The interplay between the mechanical properties of cells and the forces that they produce internally or that are externally applied to them play an important role in maintaining the normal function of cells. These forces also have a significant effect on the progression of mechanically related diseases. To study the mechanics of cells, a wide variety of tools have been adapted from the physical sciences. These tools have helped to elucidate the mechanical properties of cells, the nature of cellular forces, and mechanoresponses that cells have to external forces, i.e., mechanotransduction. Information gained from these studies has been utilized in computational models that address cell mechanics as a collection of biomechanical and biochemical processes. These models have been advantageous in explaining experimental observations by providing a framework of underlying cellular mechanisms. They have also enabled predictive, in silico studies, which would otherwise be difficult or impossible to perform with current experimental approaches. In this review, we discuss these novel, experimental approaches and accompanying computational models. We also outline future directions to advance the field of cell mechanics. In particular, we devote our attention to the use of microposts for experiments with cells and a bio-chemical-mechanical model for capturing their unique mechanobiological properties.

References

References
1.
Bershadsky
,
A.
,
Kozlov
,
M.
, and
Geiger
,
B.
,
2006
, “
Adhesion-Mediated Mechanosensitivity: A Time to Experiment, and a Time to Theorize
,”
Curr. Opin. Cell Biol.
,
18
(
5
), pp.
472
481
.10.1016/j.ceb.2006.08.012
2.
Krishnan
,
R.
,
Park
,
C. Y.
,
Lin
,
Y. C.
,
Mead
,
J.
,
Jaspers
,
R. T.
,
Trepat
,
X.
,
Lenormand
,
G.
,
Tambe
,
D.
,
Smolensky
,
A.
V.
,
Knoll
,
A. H.
,
Butler
,
J. P.
, and
Fredberg
,
J. J.
,
2009
, “
Reinforcement Versus Fluidization in Cytoskeletal Mechanoresponsiveness
,”
PLoS One
,
4
(
5
),
e5486
.10.1371/journal.pone.0005486
3.
Moore
,
S. W.
,
Roca-Cusachs
,
P.
, and
Sheetz
,
M. P.
,
2010
, “
Stretchy Proteins on Stretchy Substrates: The Important Elements of Integrin-Mediated Rigidity Sensing
,”
Dev. Cell
,
19
(
2
), pp.
194
206
.10.1016/j.devcel.2010.07.018
4.
Ingber
,
D. E.
,
2003
, “
Mechanobiology and Diseases of Mechanotransduction
,”
Ann. Med.
,
35
(
8
), pp.
564
577
.10.1080/07853890310016333
5.
Affonce
,
D. A.
, and
Lutchen
,
K. R.
,
2006
, “
New Perspectives on the Mechanical Basis for Airway Hyperreactivity and Airway Hypersensitivity in Asthma
,”
J. Appl. Physiol.
,
101
(
6
), pp.
1710
1719
.10.1152/japplphysiol.00344.2006
6.
Klein-Nulend
,
J.
,
Bacabac
,
R. G.
,
Veldhuijzen
,
J. P.
, and
Van Loon
,
J. J.
,
2003
, “
Microgravity and Bone Cell Mechanosensitivity
,”
Adv. Space Res.
,
32
(
8
), pp.
1551
1559
.10.1016/S0273-1177(03)90395-4
7.
Vollrath
,
M. A.
,
Kwan
,
K. Y.
, and
Corey
,
D. P.
,
2007
, “
The Micromachinery of Mechanotransduction in Hair Cells
,”
Ann. Rev. Neurosci.
,
30
, pp.
339
365
.10.1146/annurev.neuro.29.051605.112917
8.
Gimbrone
,
M. A.
, Jr.
,
Topper
,
J. N.
,
Nagel
,
T.
,
Anderson
,
K. R.
, and
Garcia-Cardena
,
G.
,
2000
, “
Endothelial Dysfunction, Hemodynamic Forces, and Atherogenesis
,”
Ann. NY Acad. Sci.
,
902
, pp.
230
239
.10.1111/j.1749-6632.2000.tb06318.x
9.
Paszek
,
M. J.
,
Zahir
,
N.
,
Johnson
,
K. R.
,
Lakins
,
J. N.
,
Rozenberg
,
G. I.
,
Gefen
,
A.
,
Reinhart-King
,
C. A.
,
Margulies
,
S. S.
,
Dembo
,
M.
,
Boettiger
,
D.
,
Hammer
,
D. A.
, and
Weaver
,
V. M.
,
2005
, “
Tensional Homeostasis and the Malignant Phenotype
,”
Cancer Cells
,
8
(
3
), pp.
241
254
.10.1016/j.ccr.2005.08.010
10.
Judex
,
S.
,
Gross
,
T. S.
,
Bray
,
R. C.
, and
Zernicke
,
R. F.
,
1997
, “
Adaptation of Bone to Physiological Stimuli
,”
J. Biomech.
,
30
(
5
), pp.
421
429
.10.1016/S0021-9290(96)00060-7
11.
Tan
,
J. C.
,
Kalapesi
,
F. B.
, and
Coroneo
,
M. T.
,
2006
, “
Mechanosensitivity and the Eye: Cells Coping with the Pressure
,”
Br. J. Ophthalmol.
,
90
(
3
), pp.
383
388
.10.1136/bjo.2005.079905
12.
Heydemann
,
A.
, and
McNally
,
E. M.
,
2007
, “
Consequences of Disrupting the Dystrophin-Sarcoglycan Complex in Cardiac and Skeletal Myopathy
,”
Trends Cardiovasc. Med.
,
17
(
2
), pp.
55
59
.10.1016/j.tcm.2006.12.002
13.
Di Carlo
,
D.
,
Wu
,
L. Y.
, and
Lee
,
L. P.
,
2006
, “
Dynamic Single Cell Culture Array
,”
Lab Chip
,
6
(
11
), pp.
1445
1449
.10.1039/b605937f
14.
Anderson
,
A. E.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
,
2007
, “
Verification, Validation and Sensitivity Studies in Computational Biomechanics
,”
Comput. Methods Biomech. Biomed. Eng.
,
10
(
3
), pp.
171
184
.10.1080/10255840601160484
15.
Tan
,
J. L.
,
Tien
,
J.
,
Pirone
,
D. M.
,
Gray
,
D. S.
,
Bhadriraju
,
K.
, and
Chen
,
C. S.
,
2003
, “
Cells Lying on a Bed of Microneedles: An Approach to Isolate Mechanical Force
,”
Proc. Natl. Acad. Sci. U.S.A.
,
100
(
4
), pp.
1484
1489
.10.1073/pnas.0235407100
16.
Deshpande
,
V. S.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
,
2006
, “
A Bio-Chemo-Mechanical Model for Cell Contractility
,”
Proc. Natl. Acad. Sci. U.S.A
,
103
(
38
), pp.
14015
14020
.10.1073/pnas.0605837103
17.
Karp
,
G.
,
2002
,
Cell and Molecular Biology
,
John Wiley and Sons, Inc.
,
New York
.
18.
Bo
,
L.
, and
Waugh
,
R. E.
,
1989
, “
Determination of Bilayer Membrane Bending Stiffness by Tether Formation from Giant, Thin-Walled Vesicles
,”
Biophys. J.
,
55
(
3
), pp.
509
517
.10.1016/S0006-3495(89)82844-9
19.
Alberts
,
B.
,
Johnson
,
A.
,
Lewis
,
J.
,
Raff
,
M.
,
Roberts
,
K.
, and
Walter
,
P.
,
2002
,
Molecular Biology of the Cell
,
Garland Science
,
New York
.
20.
Lammerding
,
J.
,
2011
,
Mechanics of the Nucleus: Comprehensive Physiology
,
American Physiological Society
,
Cambridge, MA
.
21.
Dahl
,
K. N.
,
Ribeiro
,
A. J.
, and
Lammerding
,
J.
,
2008
, “
Nuclear Shape, Mechanics, and Mechanotransduction
,”
Circ. Res.
,
102
(
11
), pp.
1307
1318
.10.1161/CIRCRESAHA.108.173989
22.
Guilak
,
F.
,
Tedrow
,
J. R.
, and
Burgkart
,
R.
,
2000
, “
Viscoelastic Properties of the Cell Nucleus
,”
Biochem. Biophys. Res. Commun.
,
269
(
3
), pp.
781
786
.10.1006/bbrc.2000.2360
23.
Wang
,
N.
,
Tytell
,
J. D.
, and
Ingber
,
D. E.
,
2009
, “
Mechanotransduction at a Distance: Mechanically Coupling the Extracellular Matrix With the Nucleus
,”
Nat. Rev. Mol. Cell Biol.
,
10
, pp.
75
82
.10.1038/nrm2594
24.
Pullarkat
,
P. A.
,
Fernández
,
P. A.
, and
Ott
,
A.
,
2007
, “
Rheological Properties of the Eukaryotic Cell Cytoskeleton
,”
Phys. Rep.
,
449
(
1–3
), pp.
29
53
.10.1016/j.physrep.2007.03.002
25.
Panorchan
,
P.
,
Lee
,
J. S.
,
Kole
,
T. P.
,
Tseng
,
Y.
, and
Wirtz
,
D.
,
2006
, “
Microrheology and Rock Signaling of Human Endothelial Cells Embedded in a 3D Matrix
,”
Biophys. J.
,
91
(
9
), pp.
3499
3507
.10.1529/biophysj.106.084988
26.
Tseng
,
Y.
,
Kole
,
T. P.
, and
Wirtz
,
D.
