The excitation mechanism of acoustic resonances has long been recognized, but the industry continues to be plagued by its undesirable consequences, manifested in severe vibration and noise problems in a wide range of industrial applications. This paper focuses on the nature of the excitation mechanism of acoustic resonances in piping systems containing impinging shear flows, such as flow over shallow and deep cavities. Since this feedback mechanism is caused by the coupling between acoustic resonators and shear flow instabilities, attention is focused first on the nature of various types of acoustic resonance modes and then on the aeroacoustic sound sources, which result from the interaction of the inherently unstable shear flow with the sound field generated by the resonant acoustic modes. Various flow-sound interaction patterns are discussed, in which the resonant sound field can be predominantly parallel or normal to the mean flow direction and the acoustic wavelength can be an order of magnitude longer than the length scale of the separated shear flow or as short as the cavity length scale. Since the state of knowledge in this field has been recently reviewed by Tonon et al. (2011, “Aeroacoustics of Pipe Systems With Closed Branches”, Int. J. Aeroacoust., 10(2), pp. 201–276), this article focuses on the more practical aspects of the phenomenon, including various flow-sound interaction patterns and the resulting aeroacoustic sources, which are relevant to industrial applications. A general design guide proposal and practical means to alleviate the excitation mechanism are also presented. These are demonstrated by two examples of recent industrial case histories dealing with acoustic fatigue failure of the steam dryer in a boiling water reactor (BWR) due to acoustic resonance in the main steam piping and acoustic resonances in the roll posts of the Short Take-Off and Vertical Lift Joint Strike Fighter (JSF).

References

References
1.
Coffman
,
J. T.
, and
Bernstein
,
M. D.
,
1980
, “
Failure of Safety Valves Due to Flow Induced Vibration
,”
ASME J. Pressure Vessel Technol.
,
102
, pp.
112
118
.10.1115/1.3263289
2.
Jungowski
,
W. M.
,
Botros
,
K. K.
, and
Studzinski
,
W.
,
1989
, “
Cylindrical Side-Branch as Tone Generator
,”
J. Sound Vib.
,
131
, pp.
265
285
.10.1016/0022-460X(89)90492-6
3.
Chen
,
Y. N.
, and
Florjancic
,
D.
,
1975
, “
Vortex-Induced Resonance in a Pipe System Due to Branching
,”
Proceedings on Vibration and Noise in Pump, Fan, and Compressor Installations, Institution of Mechanical Engineers, University of Southampton
, pp.
69
78
.
4.
Ziada
,
S.
, and
Buehlmann
,
E.T.
,
1991
, “
Flow-Induced Vibrations in Long Corrugated Pipes
,”
Proceedings of International Conference on Flow-Induced Vibrations, Inst. of Mech. Eng.
,
England
, pp.
417
426
.
5.
Ziada
,
S.
,
Buehlmann
,
E. T.
, and
Bolleter
,
U.
,
1989
, “
Flow Impingement as an Excitation Source in Control Valves
,”
J. Fluids Struct.
,
3
, pp.
529
549
.10.1016/S0889-9746(89)80029-5
6.
Lafon
,
P.
,
Caillaud
,
S.
,
Devos
,
J. P.
, and
Lambert
,
C.
,
2003
, “
Aeroacoustical Coupling in a Ducted Shallow Cavity and Fluid/Structure Effects on a Steam Line
,”
J. Fluids Struct.
,
18
, pp.
695
713
.10.1016/j.jfluidstructs.2003.08.018
7.
Smith
,
B. A.
, and
Luloff
,
B. V.
,
2000
, “
The Effect of Seat Geometry on Gate Valve Noise
,”
ASME J. Pressure Vessel Technol.
,
122
, pp.
401
407
.10.1115/1.1286031
8.
Baldwin
,
R. M.
, and
Simmons
,
H. R.
,
1986
, “
Flow-Induced Vibration in Safety Relief Valves
,”
ASME J. Pressure Vessel Technol.
