Tooth fracture is a major concern in the field of restorative dentistry. However, knowledge of the causes for tooth fracture has developed from contributions that are largely based within the field of mechanics. The present manuscript presents a technical review of advances in understanding the fracture of teeth and the fatigue and fracture behavior of their hard tissues (i.e., dentin and enamel). The importance of evaluating the fracture resistance of these materials, and the role of applied mechanics in developing this knowledge will be reviewed. In addition, the complex microstructures of tooth tissues, their roles in resisting tooth fracture, and the importance of hydration and aging on the fracture resistance of tooth tissues will be discussed. Studies in this area are essential for increasing the success of current treatments in dentistry, as well as in facilitating the development of novel bio-inspired restorative materials for the future.

References

References
1.
Hylander
,
W. L.
,
1979
, “
Mandibular Function in Galago Crassicaudatus and Macaca Fascicularis: An In Vivo Approach to Stress Analysis of the Mandible
,”
J. Morphol.
,
159
, pp.
253
296
.10.1002/jmor.1051590208
2.
Braun
,
S.
,
Bantleon
,
H. P.
,
Hnat
,
W. P.
,
Freudenthaler
,
J. W.
,
Marcotte
,
M. R.
, and
Johnson
,
B. E.
,
1995
, “
A Study of Bite Force, Part 1: Relationship to Various Physical Characteristics
,”
Angle Orthod.
,
65
, pp.
367
372
.10.2319/123105-459
3.
Okiyama
,
S.
,
Ikebe
,
K.
, and
Nokubi
,
T.
,
2003
, “
Association Between Masticatory Performance and Maximal Occlusal Force in Young Men
,”
J. Oral Rehab.
,
30
, pp.
278
282
.10.1046/j.1365-2842.2003.01009.x
4.
Anusavice
,
K. J.
,
1996
,
Phillip's Science of Dental Materials
,
11th ed.
,
Saunders
,
Philadelphia
, pp.
90
91
.
5.
Mjor
,
I. A.
, and
Toffeneti
,
F.
,
2000
, “
Secondary Caries: A Literature Review With Caries Reports
,”
Quintessence Int.
,
31
(
3
), pp.
165
179
.
6.
Deligeorgi
,
V.
,
Mjor
,
I. A.
, and
Wilson
,
N. H. F.
,
2001
, “
An Overview or Reasons for the Placement and Replacement of Restorations
,”
Primary Dent. Care
,
8
(
1
), pp.
5
11
.10.1308/135576101771799335
7.
Sarrett
,
D. C.
,
2005
, “
Clinical Challenges and the Relevance of Materials Testing for Posterior Composite Restorations
,”
Dent. Mater.
,
21
(
1
), pp.
9
20
.10.1016/j.dental.2004.10.001
8.
Ferracane
,
J. L.
,
2011
, “
Resin Composite-State of the Art
,”
Dent. Mater.
,
27
(
1
), pp.
29
38
.10.1016/j.dental.2010.10.020
9.
Imbeni
,
V.
,
Kruzic
,
J. J.
,
Marshall
,
G. W.
,
Marshall
,
S. J.
, and
Ritchie
,
R. O.
,
2005
, “
The Dentin-Enamel Junction and the Fracture of Human Teeth
,”
Nat. Mater.
,
4
(
3
), pp.
229
232
.10.1038/nmat1323
10.
Ten Cate
,
A. R.
,
2008
,
Oral Histology: Development, Structure, and Function
,
7th ed.
,
Mosby Year Book Inc.
,
St. Louis
.
11.
Fauchard
,
P.
,
1746
,
Le chirurgien-dentiste, ou traité des dents
, Vol.
2
,
Pierre-Jean Mariette
,
Paris
, France, p.
494
.
12.
Myoung
,
S.
,
Lee
,
J.
,
Constantino
,
P.
,
Lucas
,
P.
,
Chai
,
H.
, and
Lawn
,
B.
,
2009
, “
Morphology and Fracture of Enamel
,”
J. Biomech.
,
42
, pp.
1947
1951
.10.1016/j.jbiomech.2009.05.013
13.
Chai
,
H.
,
Lee
,
J. J. W.
,
Kwon
,
J. Y.
,
Lucas
,
P. W.
, and
Lawn
,
B. R.
,
2009
, “
A Simple Model for Enamel Fracture From Margin Cracks
,”
Acta Biomater.
,
5
, pp.
1663
1667
.10.1016/j.actbio.2008.11.007
14.
Turp
,
J. C.
, and
Gobetti
,
J. P.
,
1996
, “
The Cracked Tooth Syndrome: An Elusive Diagnosis
,”
J. Am. Dent. Assoc.
,
127
, pp.
1502
1507
.10.14219/jada.archive.1996.0060
15.
Elis
,
S. G. S.
,
2001
, “
Incomplete Tooth Fracture-Proposal for a New Definition
,”
Br. Dent. J.
,
190
(
8
), pp.
424
429
.10.1038/sj.bdj.4800992
16.
Lynch
,
C. D.
, and
McConnel
,
R. J.
,
2002
, “
The Cracked Tooth Syndrome
,”
J. Can. Dent. Assoc.
,
68
, pp.
470
475
.
17.
Miyamoto
,
T.
,
Morgano
,
S. M.
,
Kumagai
,
T.
,
Jones
,
J. A.
, and
Nunn
,
M. E.
,
2007
, “
Treatment History of Teeth in Relation to the Longevity of the Teeth and Their Restorations: Outcomes of Teeth Treated and Maintained for 15 Years
,”
J. Prosthet. Dent.
,
97
(
3
), pp.
150
156
.10.1016/j.prosdent.2007.01.007
18.
Sunnegardh-Gronberg
,
K.
,
Van Dijken
,
J. W.
,
Funegard
,
U.
,
Linberg
,
A.
, and
Nilsson
,
M.
,
2009
, “
Selection of Dental Materials and Longevity of Replaced Restorations in Public Dental Health Clinics in Northern Sweden
,”
J. Dent.
,
37
(
9
), pp.
673
678
.10.1016/j.jdent.2009.04.010
19.
Demarco
,
F. F.
,
Correa
,
M. B.
,
Cenci
,
M. S.
,
Moraes
,
R. R.
, and
Opdam
,
N. M.
,
2012
, “
Longevity of Posterior Composite Restorations: Not Only a Matter of Materials
,”
Dent. Mater.
,
28
, pp.
87
101
.10.1016/j.dental.2011.09.003
20.
Cameron
,
C. E.
,
1964
, “
Cracked-Tooth Syndrome
,”
J. Am. Dent. Assoc.
,
68
, pp.
405
411
.
21.
Arola
,
D.
,
Huang
,
M. P.
, and
Sultan
,
M. B.
,
1999
, “
The Failure of Amalgam Dental Restoration Due to Cyclic Fatigue Crack Growth
,”
J. Mater. Sci.: Mater. Med.
,
10
, pp.
1
9
.10.1023/A:1026435821960
22.
Arola
,
D.
