
Johnson
,
S. G.
, and
Joannopoulos
,
J. D.
,
2001
, “
Block-Iterative Frequency-Domain Methods for Maxwell's Equations in a Planewave Basis
,”
Opt. Express
,
8
(
3
), pp.
173
190
.10.1364/OE.8.000173
318.
Hussein
,
M. I.
,
2004
, “
Dynamics of Banded Materials and Structures: Analysis, Design and Computation in Multiple Scales
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
319.
Casadei
,
F.
,
Rimoli
,
J.
, and
Ruzzene
,
M.
,
2013
, “
A Geometric Multiscale Finite Element Method for the Dynamic Analysis of Heterogeneous Solids
,”
Comput. Methods Appl. Mech. Eng.
,
263
, pp. 56–70.10.1016/j.cma.2013.05.009
320.
Woodhouse
,
J.
,
1998
, “
Linear Damping Models for Structural Vibration
,”
J. Sound Vib.
,
215
, pp.
547
569
.10.1006/jsvi.1998.1709
321.
Phani
,
A. S.
, and
Woodhouse
,
J.
,
2007
, “
Viscous Damping Identification in Linear Vibration
,”
J. Sound Vib.
,
303
, pp.
475
500
.10.1016/j.jsv.2006.12.031
322.
Yong
,
Y.
, and
Lin
,
Y. K.
,
1989
, “
Propagation of Decaying Waves in Periodic and Piecewise Periodic Structures of Finite Length
,”
J. Sound Vib.
,
129
(
2
), pp.
99
118
.10.1016/0022-460X(89)90538-5
323.
Castanier
,
M. P.
, and
Pierre
,
C.
,
1993
, “
Individual and Interactive Mechanisms for Localization and Dissipation in a Mono-Coupled Nearly-Periodic Structure
,”
J. Sound Vib.
,
168
(
3
), pp.
479
505
.10.1006/jsvi.1993.1387
324.
Psarobas
,
I. E.
,
2001
, “
Viscoelastic Response of Sonic Band-Gap Materials
,”
Phys. Rev. B
,
64
, p.
012303
.10.1103/PhysRevB.64.012303
325.
Liu
,
Y. Z.
,
Yu
,
D. L.
,
Zhao
,
H. G.
,
Wen
,
J. H.
, and
Wen
,
X. S.
,
2008
, “
Theoretical Study of Two-Dimensional Phononic Crystals With Viscoelasticity Based on Fractional Derivative Models
,”
J. Phys. D: Appl. Phys.
,
41
, p.
065503
.10.1088/0022-3727/41/6/065503
326.
Mauriz
,
P. W.
,
Vasconcelos
,
M. S.
, and
Albuquerque
,
E. L.
,
2006
, “
Acoustic Phonon Power Spectra in a Periodic Superlattice
,”
Phys. Status Solidi B
,
243
(
6
), pp.
1205
1211
.10.1002/pssb.200541513
327.
Langley
,
R. S.
,
1994
, “
On the Forced Response of One-Dimensional Periodic Structures: Vibration Localization by Damping
,”
J. Sound Vib.
,
178
(
3
), pp.
411
428
.10.1006/jsvi.1994.1495
328.
Merheb
,
B.
,
Deymier
,
P. A.
,
Jain
,
M.
,
Aloshyna-Lesuffleur
,
M.
,
Mohanty
,
S.
,
Berker
,
A.
, and
Greger
,
R. W.
,
2008
, “
Elastic and Viscoelastic Effects in Rubber-Air Acoustic Band Gap Structures: A Theoretical and Experimental Study
,”
J. Appl. Phys.
,
104
, p.
064913
.10.1063/1.2980330
329.
Zhao
,
Y. P.
, and
Wei
,
P. J.
,
2009
, “
The Band Gap of 1D Viscoelastic Phononic Crystal
,”
Comput. Mater. Sci.
,
46
, pp.
603
606
.10.1016/j.commatsci.2009.03.040
330.
Manconi
,
E.
, and
Mace
,
B. R.
,
2010
, “
Estimation of the Loss Factor of Viscoelastic Laminated Panels From Finite Element Analysis
,”
J. Sound Vib.
,
329
, pp.
3928
3939
.10.1016/j.jsv.2010.04.014
331.
Tassilly
,
E.