,
108
, pp.
267
272
.10.1115/1.3264785
9.
Chen
,
Y. N.
, and
Stürchler
,
R.
,
1977
, “
Flow-Induced Vibrations and Noise in the Pipe System With Blind Branches Due to Coupling of Vortex Shedding
,” Internoise 77, Zurich, Switzerland.
10.
Gillessen
,
R.
, and
Roller
,
W.
,
1989
, “
Verminderung und Beseitigung von Schwingungen an Rohrleitungssystemen (Reduction and Elimination of Vibration of Piping Systems)
,”
Minderung von Rohrleitungsschwingungen
, VDI Berichte Vol.
748
,
VDI Verlag
,
Düsseldorf, Germany
.
11.
Ziada
,
S.
, and
Bühlmann
,
E. T.
,
1992
, “
Self-Excited Resonances of Two Side-Branches in Close Proximity
,”
J. Fluids Struct.
,
6
, pp.
583
601
.10.1016/0889-9746(92)90020-4
12.
Ziada
,
S.
,
1993
, “
Flow-Excited Resonances of Piping Systems Containing Side-Branches: Excitation Mechanism, Counter-Measures and Design Guidelines
,” Seminar on Acoustic Pulsations in Rotating Machinery, Toronto, Ontario, Canada.
13.
Ziada
,
S.
,
2010
, “
Flow-Excited Acoustic Resonance in Industry
,”
ASME J. Pressure Vessel Technol.
,
132
, pp.
1
9
.10.1115/1.4000379
14.
Parker
,
R.
, and
Pryce
,
D. C.
,
1974
, “
Wake Excited Resonances in an Annular Cascade: An Experimental Investigation
,”
J. Sound and Vib.
,
37
, pp.
247
261
.10.1016/S0022-460X(74)80331-7
15.
Ziada
,
S.
,
Oengoeren
,
A.
, and
Vogel
,
A.
,
2002
, “
Acoustic Resonance in the Inlet Scroll of a Turbo-Compressor
,”
J. Fluids Struct.
,
16
, pp.
361
373
.10.1006/jfls.2001.0421
16.
Fitzpatrick
,
J. A.
,
1985
, “
The Prediction of Flow-Induced Noise in Heat Exchanger Tube Arrays
,”
J. Sound Vib.
,
99
, pp.
425
435
.10.1016/0022-460X(85)90379-7
17.
Blevins
,
R. D.
,
1993
, “
Experiments on Acoustic Resonance in Heat Exchanger Tube Bundles
,”
J. Sound Vib.
,
164
, pp.
503
533
.10.1006/jsvi.1993.1231
18.
Ziada
,
S.
,
Oengören
,
A.
, and
Bühlmann
,
E. T.
,
1989
, “
On Acoustical Resonance in Tube Arrays Part I: Experiments
,”
J. Fluids Struct.
,
3
, pp.
293
314
.10.1016/S0889-9746(89)90083-2
19.
McGrath
,
S.
, and
Shaw
,
L.
,
1996
, “
Active Control of Shallow Cavity Acoustic Resonance
,”
27th AIAA Fluid Dynamics Conference
,
New Orleans, LA
.
20.
Kook
,
H.
,
Mongeau
,
L.
,
Brown
,
D. V.
, and
Zorea
,
S.
,
1997
, “
Analysis of the Interior Pressure Oscillations Induced by Flow Over Vehicle Openings
,”
Noise Control Eng. J.
,
45
, pp.
223
234
.10.3397/1.2828444
21.
Rockwell
,
D.
, and
Naudascher
,
E.
,
1978
, “
Review – Self-Sustaining Oscillations of Flow Past Cavities
,”
ASME J. Fluids Eng.
,
100
, pp.
152
165
.10.1115/1.3448624
22.
Rockwell
,
D.
, and
Naudascher
,
E.