, and
Huang
,
M. P.
,
2000
, “
The Influence of Simultaneous Mechanical and Thermal Loads on the Stress Distribution in Molars With Amalgam Restorations
,”
J. Mater. Sci. Mater. Med.
,
11
(
3
), pp.
133
140
.10.1023/A:1008905423584
23.
Xu
,
H. H. K.
,
Kelly
,
J. R.
,
Jahanmir
,
S.
,
Thompson
,
V. P.
, and
Rekow
,
E. D.
,
1997
, “
Enamel Subsurface Damage Due to Tooth Preparation With Diamonds
,”
J. Dent. Res.
,
76
, pp.
1698
1706
.10.1177/00220345970760101201
24.
Banerjee
,
A.
,
Kidd
,
E. A. M.
, and
Watson
,
T. F.
,
2000
, “
Scanning Electron Microscopic Observations of Human Dentine After Mechanical Caries Excavation
,”
J. Dent.
,
28
, pp.
179
186
.10.1016/S0300-5712(99)00064-0
25.
Staninec
,
M.
,
Meshkin
,
N.
,
Manesh
,
S. K.
,
Ritchie
,
R. O.
, and
Fried
,
D.
,
2009
, “
Weakening of Dentin From Cracks Resulting From Laser Irradiation
,”
Dent. Mater.
,
25
(
4
), pp.
520
525
.10.1016/j.dental.2008.10.004
26.
Majd
,
H.
,
Viray
,
J.
,
Porter
,
J. A.
,
Romberg
,
E.
, and
Arola
,
D.
,
2012
, “
Degradation in the Fatigue Resistance of Dentin by Bur and Abrasive Air-Jet Preparation
,”
J. Dent. Res.
,
91
(
9
), pp.
894
899
.10.1177/0022034512455800
27.
Arola
,
D.
,
Galles
,
L. A.
, and
Sarubin
,
M. F.
,
2001
, “
A Comparison of the Mechanical Behavior of Posterior Teeth With Amalgam and Composite MOD Restorations
,”
J. Dent.
,
29
(
1
), pp.
63
73
.10.1016/S0300-5712(00)00036-1
28.
Hickel
,
R.
,
Kaaden
,
C.
,
Paschos
,
E.
,
Buerkle
,
V.
,
García-Godoy
,
F.
, and
Manhart
,
J.
,
2005
, “
Longevity of Occlusally-Stressed Restorations in Posterior Primary Teeth
,”
Am. J. Dent.
,
18
(
3
), pp.
198
211
.
29.
Sakaguchi
,
R. L.
,
2005
, “
Review of the Current Status and Challenges for Dental Posterior Restorative Composites: Clinical, Chemistry, and Physical Behavior Considerations
,”
Dent. Mater.
,
21
(
1
), pp.
3
6
.10.1016/j.dental.2004.10.008
30.
Lucas
,
P. W.
,
2004
,
Dental Functional Morphology: How Teeth Work
,
Cambridge University
,
Cambridge, UK
.
31.
Macho
,
G. A.
, and
Spears
,
I. R.
,
1999
, “
Effects of Loading on the Biochemical Behavior of Molars of Homo, Pan, and Pongo
,”
Am. J. Phys. Anthropol.
,
109
, pp.
211
227
.10.1002/(SICI)1096-8644(199906)109:2<211::AID-AJPA6>3.0.CO;2-B
32.
Lawn
,
B. R.
,
Bhowmick
,
S.
,
Bush
,
M. B.
,
Qasim
,
T.
,
Rekow
,
E. D.
, and
Zhang
,
Y.
,
2007
, “
Failure Modes in Ceramic Based Layer Structures: A Basis for Materials Design of Dental Crowns
,”
J. Am. Ceram. Soc.
,
90
, pp.
1671
1683
.10.1111/j.1551-2916.2007.01585.x
33.
Lawn
,
B. R.
,
Lee
,
J. J. W.
,
Constantino
,
P. J.
, and
Lucas
,
P. W.
,
2009
, “
Predicting Failure in Mammalian Enamel
,”
J. Mech. Behav. Biomed. Mater.
,
2
, pp.
33
42
.10.1016/j.jmbbm.2008.05.007
34.
Peterson
,
I. M.
,
Pajares
,
A.
,
Lawn
,
B. R.
,
Thompson
,
V. P.
, and
Rekow
,
E. D.
,
1998
, “
Mechanical Characterization of Dental Ceramics by Hertzian Contacts
,”
J. Dent. Res.
,
77
(
4
), pp.
589
602
.10.1177/00220345980770041201
35.
Lawn
,
B. R.
, and
Lee
,
J. J. W.
,
2009
, “
Analysis of Fracture and Deformation Modes in Teeth Subjected to Occlusal Loading
,”
Acta Biomater.
,
5
(
6
), pp.
2213
2221
.10.1016/j.actbio.2009.02.001
36.
Lee
,
J. J. W.
,
Morris
,
D.
,
Constantino
,
P. J.
,
Lucas
,
P. W.
,
Smith
,
T. M.
, and
Lawn
,
B. R.
,
2010
, “
Properties of Tooth Enamel in Great Apes
,”
Acta Biomater.
,
6
, pp.
4560
4565
.10.1016/j.actbio.2010.07.023
37.
Barani
,
A.
,
Keown
,
A. J.
,
Bush
,
J. J.
,
Lee
,
J. J. W.
,
Chai
,
H.
, and
Lawn
,
B. R.
,
2011
, “
Mechanics of Longitudinal Cracks in Tooth Enamel
,”
Acta Biomater.
,
7
(
5
), pp.
2285
2292
.10.1016/j.actbio.2011.01.038
38.
Barani
,
A.
,
Bush
,
M. B.
, and
Lawn
,
B. R.
,
2012
, “
Effect of Property Gradient on Enamel Fracture in Human Molar Teeth
,”
J. Mech. Behav. Biomed. Mater.
,
15
, pp.
121
130
.10.1016/j.jmbbm.2012.06.014
39.
Barani
,
A.
,
Keown
,
A.
,
Bush
,
M.
,
Lee
,
J. W.
, and
Lawn
,
B.
,
2012
, “
Role of Tooth Elongation in Promoting Fracture Resistance
,”
J. Mech. Behav. Biomed. Mater.
,
8
, pp.
37
46
.10.1016/j.jmbbm.2011.11.014
40.
Chai
,
H.
,
Lee
,
J. J.
, and
Lawn
,
B. R.
,
2010
, “
Fracture of Tooth Enamel From Incipient Microstructural Defects
,”
J. Mech. Behav. Biomed. Mater.
,
3
, pp.
116
120
.10.1016/j.jmbbm.2009.08.002
41.
Osborn
,
J. W.
,
1969
, “
The 3-Dimentional Morphology of the Tufts in Human Enamel
,”
Acta Anat.
,
73
, pp.
481
495
.10.1159/000143313
42.
Pilliar
,
R. M.
,
Smith
,
D. C.
, and
Maric
,
B.