,
2002
, “
Micromechanical Mapping of Live Cells by Multiple-Particle-Tracking Microrheology
,”
Biophys. J.
,
83
(
6
), pp.
3162
3176
.10.1016/S0006-3495(02)75319-8
27.
Zimmerman
,
S. B.
, and
Minton
,
A. P.
,
1993
, “
Macromolecular Crowding: Biochemical, Biophysical, and Physiological Consequences
,”
Ann. Rev. Biophys. Biomol. Struct.
,
22
, pp.
27
65
.10.1146/annurev.bb.22.060193.000331
28.
De
,
R.
,
Zemel
,
A.
, and
Safran
,
S. A.
,
2010
, “
Theoretical Concepts and Models of Cellular Mechanosensing
,”
Methods Cell Biol.
,
98
, pp.
143
175
.10.1016/S0091-679X(10)98007-2
29.
Fletcher
,
D. A.
, and
Mullins
,
R. D.
,
2010
, “
Cell Mechanics and the Cytoskeleton
,”
Nature
,
463
(
7280
), pp.
485
492
.10.1038/nature08908
30.
De Forges
,
H.
,
Bouissou
,
A.
, and
Perez
,
F.
,
2012
, “
Interplay between Microtubule Dynamics and Intracellular Organization
,”
Int. J. Biochem. Cell Biol.
,
44
(
2
), pp.
266
274
.10.1016/j.biocel.2011.11.009
31.
Kristofferson
,
D.
,
Mitchison
,
T.
, and
Kirschner
,
M.
,
1986
, “
Direct Observation of Steady-State Microtubule Dynamics
,”
J. Cell Biol.
,
102
(
3
), pp.
1007
1019
.10.1083/jcb.102.3.1007
32.
Brangwynne
,
C. P.
,
Mackintosh
,
F. C.
,
Kumar
,
S.
,
Geisse
,
N. A.
,
Talbot
,
J.
,
Mahadevan
,
L.
,
Parker
,
K. K.
,
Ingber
,
D. E.
, and
Weitz
,
D. A.
,
2006
, “
Microtubules Can Bear Enhanced Compressive Loads in Living Cells Because of Lateral Reinforcement
,”
J. Cell Biol.
,
173
(
5
), pp.
733
741
.10.1083/jcb.200601060
33.
Hirokawa
,
N.
,
1998
, “
Kinesin and Dynein Superfamily Proteins and the Mechanism of Organelle Transport
,”
Science
,
279
(
5350
), pp.
519
526
.10.1126/science.279.5350.519
34.
Sharp
,
D. J.
,
Rogers
,
G. C.
, and
Scholey
,
J. M.
,
2000
, “
Microtubule Motors in Mitosis
,”
Nature
,
407
(
6800
), pp.
41
47
.10.1038/35024000
35.
Lodish
,
H.
,
Berk
,
A.
,
Zipursky
,
S. L.
,
Matsudaira
,
P.
,
Baltimore
,
D.
, and
Darnell
,
J.
,
2000
,
Molecular Cell Biology
,
W. H. Freeman
,
New York
.
36.
Herrmann
,
H.
,
Bar
,
H.
,
Kreplak
,
L.
,
Strelkov
,
S.
V.
, and
Aebi
,
U.
,
2007
, “
Intermediate Filaments: From Cell Architecture to Nanomechanics
,”
Nat. Rev. Mol. Cell Biol.
,
8
(
7
), pp.
562
573
.10.1038/nrm2197
37.
Goley
,
E. D.
, and
Welch
,
M. D.
,
2006
, “
The Arp2/3 Complex: An Actin Nucleator Comes of Age
,”
Nat. Rev. Mol. Cell Biol.
,
7
(
10
), pp.
713
726
.10.1038/nrm2026
38.
Welch
,
M. D.
,
1999
, “
The World According to Arp: Regulation of Actin Nucleation by the Arp2/3 Complex
,”
Trends Cell Biol.
,
9
(
11
), pp.
423
427
.10.1016/S0962-8924(99)01651-7
39.
Pellegrin
,
S.
, and
Mellor
,
H.
,
2007
, “
Actin Stress Fibres
,”
J. Cell Sci.
,
120
(
20
), pp.
3491
3499
.10.1242/jcs.018473
40.
Finer
,
J. T.
,
Simmons
,
R. M.
, and
Spudich
,
J. A.
,
1994
, “
Single Myosin Molecule Mechanics: Piconewton Forces and Nanometre Steps
,”
Nature
,
368
(
6467
), pp.
113
119
.10.1038/368113a0
41.
Bershadsky
,
A. D.
,
Balaban
,
N. Q.
, and
Geiger
,
B.
,
2003
, “
Adhesion-Dependent Cell Mechanosensitivity
,”
Ann. Rev. Cell Dev. Biol.
,
19
, pp.
677
695
.10.1146/annurev.cellbio.19.111301.153011
42.
Gomez
,
G. A.
,
Mclachlan
,
R. W.
, and
Yap
,
A. S.
,
2011
, “
Productive Tension: Force-Sensing and Homeostasis of Cell–Cell Junctions
,”
Trends Cell Biol.
,
21
(
9
), pp.
499
505
.10.1016/j.tcb.2011.05.006
43.
Jaalouk
,
D. E.
, and
Lammerding
,
J.
,
2009
, “
Mechanotransduction Gone Awry
,”
Nat. Rev. Mol. Cell Biol.
,
10
(
1
), pp.
63
73
.10.1038/nrm2597
44.
Tarbell
,
J. M.
,
Weinbaum
,
S.
, and
Kamm
,
R. D.
,
2005
, “
Cellular Fluid Mechanics and Mechanotransduction
,”
Ann. Biomed. Eng.
,
33
(
12
), pp.
1719
1723
.10.1007/s10439-005-8775-z
45.
Janmey
,
P. A.
, and
McCulloch
,
C. A.
,
2007
, “
Cell Mechanics: Integrating Cell Responses to Mechanical Stimuli
,”
Ann. Rev. Biomed. Eng.
,
9
, pp.
1
34
.10.1146/annurev.bioeng.9.060906.151927
46.
Haswell
,
E. S.
,
Phillips
,
R.
, and
Rees
,
D. C.
,
2011
, “
Mechanosensitive Channels: What Can They Do and How Do They Do It?
,”
Structure
,
19
(
10
), pp.
1356
1369
.10.1016/j.str.2011.09.005
47.
Arnadottir
,
J.
, and
Chalfie
,
M.
,
2010
, “
Eukaryotic Mechanosensitive Channels
,”
Ann. Rev. Biophys.
,
39
, pp.
111
137
.10.1146/annurev.biophys.37.032807.125836
48.
Sachs
,
F.
,
2010
, “
Stretch-Activated Ion Channels: What Are They?
,”
Physiol. (Bethesda)
,
25
(
1
), pp.
50
56
.10.1152/physiol.00042.2009
49.
Vogel
,
V.
, and
Sheetz
,
M.
,
2006
, “
Local Force and Geometry Sensing Regulate Cell Functions
,”
Nat. Rev. Mol. Cell Biol.
,
7
(
4
), pp.
265
275
.10.1038/nrm1890
50.
Loh
,
O.
,
Vaziri
,
A.
, and
Espinosa
,
H. D.
,
2009
, “
The Potential of MEMS for Advancing Experiments and Modeling in Cell Mechanics
,”
Exp. Mech.
,
49
, pp.
105
124
.10.1007/s11340-007-9099-8
51.
Hochmuth
,
R. M.
,
2000
, “
Micropipette Aspiration of Living Cells
,”
J. Biomech.
,
33
(
1
), pp.
15
22
.10.1016/S0021-9290(99)00175-X
52.
Mitchison
,
J. M.
, and
Swann
,
M. M.
,
1954
, “
The Mechanical Properties of the Cell Surface. Ii. The Unfertilized Sea-Urchin Egg
,”
J. Exp. Biol.
,
31
, pp.
461
472
.
53.
Van Vliet
,
K. J.
,
Bao
,
G.
, and
Suresh
,
S.
,
2003
, “
The Biomechanics Toolbox: Experimental Approaches for Living Cells and Biomolecules
,”
Acta Mater.
,
51
(
19
), pp.
5881
5905
.10.1016/j.actamat.2003.09.001
54.
Sung
,
K. L.
,
Dong
,
C.
,
Schmid-Schonbein
,
G. W.
,
Chien
,
S.
, and
Skalak
,
R.
,
1988
, “
Leukocyte Relaxation Properties
,”
Biophys. J.
,
54
(
2
), pp.
331
336
.10.1016/S0006-3495(88)82963-1
55.
Ting-Beall
,
H. P.
,
Needham
,
D.
, and
Hochmuth
,
R. M.
,
1993
, “
Volume and Osmotic Properties of Human Neutrophils
,”
Blood
,
81
(
10
), pp.
2774
2780
.
56.
Liu
,
B.
,
Goergen
,
C. J.
, and
Shao
,
J. Y.
,
2007
, “
Effect of Temperature on Tether Extraction, Surface Protrusion, and Cortical Tension of Human Neutrophils
,”
Biophys. J.
,
93
(
8
), pp.
2923
2933
.10.1529/biophysj.107.105346
57.
Herant
,
M.
,
Heinrich
,
V.
, and
Dembo
,
M.
,
2005
, “
Mechanics of Neutrophil Phagocytosis: Behavior of the Cortical Tension
,”
J. Cell Sci.
,
118
, pp.
1789
1797
.10.1242/jcs.02275
58.
Evans
,
E.
, and
Yeung
,
A.