,
1987
, “
Propagation of Bending Waves in a Periodic Beam
,”
Int. J. Eng. Sci.
,
25
(
1
), pp.
85
94
.10.1016/0020-7225(87)90136-4
332.
Wang
,
W. Q.
,
Yu
,
J. D.
, and
Tang
,
Z. P.
,
2008
, “
General Dispersion and Dissipation Relations in a One-Dimensional Viscoelastic Lattice
,”
Phys. Lett. A
,
373
(
1
), pp.
5
8
.10.1016/j.physleta.2008.10.067
333.
Lee
,
C. Y.
,
Leamy
,
M. J.
, and
Nadler
,
J. H.
,
2010
, “
Frequency Band Structure and Absorption Predictions for Multi-Periodic Acoustic Composites
,”
J. Sound Vib.
,
329
, pp.
1809
1822
.10.1016/j.jsv.2009.11.030
334.
Moiseyenko
,
R. P.
, and
Laude
,
V.
,
2011
, “
Material Loss Influence on the Complex Band Structure and Group Velocity in Phononic Crystals
,”
Phys. Rev. B
,
83
(
6
), p.
064301
.10.1103/PhysRevB.83.064301
335.
Farzbod
,
F.
, and
Leamy
,
M. J.
,
2011
, “
Analysis of Bloch's Method in Structures With Energy Dissipation
,”
ASME J. Vib. Acoust.
,
133
(
5
), p.
051010
.10.1115/1.4003943
336.
Collet
,
M.
,
Ouisse
,
M.
,
Ruzzene
,
M.
, and
Ichchou
,
M. N.
,
2011
, “
Floquet–Bloch Decomposition for the Computation of Dispersion of Two-Dimensional Periodic, Damped Mechanical Systems
,”
Int. J. Solids Struct.
,
48
(
20
), pp.
2837
2848
.10.1016/j.ijsolstr.2011.06.002
337.
Mukherje
,
S.
, and
Lee
,
H. E.
,
1975
, “
Dispersion Relations and Mode Shapes for Waves in Laminated Viscoelastic Composites by Finite Difference Methods
,”
Comput. Struct.
,
5
, pp.
279
285
.10.1016/0045-7949(75)90033-4
338.
Sprik
,
R.
, and
Wegdam
,
G. H.
,
1998
, “
Acoustic Band Gaps in Composites of Solids and Viscous Liquids
,”
Solid State Commun.
,
106
(
2
), pp.
77
81
.10.1016/S0038-1098(98)00029-5
339.
Zhang
,
X.
,
Liu
,
Z. Y.
,
Mei
,
J.
, and
Liu
,
Y. Y.
,
2003
, “
Acoustic Band Gaps for a Two-Dimensional Periodic Array of Solid Cylinders in Viscous Liquid
,”
J. Phys.: Condens. Matter
,
15
, pp.
8207
8212
.
340.
Hussein
,
M. I.
,
2009
, “
Theory of Damped Bloch Waves in Elastic Media
,”
Phys. Rev. B
,
80
, p.
212301
.10.1103/PhysRevB.80.212301
341.
Hussein
,
M. I.
, and
Frazier
,
M. J.
,
2010
, “
Band Structure of Phononic Crystals With General Damping
,”
J. Appl. Phys.
,
108
, p.
093506
.10.1063/1.3498806
342.
Hussein
,
M. I.
, and
Frazier
,
M. J.
,
2012
, “
Chapter 6: Damped Phononic Crystals and Acoustic Metamaterials
,”
Acoustics Metamaterials and Phononic Crystals
,
P. A.
Deymier
, ed.,
Springer
,
New York
.
343.
Ewins
,
D. J.
,
2001
,
Modal Testing: Theory, Practice and Application
,
2nd ed.
Wiley
,
New York
.
344.
Hussein
,
M. I.
, and
Frazier
,
M. J.
,
2013
, “
Metadamping: An Emergent Phenomenon in Dissipative Metamaterials
,”
J. Sound Vib.
,
332
, pp.
4767
4774
.10.1016/j.jsv.2013.04.041
345.
Frazier
,
M. J.
, and
Hussein
,
M. I.
,
2011
, “
Bloch-Theory-Based Analysis of Damped Phononic Materials
,”
Proceedings of ASME 2011 International Mechanical Engineering Congress and Exposition
, Denver, CO, Nov. 11–17,
ASME
Paper No. IMECE2011-65662, pp. 963–96710.1115/IMECE2011-65662.