,
1986
, “
Fracture Toughness of Dental Composites Determined Using the Short-Rod Fracture Toughness Test
,”
J. Dent. Res.
,
65
, pp.
1308
1314
.10.1177/00220345860650110501
43.
Pilliar
,
R. M.
,
Vowles
,
R.
, and
Williams
,
D. F.
,
1987
, “
The Effect of Environmental Aging on the Fracture Toughness of Dental Composites
,”
J. Dent. Res.
,
66
, pp.
722
726
.10.1177/00220345870660030301
44.
Pilliar
,
R. M.
,
Vowles
,
R.
, and
Williams
,
D. F.
,
1987
, “
Fracture Toughness Testing of Biomaterials Using a Mini-Short Rod Specimen Design
,”
J. Biomed. Mater. Res.
,
21
, pp.
145
154
.10.1002/jbm.820210116
45.
Tam
,
L. E.
, and
Pillar
,
R. M.
,
1993
, “
Fracture Toughness of Dentin/Resin-Composite Adhesive Interface
,”
J. Dent. Res.
,
72
, pp.
953
959
.10.1177/00220345930720051801
46.
Wang
,
X.
,
Lankford
,
J.
, and
Agrawal
,
C. M.
,
1994
, “
The Use of a Compact Sandwich Specimen to Evaluate Fracture Toughness and Interfacial Bonding
,”
J. Appl. Biomater.
,
5
, pp.
315
323
.10.1002/jab.770050406
47.
Paruchuru
,
S. P.
,
Wang
,
X.
, and
Agrawal
,
C. M.
,
2002
, “
Finite Element Simulation of Elastic Compliance Technique for Formulation a Test Method to Determine the Fracture Toughness of Bone
,”
J. Mech. Med. Biol.
,
2
, pp.
473
486
.10.1142/S0219519402000526
48.
Paruchuru
,
S. P.
, and
Jain
,
A.
,
2009
, “
Normalized Specimen Thickness Requirement of a Compact Sandwich Test for Measuring Fracture Toughness of Bone
,”
J. Appl. Biomater. Biomech.
,
7
, pp.
43
50
.
49.
De Souza
,
J. A.
,
Goutianos
,
S.
,
Skovgaard
,
M.
, and
Sorensen
,
B. F.
,
2011
, “
Fracture Resistance Curves and Toughening Mechanism in Polymer Based Dental Composites
,”
J. Mech. Behav. Biomed. Mater.
,
4
, pp.
558
571
.10.1016/j.jmbbm.2011.01.003
50.
Ruse
,
N. D.
,
Troczynski
,
T.
,
MacEntee
,
M. I.
, and
Feduik
,
D.
,
1996
, “
Novel Fracture Toughness Test Using a Notchless Triangular Prism (NTP) Specimen
,”
J. Biomed. Mater. Res.
,
31
(
4
), pp.
457
463
.10.1002/(SICI)1097-4636(199608)31:4<457::AID-JBM4>3.0.CO;2-K
51.
Dong
,
X. D.
, and
Ruse
,
N. D.
,
2003
, “
Fatigue Crack Propagation Path Across the Dentinoenamel Junction Complex in Human Teeth
,”
J. Biomed. Mater. Res.
,
66
, pp.
103
109
.10.1002/jbm.a.10541
52.
Far
,
C.
, and
Ruse
,
N. D.
,
2003
, “
Effect of Bleaching on Fracture Toughness of Composite-Dentin Bonds
,”
J. Adhes. Dent.
,
5
, pp.
175
182
.
53.
Iwamoto
,
N.
, and
Ruse
,
N. D.
,
2001
, “
NTP Specimen Fracture Toughness Test Applied to Human Dentin
,”
The Society for Experimental Mechanics 2001 Annual Conference
,
Portland, OR
.
54.
Barthelat
,
F.
, and
Espinosa
,
H. D.
,
2007
, “
An Experimental Investigation of Deformation and Fracture of Nacre-Mother of Pearl
,”
Exp. Mech.
,
47
(
3
), pp.
311
324
.10.1007/s11340-007-9040-1
55.
Rabiei
,
R.
,
Bekah
,
S.
, and
Barthelat
,
F.
,
2010
, “
Failure Mode Transition in Nacre and Bone-Like Materials
,”
Acta Biomater.
,
6
, pp.
4081
4089
.10.1016/j.actbio.2010.04.008
56.
Nalla
,
R. K.
,
Kruzic
,
J. J.
,
Kinney
,
J. H.
, and
Ritchie
,
R. O.
,
2005
, “
Mechanistic Aspects of Fracture and R-Curve Behavior in Human Cortical Bone
,”
Biomaterials
,
26
(
2
), pp.
217
231
.10.1016/j.biomaterials.2004.02.017
57.
Ritchie
,
R. O.
,
Koester
,
K. J.
,
Ionova
,
S.
,
Yao
,
W.
,
Lane
,
N. E.
, and
Ager
,
J. W.
,
2008
, “
Measurement of the Toughness of Bone: A Tutorial With Special Reference to Small Animal Studies
,”
Bone
,
43
, pp.
798
812
.10.1016/j.bone.2008.04.027
58.
Koester
,
K. J.
,
Ager
,
J. W.
, and
Ritchie
,
R. O.
,
2008
, “
The True Toughness of Human Cortical Bone Measured With Realistically Short Cracks
,”
Nat. Mater.
,
7
, pp.
672
677
.10.1038/nmat2221
59.
Imbeni
,
V.
,
Nalla
,
R. K.
,
Bosi
,
C.
,
Kinney
,
J. H.
, and
Ritchie
,
R. O.
,
2003
, “
In Vitro Fracture Toughness of Human Dentin
,”
J. Biomed. Mater. Res. A
,
66
(
1
), pp.
1
9
.10.1002/jbm.a.10548
60.
Nalla
,
R. K.
,
Kinney
,
J. H.
, and
Ritchie
,
R. O.
,
2003
, “
Effect of Orientation on the In Vitro Fracture Toughness of Dentin: The Role of Toughening Mechanisms
,”
Biomaterials
,
24
(
22
), pp.
3955
3968
.10.1016/S0142-9612(03)00278-3
61.
Kinney
,
J. H.
,
Nalla
,
R. K.
,
Pople
,
J. A.
,
Breunig
,
T. M.
, and
Ritchie
,
R. O.
,
2005
, “
Age-Related Transparent Root Dentin: Mineral Concentration, Crystallite Size, and Mechanical Properties
,”
Biomaterials
,
26
, pp.
3363
3376
.10.1016/j.biomaterials.2004.09.004
62.
Bechtle
,
S.
,
Fett
,
T.
,
Rizzi
,
G.
,
Habelitz
,
S.
, and
Schneider
,
G. A.
,
2010
, “
Mixed Mode Stress Intensity Factors for Kink Cracks With Finite Kink Length Loaded in Tension and Bending-Application to Dentin and Enamel
,”
J. Mech. Behav. Biomed. Mater.
,
3
(
4
), pp.