,
1989
, “
Apparent Viscosity and Cortical Tension of Blood Granulocytes Determined by Micropipet Aspiration
,”
Biophys. J.
,
56
(
1
), pp.
151
160
.10.1016/S0006-3495(89)82660-8
59.
Evans
,
E. A.
,
1973
, “
New Membrane Concept Applied to the Analysis of Fluid Shear- and Micropipette-Deformed Red Blood Cells
,”
Biophys. J.
,
13
(
9
), pp.
941
954
.10.1016/S0006-3495(73)86036-9
60.
Hochmuth
,
R. M.
,
1993
, “
Measuring the Mechanical Properties of Individual Human Blood Cells
,”
ASME J. Biomech. Eng.
,
115
(
4B
), pp.
515
519
.10.1115/1.2895533
61.
Waugh
,
R.
, and
Evans
,
E. A.
,
1979
, “
Thermoelasticity of Red Blood Cell Membrane
,”
Biophys. J.
,
26
(
1
), pp.
115
131
.10.1016/S0006-3495(79)85239-X
62.
Trickey
,
W. R.
,
Baaijens
,
F. P.
,
Laursen
,
T. A.
,
Alexopoulos
,
L. G.
, and
Guilak
,
F.
,
2006
, “
Determination of the Poisson’s Ratio of the Cell: Recovery Properties of Chondrocytes after Release from Complete Micropipette Aspiration
,”
J. Biomech.
,
39
(
1
), pp.
78
87
.10.1016/j.jbiomech.2004.11.006
63.
Trickey
,
W. R.
,
Vail
,
T. P.
, and
Guilak
,
F.
,
2004
, “
The Role of the Cytoskeleton in the Viscoelastic Properties of Human Articular Chondrocytes
,”
J. Orthop. Res.
,
22
(
1
), pp.
131
139
.10.1016/S0736-0266(03)0150-5
64.
Trickey
,
W. R.
,
Lee
,
G. M.
, and
Guilak
,
F.
,
2000
, “
Viscoelastic Properties of Chondrocytes from Normal and Osteoarthritic Human Cartilage
,”
J. Orthop. Res.
,
18
(
6
), pp.
891
898
.10.1002/jor.1100180607
65.
Guilak
,
F.
,
Jones
,
W. R.
,
Ting-Beall
,
H. P.
, and
Lee
,
G. M.
,
1999
, “
The Deformation Behavior and Mechanical Properties of Chondrocytes in Articular Cartilage
,”
Osteoarthritis Cartilage
,
7
(
1
), pp.
59
70
.10.1053/joca.1998.0162
66.
Haga
,
J. H.
,
Beaudoin
,
A. J.
,
White
,
J. G.
, and
Strony
,
J.
,
1998
, “
Quantification of the Passive Mechanical Properties of the Resting Platelet
,”
Ann. Biomed. Eng.
,
26
(
2
), pp.
268
277
.10.1114/1.118
67.
White
,
J. G.
,
Burris
,
S. M.
,
Tukey
,
D.
,
Smith
,
C.
, II
, and
Clawson
,
C. C.
,
1984
, “
Micropipette Aspiration of Human Platelets: Influence of Microtubules and Actin Filaments on Deformability
,”
Blood
,
64
(
1
), pp.
210
214
.
68.
McGrath
,
B.
,
Mealing
,
G.
, and
Labrosse
,
M. R.
,
2011
, “
A Mechanobiological Investigation of Platelets
,”
Biomech. Model. Mechanobiol.
,
10
(
4
), pp.
473
484
.10.1007/s10237-010-0248-0
69.
Burris
,
S. M.
,
Smith
,
C. M.
, II
,
Tukey
,
D. T.
,
Clawson
,
C. C.
, and
White
,
J. G.
,
1986
, “
Micropipette Aspiration of Human Platelets after Exposure to Aggregating Agents
,”
Arteriosclerosis
,
6
(
3
), pp.
321
325
.10.1161/01.ATV.6.3.321
70.
Sato
,
M.
,
Theret
,
D. P.
,
Wheeler
,
L. T.
,
Ohshima
,
N.
, and
Nerem
,
R. M.
,
1990
, “
Application of the Micropipette Technique to the Measurement of Cultured Porcine Aortic Endothelial Cell Viscoelastic Properties
,”
ASME J. Biomech. Eng.
,
112
(
3
), pp.
263
268
.10.1115/1.2891183
71.
Sato
,
M.
,
Ohshima
,
N.
, and
Nerem
,
R. M.
,
1996
, “
Viscoelastic Properties of Cultured Porcine Aortic Endothelial Cells Exposed to Shear Stress
,”
J. Biomech.
,
29
(
4
), pp.
461
467
.10.1016/0021-9290(95)00069-0
72.
Dahl
,
K. N.
,
Scaffidi
,
P.
,
Islam
,
M. F.
,
Yodh
,
A. G.
,
Wilson
,
K. L.
, and
Misteli
,
T.
,
2006
, “
Distinct Structural and Mechanical Properties of the Nuclear Lamina in Hutchinson-Gilford Progeria Syndrome
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
27
), pp.
10271
10276
.10.1073/pnas.0601058103
73.
Vaziri
,
A.
, and
Mofrad
,
M. R.
,
2007
, “
Mechanics and Deformation of the Nucleus in Micropipette Aspiration Experiment
,”
J. Biomech.
,
40
(
9
), pp.
2053
2062
.10.1016/j.jbiomech.2006.09.023
74.
Zwerger
,
M.
,
Ho
,
C. Y.
, and
Lammerding
,
J.
,
2011
, “
Nuclear Mechanics in Disease
,”
Ann. Rev. Biomed. Eng.
,
13
, pp.
397
428
.10.1146/annurev-bioeng-071910-124736
75.
Pajerowski
,
J. D.
,
Dahl
,
K. N.
,
Zhong
,
F. L.
,
Sammak
,
P. J.
, and
Discher
,
D. E.
,
2007
, “
Physical Plasticity of the Nucleus in Stem Cell Differentiation
,”
Proc. Natl. Acad. Sci. U.S.A.
,
104
(
40
), pp.
15619
15624
.10.1073/pnas.0702576104
76.
Chu
,
Y. S.
,
Eder
,
O.
,
Thomas
,
W. A.
,
Simcha
,
I.
,
Pincet
,
F.
,
Ben-Ze'ev
,
A.
,
Perez
,
E.
,
Thiery
,
J. P.
, and
Dufour
,
S.
,
2006
, “
Prototypical Type I E-Cadherin and Type Ii Cadherin-7 Mediate Very Distinct Adhesiveness through Their Extracellular Domains
,”
J. Biol. Chem.
,
281
(
5
), pp.
2901
2910
.10.1074/jbc.M506185200
77.
Chu
,
Y. S.
,
Thomas
,
W. A.
,
Eder
,
O.
,
Pincet
,
F.
,
Perez
,
E.
,
Thiery
,
J. P.
, and
Dufour
,
S.
,
2004
, “
Force Measurements in E-Cadherin-Mediated Cell Doublets Reveal Rapid Adhesion Strengthened by Actin Cytoskeleton Remodeling through RAC and CDC42
,”
J. Cell Biol.
,
167
(
6
), pp.
118
194
.10.1083/jcb.200403043
78.
Pelling
,
A. E.
, and
Horton
,
M. A.
,
2008
, “
An Historical Perspective on Cell Mechanics
,”
Pflugers Arch.
,
456
(
1
), pp.
3
12
.10.1007/s00424-007-0405-1
79.
Shin
,
D.
, and
Athanasiou
,
K.
,
1999
, “
Cytoindentation for Obtaining Cell Biomechanical Properties
,”
J. Orthop. Res.
,
17
(
6
), pp.
880
890
.10.1002/jor.1100170613
80.
Daily
,
B.
,
Elson
,
E. L.
, and
Zahalak
,
G. I.
,
1984
, “
Cell Poking. Determination of the Elastic Area Compressibility Modulus of the Erythrocyte Membrane
,”
Biophys. J.
,
45
(
4
), pp.
671
682
.10.1016/S0006-3495(84)84209-5
81.
McConnaughey
,
W. B.
, and
Petersen
,
N. O.
,
1980
, “
Cell Poker: An Apparatus for Stress-Strain Measurements on Living Cells
,”
Rev. Sci. Instrum.
,
51
(
5
), pp.
575
580
.10.1063/1.1136256
82.
Darling
,
E. M.
,
Topel
,
M.
,
Zauscher
,
S.
,
Vail
,
T. P.
, and
Guilak
,
F.
,
2008
, “
Viscoelastic Properties of Human Mesenchymally-Derived Stem Cells and Primary Osteoblasts, Chondrocytes, and Adipocytes
,”
J. Biomech.
,
41
(
2
), pp.
454
464
.10.1016/j.jbiomech.2007.06.019
83.
Darling
,
E. M.
,
Zauscher
,
S.
,
Block
,
J. A.
, and
Guilak
,
F.
,
2007
, “
A Thin-Layer Model for Viscoelastic, Stress-Relaxation Testing of Cells Using Atomic Force Microscopy: Do Cell Properties Reflect Metastatic Potential?
,”
Biophys. J.
,
92
(
5
), pp.
1784
1791
.10.1529/biophysj.106.083097
84.
Coughlin
,
M. F.
,
Puig-De-Morales
,
M.
,
Bursac
,
P.
,
Mellema
,
M.
,
Millet
,
E.
, and
Fredberg
,
J. J.
,
2006
, “
Filamin-A and Rheological Properties of Cultured Melanoma Cells
,”
Biophys. J.
,
90
(
6
), pp.