,
1979
, “
Self-Sustained Oscillations of Impinging Free Shear Layers
,”
Annu. Rev. Fluid Mech.
,
11
, pp.
67
94
.10.1146/annurev.fl.11.010179.000435
23.
Rockwell
,
D.
,
1983
, “
Oscillations of Impinging Shear Layers
,”
AIAA J.
,
21
, pp.
645
664
.10.2514/3.8130
24.
Blevins
,
R. D.
,
1985
, “
The Effect of Sound on Vortex Shedding From Cylinders
,”
J. Fluid Mech.
,
161
, pp.
217
237
.10.1017/S0022112085002890
25.
Hall
,
J. W.
,
Ziada
,
S.
, and
Weaver
,
D. S.
,
2003
, “
The Effect of Applied Sound on Vortex Shedding From Two Tandem Cylinders
,”
J. Fluids Struct.
,
18
, pp.
741
758
.10.1016/j.jfluidstructs.2003.06.003
26.
Michalke
,
A.
,
1965
, “
On Spatially Growing Disturbances in an Inviscid Shear Layer
,”
J. Fluid Mech.
,
23
, pp.
521
544
.10.1017/S0022112065001520
27.
Freymuth
,
P.
,
1966
, “
On Transition in a Separated Laminar Boundary Layer
,”
J. Fluid Mech.
,
25
, pp.
683
704
.10.1017/S002211206600034X
28.
Miksad
,
R. W.
,
1972
, “
Experiments on the Nonlinear Stages of Free-Shear-Layer Transition
,”
J. Fluid Mech.
,
56
, pp.
695
719
.10.1017/S0022112072002617
29.
Tonon
,
D.
,
Hirschberg
,
A.
,
Golliard
,
J.
, and
Ziada
,
S.
,
2011
, “
Aeroacoustics of Pipe Systems With Closed Branches
,”
Int. J. Aeroacoust.
,
10
(
2
), pp.
201
276
.10.1260/1475-472X.10.2-3.201
30.
Elder
,
S. A.
,
1980
, “
Forced Oscillations of a Separated Shear Layer With Application to Cavity Flow-Tone Effects
,”
J. Acoust. Soc. Am.
,
67
, pp.
774
781
.10.1121/1.383951
31.
Elder
,
S. A.
,
1978
, “
Self-Excited Depth-Mode Resonance for a Wall-Mounted Cavity in Turbulent Flow
,”
J. Acoust. Soc. Am.
,
64
, pp.
877
890
.10.1121/1.382047
32.
Elder
,
S. A.
,
Farabee
,
T. M.
, and
DeMetz
,
F. C.
,
1982
, “
Mechanisms of Flow-Excited Cavity Tones at Low Mach Number
,”
J. Acoust. Soc. Am.
,
72
, pp.
532
549
.10.1121/1.388034
33.
Gorter
,
J.
,
Hirschberg
,
A.
,
Wijnands
,
A.
, and
Bruggeman
,
J. C.
,
1989
, “
Flow Induced Pulsations in Gas Transport Systems
,” International Gas Research Conference, Tokyo, Japan.
34.
Ziada
,
S.
,
1994
, “
A Flow Visualisation Study of Flow-Acoustic Coupling at the Mouth of a Resonant Side-Branch
,”
J. Fluids Struct.
,
8
, pp.
391
416
.10.1006/jfls.1994.1019
35.
Ziada
,
S.
, and
Shine
,
S.
,
1999
, “
Strouhal Numbers of Flow-Excited Acoustic Resonance of Closed Side Branches
,”
J. Fluids Struct.
,
13
, pp.
127
142
.10.1006/jfls.1998.0189
36.
Arthurs
,
D.
, and
Ziada
,
S.
,
2009
, “
Flow-Excited Acoustic Resonances of Coaxial Side-Branches in an Annular Duct
,”
J. Fluids Struct.
,
25
, pp.
42
59
.10.1016/j.jfluidstructs.2008.03.007
37.