346.
Frazier
,
M. J.
, and
Hussein
,
M. I.
,
2012
, “
Dissipation-Triggered Phenomena in Periodic Acoustic Metamaterials
,”
Proc. SPIE
,
8348
, p.
83481W
.10.1117/12.915499
347.
Phani
,
A. S.
, and
Hussein
,
M. I.
,
2013
, “
Analysis of Damped Bloch Waves by the Rayleigh Perturbation Method
,”
ASME J. Vib. Acoust.
,
135
(4), p.
041014
.10.1115/1.4024397
348.
Vakakis
,
A. F.
,
King
,
M. E.
, and
Pearlstein
,
A. J.
,
1994
, “
Forced Localization in a Periodic Chain of Non-Linear Oscillators
,”
Int. J. Non-Linear Mech.
,
29
(
3
), pp.
429
447
.10.1016/0020-7462(94)90013-2
349.
Vakakis
,
A. F.
, and
King
,
M. E.
,
1995
, “
Nonlinear Wave Transmission in a Monocoupled Elastic Periodic System
,”
J. Acoust. Soc. Am.
,
98
(
3
), pp.
1534
1546
.10.1121/1.413419
350.
Chakraborty
,
G.
, and
Mallik
,
A. K.
,
2001
, “
Dynamics of a Weekly Non-Linear Periodic Chain
,”
Int. J. Non-Linear Mech.
,
36
(
2
), pp.
375
389
.10.1016/S0020-7462(00)00024-X
351.
Lazarov
,
B. S.
, and
Jensen
,
J. S.
,
2007
, “
Low-Frequency Band Gaps in Chains With Attached Non-Linear Oscillators
,”
Int. J. Non-Linear Mech.
,
42
(
10
), pp.
1186
1193
.10.1016/j.ijnonlinmec.2007.09.007
352.
Wang
,
M. Y.
, and
Wang
,
X.
,
2013
, “
Wide Band Low Frequency Gaps in Periodic Flexural Beams With Nonlinear Local Resonators
,”
Proceedings of Phononics 2013
, Paper Phononics-2013-0005, pp.
272
273
.
353.
Khajehtourian
,
R.
, and
Hussein
,
M. I.
,
2013
, “
Nonlinear Locally Resonant Metamaterials: Modeling and Dispersion Characteristics
,”
Proceedings of Phononics 2013
, Paper PHONONICS-2013-0175, pp.
180
181
.
354.
Marathe
,
A.
, and
Chatterjee
,
A.
,
2006
, “
Wave Attenuation in Nonlinear Periodic Structures Using Harmonic Balance and Multiple Scales
,”
J. Sound Vib.
,
289
(
4–5
), pp.
871
888
.10.1016/j.jsv.2005.02.047
355.
Narisetti
,
R. K.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2010
, “
A Perturbation Approach for Predicting Wave Propagation in One-Dimensional Nonlinear Periodic Structures
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031001
.10.1115/1.4000775
356.
Manktelow
,
K. L.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2011
, “
Multiple Scales Analysis of Wave-Wave Interactions in a Cubically Nonlinear Monoatomic Chain
,”
Nonlinear Dyn.
,
63
, pp.
193
203
.10.1007/s11071-010-9796-1
357.
Nesterenko
,
V. F.
,
1983
, “
Propagation of Nonlinear Compression Pulses in Granular Media
,”
J. Appl. Mech. Tech. Phys.
,
24
(
5
), pp.
733
743
.10.1007/BF00905892
358.
Chatterjee
,
A.
,
1999
, “
Asymptotic Solution for Solitary Waves in a Chain of Elastic Spheres
,”
Phys. Rev. E
,
59
(
5
), pp. 5912–5919.10.1103/PhysRevE.59.5912
359.
Coste
,
C.
,
Falcon
,
E.
, and
Fauve
,
S.
,
1997
, “
Solitary Waves in a Chain of Beads Under Hertz Contact
,”
Phys. Rev. E
,
56
(
5
), pp.
6104
6117
.10.1103/PhysRevE.56.6104
360.
Daraio
,
C.
,
Nesterenko
,
V. F.
,
Herbold
,
E. B.
, and
Jin
,
S.