2199
2205
.10.1529/biophysj.105.061267
85.
Jones
,
W. R.
,
Ting-Beall
,
H. P.
,
Lee
,
G. M.
,
Kelley
,
S. S.
,
Hochmuth
,
R. M.
, and
Guilak
,
F.
,
1999
, “
Alterations in the Young's Modulus and Volumetric Properties of Chondrocytes Isolated from Normal and Osteoarthritic Human Cartilage
,”
J. Biomech.
,
32
(
2
), pp.
119
127
.10.1016/S0021-9290(98)00166-3
86.
Darling
,
E. M.
,
Zauscher
,
S.
, and
Guilak
,
F.
,
2006
, “
Viscoelastic Properties of Zonal Articular Chondrocytes Measured by Atomic Force Microscopy
,”
Osteoarthritis Cartilage
,
14
(
6
), pp.
571
579
.10.1016/j.joca.2005.12.003
87.
Byfield
,
F. J.
,
Aranda-Espinoza
,
H.
,
Romanenko
,
V. G.
,
Rothblat
,
G. H.
, and
Levitan
,
I.
,
2004
, “
Cholesterol Depletion Increases Membrane Stiffness of Aortic Endothelial Cells
,”
Biophys. J.
,
87
(
5
), pp.
3336
3343
.10.1529/biophysj.104.040634
88.
Costa
,
K. D.
,
Sim
,
A. J.
, and
Yin
,
F. C.
,
2006
, “
Non-Hertzian Approach to Analyzing Mechanical Properties of Endothelial Cells Probed by Atomic Force Microscopy
,”
ASME J. Biomech. Eng.
,
128
(
2
), pp.
176
184
.10.1115/1.2165690
89.
Laurent
,
V. M.
,
Fodil
,
R.
,
Canadas
,
P.
,
Fereol
,
S.
,
Louis
,
B.
,
Planus
,
E.
, and
Isabey
,
D.
,
2003
, “
Partitioning of Cortical and Deep Cytoskeleton Responses from Transient Magnetic Bead Twisting
,”
Ann. Biomed. Eng.
,
31
(
10
), pp.
1263
1278
.10.1114/1.1616932
90.
Hoffman
,
B. D.
,
Massiera
,
G.
,
Van Citters
,
K. M.
, and
Crocker
,
J. C.
,
2006
, “
The Consensus Mechanics of Cultured Mammalian Cells
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
27
), pp.
10259
10264
.10.1073/pnas.0510348103
91.
Wu
,
H. W.
,
Kuhn
,
T.
, and
Moy
,
V. T.
,
1998
, “
Mechanical Properties of L929 Cells Measured by Atomic Force Microscopy: Effects of Anticytoskeletal Drugs and Membrane Crosslinking
,”
Scanning
,
20
(
5
), pp.
389
397
.10.1002/sca.1998.4950200504
92.
Mahaffy
,
R. E.
,
Park
,
S.
,
Gerde
,
E.
,
Kas
,
J.
, and
Shih
,
C. K.
,
2004
, “
Quantitative Analysis of the Viscoelastic Properties of Thin Regions of Fibroblasts Using Atomic Force Microscopy
,”
Biophys. J.
,
86
(
3
), pp.
1777
1793
.10.1016/S0006-3495(04)74245-9
93.
Mahaffy
,
R. E.
,
Shih
,
C. K.
,
Mackintosh
,
F. C.
, and
Kas
,
J.
,
2000
, “
Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells
,”
Phys. Rev. Lett.
,
85
(
4
), pp.
880
883
.10.1103/PhysRevLett.85.880
94.
Jaasma
,
M. J.
,
Jackson
,
W. M.
, and
Keaveny
,
T. M.
,
2006
, “
The Effects of Morphology, Confluency, and Phenotype on Whole-Cell Mechanical Behavior
,”
Ann. Biomed. Eng.
,
34
(
5
), pp.
759
768
.10.1007/s10439-005-9052-x
95.
Lee
,
J. S.
,
Panorchan
,
P.
,
Hale
,
C. M.
,
Khatau
,
S. B.
,
Kole
,
T. P.
,
Tseng
,
Y.
, and
Wirtz
,
D.
,
2006
, “
Ballistic Intracellular Nanorheology Reveals Rock-Hard Cytoplasmic Stiffening Response to Fluid Flow
,”
J. Cell Sci
,
119
, pp.
1760
1768
.10.1242/jcs.02899
96.
Fernandez
,
P.
,
Pullarkat
,
P. A.
, and
Ott
,
A.
,
2006
, “
A Master Relation Defines the Nonlinear Viscoelasticity of Single Fibroblasts
,”
Biophys. J.
,
90
(
10
), pp.
3796
3805
.10.1529/biophysj.105.072215
97.
Desprat
,
N.
,
Richert
,
A.
,
Simeon
,
J.
, and
Asnacios
,
A.
,
2005
, “
Creep Function of a Single Living Cell
,”
Biophys. J.
,
88
(
3
), pp.
2224
2233
.10.1529/biophysj.104.050278
98.
Nagayama
,
K.
,
Nagano
,
Y.
,
Sato
,
M.
, and
Matsumoto
,
T.
,
2006
, “
Effect of Actin Filament Distribution on Tensile Properties of Smooth Muscle Cells Obtained from Rat Thoracic Aortas
,”
J. Biomech.
,
39
(
2
), pp.
293
301
.10.1016/j.jbiomech.2004.11.019
99.
Lieber
,
S. C.
,
Aubry
,
N.
,
Pain
,
J.
,
Diaz
,
G.
,
Kim
,
S. J.
, and
Vatner
,
S. F.
,
2004
, “
Aging Increases Stiffness of Cardiac Myocytes Measured by Atomic Force Microscopy Nanoindentation
,”
Am. J. Physiol. Heart Circ. Physiol.
,
287
(
2
), pp.
H645
H651
.10.1152/ajpheart.00564.2003
100.
Domke
,
J.
,
Dannohl
,
S.
,
Parak
,
W. J.
,
Muller
,
O.
,
Aicher
,
W. K.
, and
Radmacher
,
M.
,
2000
, “
Substrate Dependent Differences in Morphology and Elasticity of Living Osteoblasts Investigated by Atomic Force Microscopy
,”
Colloids Surf., B
,
19
(
4
), pp.
367
379
.10.1016/S0927-7765(00)00145-4
101.
Charras
,
G. T.
, and
Horton
,
M. A.
,
2002
, “
Determination of Cellular Strains by Combined Atomic Force Microscopy and Finite Element Modeling
,”
Biophys. J.
,
83
(
2
), pp.
858
879
.10.1016/S0006-3495(02)75214-4
102.
Pan
,
W.
,
Petersen
,
E.
,
Cai
,
N.
,
Ma
,
G.
,
Run
Lee
,
J.
,
Feng
,
Z.
,
Liao
,
K.
, and
Leong
,
K.
,
2005
, “
Viscoelastic Properties of Human Mesenchymal Stem Cells
,”
Conf. Proc. IEEE Eng. Med. Biol. Soc.
,
5
, pp.
4854
4857
.
103.
Yourek
,
G.
,
Hussain
,
M. A.
, and
Mao
,
J. J.
,
2007
, “
Cytoskeletal Changes of Mesenchymal Stem Cells During Differentiation
,”
ASAIO J.
,
53
(
2
), pp.
219
228
.10.1097/MAT.0b013e31802deb2d
104.
Roca-Cusachs
,
P.
,
Almendros
,
I.
,
Sunyer
,
R.
,
Gavara
,
N.
,
Farre
,
R.
, and
Navajas
,
D.
,
2006
, “
Rheology of Passive and Adhesion-Activated Neutrophils Probed by Atomic Force Microscopy
,”
Biophys. J.
,
91
(
9
), pp.
3508
3518
.10.1529/biophysj.106.088831
105.
Petersen
,
N. O.
,
McConnaughey
,
W. B.
, and
Elson
,
E. L.
,
1982
, “
Dependence of Locally Measured Cellular Deformability on Position on the Cell, Temperature, and Cytochalasin B
,”
Proc. Natl. Acad. Sci. U.S.A.
,
79
(
17
), pp.
5327
5331
.10.1073/pnas.79.17.5327
106.
Koay
,
E. J.
,
Shieh
,
A. C.
, and
Athanasiou
,
K. A.
,
2003
, “
Creep Indentation of Single Cells
,”
ASME J. Biomech. Eng.
,
125
(
3
), pp.
334
341
.10.1115/1.1572517
107.
Zahalak
,
G. I.
,
McConnaughey
,
W. B.
, and
Elson
,
E. L.
,
1990
, “
Determination of Cellular Mechanical Properties by Cell Poking, With an Application to Leukocytes
,”
ASME J. Biomech. Eng.
,
112
(
3
), pp.
283
294
.10.1115/1.2891186
108.
Riveline
,
D.
,
Zamir
,
E.
,
Balaban
,
N. Q.
,
Schwarz
,
U. S.
,
Ishizaki
,
T.
,
Narumiya
,
S.
,
Kam
,
Z.
,
Geiger
,
B.
, and
Bershadsky
,
A. D.
,
2001
, “
Focal Contacts as Mechanosensors: Externally Applied Local Mechanical Force Induces Growth of Focal Contacts by an Mdia1-Dependent and Rock-Independent Mechanism
,”
J. Cell Biol.
,
153
(
6
), pp.
1175
1186
.10.1083/jcb.153.6.1175
109.
Delanoe-Ayari
,
H.
,
Al Kurdi
,
R.
,
Vallade
,
M.