303
312
.10.1016/j.jmbbm.2009.12.004
63.
Zhang
,
D.
,
Nazari
,
A.
,
Soappman
,
D.
,
Bajaj
,
D.
, and
Arola
,
D.
,
2007
, “
Methods for Examining the Fatigue and Fracture Behavior of Hard Tissues
,”
Exp. Mech.
,
47
, pp.
325
336
.10.1007/s11340-006-9024-6
64.
Bajaj
,
D.
,
Nazari
,
A.
,
Sundaram
,
N.
, and
Arola
,
D.
,
2006
, “
Age, Dehydration, and Fatigue Crack Growth in Dentin
,”
Biomaterials
,
27
(
11
), pp.
2507
2517
.10.1016/j.biomaterials.2005.11.035
65.
Ivancik
,
J.
,
Neerchal
,
N. K.
,
Romberg
,
E.
, and
Arola
,
D.
,
2011
, “
On the Reduction in Fatigue Crack Growth Resistance of Dentin With Depth
,”
J. Dent. Res.
,
90
(
8
), pp.
1031
1036
.10.1177/0022034511408429
66.
Ivancik
,
J.
, and
Arola
,
D.
,
2013
, “
Importance of Microstructure Variations on the Fracture Toughness of Human Dentin
,”
Biomaterials
,
34
, pp.
864
874
.10.1016/j.biomaterials.2012.10.032
67.
Hassan
,
R.
,
Caputo
,
A. A.
, and
Bunshah
,
R. F.
,
1981
, “
Fracture Toughness of Human Enamel
,”
J. Dent. Res.
,
60
, pp.
820
827
.10.1177/00220345810600040901
68.
Okazaki
,
K.
,
Nishimura
,
F.
, and
Nomoto
,
S.
,
1989
, “
Fracture Toughness of Human Enamel
,”
Shika Zairyo Kikai
,
8
(
3
), pp.
382
387
.
69.
Okazaki
,
K.
, and
Nishimura
,
F.
,
1990
, “
Fracture Toughness of Human Enamel Irradiated by CO2 Laser
,”
Shika Zairyo Kikai
,
9
(
3
), pp.
487
494
.
70.
Padmanabhan
,
S. K.
,
Balakrishnan
,
A.
,
Chu
,
M. C.
,
Kim
,
T. N.
, and
Cho
,
S. J.
,
2010
, “
Micro-Indentation Fracture Behavior of Human Enamel
,”
Dent. Mater.
,
26
(
1
), pp.
100
104
.10.1016/j.dental.2009.07.015
71.
Xu
,
H. H. K.
,
Smith
,
D. T.
,
Jahanmir
,
S.
,
Romberg
,
E.
,
Kelly
,
J. R.
,
Thompson
,
V. P.
, and
Rekow
,
E. D.
,
1998
, “
Indentation Damage and Mechanical Properties of Human Enamel and Dentin
,”
J. Dent. Res.
,
77
(
3
), pp.
472
480
.10.1177/00220345980770030601
72.
Morrell
,
R.
,
2006
, “
Fracture Toughness Testing for Advanced Technical Ceramics: Internationally Agreed Good Practice
,”
Adv. Appl. Ceram.
,
105
, pp.
1
11
.10.1179/174367606X84422
73.
Munz
,
D.
,
2007
, “
What Can we Learn From R-Curve Measurement?
,”
J. Am. Ceram. Soc.
,
90
, pp.
1
15
.10.1111/j.1551-2916.2006.01447.x
74.
Quinn
,
G. D.
, and
Bradt
,
R. C.
,
2007
, “
On the Vickers Indentation Fracture Toughness Test
,”
J. Am. Ceram. Soc.
,
90
, pp.
673
680
.10.1111/j.1551-2916.2006.01482.x
75.
Kruzic
,
J. J.
,
Kim
,
D. K.
,
Koester
,
K. J.
, and
Ritchie
,
R. O.
,
2009
, “
Indentation Techniques for Evaluating the Fracture Toughness of Biomaterials and Hard Tissues
,”
J. Mech. Behav. Biomed. Mater.
,
2
, pp.
384
395
.10.1016/j.jmbbm.2008.10.008
76.
Ponton
,
C. B.
, and
Rawlings
,
R. D.
,
1989
, “
Vickers Indentation Fracture Toughness Test. Part 2. Application and Critical Evaluation of Standardized Indentation Toughness Equations
,”
Mater. Sci. Tech.
,
5
, pp.
961
976
.10.1179/mst.1989.5.10.961
77.
Eilertsen
,
J.
,
Subramanian
,
M. A.
, and
Kruzic
,
J. J.
,
2013
, “
Fracture Toughness of Co4Sb12 and In0.1Co4Sb12 Thermoelectric Skutterudites Evaluated by Three Methods
,”
J. Alloys Compd.
,
552
, pp.
492
498
.10.1016/j.jallcom.2012.11.066
78.
Yahyazadehfar
,
M.
,
Nazari
,
A.
,
Kruzic
,
J. J.
,
Quinn
,
G. D.
, and
Arola
,
D.
,
2014
, “
An Inset CT Specimen for Evaluating Fracture in Small Samples of Material
,”
J. Mech. Behav. Biomed. Mater.
,
30
, pp.
358
368
.10.1016/j.jmbbm.2013.10.017
79.
ASTM Standard E-399
,
2006
, “
Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials
,” American Society for Testing and Materials, West Conshohocken, PA.
80.
Kinney
,
J. H.
,
Marshall
,
S. J.
, and
Marshall
,
G. W.
,
2003
, “
The Mechanical Properties of Human Dentin: A Critical Review and Re-Evaluation of the Dental Literature
,”
Crit. Rev. Oral Biol. Med.
,
14
(
1
), pp.
13
29
.10.1177/154411130301400103
81.
Staninec
,
M.
,
Marshall
,
G. W.
,
Hilton
,
J. F.
,
Pashley
,
D. H.
,
Gansky
,
S. A.
,
Marshall
,
S. J.
, and
Kinney
,
J. H.
,
2002
, “
Ultimate Tensile Strength of Dentin: Evidence for a Damage Mechanics Approach to Dentin Failure
,”
J. Biomed. Mater. Res.
,
63
(
3
), pp.
342
345
.10.1002/jbm.10230
82.
Becher
,
P. F.
,
1991
, “
Microstructural Design of Toughened Ceramics
,”
J. Am. Ceram. Soc.
,
74
(
2
), pp.
255
269
.10.1111/j.1151-2916.1991.tb06872.x
83.
Evans
,
A. G.
, and
Faber
,
K. T.
,
1984
, “
Crack Growth Resistance of Microcracking Brittle Materials
,”
J. Am. Ceram. Soc.
,
67
(
4
), pp.
255
260
.10.1111/j.1151-2916.1984.tb18842.x
84.
Fett
,
T.
,
Munz
,
D.