,
2005
, “
Strongly Nonlinear Waves in a Chain of Teflon Beads
,”
Phys. Rev. E
,
72
(
1
), p.
016603
.10.1103/PhysRevE.72.016603
361.
Daraio
,
C.
,
Nesterenko
,
V.
,
Herbold
,
E.
, and
Jin
,
S.
,
2006
, “
Tunability of Solitary Wave Properties in One-Dimensional Strongly Nonlinear Phononic Crystals
,”
Phys. Rev. E
,
73
(
2
), p.
026610
.10.1103/PhysRevE.73.026610
362.
Herbold
,
E. B.
,
Kim
,
J.
,
Nesterenko
,
V. F.
,
Wang
,
S. Y.
, and
Daraio
,
C.
,
2009
, “
Pulse Propagation in a Linear and Nonlinear Diatomic Periodic Chain: Effects of Acoustic Frequency Band-Gap
,”
Acta Mech.
,
205
(
1
), pp.
85
103
.10.1007/s00707-009-0163-6
363.
Boechler
,
N.
,
Theocharis
,
G.
,
Job
,
S.
,
Kevrekidis
,
P. G.
,
Porter
,
M. A.
, and
Daraio
,
C.
,
2010
, “
Discrete Breathers in One-Dimensional Diatomic Granular Crystals
,”
Phys. Rev. Lett.
,
104
(
24
), p.
244302
.10.1103/PhysRevLett.104.244302
364.
Starosvetsky
,
Y.
, and
Vakakis
,
A. F.
,
2010
, “
Traveling Waves and Localized Modes in One-Dimensional Homogeneous Granular Chains With No Precompression
,”
Phys. Rev. E
,
82
, p.
026603
.10.1103/PhysRevE.82.026603
365.
Narisetti
,
R. K.
,
Ruzzene
,
M.
, and
Leamy
,
M. J.
,
2012
, “
Study of Wave Propagation in Strongly Nonlinear Periodic Lattices Using a Harmonic Balance Approach
,”
Wave Motion
,
49
, pp. 394–410.
366.
Franchini
,
A.
,
Bortolani
,
V.
, and
Wallis
,
R. F.
,
2002
, “
Theory of Intrinsic Localized Modes in Diatomic Chains: Beyond the Rotating Wave Approximation
,”
J. Phys: Condens. Matter
,
14
, pp. 145–152.10.1088/0953-8984/14/2/302
367.
Feng
,
B. F.
, and
Kawahara
,
T.
,
2007
, “
Discrete Breathers in Two-Dimensional Nonlinear Lattices
,”
Wave Motion
,
45
(
1–2
), pp.
68
82
.10.1016/j.wavemoti.2007.04.002
368.
Toda
,
M.
,
1970
, “
Waves in Nonlinear Lattice
,”
Prog. Theor. Phys. Suppl.
,
45
, pp.
174
200
.10.1143/PTPS.45.174
369.
Sreelatha
,
K. S.
, and
Joseph
,
K. B.
,
2000
, “
Wave Propagation Through a 2D Lattice
,”
Chaos, Solitons Fractals
,
11
(
5
), pp.
711
719
.10.1016/S0960-0779(98)00175-1
370.
Narisetti
,
R. K.
,
Ruzzene
,
M.
, and
Leamy
,
M. J.
,
2011
, “
A Perturbation Approach for Analyzing Dispersion and Group Velocities in Two-Dimensional Nonlinear Periodic Lattices
,”
ASME J. Vib. Acoust.
,
133
(
6
), p.
061020
.10.1115/1.4004661
371.
Gilles
,
B.
, and
Coste
,
C.
,
2003
, “
Low-Frequency Behavior of Beads Constrained on a Lattice
,”
Phys. Rev. Lett.
,
90
, p.
174302
.10.1103/PhysRevLett.90.174302
372.
Jang
,
J. H.
,
Koh
,
C. Y.
,
Bertoldi
,
K.
,
Boyce
,
M. C.
, and
Thomas
,
E. L.
,
2009
, “
Combining Pattern Instability and Shape-Memory Hysteresis for Phononic Switching
,”
Nano Lett.
,
9
(
5
), pp.
2113
2119
.10.1021/nl9006112
373.
Farzbod
,
F.