,
Gulino-Debrac
,
D.
, and
Riveline
,
D.
,
2004
, “
Membrane and Acto-Myosin Tension Promote Clustering of Adhesion Proteins
,”
Proc. Natl. Acad. Sci. U.S.A.
,
101
(
8
), pp.
2229
2234
.10.1073/pnas.0304297101
110.
Maniotis
,
A. J.
,
Chen
,
C. S.
, and
Ingber
,
D. E.
,
1997
, “
Demonstration of Mechanical Connections between Integrins, Cytoskeletal Filaments, and Nucleoplasm That Stabilize Nuclear Structure
,”
Proc. Natl. Acad. Sci. U.S.A.
,
94
(
3
), pp.
849
854
.10.1073/pnas.94.3.849
111.
Hayakawa
,
K.
,
Tatsumi
,
H.
, and
Sokabe
,
M.
,
2008
, “
Actin Stress Fibers Transmit and Focus Force to Activate Mechanosensitive Channels
,”
J. Cell Sci.
,
121
, pp.
496
503
.10.1242/jcs.022053
112.
Lamoureux
,
P.
,
Zheng
,
J.
,
Buxbaum
,
R. E.
, and
Heidemann
,
S. R.
,
1992
, “
A Cytomechanical Investigation of Neurite Growth on Different Culture Surfaces
,”
J. Cell Biol.
,
118
(
3
), pp.
655
661
.10.1083/jcb.118.3.655
113.
Lamoureux
,
P.
,
Ruthel
,
G.
,
Buxbaum
,
R. E.
, and
Heidemann
,
S. R.
,
2002
, “
Mechanical Tension Can Specify Axonal Fate in Hippocampal Neurons
,”
J. Cell Biol.
,
159
(
3
), pp.
499
508
.10.1083/jcb.200207174
114.
Ofek
,
G.
,
Dowling
,
E. P.
,
Raphael
,
R. M.
,
McGarry
,
J. P.
, and
Athanasiou
,
K. A.
,
2010
, “
Biomechanics of Single Chondrocytes Under Direct Shear
,”
Biomech. Model. Mechanobiol.
,
9
(
2
), pp.
153
162
.10.1007/s10237-009-0166-1
115.
Krayer
,
J.
,
Tatic-Lucic
,
S.
, and
Neti
,
S.
,
2006
, “
Micro-Arheometer: High Throughput System for Measuring of Viscoelastic Properties of Single Biological Cells
,”
Sens. Actuators B
,
118
(
1–2
), pp.
20
27
.10.1016/j.snb.2006.04.080
116.
Kuznetsova
,
T. G.
,
Starodubtseva
,
M. N.
,
Yegorenkov
,
N. I.
,
Chizhik
,
S. A.
, and
Zhdanov
,
R. I.
,
2007
, “
Atomic Force Microscopy Probing of Cell Elasticity
,”
Micron
,
38
(
8
), pp.
824
833
.10.1016/j.micron.2007.06.011
117.
Binnig
,
G.
,
Quate
,
C. F.
, and
Gerber
,
C.
,
1986
, “
Atomic Force Microscope
,”
Phys. Rev. Lett.
,
56
(
9
), pp.
930
933
.10.1103/PhysRevLett.56.930
118.
Silva
,
L. P.
,
2005
, “
Imaging Proteins with Atomic Force Microscopy: An Overview
,”
Curr. Protein Pept. Sci.
,
6
(
4
), pp.
387
395
.10.2174/1389203054546389
119.
Muller
,
D. J.
,
2008
, “
AFM: A Nanotool in Membrane Biology
,”
Biochemistry
,
47
(
31
), pp.
7986
7998
.10.1021/bi800753x
120.
Engel
,
A.
, and
Gaub
,
H. E.
,
2008
, “
Structure and Mechanics of Membrane Proteins
,”
Ann. Rev. Biochem.
,
77
, pp.
127
148
.10.1146/annurev.biochem.77.062706.154450
121.
Hansma
,
H. G.
,
Kasuya
,
K.
, and
Oroudjev
,
E.
,
2004
, “
Atomic Force Microscopy Imaging and Pulling of Nucleic Acids
,”
Curr. Opin. Struct. Biol.
,
14
(
3
), pp.
380
385
.10.1016/j.sbi.2004.05.005
122.
Hirano
,
Y.
,
Takahashi
,
H.
,
Kumeta
,
M.
,
Hizume
,
K.
,
Hirai
,
Y.
,
Otsuka
,
S.
,
Yoshimura
,
S. H.
, and
Takeyasu
,
K.
,
2008
, “
Nuclear Architecture and Chromatin Dynamics Revealed by Atomic Force Microscopy in Combination with Biochemistry and Cell Biology
,”
Pflugers Arch.
,
456
(
1
), pp.
139
153
.10.1007/s00424-007-0431-z
123.
Rotsch
,
C.
,
Jacobson
,
K.
, and
Radmacher
,
M.
,
1999
, “
Dimensional and Mechanical Dynamics of Active and Stable Edges in Motile Fibroblasts Investigated by Using Atomic Force Microscopy
,”
Proc. Natl. Acad. Sci. U.S.A.
,
96
(
3
), pp.
921
926
.10.1073/pnas.96.3.921
124.
Pesen
,
D.
, and
Hoh
,
J. H.
,
2005
, “
Micromechanical Architecture of the Endothelial Cell Cortex
,”
Biophys. J.
,
88
(
1
), pp.
670
679
.10.1529/biophysj.104.049965
125.
Hiratsuka
,
S.
,
Mizutani
,
Y.
,
Tsuchiya
,
M.
,
Kawahara
,
K.
,
Tokumoto
,
H.
, and
Okajima
,
T.
,
2009
, “
The Number Distribution of Complex Shear Modulus of Single Cells Measured by Atomic Force Microscopy
,”
Ultramicroscopy
,
109
(
8
), pp.
937
941
.10.1016/j.ultramic.2009.03.008
126.
Cross
,
S. E.
,
Jin
,
Y. S.
,
Rao
,
J.
, and
Gimzewski
,
J. K.
,
2007
, “
Nanomechanical Analysis of Cells from Cancer Patients
,”
Nat. Nanotechnol.
,
2
(
12
), pp.
780
783
.10.1038/nnano.2007.388
127.
Cross
,
S. E.
,
Jin
,
Y. S.
,
Lu
,
Q. Y.
,
Rao
,
J.
, and
Gimzewski
,
J. K.
,
2011
, “
Green Tea Extract Selectively Targets Nanomechanics of Live Metastatic Cancer Cells
,”
Nanotechnology
,
22
(
21
), p.
215101
.10.1088/0957-4484/22/21/215101
128.
Cross
,
S. E.
,
Jin
,
Y. S.
,
Tondre
,
J.
,
Wong
,
R.
,
Rao
,
J.
, and
Gimzewski
,
J. K.
,
2008
, “
AFM-Based Analysis of Human Metastatic Cancer Cells
,”
Nanotechnology
,
19
(
38
), p.
384003
.10.1088/0957-4484/19/38/384003
129.
Lekka
,
M.
,
Laidler
,
P.
,
Gil
,
D.
,
Lekki
,
J.
,
Stachura
,
Z.
, and
Hrynkiewicz
,
A. Z.
,
1999
, “
Elasticity of Normal and Cancerous Human Bladder Cells Studied by Scanning Force Microscopy
,”
Eur. Biophys. J.
,
28
(
4
), pp.
312
316
.10.1007/s002490050213
130.
Maloney
,
J. M.
,
Nikova
,
D.
,
Lautenschlager
,
F.
,
Clarke
,
E.
,
Langer
,
R.
,
Guck
,
J.
, and
Van Vliet
,
K. J.
,
2010
, “
Mesenchymal Stem Cell Mechanics from the Attached to the Suspended State
,”
Biophys. J.
,
99
(
8
), pp.
2479
2487
.10.1016/j.bpj.2010.08.052
131.
Solon
,
J.
,
Levental
,
I.
,
Sengupta
,
K.
,
Georges
,
P. C.
, and
Janmey
,
P. A.
,
2007
, “
Fibroblast Adaptation and Stiffness Matching to Soft Elastic Substrates
,”
Biophys. J.
,
93
(
12
), pp.
4453
4461
.10.1529/biophysj.106.101386
132.
Rotsch
,
C.
, and
Radmacher
,
M.
,
2000
, “
Drug-Induced Changes of Cytoskeletal Structure and Mechanics in Fibroblasts: An Atomic Force Microscopy Study
,”
Biophys. J.
,
78
(
1
), pp.
520
535
.10.1016/S0006-3495(00)76614-8
133.
Rotsch
,
C.
,
Braet
,
F.
,
Wisse
,
E.
, and
Radmacher
,
M.
,
1997
, “
AFM Imaging and Elasticity Measurements on Living Rat Liver Macrophages
,”
Cell Biol. Int.
,
21
(
11
), pp.
685
696
.10.1006/cbir.1997.0213
134.
Hofmann
,
U. G.
,
Rotsch
,
C.
,
Parak
,
W. J.
, and
Radmacher
,
M.
,
1997
, “
Investigating the Cytoskeleton of Chicken Cardiocytes with the Atomic Force Microscope
,”
J. Struct. Biol.
,
119
(
2
), pp.
84
91
.10.1006/jsbi.1997.3868
135.
Takai
,
E.
,
Costa
,
K. D.
,
Shaheen
,
A.
,
Hung
,
C. T.
, and
Guo
,
X. E.
,
2005
, “
Osteoblast Elastic Modulus Measured by Atomic Force Microscopy Is Substrate Dependent
,”
Ann. Biomed. Eng.