,
Geraghty
,
R. D.
, and
White
,
K. W.
,
2000
, “
Influence of Specimen Geometry and Relative Crack Size on the R-Curve
,”
Eng. Fract. Mech.
,
66
, pp.
375
386
.10.1016/S0013-7944(00)00026-6
85.
Marshall
,
G. W.
,
Balooch
,
M. M.
,
Gallagher
,
R. R.
,
Gansky
,
S. A.
, and
Marshall
,
S. J.
,
2001
, “
Mechanical Properties of the Dentinoenamel Junction: AFM Studies of Nanohardness, Elastic Modulus, and Fracture
,”
J. Biomed. Mater. Res.
,
54
, pp.
87
95
.10.1002/1097-4636(200101)54:1<87::AID-JBM10>3.0.CO;2-Z
86.
White
,
S. N.
,
Miklus
,
V. G.
,
Chang
,
P. P.
,
Caputo
,
A. A.
,
Fong
,
H.
,
Sarikaya
,
M.
,
Luo
,
W.
,
Paine
,
M. L.
, and
Snead
,
M. L.
,
2005
, “
Controlled Failure Mechanisms Toughen the Dentino-Enamel Junction Zone
,”
J. Prosthet. Dent.
,
94
(
4
), pp.
330
335
.10.1016/j.prosdent.2005.08.013
87.
Bechtle
,
S.
,
Fett
,
T.
,
Rizzi
,
G.
,
Habelitz
,
S.
,
Klocke
,
A.
, and
Schneider
,
G. A.
,
2010
, “
Crack Arrest Within Teeth at the Dentinoenamel Junction Caused by Elastic Modulus Mismatch
,”
Biomaterials
,
31
(
14
), pp.
4238
4247
.10.1016/j.biomaterials.2010.01.127
88.
Bajaj
,
D.
, and
Arola
,
D.
,
2009
, “
On the R-Curve Behavior of Human Enamel
,”
Biomaterials
,
30
, pp.
4037
4046
.10.1016/j.biomaterials.2009.04.017
89.
Bajaj
,
D.
, and
Arola
,
D.
,
2009
, “
Role of Prism Decussation on the Fatigue Crack Growth and Fracture of Human Enamel
,”
Acta Biomater.
,
5
(
8
), pp.
3045
3056
.10.1016/j.actbio.2009.04.013
90.
Bechtle
,
S.
,
Habelitz
,
S.
,
Klocke
,
A.
,
Fett
,
T.
, and
Schneider
,
G. A.
,
2010
, “
The Fracture Behavior of Dental Enamel
,”
Biomaterials
,
31
, pp.
375
384
.10.1016/j.biomaterials.2009.09.050
91.
Robinson
,
C.
,
Kirkham
,
J.
, and
Shore
,
R.
,
1995
,
Dental Enamel Formation to Destruction
,
CRC Press
,
Boca Raton, FL
.
92.
Von Koenigswald
,
W.
,
1992
, “
Tooth Enamel of the Cave Bear (Ursus spelaeus) and the Relationship Between Diet and Enamel Structures
,”
Ann. Zool. Fenn.
,
28
, pp.
217
227
.
93.
An
,
B.
,
Wang
,
R.
,
Arola
,
D.
, and
Zhang
,
D.
,
2012
, “
The Role of Property Gradients on the Mechanical Behavior of Human Enamel
,”
J. Mech. Behav. Biomed. Mater.
,
9
, pp.
63
72
.10.1016/j.jmbbm.2012.01.009
94.
Avery
,
J. K.
,
2002
,
Oral Development and Histology
,
3rd ed.
,
Thieme Medical Publishers
,
New York
.
95.
Chai
,
H.
,
Lee
,
J. J.
,
Constantino
,
P. J.
,
Lucas
,
P. W.
, and
Lawn
,
B. R.
,
2009
, “
Remarkable Resilience of Teeth
,”
Proc. Natl. Acad. Sci.
,
106
(
18
), pp.
7289
7293
.10.1073/pnas.0902466106
96.
Rasmussen
,
S. T.
,
Patchin
,
R. E.
,
Scott
,
D. B.
, and
Heuer
,
A. H.
,
1976
, “
Fracture Properties of Human Enamel and Dentin
,”
J. Dent. Res.
,
55
, pp.
154
164
.10.1177/00220345760550010901
97.
Park
,
S.
,
Wang
,
D. H.
,
Dongsheng
,
Z.
,
Romberg
,
E.
, and
Arola
,
D.
,
2008
, “
Mechanical Properties of Human Enamel as a Function of Age and Location in the Tooth
,”
J. Mater. Sci. Mater. Med
,
19
, pp.
2317
2324
.10.1007/s10856-007-3340-y
98.
Ayatollahi
,
M. R.
, and
Karimzadeh
,
A.
,
2013
, “
Nano-Indentation Measurement of Fracture Toughness of Dental Enamel
,”
Int. J. Fract.
,
183
, pp.
113
118
.10.1007/s10704-013-9864-x
99.
Hayashi-Sakai
,
S.
,
Sakai
,
J.
,
Sakamoto
,
M.
, and
Endo
,
H.
,
2012
, “
Determination of Fracture Toughness of Human Permanent and Primary Enamel Using an Indentation Microfracture Method
,”
J. Mater. Sci. Mater. Med.
,
23
(
9
), pp.
2047
2054
.10.1007/s10856-012-4678-3
100.
Yahyazadehfar
,
M.
,
Bajaj
,
D.
, and
Arola
,
D.
,
2013
, “
Hidden Contribution of Enamel Rods on the Fracture Resistance of Human Teeth
,”
Acta Biomater.
,
9
, pp.
4806
4814
.10.1016/j.actbio.2012.09.020
101.
Ang
,
S. F.
,
Schulz
,
A.
,
Pache Fernandez
,
R.
, and
Schneider
,
G. A.
,
2011
, “
Sub-10-Micrometer Toughening and Crack Tip Toughness of Dental Enamel
,”
J. Mech. Behav. Biomed. Mater.
,
4
, pp.
423
432
.10.1016/j.jmbbm.2010.12.003
102.
Evans
,
A. G.
, and
McMeeking
,
R. M.
,
1986
, “
On the Toughening of Ceramics by Strong Reinforcements
,”
Acta Metall.
,
34
, pp.
2434
2441
.
103.
Shang
,
J. K.
, and
Ritchie
,
R. O.
,
1989
, “
Crack Bridging by Uncracked Ligaments During Fatigue-Crack Growth in SiC-Reinforced Aluminum-Alloy Composites
,”
Metall. Trans. A
,
20A
, pp.
897
908
.10.1007/BF02651656
104.
Sigl
,
L. S.
,
1996
, “
Microcrack Toughening in Brittle Materials Containing Weak and String Interfaces
,”
Acta Metall.
,
44
, pp.
3599
3609
.
105.
Ji
,
B.
, and
Gao
,
H.
,
2004
, “
Mechanical Properties of Nanostructure of Biological Materials
,”
J. Mech. Phys. Solids
,
52
, pp.