, and
Leamy
,
M. J.
,
2011
, “
Analysis of Bloch's Method and the Propagation Technique in Periodic Structures
,”
ASME J. Vib. Acoust.
,
133
(
3
), p.
031010
.10.1115/1.4003202
374.
Hughes
,
T. J. R.
,
1987
,
The Finite Element Method: Linear Static and Dynamic Finite Element analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
375.
Manktelow
,
K.
,
Narisetti
,
R. K.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2013
, “
Finite-Element Based Perturbation Analysis of Wave Propagation in Nonlinear Periodic Structures
,”
Mech. Syst. Signal Process.
,
39
(
1–2
), pp.
32
46
.10.1016/j.ymssp.2012.04.015
376.
Manktelow
,
K. L.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2013
, “
Topology Design and Optimization of Nonlinear Periodic Materials
,”
J. Mech. Phys. Solids
,
61
, pp.
2433
2453
.10.1016/j.jmps.2013.07.009
377.
Vasseur
,
J. O.
,
Deymier
,
P. A.
,
Chenni
,
B.
,
Djafari-Rouhani
,
B.
,
Dobrzynski
,
L.
, and
Prevost
,
D.
,
2001
, “
Experimental and Theoretical Evidence for the Existence of Absolute Acoustic Band Gaps in Two-Dimensional Solid Phononic Crystals
,”
Phys. Rev. Lett.
,
86
(
14
), pp.
3012
3015
.10.1103/PhysRevLett.86.3012
378.
Vasseur
,
J. O.
,
Deymier
,
P. A.
,
Khelif
,
A.
,
Lambin
,
P.
,
Djafari-Rouhani
,
B.
,
Akjouj
,
A.
,
Dobrzynski
,
L.
,
Fettouhi
,
N.
, and
Zemmouri
,
J.
,
2002
, “
Phononic Crystal With Low Filling Fraction and Absolute Acoustic Band Gap in the Audible Frequency Range: A Theoretical and Experimental Study
,”
Phys. Rev. E
,
65
(
5
), p.
056608
.10.1103/PhysRevE.65.056608
379.
Manzanares-Martínez
,
B.
,
Sánchez-Dehesa
,
J.
,
Hakansson
,
A.
,
Cervera
,
F.
, and
Ramos-Mendieta
,
F.
,
2004
, “
Experimental Evidence of Omnidirectional Elastic Bandgap in Finite One-Dimensional Phononic Systems
,”
Appl. Phys. Lett.
,
85
(
1
), pp.
154
156
.10.1063/1.1766074
380.
Vasseur
,
J. O.
,
Deymier
,
P. A.
,
Beaugeois
,
M.
,
Pennec
,
Y.
,
Djafari-Rouhani
,
B.
, and
Prevost
,
D.
,
2005
, “
Experimental Observation of Resonant Filtering in a Two-Dimensional Phononic Crystal Waveguide
,”
Z. Kristallogr.
,
220
(
9–10
), pp.
829
835
.10.1524/zkri.2005.220.9-10.829
381.
Kundu
,
T.
,
Banerjee
,
S.
, and
Jata
,
K. V.
,
2006
, “
An Experimental Investigation of Guided Wave Propagation in Corrugated Plates Showing Stop Bands and Pass Bands
,”
J. Acoust. Soc. Am.
,
120
, pp. 1271–1226.10.1121/1.2221534
382.
Hladky-Hennion
,
A. C.
, and
de Billy
,
M.
,
2007
, “
Experimental Validation of Band Gaps and Localization in a One-Dimensional Diatomic Phononic Crystal
,”
J. Acoust. Soc. Am.
,
122
, pp. 2594–2600.10.1121/1.2779130
383.
Bucay
,
J.
,
Roussel
,
E.
,
Vasseur
,
J. O.
,
Deymier
,
P. A.
,
Hladky-Hennion
,
A. C.
,
Pennec
,
Y.
,
Muralidharan
,
K.
,
Djafari-Rouhani
,
B.
, and
Dubus
,
B.
,
2009
, “
Positive, Negative, Zero Refraction, and Beam Splitting in a Solid/Air Phononic Crystal: Theoretical and Experimental Study
,”
Phys. Rev. B
,
79
(
21
), p.
214305
.10.1103/PhysRevB.79.214305
384.
Hodges
,
C. H.
,
Power
,
J.
, and
Woodhouse
,
J.