,
33
(
7
), pp.
963
971
.10.1007/s10439-005-3555-3
136.
Sen
,
S.
, and
Kumar
,
S.
,
2009
, “
Cell–Matrix De-Adhesion Dynamics Reflect Contractile Mechanics
,”
Cell Mol. Bioeng.
,
2
(
2
), pp.
218
230
.10.1007/s12195-009-0057-7
137.
Radmacher
,
M.
,
Fritz
,
M.
,
Kacher
,
C. M.
,
Cleveland
,
J. P.
, and
Hansma
,
P. K.
,
1996
, “
Measuring the Viscoelastic Properties of Human Platelets with the Atomic Force Microscope
,”
Biophys. J.
,
70
(
1
), pp.
556
567
.10.1016/S0006-3495(96)79602-9
138.
Radmacher
,
M.
,
Tillmann
,
R. W.
, and
Gaub
,
H. E.
,
1993
, “
Imaging Viscoelasticity by Force Modulation With the Atomic Force Microscope
,”
Biophys. J.
,
64
(
3
), pp.
735
742
.10.1016/S0006-3495(93)81433-4
139.
Hoh
,
J. H.
, and
Schoenenberger
,
C. A.
,
1994
, “
Surface Morphology and Mechanical Properties of Mdck Monolayers by Atomic Force Microscopy
,”
J. Cell Sci.
,
107
, pp.
1105
1114
.
140.
Mathur
,
A. B.
,
Collinsworth
,
A. M.
,
Reichert
,
W. M.
,
Kraus
,
W. E.
, and
Truskey
,
G. A.
,
2001
, “
Endothelial, Cardiac Muscle and Skeletal Muscle Exhibit Different Viscous and Elastic Properties as Determined by Atomic Force Microscopy
,”
J. Biomech.
,
34
(
12
), pp.
1545
1553
.10.1016/S0021-9290(01)00149-X
141.
Collinsworth
,
A. M.
,
Zhang
,
S.
,
Kraus
,
W. E.
, and
Truskey
,
G. A.
,
2002
, “
Apparent Elastic Modulus and Hysteresis of Skeletal Muscle Cells Throughout Differentiation
,”
Am. J. Physiol. Cell Physiol.
,
283
(
4
), pp.
C1219
C1227
.10.1152/ajpcell.00502.2001
142.
Engler
,
A. J.
,
Griffin
,
M. A.
,
Sen
,
S.
,
Bonnemann
,
C. G.
,
Sweeney
,
H. L.
, and
Discher
,
D. E.
,
2004
, “
Myotubes Differentiate Optimally on Substrates With Tissue-Like Stiffness: Pathological Implications for Soft or Stiff Microenvironments
,”
J. Cell Biol.
,
166
(
6
), pp.
877
887
.10.1083/jcb.200405004
143.
Lam
,
W. A.
,
Rosenbluth
,
M. J.
, and
Fletcher
,
D. A.
,
2007
, “
Chemotherapy Exposure Increases Leukemia Cell Stiffness
,”
Blood
,
109
(
8
), pp.
3505
3508
.10.1182/blood-2006-08-043570
144.
Rosenbluth
,
M. J.
,
Lam
,
W. A.
, and
Fletcher
,
D. A.
,
2006
, “
Force Microscopy of Nonadherent Cells: A Comparison of Leukemia Cell Deformability
,”
Biophys. J.
,
90
(
8
), pp.
2994
3003
.10.1529/biophysj.105.067496
145.
Charras
,
G. T.
,
Lehenkari
,
P. P.
, and
Horton
,
M. A.
,
2001
, “
Atomic Force Microscopy Can Be Used to Mechanically Stimulate Osteoblasts and Evaluate Cellular Strain Distributions
,”
Ultramicroscopy
,
86
(
1–2
), pp.
85
95
.10.1016/S0304-3991(00)00076-0
146.
Charras
,
G. T.
, and
Horton
,
M. A.
,
2002
, “
Single Cell Mechanotransduction and Its Modulation Analyzed by Atomic Force Microscope Indentation
,”
Biophys. J.
,
82
(
6
), pp.
2970
2981
.10.1016/S0006-3495(02)75638-5
147.
Tee
,
S. Y.
,
Fu
,
J.
,
Chen
,
C. S.
, and
Janmey
,
P. A.
,
2011
, “
Cell Shape and Substrate Rigidity Both Regulate Cell Stiffness
,”
Biophys. J.
,
100
(
5
), pp.
L25
L27
.10.1016/j.bpj.2010.12.3744
148.
Webster
,
K. D.
,
Crow
,
A.
, and
Fletcher
,
D. A.
,
2011
, “
An AFM-Based Stiffness Clamp for Dynamic Control of Rigidity
,”
PLoS One
,
6
(
3
), p.
e17807
.10.1371/journal.pone.0017807
149.
Chaudhuri
,
O.
,
Parekh
,
S. H.
,
Lam
,
W. A.
, and
Fletcher
,
D. A.
,
2009
, “
Combined Atomic Force Microscopy and Side-View Optical Imaging for Mechanical Studies of Cells
,”
Nat. Methods
,
6
(
5
), pp.
383
387
.10.1038/nmeth.1320
150.
Lim
,
C. T.
,
Zhou
,
E. H.
,
Li
,
A.
,
Vedula
,
S. R. K.
, and
Fu
,
H. X.
,
2006
, “
Experimental Techniques for Single Cell and Single Molecule Biomechanics
,”
Mater. Sci. Eng., C
,
26
(
8
), pp.
1278
1288
.10.1016/j.msec.2005.08.022
151.
Taubenberger
,
A.
,
Cisneros
,
D. A.
,
Friedrichs
,
J.
,
Puech
,
P. H.
,
Muller
,
D. J.
, and
Franz
,
C. M.
,
2007
, “
Revealing Early Steps of Alpha2beta1 Integrin-Mediated Adhesion to Collagen Type I by Using Single-Cell Force Spectroscopy
,”
Mol. Biol. Cell
,
18
(
5
), pp.
1634
1644
.10.1091/mbc.E06-09-0777
152.
Hong
,
Z.
,
Sun
,
Z.
,
Li
,
Z.
,
Mesquitta
,
W. T.
,
Trzeciakowski
,
J. P.
, and
Meininger
,
G. A.
,
2012
, “
Coordination of Fibronectin Adhesion with Contraction and Relaxation in Microvascular Smooth Muscle
,”
Cardiovasc. Res.
,
96
(
1
), pp.
73
80
.10.1093/cvr/cvs239
153.
Puech
,
P. H.
,
Poole
,
K.
,
Knebel
,
D.
, and
Muller
,
D. J.
,
2006
, “
A New Technical Approach to Quantify Cell–Cell Adhesion Forces by Afm
,”
Ultramicroscopy
,
106
(
8–9
), pp.
637
644
.10.1016/j.ultramic.2005.08.003
154.
Panorchan
,
P.
,
Thompson
,
M. S.
,
Davis
,
K. J.
,
Tseng
,
Y.
,
Konstantopoulos
,
K.
, and
Wirtz
,
D.
,
2006
, “
Single-Molecule Analysis of Cadherin-Mediated Cell–Cell Adhesion
,”
J. Cell Sci.
,
119
, pp.
66
74
.10.1242/jcs.02719
155.
Prass
,
M.
,
Jacobson
,
K.
,
Mogilner
,
A.
, and
Radmacher
,
M.
,
2006
, “
Direct Measurement of the Lamellipodial Protrusive Force in a Migrating Cell
,”
J. Cell Biol.
,
174
(
6
), pp.
767
772
.10.1083/jcb.200601159
156.
Laurent
,
V. M.
,
Kasas
,
S.
,
Yersin
,
A.
,
Schaffer
,
T. E.
,
Catsicas
,
S.
,
Dietler
,
G.
,
Verkhovsky
,
A. B.
, and
Meister
,
J. J.
,
2005
, “
Gradient of Rigidity in the Lamellipodia of Migrating Cells Revealed by Atomic Force Microscopy
,”
Biophys. J.
,
89
(
1
), pp.
667
675
.10.1529/biophysj.104.052316
157.
Rotsch
,
C.
,
Jacobson
,
K.
,
Condeelis
,
J.
, and
Radmacher
,
M.
,
2001
, “
EGF-Stimulated Lamellipod Extension in Adenocarcinoma Cells
,”
Ultramicroscopy
,
86
(
1–2
), pp.
97
106
.10.1016/S0304-3991(00)00102-9
158.
Jeong
,
K. H.
,
Lee
,
T. W.
,
Ihm
,
C. G.
,
Moon
,
J. Y.
,
Lee
,
G. J.
,
Park
,
H. K.
, and
Lee
,
S. H.
,
2012
, “
Real-Time Monitoring of the Effects of Telmisartan on Angiotensin Ii-Induced Mechanical Changes in Live Mesangial Cells Using Atomic Force Microscopy
,”
Kidney Blood Pressure Res.
,
35
(
6
), pp.
573
582
.10.1159/000339175
159.
Liu
,
J.
,
Sun
,
N.
,
Bruce
,
M. A.
,
Wu
,
J. C.
, and
Butte
,
M. J.
,
2012
, “
Atomic Force Mechanobiology of Pluripotent Stem Cell-Derived Cardiomyocytes
,”
PLoS One
,
7
(
5
), p.
e37559
.10.1371/journal.pone.0037559
160.
Upadhye
,
K. V.
,
Candiello
,
J. E.
,
Davidson
,
L. A.
, and
Lin
,
H.