Kriesels
,
P. C.
,
Peters
,
M. C. A. M.
,
Hirschberg
,
A.
,
Wijnands
,
A. P. J.
,
Iafrati
,
A.
,
Riccardi
,
G.
,
Piva
,
R.
, and
Bruggeman
,
J. C.
,
1995
, “
High Amplitude Vortex-Induced Pulsations in a Gas Transport System
,”
J. Sound Vib.
,
184
, pp.
343
368
.10.1006/jsvi.1995.0321
38.
Dequand
,
S.
,
Hulshoff
,
S. J.
, and
Hirschberg
,
A.
,
2003
, “
Self-Sustained Oscillations in a Closed Side Branch System
,”
J. Sound Vib.
,
265
, pp.
359
386
.10.1016/S0022-460X(02)01458-X
39.
Graf
,
H. R.
, and
Ziada
,
S.
,
1992
, “
Flow Induced Acoustic Resonance in Closed Side Branches: An Experimental Determination of the Excitation Source
,”
International Symposium on Flow-Induced Vibration and Noise
,
Anaheim, CA
.
40.
Selamet
,
A.
,
Kurniawan
,
D.
,
Knotts
,
B. D.
, and
Novak
,
J. M.
,
2002
, “
Whistles With a Generic Sidebranch: Production and Suppression
,”
J. Sound Vib.
,
250
, pp.
277
298
.10.1006/jsvi.2001.3869
41.
Graf
,
H. R.
, and
Ziada
,
S.
,
2010
, “
Excitation Source of a Side-Branch Shear Layer
,”
J. Sound Vib.
,
329
, pp.
2825
2842
.10.1016/j.jsv.2010.01.033
42.
Howe
,
M. S.
,
1981
, “
The Influence of Mean Shear on Unsteady Aperture Flow With Application to Acoustical Diffraction and Self-Sustained Cavity Oscillations
,”
J. Fluid Mech.
,
109
, pp.
125
146
.10.1017/S0022112081000979
43.
Nelson
,
P. A.
,
Halliwell
,
N. A.
, and
Doak
,
P. E.
,
1983
, “
Fluid Dynamics of a Flow Excited Resonance, Part II: Flow Acoustic Interaction
,”
J. Sound Vib.
,
91
, pp.
375
402
.10.1016/0022-460X(83)90287-0
44.
Nelson
,
P. A.
,
Halliwell
,
N. A.
, and
Doak
,
P. E.
,
1981
, “
Fluid Dynamics of a Flow Excited Resonance, Part I: Experiment
,”
J. Sound Vib.
,
78
, pp.
15
38
.10.1016/S0022-460X(81)80156-3
45.
Howe
,
M. S.
,
1980
, “
The Dissipation of Sound at an Edge
,”
J. Sound Vib.
,
70
, pp.
407
411
.10.1016/0022-460X(80)90308-9
46.
Howe
,
M. S.
,
1998
,
Acoustics of Fluid-Structure Interactions
,
Cambridge University
,
Cambridge
, UK.
47.
Bruggeman
,
J. C.
,
Hirschberg
,
A.
,
van Dongen
,
M. E. H.
,
Wijnands
,
A. P. J.
, and
Gorter
,
J.
,
1989
, “
Flow Induced Pulsations in Gas Transport Systems: Analysis of the Influence of Closed Side Branches
,”
ASME J. Fluids Eng.
,
111
, pp.
484
491
.10.1115/1.3243672
48.
Bruggeman
,
J. C.
,
Hirschberg
,
A.
,
van Dongen
,
M. E. H.
,
Wijnands
,
A. P. J.
, and
Gorter
,
J.
,
1991
, “
Self-Sustained Aero-Acoustic Pulsations in Gas Transport Systems: Experimental Study of the Influence of Closed Side Branches
,”
J. Sound Vib.
,
150
, pp.
371
393
.10.1016/0022-460X(91)90893-O
49.