,
1985
, “
The Low Frequency Vibration of a Ribbed Cylinder, Part 2: Observations and Interpretation
,”
J. Sound Vib.
,
101
(
2
), pp.
237
256
.10.1016/S0022-460X(85)81218-9
385.
Houston
,
B. H.
,
Bucaro
,
J. A.
, and
Photiadis
,
D. M.
,
1995
, “
Broadband Acoustic Scattering From a Ribbed Shell
,”
J. Acoust. Soc. Am.
,
98
, pp. 2851–2853.10.1121/1.413186
386.
Photiadis
,
D. M.
,
Williams
,
E. G.
, and
Houston
,
B. H.
,
1997
, “
Wave-Number Space Response of a Near Periodically Ribbed Shell
,”
J. Acoust. Soc. Am.
,
101
, pp. 877–886.10.1121/1.418108
387.
Photiadis
,
D. M.
,
Bucaro
,
J. A.
, and
Houston
,
B. H.
,
1997
, “
The Effect of Internal Oscillators on the Acoustic Response of a Submerged Shell
,”
J. Acoust. Soc. Am.
,
101
, pp. 895–899.10.1121/1.418048
388.
Bucaro
,
J. A.
,
Romano
,
A. J.
,
Sarkissian
,
A.
,
Photiadis
,
D. M.
, and
Houston
,
B. H.
,
1998
, “
Local Admittance Model for Acoustic Scattering From a Cylindrical Shell With Many Internal Oscillators
,”
J. Acoust. Soc. Am.
,
103
, pp. 1867–1873.10.1121/1.421338
389.
Solaroli
,
G.
,
Gu
,
Z.
,
Ruzzene
,
M.
, and
Baz
,
A. M.
,
2001
, “
Wave Propagation in Periodic Stiffened Shells: Spectral Finite Element Modeling and Experiments
,”
Proc. SPIE
, 4327, pp. 620–64010.1117/12.436570.
390.
Lietard
,
R.
,
Decultot
,
D.
,
Maze
,
G.
, and
Tran-Van-Nhieu
,
M.
,
2004
, “
Influence of Periodical Stiffeners on the Acoustic Response of a Finite Cylindrical Shell
,”
IEEE Ultrasonics Symposium
, Vol.
1
, IEEE, pp.
529
532
.
391.
Wen
,
J. H.
,
Wang
,
G.
,
Yu
,
D. L.
,
Zhao
,
H. G.
, and
Liu
,
Y. Z.
,
2005
, “
Theoretical and Experimental Investigation of Flexural Wave Propagation in Straight Beams With Periodic Structures: Application to a Vibration Isolation Structure
,”
J. Appl. Phys.
,
97
(
11
), pp.
114907
114907
.10.1063/1.1922068
392.
James
,
R.
,
Woodley
,
S. M.
,
Dyer
,
C. M.
, and
Humphrey
,
V. F.
,
1995
, “
Sonic Bands, Bandgaps, and Defect States in Layered Structures-Theory and Experiment
,”
J. Acoust. Soc. Am.
,
97
, pp. 2014–2047.10.1121/1.411995
393.
Sukhovich
,
A.
,
Merheb
,
B.
,
Muralidharan
,
K.
,
Vasseur
,
J. O.
,
Pennec
,
Y.
,
Deymier
,
P. A.
, and
Page
,
J. H.
,
2009
, “
Experimental and Theoretical Evidence for Subwavelength Imaging in Phononic Crystals
,”
Phys. Rev. Lett.
,
102
(
15
), p.
154301
.10.1103/PhysRevLett.102.154301
394.
Profunser
,
D. M.
,
Wright
,
O. B.
, and
Matsuda
,
O.
,
2006
, “
Imaging Ripples on Phononic Crystals Reveals Acoustic Band Structure and Bloch Harmonics
,”
Phys. Rev. Lett.
,
97
, p.
055502
.10.1103/PhysRevLett.97.055502
395.
Profunser
,
D. M.
,
Muramoto
,
E.
,
Matsuda
,
O.
,
Wright
,
O. B.
, and
Lang
,
U.
,
2009
, “
Dynamic Visualization of Surface Acoustic Waves on a Two-Dimensional Phononic Crystal
,”
Phys. Rev. B
,
80
, p.
014301
.10.1103/PhysRevB.80.014301
396.