,
2011
, “
Whole-Cell Electrical Activity under Direct Mechanical Stimulus by Afm Cantilever Using Planar Patch Clamp Chip Approach
,”
Cell Mol. Bioeng.
,
4
(
2
), pp.
270
280
.10.1007/s12195-011-0160-4
161.
Addae-Mensah
,
K. A.
, and
Wikswo
,
J. P.
,
2008
, “
Measurement Techniques for Cellular Biomechanics In Vitro
,”
Exp. Biol. Med.
,
233
(
7
), pp.
792
809
.10.3181/0710-MR-278
162.
Ashkin
,
A.
,
1970
, “
Acceleration and Trapping of Particles by Radiation Pressure
,”
Phys. Rev. Lett.
,
24
(
4
), pp.
156
159
.10.1103/PhysRevLett.24.156
163.
Ashkin
,
A.
,
1980
, “
Applications of Laser Radiation Pressure
,”
Science
,
210
(
4474
), pp.
1081
1088
.10.1126/science.210.4474.1081
164.
Ashkin
,
A.
, and
Dziedzic
,
J. M.
,
1987
, “
Optical Trapping and Manipulation of Viruses and Bacteria
,”
Science
,
235
(
4795
), pp.
1517
1520
.10.1126/science.3547653
165.
Ashkin
,
A.
,
Dziedzic
,
J. M.
, and
Yamane
,
T.
,
1987
, “
Optical Trapping and Manipulation of Single Cells Using Infrared Laser Beams
,”
Nature
,
330
(
6150
), pp.
769
771
.10.1038/330769a0
166.
Block
,
S. M.
,
1992
, “
Making Light Work with Optical Tweezers
,”
Nature
,
360
(
6403
), pp.
493
495
.10.1038/360493a0
167.
Svoboda
,
K.
, and
Block
,
S. M.
,
1994
, “
Biological Applications of Optical Forces
,”
Ann. Rev. Biophys. Biomol. Struct.
,
23
, pp.
247
285
.10.1146/annurev.bb.23.060194.001335
168.
Neuman
,
K. C.
, and
Block
,
S. M.
,
2004
, “
Optical Trapping
,”
Rev. Sci. Instrum.
,
75
(
9
), pp.
2787
2809
.10.1063/1.1785844
169.
Fazal
,
F. M.
, and
Block
,
S. M.
,
2011
, “
Optical Tweezers Study Life Under Tension
,”
Nat. Photonics
,
5
, pp.
318
321
.10.1038/nphoton.2011.100
170.
Neuman
,
K. C.
,
Lionnet
,
T.
, and
Allemand
,
J. F.
,
2007
, “
Single-Molecule Micromanipulation Techniques
,”
Ann. Rev. Mater. Res.
,
37
, pp.
33
67
.10.1146/annurev.matsci.37.052506.084336
171.
Zhang
,
H.
, and
Liu
,
K. K.
,
2008
, “
Optical Tweezers for Single Cells
,”
J. R. Soc. Interface
,
5
(
24
), pp.
671
690
.10.1098/rsif.2008.0052
172.
Henon
,
S.
,
Lenormand
,
G.
,
Richert
,
A.
, and
Gallet
,
F.
,
1999
, “
A New Determination of the Shear Modulus of the Human Erythrocyte Membrane Using Optical Tweezers
,”
Biophys. J.
,
76
(
2
), pp.
1145
1151
.10.1016/S0006-3495(99)77279-6
173.
Sleep
,
J.
,
Wilson
,
D.
,
Parker
,
K.
,
Winlove
,
C. P.
,
Simmons
,
R.
, and
Gratzer
,
W.
,
1999
, “
Elastic Properties of the Red Blood Cell Membrane Measured Using Optical Tweezers: Relation to Haemolytic Disorders
,”
Biophys. J.
,
76
(
1
), pp.
3085
3095
.10.1016/S0006-3495(99)77139-0
174.
Lenormand
,
G.
,
Henon
,
S.
,
Richert
,
A.
,
Simeon
,
J.
, and
Gallet
,
F.
,
2001
, “
Direct Measurement of the Area Expansion and Shear Moduli of the Human Red Blood Cell Membrane Skeleton
,”
Biophys. J.
,
81
(
1
), pp.
43
56
.10.1016/S0006-3495(01)75678-0
175.
Dao
,
M.
,
Lim
,
C. T.
, and
Suresh
,
S.
,
2003
, “
Mechanics of the Human Red Blood Cell Deformed by Optical Tweezers
,”
J. Mech. Phys. Solids
,
51
(
11–12
), pp.
2259
2280
.10.1016/j.jmps.2003.09.019
176.
Lim
,
C. T.
,
Dao
,
M.
,
Suresh
,
S.
,
Sow
,
C. H.
, and
Chew
,
K. T.
,
2004
, “
Large Deformation of Living Cells Using Laser Traps
,”
Acta Mater.
,
52
(
7
), pp.
1837
1845
.10.1016/j.actamat.2003.12.028
177.
Suresh
,
S.
,
Spatz
,
J.
,
Mills
,
J. P.
,
Micoulet
,
A.
,
Dao
,
M.
,
Lim
,
C. T.
,
Beil
,
M.
, and
Seufferlein
,
T.
,
2005
, “
Connections Between Single-Cell Biomechanics and Human Disease States: Gastrointestinal Cancer and Malaria
,”
Acta Biomater.
,
1
(
1
), pp.
15
30
.10.1016/j.actbio.2004.09.001
178.
Gu
,
M.
,
Kuriakose
,
S.
, and
Gan
,
X. S.
,
2007
, “
A Single Beam near-Field Laser Trap for Optical Stretching, Folding and Rotation of Erythrocytes
,”
Optics Express
,
15
(
3
), pp.
1369
1375
.10.1364/OE.15.001369
179.
Park
,
S.
,
Koch
,
D.
,
Cardenas
,
R.
,
Kas
,
J.
, and
Shih
,
C. K.
,
2005
, “
Cell Motility and Local Viscoelasticity of Fibroblasts
,”
Biophys. J.
,
89
(
6
), pp.
4330
4342
.10.1529/biophysj.104.053462
180.
Ananthakrishnan
,
R.
,
Guck
,
J.
,
Wottawah
,
F.
,
Schinkinger
,
S.
,
Lincoln
,
B.
,
Romeyke
,
M.
,
Moon
,
T.
, and
Kas
,
J.
,
2006
, “
Quantifying the Contribution of Actin Networks to the Elastic Strength of Fibroblasts
,”
J. Theor. Biol.
,
242
(
2
), pp.
502
516
.10.1016/j.jtbi.2006.03.021
181.
Guck
,
J.
,
Schinkinger
,
S.
,
Lincoln
,
B.
,
Wottawah
,
F.
,
Ebert
,
S.
,
Romeyke
,
M.
,
Lenz
,
D.
,
Erickson
,
H. M.
,
Ananthakrishnan
,
R.
,
Mitchell
,
D.
,
Kas
,
J.
,
Ulvick
,
S.
, and
Bilby
,
C.
,
2005
, “
Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence
,”
Biophys. J.
,
88
(
5
), pp.
3689
3698
.10.1529/biophysj.104.045476
182.
Huang
,
W.
,
Anvari
,
B.
,
Torres
,
J. H.
,
Lebaron
,
R. G.
, and
Athanasiou
,
K. A.
,
2003
, “
Temporal Effects of Cell Adhesion on Mechanical Characteristics of the Single Chondrocyte
,”
J. Orthop. Res.
,
21
(
1
), pp.
88
95
.10.1016/S0736-0266(02)00130-4
183.
Curtis
,
J. E.
, and
Spatz
,
J. P.
,
2004
, “
Getting a Grip: Hyaluronan-Mediated Cellular Adhesion
,”
Proceedings of the SPIE
, Vol.
5514
,
Denver, CO
, pp.
455
466
.
184.
Walker
,
L. M.
,
Holm
,
A.
,
Cooling
,
L.
,
Maxwell
,
L.
,
Oberg
,
A.
,
Sundqvist
,
T.
, and
El
Haj
,
A. J.
,
1999
, “
Mechanical Manipulation of Bone and Cartilage Cells with ‘Optical Tweezers
',”
FEBS Lett.
,
459
(
1
), pp.
39
42
.10.1016/S0014-5793(99)01169-2
185.
Titushkin
,
I.
, and
Cho
,
M.
,
2006
, “
Distinct Membrane Mechanical Properties of Human Mesenchymal Stem Cells Determined Using Laser Optical Tweezers
,”
Biophys. J.
,
90
(
7
), pp.
2582
2591
.10.1529/biophysj.105.073775
186.
Bustamante
,
C.
,
Bryant
,
Z.
, and
Smith
,
S. B.
,
2003
, “
Ten Years of Tension: Single-Molecule DNA Mechanics
,”
Nature
,
421
(
6921
), pp.
423
427
.10.1038/nature01405
187.
Allemand
,
J. F.
,
Bensimon
,
D.
, and
Croquette
,
V.
,
2003
, “
Stretching DNA and RNA to Probe Their Interactions with Proteins
,”
Curr. Opin. Struct. Biol.
,
13
(
3
), pp.
266
274
.10.1016/S0959-440X(03)00067-8
188.
Block
,
S. M.
,
Goldstein
,
L. S.
, and
Schnapp
,
B. J.
,
1990
, “
Bead Movement by Single Kinesin Molecules Studied With Optical Tweezers
,”
Nature
,
348
(
6299
), pp.
348
352
.10.1038/348348a0
189.