Stoneman
,
S. A. T.
,
Hourigan
,
K.
,
Stokes
,
A. N.
, and
Welsh
,
M. C.
,
1988
, “
Resonant Sound Caused by Flow Past Two Plates in Tandem in a Duct
,”
J. Fluid Mech.
,
192
, pp.
455
484
.10.1017/S0022112088001946
50.
Hourigan
,
K.
,
Welsh
,
M. C.
,
Thompson
,
M. C.
, and
Stokes
,
A. N.
,
1990
, “
Aerodynamic Sources of Acoustic Resonance in a Duct With Baffles
,”
J. Fluids Struct.
,
4
, pp.
345
370
.10.1016/0889-9746(90)90130-W
51.
Graf
,
H. R.
, and
Durgin
,
W. W.
,
1993
, “
Measurement of the Nonsteady Flow Field in the Opening of a Resonating Cavity Excited by Grazing Flow
,”
J. Fluids Struct.
,
7
, pp.
387
400
.10.1006/jfls.1993.1023
52.
Graf
,
H. R.
1989
, “
Experimental and Computational Investigation of the Flow Excited Acoustic Resonance in a Deep Cavity
,” Ph.D. thesis, Worcester Polytechnic Institute, Worcester, MA.
53.
Radavich
,
P. M.
,
Selamet
,
A.
, and
Novak
J. M.
,
2001
, “
A Computational Approach for Flow-Acoustic Coupling in Closed Side Branches
,”
J. Acoust. Soc. Am.
,
109
, pp.
1343
1353
.10.1121/1.1350618
54.
Martínez-Lera
,
P.
,
Schram
,
C.
,
Föller
,
S.
,
Kaess
,
R.
, and
Polifke
,
W.
,
2009
, “
Identification of the Aeroacoustic Response of a Low Mach Number Flow Through a T-joint
,”
J. Acoust. Soc. Am.
,
126
, pp.
582
586
.10.1121/1.3159604
55.
Nakiboğlu
,
G.
,
Belfroid
,
S.
,
Golliard
,
J.
, and
Hirschberg
,
A.
,
2011
, “
On the Whistling Corrugated Pipes: Effect of Pipe Length and Flow Profile
,”
J. Fluid Mech.
,
672
, pp.
78
108
.10.1017/S0022112010005884
56.
Nakiboğlu
,
G.
,
Manders
,
H. B. M.
, and
Hirschberg
,
A.
,
2012
, “
Aeroacoustic Power Generated by a Compact Axisymmetric Cavity: Prediction of Self-Sustained Oscillation and Influence of the Depth
,”
J. Fluid Mech.
,
703
, pp.
163
191
.10.1017/jfm.2012.203
57.
Mohamed
,
S.
,
Graf
,
H. R.
, and
Ziada
,
S.
,
2011
, “
Aeroacoustic Source of a Shallow Cavity in a Pipeline
,”
Proceedings of Pressure Vessels and Piping Conference, Flow Induced Vibration Symposium
, Paper No. PVP2011-57437,
Baltimore, MD
.
58.
Kinsler
,
L. E.
,
Frey
,
A. R.
,
Coppens
,
A. B.
, and
Sanders
,
J. V.
,
2000
,
Fundamentals of Acoustics
,
4th ed.
,
Wiley
,
New York
.
59.
Morse
,
P. M.
, and
Ingard
,
K. U.
,
1968
,
Theoretical Acoustics
,
Princeton University
,
Princeton, NJ
.
60.
Evans
,
D. V.
,
Levitin
,
M.
, and
Vassiliev
,
D.
,
1994
, “
Existence Theorems for Trapped Modes
,”
J. Fluid Mech.
,
261
, pp.
21
31
.10.1017/S0022112094000236
61.
Duan
,
Y.
,
Koch
,
W.
,
Linton
,
C. M.
, and
McIver
,
M.
,
2007
, “
Complex Resonances and Trapped Modes in Ducted Domains
,”
J. Fluid Mech.
,
571
, pp.