Sheng
,
P.
,
Zhang
,
X. X.
,
Liu
,
Z.
, and
Chan
,
C. T.
,
2003
, “
Locally Resonant Sonic Materials
,”
Phys. B: Condens. Matter
,
338
(
1–4
), pp. 201–205.10.1016/S0921-4526(03)00487-3
397.
Badreddine Assouar
,
M.
,
Senesi
,
M.
,
Oudich
,
M.
,
Ruzzene
,
M.
, and
Hou
,
Z.
,
2012
, “
Broadband Plate-Type Acoustic Metamaterial for Low-Frequency Sound Attenuation
,”
Appl. Phys. Lett.
,
101
(
17
), pp.
173505
173505
.10.1063/1.4764072
398.
Hagood
,
N. W.
, and
Von Flotow
,
A.
,
1991
, “
Damping of Structural Vibrations With Piezoelectric Materials and Passive Electrical Networks
,”
J. Sound Vib.
,
146
(
2
), pp.
243
268
.10.1016/0022-460X(91)90762-9
399.
Casadei
,
F.
,
Ruzzene
,
M.
,
Dozio
,
L.
, and
Cunefare
,
K. A.
,
2010
, “
Broadband Vibration Control Through Periodic Arrays of Resonant Shunts: Experimental Investigation on Plates
,”
Smart Mater. Struct.
,
19
(
1
), p.
015002
.10.1088/0964-1726/19/1/015002
400.
Wu
,
T. T.
,
Wu
,
T. C.
, and
Hsu
,
J. C.
,
2009
, “
Band Gaps and Waveguiding of Lamb Waves in Stubbed Phononic Plates
,”
Proceedings of IEEE Photonic and Phononic Crystal Materials and Devices IX
,
A.
Adibi
,
S.-Y.
Lin
,
A.
Scherer
, eds., Vol.
7223
, p.
12
.
401.
Khelif
,
A.
,
Wilm
,
M.
,
Laude
,
V.
,
Ballandras
,
S.
, and
Djafari-Rouhani
,
B.
,
2004
, “
Guided Elastic Waves Along a Rod Defect of a Two-Dimensional Phononic Crystal
,”
Phys. Rev. E
,
69
(
6
), p.
067601
.10.1103/PhysRevE.69.067601
402.
Benchabane
,
S.
,
Khelif
,
A.
,
Choujaa
,
A.
,
Djafari-Rouhani
,
B.
, and
Laude
,
V.
,
2005
, “
Interaction of Waveguide and Localized Modes in a Phononic Crystal
,”
Europhys. Lett.
,
71
, pp. 570–575.10.1209/epl/i2005-10131-2
403.
Wu
,
T.-C.
,
Wu
,
T.-T.
, and
Hsu
,
J.-C.
,
2009
, “
Waveguiding and Frequency Selection of Lamb Waves in a Plate With a Periodic Stubbed Surface
,”
Phys. Rev. B
,
79
, p.
104306
.10.1103/PhysRevB.79.104306
404.
Psarobas
,
I. E.
,
2005
, “
Phononic Crystals—Sonic Band-Gap Materials
,”
Z. Kristallogr.
,
220
, pp.
IV
IV
.10.1524/zkri.2005.220.9-10.IV
405.
Movchan
,
N. V.
, and
McPhedran
,
R. C.
,
2007
, “Preface,” Wave Random Complex, 17, pp.
407
408
.
406.
Hussein
,
M. I.
, and
El-Kady
,
I.
,
2011
, “
Preface to Special Topic: Selected Articles From Phononics 2011: The First International Conference on Phononic Crystals, Metamaterials and Optomechanics, 29 May–2 June, 2011, Santa Fe, NM
,”
AIP Adv.
,
1
(
4
), p.
041301
.10.1063/1.3676188
407.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2013
, “
Editorial: Special Issue on Dynamics of Phononic Materials and Structures
,”
ASME J. Vib. Acoust.
,
135
(4), p.
040201
.10.1115/1.4024399
408.
Yang
,
S. X.
,
Page
,
J. H.
,
Liu
,
Z. Y.
,
Cowan
,
M. L.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2002
, “
Ultrasound Tunneling Through 3D Phononic Crystals
,”
Phys. Rev. Lett.
,
88
, p.
104301
.10.1103/PhysRevLett.88.104301
This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.