1963
1990
.10.1016/j.jmps.2004.03.006
106.
Lin
,
C. P.
, and
Douglas
,
W. H.
,
1994
, “
Structure-Property Relations and Crack Resistance at the Bovine Dentin–Enamel Junction
,”
J. Dent. Res.
,
73
, pp.
1072
1078
.
107.
Arola
,
D.
,
Ivancik
,
J.
,
Majd
,
H.
,
Fouad
,
A.
,
Bajaj
,
D.
,
Zhang
,
X. Y.
, and
Eidelman
,
N.
,
2012
, “
Microstructure and Mechanical Behavior of Radicular and Coronal Dentin
,”
Endod. Top.
,
20
, pp.
30
51
.10.1111/j.1601-1546.2012.00267.x
108.
Kruzic
,
J. J.
, and
Ritchie
,
R. O.
,
2008
, “
Fatigue of Mineralized Tissues: Cortical Bone and Dentin
,”
J. Mech. Behav. Biomed. Mater.
,
1
, pp.
3
17
.10.1016/j.jmbbm.2007.04.002
109.
Garberoglio
,
R.
, and
Brannstrom
,
M.
,
1976
, “
Scanning Electron Microscopic Investigation of Human Dentinal Tubules
,”
Arch. Oral Biol.
,
21
(
6
), pp.
355
362
.10.1016/S0003-9969(76)80003-9
110.
Marshall
,
G. W.
,
Marshall
,
S. J.
,
Kinney
,
J. H.
, and
Balooch
,
M.
,
1997
, “
The Dentin Substrate: Structure and Properties Related to Bonding
,”
J. Dent.
,
25
, pp.
441
458
.10.1016/S0300-5712(96)00065-6
111.
Kinney
,
J. H.
,
Pople
,
J. A.
,
Marshall
,
G. W.
, and
Marshall
,
S. J.
,
2001
, “
Collagen Orientation and Crystallite Size in Human Dentin: A Small Angle X-Ray Scattering Study
,”
Calcif. Tissue Int.
,
69
, pp.
31
37
.10.1007/s00223-001-0006-5
112.
Rasmussen
,
S. T.
, and
Patchin
,
R. E.
,
1984
, “
Fracture Properties of Human Enamel and Dentin in an Aqueous Environment
,”
J. Dent. Res.
,
63
, pp.
1362
1368
.10.1177/00220345840630120501
113.
El Mowafy
,
O. M.
, and
Watts
,
D. C.
,
1986
, “
Fracture Toughness of Human Dentin
,”
J. Dent. Res.
,
65
, pp.
677
681
.10.1177/00220345860650050901
114.
Yan
,
J.
,
Taskonak
,
B.
, and
Mecholsky
,
J. R.
,
2009
, “
Fractography and Fracture Toughness of Human Dentin
,”
J. Mech. Behav. Biomed. Mater.
,
2
(
5
), pp.
478
484
.10.1016/j.jmbbm.2008.12.002
115.
Wang
,
R.
,
2005
, “
Anisotropic Fracture in Bovine Root and Coronal Dentin
,”
Dent. Mater.
,
21
(
5
), pp.
429
436
.10.1016/j.dental.2004.07.008
116.
Lertchirakarn
,
V.
,
Palamara
,
J. E.
, and
Messer
,
H. H.
,
2001
, “
Anisotropy of Tensile Strength of Root Dentin
,”
J. Dent. Res.
,
80
(
2
), pp.
453
456
.10.1177/00220345010800021001
117.
Arola
,
D.
, and
Zhang
,
R. D.
,
2002
, “
Fatigue and Fracture of Bovine Dentin
,”
Exp. Mech.
,
42
(
4
), pp.
380
388
.10.1007/BF02412142
118.
Kruzic
,
J. J.
,
Nalla
,
R. K.
,
Kinney
,
J. H.
, and
Ritchie
,
R. O.
,
2003
, “
Crack Blunting, Crack Bridging and Resistance–Curve Fracture Mechanics in Dentin: Effect of Hydration
,”
Biomaterials
,
24
, pp.
5209
5221
.10.1016/S0142-9612(03)00458-7
119.
Koester
,
K. J.
,
Ager
,
J. W.
, and
Ritchie
,
R. O.
,
2008
, “
The Effect of Aging on Crack-Growth Resistance and Toughening Mechanisms in Human Dentin
,”
Biomaterials
,
29
(
10
), pp.
1318
1328
.10.1016/j.biomaterials.2007.12.008
120.
Nazari
,
A.
,
Bajaj
,
D.
,
Zhang
,
D.
,
Romberg
,
E.
, and
Arola
,
D.
,
2009
, “
Aging and the Reduction in Fracture Toughness of Human Dentin
,”
J. Mech. Behav. Biomed. Mater.
,
2
(
5
), pp.
550
559
.10.1016/j.jmbbm.2009.01.008
121.
Yan
,
J.
,
Taskonak
,
B.
,
Platt
,
J. A.
, and
Mecholsky
,
J. J.
,
2008
, “
Evaluation of Fracture Toughness of Human Dentin Using Elastic-Plastic Fracture Mechanics
,”
J. Biomech.
,
41
(
6
), pp.
1253
1259
.10.1016/j.jbiomech.2008.01.015
122.
Yang
,
Q. D.
,
Cox
,
B. N.
,
Nalla
,
R. K.
, and
Ritchie
,
R. O.
,
2006
, “
Fracture Length Scales in Human Cortical Bone: The Necessity of Nonlinear Fracture Models
,”
Biomaterials
,
27
(
9
), pp.
2095
2113
.10.1016/j.biomaterials.2005.09.040
123.
Tasaka
,
A.
,
Tahara
,
Y.
,
Sugiyama
,
T.
, and
Sakurai
,
K.
,
2008
, “
Influence of Chewing Rate on Salivary Stress Hormone Levels
,”
Nihon Hotetsu Shika Gakkai Zasshi
,
52
(
4
), pp.
482
487
.10.2186/jjps.52.482
124.
Wilson
,
E. M.
,
Green
,
J. R.
, and
Weismer
,
G.
,
2012
, “
A Kinematic Description of the Temporal Characteristics of Jaw Motion for Early Chewing: Preliminary Findings
,”
J. Speech Lang. Hear Res.
,
55
(
2
), pp.
626
638
.10.1044/1092-4388(2011/10-0236)
125.
Asmussen
,
E.
, and
Peutzfeldt
,
A.
,
2008
, “
Class I and Class II Restorations of Resin Composite: An FE Analysis of the Influence of Modulus of Elasticity on Stresses Generated by Occlusal Loading
,”
Dent. Mater.
,
24
(
5
), pp.
600
605
.10.1016/j.dental.2007.06.019
126.
Basquin
,
O. H.
,
1910
, “
The Exponential Law of Endurance Tests
,”
Proceedings of ASTM, 10 (Part II): ASTM West Conshochoken
,
PA
, pp.
625
630
.
127.