119
147
.10.1017/S0022112006003259
62.
Hein
,
S.
, and
Koch
,
W.
,
2008
, “
Acoustic Resonances and Trapped Modes in Pipes and Tunnels
,”
J. Fluid Mech.
,
605
, pp.
401
428
.10.1017/S002211200800164X
63.
Koch
,
W.
,
2009
, “
Acoustic Resonances and Trapped Modes in Annular Plate Cascades
,”
J. Fluid Mech.
,
628
, pp.
155
180
.10.1017/S0022112009006144
64.
Peters
,
M. C. A. M.
,
1993
, “
Aeroacoustic Sources in Internal Flows
,” Ph.D. thesis, Technische Universität Eindhoven, Eindhoven, The Netherlands.
65.
Peters
,
M. C. A. M.
, and
van Bokhorst
,
E.
,
2000
, “
Flow-Induced Pulsations in Pipe Systems With Closed Branches: Impact of Flow Direction
,”
7th International Conference on Flow-Induced Vibration
,
Lucerne, Switzerland
.
66.
Ziada
,
S.
,
Ng
,
H.
, and
Blake
,
C. E.
,
2003
, “
Flow Excited Resonance of a Confined Shallow Cavity in Low Mach Number Flow, and Its Control
,”
J. Fluids Struct.
,
18
, pp.
79
92
.10.1016/S0889-9746(03)00083-5
67.
Aly
,
K.
, and
Ziada
,
S.
,
2010
, “
Flow-Excited Resonance of Trapped Modes of Ducted Shallow Cavities
,”
J. Fluids Struct.
,
26
, pp.
92
120
.10.1016/j.jfluidstructs.2009.07.008
68.
Aly
,
K.
, and
Ziada
,
S.
,
2011
, “
Azimuthal Behaviour of\Flow-Excited Diametral Modes of Internal Shallow Cavities
,”
J. Sound Vib.
,
330
, pp.
3666
3683
.10.1016/j.jsv.2011.02.021
69.
Aly
,
K.
, and
Ziada
,
S.
,
2012
, “
Effect of Mean Flow on the Trapped Modes of Internal Cavities
,”
J. Fluids Struct.
,
33
, pp.
70
84
.10.1016/j.jfluidstructs.2012.05.011
70.
Peters
,
M. C. A. M.
,
1993
, “
Aeroacoustic Sources in Internal Flows
,” Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands.
71.
Huang
,
X. Y.
, and
Weaver
,
D. S.
,
1991
, “
On the Active Control of Shear Layer Oscillations Across a Cavity in the Presence of Pipeline Acoustic Resonance
,”
J. Fluids Struct.
,
5
, pp.
207
219
.10.1016/0889-9746(91)90472-2
72.
Ziada
,
S.
,
McLaren
,
K.W.
, and
Li
,
Y.
,
2009
, “
Flow-Acoustic Coupling in T-junctions: Effect of T-junction Geometry
,”
ASME J. Pressure Vessel Technol.
,
131
, pp.
1
14
.10.1115/1.3148188
73.
Harris
,
R. E.
,
Weaver
,
D. S.
, and
Dokainish
,
M. A.
,
1987
, “
On the Generation of Acoustic Resonance in Pipelines
,”
Proceedings International Conference on Flow Induced Vibrations
,
R.
King
, ed.,
Bowness-on-Windermere
,
England, BHRA, Cranfield
, UK, pp.
543
550
.
74.
Bruggeman
,
J. C.
,
1987
, “
Flow-Induced Pulsations in Pipe Systems
,” Ph.D. thesis, Technische Universität Eindhoven, Eindhoven, The Netherlands.
75.
Mohamed
,
S.
,
2012
, private communication.
76.
Ziada
,
S.
,
Scott
,
A.
, and
Arthurs
,
D.
,
2007
, “
Acoustic Excitation by Flow in T-Junctions
,”
ASME J. Pressure Vessel Technol.
,
129
, pp.
14
20
.10.1115/1.2388995
77.
Erickson
,
D. D.
,
Durgin
,
W. W.
,
Maguire
C. F.
, and
Moeller
,
M.
,
1986
, “
Shear Layer Coupling With Side-Branch Resonators
,” Forum on Unsteady Flow, ASME Publication No. FED 39, pp.
43
45
.
78.
Nakiboğlu
,
G.
, and
Hirschberg
,
A.
,
2012
, “
Aeroacoustic Power Generated by Multiple Compact Axisymmetric Cavities: Effect of Hydrodynamic Interference on the Sound Production
,”
Phys. Fluids
,
24
, p.
067101
.10.1063/1.4718726
79.
Jungowski
,
W. E.
, and
Studzinski
,
W.
,
1989
, U.S. Patent No. 4,867,190.
80.
Karadogan
,
H.
, and
Rockwell
,
D.
,
1983
, “
Toward Attenuation of Self-Sustained Oscillations of a Turbulent Jet Through a Cavity
,”
ASME J. Fluids Eng.
,
105
, pp.
335
340
.10.1115/1.3241000
81.
Tonon
,
D.
,
Willems
,
J. F. H.
, and
Hirschberg
,
A.
,
2010
, “
Flow-Induced Pulsations in Pipe Systems With Closed Side Branches: Study of the Effectiveness of Detuning as a Remedial Measure
,”
20th International Congress on Acoustics
,
Sydney, Australia
.
82.
Bolduc
,
M.
,
Elsayed
,
M.
, and
Ziada
,
S.
,
2013
, “
Effect of Upstream Edge Geometry on the Trapped Mode Resonance of Ducted Cavities
,”
ASME PVP Conference
,
Paris, France
, Paper No. PVP2013-97149.
83.
Amandolèse
,
X.
,
Hèmon
,
P.
, and
Regardin
,
C.
,
2004
, “
An Experimental Study of the Acoustic Oscillations by Flows Over Cavities
,”
ASME J. Vibr. Acoust.
,
126
, pp.
190
195
.10.1115/1.1688761
84.
Ffowcs Williams
,
J. E.
, and
Huang
,
X. Y.
,
1989
, “
Active Stabilization of Compressor Surge
,”
J. Fluid Mech.
,
204
, pp.
245
262
.10.1017/S0022112089001746
85.
Welsh
,
M. C.
,
Hourigan
,
K.
,
Alfredson
,
R. J.
, and
Lin
,
P. D.
,
1991
, “
Active Control of Flow-Excited Acoustic Resonance: Higher Order Acoustic Modes
,”
International Conference on Flow-Induced Vibration
,
Brighton, UK
.
86.
Sarno
,
R. L.
, and
Franke
,
M. E.
,
1994
, “
Suppression of Flow-Induced Pressure Oscillations in Cavities
,”
J. Aircr.
,
31
, pp.
90
96
.10.2514/3.46459
87.
Cattafesta
III,
L. N.
,
Garg
,
S.
,
Choudhari
,
M.
, and
Li
,
F.
,
1997
, “
Active Control of Flow Induced Cavity Resonance
,”
28th AIAA Fluid Dynamics Conference
,
Snowmass Village, CO
.
88.
Ziada
,
S.
,
2003
, “
Control of Fluid-Structure-Sound Interaction Mechanisms by Means of Synthetic Jets
,”
JSME Int. J.
,
46
, pp.
873
880
.10.1299/jsmec.46.873
89.
Ziada
,
S.
,
1995
, “
Feedback Control of Globally Unstable Flows: Impinging Shear Flows
,”
J. Fluids Struct.
,
9
, pp.
907
923
.10.1006/jfls.1995.1051
90.
Ziada
,
S.
,
2001
, “
Interaction of a Jet-Slot Oscillator With a Deep Cavity Resonator and Its Control
,”
J. Fluids Struct.
,
15
, pp.