Paris
,
P. C.
,
Gomes
,
M. P.
, and
Anderson
,
W. P.
,
1961
, “
A Rational Analytic Theory of Fatigue
,”
Trend Eng.
,
13
, pp.
9
14
.
128.
Arola
,
D.
,
Bajaj
,
D.
,
Ivancik
,
J.
,
Majd
,
H.
, and
Zhang
,
D.
,
2010
, “
Fatigue of Biomaterials: Hard Tissues
,”
Int. J. Fatigue
,
32
(
9
) pp.
1400
1412
.10.1016/j.ijfatigue.2009.08.007
129.
Brown
,
W. S.
,
Jacobs
,
H. R.
, and
Thompson
,
R. E.
,
1972
, “
Thermal Fatigue of Teeth
,”
J. Dent. Res.
,
51
, pp.
461
467
.10.1177/00220345720510023601
130.
Yahyazadehfar
,
M.
,
Mutluay
,
M. M.
,
Majd
,
H.
,
Ryou
,
H.
, and
Arola
,
D.
,
2013
, “
Fatigue of the Resin-Enamel Bonded Interface and the Mechanisms of Failure
,”
J. Mech. Behav. Biomed. Mater.
,
21
, pp.
121
132
.10.1016/j.jmbbm.2013.02.017
131.
Bajaj
,
D.
,
Nazari
,
A.
,
Eidelman
,
N.
, and
Arola
,
D.
,
2008
, “
A Comparison of Fatigue Crack Growth in Human Enamel and Hydroxyapatite
,”
Biomaterials
,
29
(
36
), pp.
4847
4854
.10.1016/j.biomaterials.2008.08.019
132.
Suresh
,
S.
, and
Ritchie
,
R. O.
,
1984
, “
Propagation of Short Fatigue Cracks
,”
Int. Mater. Rev.
,
29
(
1
), pp.
445
475
.10.1179/imr.1984.29.1.445
133.
Kruzic
,
J. J.
,
Scott
,
J. A.
,
Nalla
,
R. K.
, and
Ritchie
,
R. O.
,
2006
, “
Propagation of Surface Fatigue Cracks in Human Cortical Bone
,”
J. Biomech.
,
39
(
5
), pp.
968
972
.10.1016/j.jbiomech.2005.01.025
134.
Nalla
,
R. K.
,
Imbeni
,
V.
,
Kinney
,
J. H.
,
Marshall
,
S. J.
, and
Ritchie
,
R. O.
,
2003
, “
In Vitro Fatigue Behavior of Human Dentin With Implications for Life Prediction
,”
J. Biomed. Mater. Res. A
,
66
(
1
), pp.
10
20
.10.1002/jbm.a.10553
135.
Nalla
,
R. K.
,
Kinney
,
J. H.
,
Marshall
,
S. J.
, and
Ritchie
,
R. O.
,
2004
, “
On the In Vitro Fatigue Behavior of Human Dentin: Effect of Mean Stress
,”
J. Dent. Res.
,
83
, pp.
211
215
.10.1177/154405910408300305
136.
Arola
,
D.
, and
Reprogel
,
R.
,
2006
, “
Tubule Orientation and the Fatigue Strength of Human Dentin
,”
Biomaterials
,
27
, pp.
2131
2140
.10.1016/j.biomaterials.2005.10.005
137.
Kruzic
,
J. J.
,
Nalla
,
R. K.
,
Kinney
,
J. H.
, and
Ritchie
,
R. O.
,
2005
, “
Mechanistic Aspects of In Vitro Fatigue-Crack Growth in Dentin
,”
Biomaterials
,
26
, pp.
1195
1204
.10.1016/j.biomaterials.2004.04.051
138.
Arola
,
D.
,
Zheng
,
W.
,
Sundaram
,
N.
, and
Rouland
,
J. A.
,
2005
, “
Stress Ratio Contributes to Fatigue Crack Growth in Dentin
,”
J. Biomed. Mater. Res. A
,
73
(
2
), pp.
201
212
.10.1002/jbm.a.30269
139.
Arola
,
D.
, and
Rouland
,
J. A.
,
2003
, “
The Effects of Tubule Orientation on Fatigue Crack Growth in Dentin
,”
J. Biomed. Mater. Res.
,
67
, pp.
78
86
.10.1002/jbm.a.10089
140.
Arola
,
D.
,
Reid
,
J.
,
Cox
,
M. E.
,
Bajaj
,
D.
,
Sundaram
,
N.
, and
Romberg
,
E.
,
2007
, “
Transition Behavior in Fatigue of Human Dentin: Structure and Anisotropy
,”
Biomaterials
,
28
, pp.
3867
3875
.10.1016/j.biomaterials.2007.05.001
141.
Ivancik
,
J.
,
Majd
,
H.
,
Bajaj
,
D.
,
Romberg
,
E.
, and
Arola
,
D.
,
2012
, “
Contributions of Aging to the Fatigue Crack Growth Resistance of Human Dentin
,”
Acta Biomater.
,
8
, pp.
2737
2746
.10.1016/j.actbio.2012.03.046
142.
Baum
,
B. J.
,
1981
, “
Evaluation of Stimulated Parotid Saliva Flow Rate in Different Age Groups
,”
J. Dent. Res.
,
60
(
7
), pp.
1292
1296
.10.1177/00220345810600070101
143.
Percival
,
R. S.
,
Challacombe
,
S. J.
, and
Marsh
,
P. D.
,
1994
, “
Flow Rates of Resting Whole and Stimulated Parotid Saliva in Relation to Age and Gender
,”
J. Dent. Res.
,
73
(
8
), pp.
1416
1420
.
144.
Kahler
,
B.
,
Swain
,
M. V.
, and
Moule
,
A.
,
2003
, “
Fracture-Toughening Mechanisms Responsible for Differences in Work of Fracture of Hydrated and Dehydrated Dentine
,”
J. Biomech.
,
36
, pp.
229
37
.10.1016/S0021-9290(02)00327-5
145.
Nalla
,
R. K.
,
Kinney
,
J. H.
,
Tomsia
,
A. P.
, and
Ritchie
,
R. O.
,
2006
, “
The Role of Alcohol in the Fracture Resistance of the Teeth
,”
J. Dent. Res.
,
85
, pp.
1022
1226
.10.1177/154405910608501109
146.
Pashley
,
D. H.
,
Agee
,
K. A.
,
Carvalho
,
R. M.
,
Lee
,
K. W.
,
Tay
,
F. R.
, and
Callison
,
T. E.
,
2003
, “
Effects of Water and Water-Free Polar Solvents on the Tensile Properties of Demineralized Dentin
,”
Dent. Mater.
,
19
, pp.
347
352
.10.1016/S0109-5641(02)00065-9
147.
Weber
,
D. F.
,
1974
, “
Human Dentine Sclerosis: A Microradiographic Survey
,”
Arch. Oral Biol.
,
19
, pp.
163
168
.10.1016/0003-9969(74)90211-8
148.
Vasiliadis
,
L.