831
843
.10.1006/jfls.2000.0379
91.
NRC
,
2002
, “
Failure of Steam Dryer Cover Plate After a Recent Power Uprate
,” NRC Information Notice 2002-26, US Nuclear Regulatory Commission, Washington, D.C.
92.
Hambric
,
S. A.
,
Mulcahy
,
T. M.
,
Shah
,
V. N.
,
Scarbrough
,
T.
, and
Wu
,
J.
,
2000
, “
Acoustic Loading on BWR Steam Dryers Caused by Valve Singing
,”
9th NRC/ASME Symposium on Valves, Pumps and Inservice Testing
,
Washington, D.C
.
93.
DeBoo
,
G.
,
Ramsden
,
K.
,
Gesior
,
R.
, and
Strub
,
B.
,
2007
, “
Identification of Quad Cities Main Steam Line Acoustic Sources and Vibration Reduction
,”
ASME Pressure Vessels and Piping Division Conference
,
San Antonio, TX
.
94.
NRC
,
2004
, “
Additional Flow-Induced Vibration Failures After a Recent Power Uprate
,” NRC Information Notice 2002-26, Supplement 2, Jan. 9, US Nuclear Regulatory Commission, Washington, D.C.
95.
GENE
,
2003
, “
BWR Steam Dryer Integrity
,” Services Information Letter, SIL No. 644, Supplement 1, Sept., GE Nuclear Energy, San Jose, CA.
96.
Ramsden
,
K.
,
2005
, “
Acoustic Circuit Validation Quad Cities Unit 2 Instrumented Steam Path Final Model Revision 930 MWe/2884 MWt Power Level
,” Exelon Report No. AM-2005-004.
97.
Kitajima
,
Y.
,
Watanabe
,
M.
,
Matsunaga
,
K.
, and
Hagiwara
,
T.
,
2006
, “
Acoustic Analysis for a Steam Dome and Pipings of a 1,100 MWe-Class Boiling Water Reactor
,”
Proceedings of ICAPP’06
,
Reno, NV
, Paper No. 6358.
98.
Takahashi
,
S.
,
Ohtsuka
,
M.
,
Okuyama
,
K.
,
Ito
,
T.
, and
Yoshikawa
,
K.
,
2008
, “
Experimental Study of Acoustic and Flow-Induced Vibrations in BWR Main Steam Lines and Steam Dryers
,”
ASME Pressure Vessels and Piping Division Conference
,
Chicago, IL
.
99.
Bilanin
,
A. J.
,
2006
, private communication.
100.
Omrani
,
P. S.
,
Golliard
,
J.
,
Belfroid
,
S.
, and
Diez
,
G.
,
2012
, “
On the Effect of Droplets Modulating the Acoustic Source Powers Generated in T-Joints
,”
10th International Conference on Flow-Induced Vibration
,
Dublin, Ireland
, pp.
531
536
.
101.
Uchiyama
,
Y.
, and
Morita
,
R.
,
2012
, “
Experimental Evaluation of Acoustic Resonance at Single Stub Pipe in Each Dry and Wet Steam Flow
,”
10th International Conference on Flow-Induced Vibration
,
Dublin, Ireland
, pp.
577
584
.
102.
Mohany
,
A.
, and
Ziada
,
S.
,
2009
, “
Numerical Simulation of the Flow-Sound Interaction Mechanisms of a Single and Two Tandem Cylinders in Cross-Flow
,”
ASME J. Pressure Vessel Technol.
,
131
, p.
031306
.10.1115/1.3110029
103.
Paduano
,
C.
, and
Meskell
,
C.
,
2012
, “
Does Reynolds Number Affect Look-In of Aeroacoustic Resonance of Tandem Cylinders?
,”
10th International Conference on Flow-Induced Vibration
,
Dublin, Ireland
, pp.
227
234
.
You do not currently have access to this content.