,
Darling
,
A. I.
, and
Levers
,
B. G.
,
1983
, “
The Amount and Distribution of Sclerotic Human Root Dentine
,”
Arch. Oral Biol.
,
28
, pp.
645
649
.10.1016/0003-9969(83)90013-4
149.
Vasiliadis
,
L.
,
Darling
,
A. I.
, and
Levers
,
B. G.
,
1983
, “
The Histology of Sclerotic Human Root Dentine
,”
Arch. Oral Biol.
,
28
(
8
), pp.
693
700
.10.1016/0003-9969(83)90103-6
150.
Arola
,
D.
, and
Reprogel
,
R.
,
2005
, “
Effects of Aging on the Mechanical Behavior of Human Dentin
,”
Biomaterials
,
26
(
18
), pp.
4051
4061
.10.1016/j.biomaterials.2004.10.029
151.
Ritchie
,
R. O.
,
1988
, “
Mechanisms of Fatigue Crack Propagation in Metals, Ceramics and Composites: Role of Crack Tip Shielding
,”
Mater. Sci. Eng. A
,
103
, pp.
15
28
.10.1016/0025-5416(88)90547-2
152.
Brunthaler
,
A.
,
König
,
F.
,
Lucas
,
T.
,
Sperr
,
W.
, and
Schedle
,
A.
,
2003
, “
Longevity of Direct Resin Composite Restorations in Posterior Teeth
,”
Clin. Oral Invest.
,
7
(
2
), pp.
63
70
.10.1007/s00784-003-0206-7
153.
Ten Cate
,
J. M.
,
2006
, “
Biofilms, a New Approach to the Microbiology of Dental Plaque
,”
Odontology
,
94
(
1
), pp.
1
9
.10.1007/s10266-006-0063-3
154.
Beyth
,
N.
,
Domb
,
A. J.
, and
Weiss
,
E. I.
,
2007
, “
An In Vitro Quantitative Antibacterial Analysis of Amalgam and Composite Resins
,”
J. Dent.
,
35
(
3
), pp.
201
206
.10.1016/j.jdent.2006.07.009
155.
Beyth
,
N.
,
Bahir
,
R.
,
Matalon
,
S.
,
Domb
,
A. J.
, and
Weiss
,
E. I.
,
2008
, “
Streptococcus Mutans Biofilm Changes Surface-Topography of Resin Composites
,”
Dent. Mater.
,
24
(
6
), pp
732
736
.10.1016/j.dental.2007.08.003
156.
Fucio
,
S. B.
,
Carvalho
,
F. G.
,
Sobrinho
,
L. C.
,
Sinhoreti
,
M. A.
, and
PuppinRontani
,
R. M.
,
2008
, “
The Influence of 30-Day-Old Streptococcus Mutans Biofilm on the Surface of Esthetic Restorative Materials—An In Vitro Study
,”
J. Dent.
,
36
(
10
), pp.
833
839
.10.1016/j.jdent.2008.06.002
157.
Busscher
,
H. J.
,
Rinastiti
,
M.
,
Siswomihardjo
,
W.
, and
Van der Mei
,
H. C.
,
2010
, “
Biofilm Formation on Dental Restorative and Implant Materials
,”
J. Dent. Res.
,
89
(
7
), pp.
657
665
.10.1177/0022034510368644
158.
Do
,
D.
,
Orrego
,
S.
,
Majd
,
H.
,
Ryou
,
H.
,
Mutluay
,
M. M.
,
Xu
,
H. H. K.
, and
Arola
,
D.
,
2013
, “
Accelerated Fatigue of Dentin With Exposure to Lactic Acid
,”
Biomaterials
,
34
, pp.
8650
8659
.10.1016/j.biomaterials.2013.07.090
159.
Park
,
S.
,
Quinn
,
J. B.
,
Romberg
,
E.
, and
Arola
,
D.
,
2008
, “
On the Brittleness of Enamel and Selected Dental Materials
,”
Dent. Mater.
,
24
(
11
), pp.
11477
11485
.10.1016/j.dental.2008.03.007
160.
Kelly
,
J. R.
,
Benetti
,
P.
,
Rungruanganunt
,
P.
, and
Bona
,
A. D.
,
2012
, “
The Slippery Slope: Critical Perspectives on In Vitro Research Methodologies
,”
Dent. Mater.
,
28
(
1
), pp.
41
51
.10.1016/j.dental.2011.09.001
161.
Deville
,
S.
,
Saiz
,
E.
,
Nalla
,
R. K.
, and
Tomsia
,
A. P.
,
2006
, “
Freezing as a Path to Build Complex Composites
,”
Science
,
311
, pp.
515
518
.10.1126/science.1120937
162.
Bonderer
,
L. J.
,
Studart
,
A. R.
, and
Gauckler
,
L. J.
,
2008
, “
Bioinspired Design and Assembly of Platelet Reinforced Polymer Films
,”
Science
,
319
(
5866
), pp.
1069
1073
.10.1126/science.1148726
163.
Munch
,
E.
,
Launey
,
M. E.
,
Alsem
,
D. H.
,
Saiz
,
E.
,
Tomsia
,
A. P.
, and
Ritchie
,
R. O.
,
2008
, “
Tough, Bioinspired Hybrid Materials
,”
Science
,
322
, pp.
1516
1520
.10.1126/science.1164865
164.
Mirkhalaf
,
M.
,
Khayer Dastjerdi
,
A.
, and
Barthelat
,
F.
, “
Overcoming the Brittleness of Glass Through Bio-Inspiration and Micro-Architecture
,”
Nat. Commun.
5
, pp.
1
9
.10.1038/ncomms4166
165.
Rivera
,
C.
,
Arola
,
D.
, and
Ossa
,
A.
,
2013
, “
Indentation Damage and Crack Repair in Human Enamel
,”
J. Mech. Behav. Biomed. Mater.
,
21
, pp.
178
184
.10.1016/j.jmbbm.2013.02.020
166.
Mao
,
L. L. C.
,
Wang
,
J.
,
Xu
,
X.
,
Pan
,
H.
,
Deng
,
Y.
,
Gu
,
X.
, and
Tang
,
R.
,
2011
, “
Bio-Inspired Enamel Repair via Glu-Directed Assembly of Apatite Nanoparticles: An Approach to Biomaterials With Optimal Characteristics
,”
Adv. Mater.
,
23
, pp.
4695
4701
.10.1002/adma.201102773
167.
Ruan
,
Q.
,
Zhang
,
Y.
,
Nutt
,
S.
, and
Moradian-Oldak
,
J.
,
2013
, “
An Amelogenin-Chitosan Matrix Promotes Assembly of an Enamel-Like Layer With a Dense Interface
,”
Acta Biomater.
,
9
(
7
), pp.
7289
7297
.10.1016/j.actbio.2013.04.004
168.
Ritchie
,
R.
,
2011
, “
The Conflicts Between Strength and Toughness
,”
Nat. Mater.
,
10
, pp.
817
822
.10.1038/nmat3115
You do not currently have access to this content.