Svoboda
,
K.
, and
Block
,
S. M.
,
1994
, “
Force and Velocity Measured for Single Kinesin Molecules
,”
Cell
,
77
(
5
), pp.
773
784
.10.1016/0092-8674(94)90060-4
190.
Svoboda
,
K.
,
Schmidt
,
C. F.
,
Schnapp
,
B. J.
, and
Block
,
S. M.
,
1993
, “
Direct Observation of Kinesin Stepping by Optical Trapping Interferometry
,”
Nature
,
365
(
6448
), pp.
721
727
.10.1038/365721a0
191.
Asbury
,
C. L.
,
Fehr
,
A. N.
, and
Block
,
S. M.
,
2003
, “
Kinesin Moves by an Asymmetric Hand-over-Hand Mechanism
,”
Science
,
302
(
5653
), pp.
2130
2134
.10.1126/science.1092985
192.
Mallik
,
R.
,
Carter
,
B. C.
,
Lex
,
S. A.
,
King
,
S. J.
, and
Gross
,
S. P.
,
2004
, “
Cytoplasmic Dynein Functions as a Gear in Response to Load
,”
Nature
,
427
(
6975
), pp.
649
652
.10.1038/nature02293
193.
Knight
,
A. E.
,
Veigel
,
C.
,
Chambers
,
C.
, and
Molloy
,
J. E.
,
2001
, “
Analysis of Single-Molecule Mechanical Recordings: Application to Acto-Myosin Interactions
,”
Prog. Biophys. Mol. Biol.
,
77
(
1
), pp.
45
72
.10.1016/S0079-6107(01)00010-4
194.
Block
,
S. M.
,
Asbury
,
C. L.
,
Shaevitz
,
J. W.
, and
Lang
,
M. J.
,
2003
, “
Probing the Kinesin Reaction Cycle With a 2D Optical Force Clamp
,”
Proc. Natl. Acad. Sci. U.S.A.
,
100
(
5
), pp.
2351
2356
.10.1073/pnas.0436709100
195.
Mehta
,
A. D.
,
Rock
,
R. S.
,
Rief
,
M.
,
Spudich
,
J. A.
,
Mooseker
,
M. S.
, and
Cheney
,
R. E.
,
1999
, “
Myosin-V Is a Processive Actin-Based Motor
,”
Nature
,
400
(
6744
), pp.
590
593
.10.1038/23072
196.
Abbondanzieri
,
E. A.
,
Greenleaf
,
W. J.
,
Shaevitz
,
J. W.
,
Landick
,
R.
, and
Block
,
S. M.
,
2005
, “
Direct Observation of Base-Pair Stepping by Rna Polymerase
,”
Nature
,
438
(
7067
), pp.
460
465
.10.1038/nature04268
197.
Wang
,
M. D.
,
Schnitzer
,
M. J.
,
Yin
,
H.
,
Landick
,
R.
,
Gelles
,
J.
, and
Block
,
S. M.
,
1998
, “
Force and Velocity Measured for Single Molecules of Rna Polymerase
,”
Science
,
282
(
5390
), pp.
902
907
.10.1126/science.282.5390.902
198.
Herbert
,
K. M.
,
La Porta
,
A.
,
Wong
,
B. J.
,
Mooney
,
R. A.
,
Neuman
,
K. C.
,
Landick
,
R.
, and
Block
,
S. M.
,
2006
, “
Sequence-Resolved Detection of Pausing by Single Rna Polymerase Molecules
,”
Cell
,
125
(
6
), pp.
1083
1094
.10.1016/j.cell.2006.04.032
199.
Neuman
,
K. C.
,
Abbondanzieri
,
E. A.
,
Landick
,
R.
,
Gelles
,
J.
, and
Block
,
S. M.
,
2003
, “
Ubiquitous Transcriptional Pausing is Independent of RNA Polymerase Backtracking
,”
Cell
,
115
(
4
), pp.
437
447
.10.1016/S0092-8674(03)00845-6
200.
Shaevitz
,
J. W.
,
Abbondanzieri
,
E. A.
,
Landick
,
R.
, and
Block
,
S. M.
,
2003
, “
Backtracking by Single RNA Polymerase Molecules Observed at Near-Base-Pair Resolution
,”
Nature
,
426
(
6967
), pp.
684
687
.10.1038/nature02191
201.
Liphardt
,
J.
,
Onoa
,
B.
,
Smith
,
S. B.
,
Tinoco
,
I.
, Jr
.
, and
Bustamante
,
C.
,
2001
, “
Reversible Unfolding of Single RNA Molecules by Mechanical Force
,”
Science
,
292
(
5517
), pp.
733
737
.10.1126/science.1058498
202.
Kellermayer
,
M. S.
,
Smith
,
S. B.
,
Granzier
,
H. L.
, and
Bustamante
,
C.
,
1997
, “
Folding-Unfolding Transitions in Single Titin Molecules Characterized with Laser Tweezers
,”
Science
,
276
(
5315
), pp.
1112
1116
.10.1126/science.276.5315.1112
203.
Cecconi
,
C.
,
Shank
,
E. A.
,
Bustamante
,
C.
, and
Marqusee
,
S.
,
2005
, “
Direct Observation of the Three-State Folding of a Single Protein Molecule
,”
Science
,
309
(
5743
), pp.
2057
2060
.10.1126/science.1116702
204.
Thoumine
,
O.
,
Kocian
,
P.
,
Kottelat
,
A.
, and
Meister
,
J. J.
,
2000
, “
Short-Term Binding of Fibroblasts to Fibronectin: Optical Tweezers Experiments and Probabilistic Analysis
,”
Eur. Biophys. J.
,
29
(
6
), pp.
398
408
.10.1007/s002490000087
205.
Litvinov
,
R. I.
,
Bennett
,
J. S.
,
Weisel
,
J. W.
, and
Shuman
,
H.
,
2005
, “
Multi-Step Fibrinogen Binding to the Integrin αIibβ3 Detected Using Force Spectroscopy
,”
Biophys. J.
,
89
(
4
), pp.
2824
2834
.10.1529/biophysj.105.061887
206.
Fontes
,
A.
,
Barjas
Castro
,
M. L.
,
Brandao
,
M. M.
,
Fernandes
,
H. P.
,
Thomaz
,
A. A.
,
Huruta
,
R. R.
,
Pozzo
,
L. Y.
,
Barbosa
,
L. C.
,
Costa
,
F. F.
,
Saad
,
S. T. O.
, and
Cesar
,
C. L.
,
2011
, “
Mechanical and Electrical Properties of Red Blood Cells Using Optical Tweezers
,”
J. Opt.
,
13
(
4
), pp.
1
8
.10.1088/2040-8978/13/4/044012
207.
Mohanty
,
S. K.
,
Uppal
,
A.
, and
Gupta
,
P. K.
,
2008
, “
Optofluidic Stretching of RBCs Using Single Optical Tweezers
,”
J. Biophotonics
,
1
(
6
), pp.
522
525
.10.1002/jbio.200810001
208.
Fallman
,
E.
, and
Axner
,
O.
,
1997
, “
Design for Fully Steerable Dual-Trap Optical Tweezers
,”
Appl. Opt.
,
36
(
10
), pp.
2107
2113
.10.1364/AO.36.002107
209.
Chiou
,
A. E.
,
1997
, “
Interferometric Optical Tweezers
,”
Optics Commun.
,
133
(
1–6
), pp.
7
10
.10.1016/S0030-4018(96)00456-7
210.
Macdonald
,
M. P.
,
Spalding
,
G. C.
, and
Dholakia
,
K.
,
2003
, “
Microfluidic Sorting in an Optical Lattice
,”
Nature
,
426
(
6965
), pp.
421
424
.10.1038/nature02144
211.
Guck
,
J.
,
Ananthakrishnan
,
R.
,
Mahmood
,
H.
,
Moon
,
T. J.
,
Cunningham
,
C. C.
, and
Kas
,
J.
,
2001
, “
The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells
,”
Biophys. J.
,
81
(
2
), pp.
767
784
.10.1016/S0006-3495(01)75740-2
212.
Flynn
,
R. A.
,
Birkbeck
,
A. L.
,
Gross
,
M.
,
Ozkan
,
M.
,
Shao
,
B.
,
Wang
,
M. M.
, and
Esener
,
S. C.
,
2002
, “
Parallel Transport of Biological Cells Using Individually Addressable Vcsel Arrays as Optical Tweezers
,”
Sens. Actuators B
,
87
(
2
), pp.
239
243
.10.1016/S0925-4005(02)00242-3
213.
Eriksen
,
R. L.
,
Daria
,
V. R.
, and
Gluckstad
,
J.
,
2002
, “
Fully Dynamic Multiple-Beam Optical Tweezers
,”
Optics Express
,
10
(
14
), pp.
597
602
.10.1364/OE.10.000597
214.
Rodrigo
,
P. J.
,
Eriksen
,
R. L.
,
Daria
,
V. R.
, and
Gluckstad
,
J.
,
2003
, “
Shack-Hartmann Multiple-Beam Optical Tweezers
,”
Optics Express
,
11
(
3
), pp.
208
214
.10.1364/OE.11.000208
215.
Rodrigo
,
P. J.
,
Perch-Nielsen
,
I. R.
, and
Gluckstad
,
J.
,
2006
, “
Three-Dimensional Forces in Gpc-Based Counterpropagating-Beam Traps
,”
Optics Express
,
14
(
12
), pp.
5812
5822
.10.1364/OE.14.005812
216.
Bronkhorst
,
P. J. H.
,
Streekstra
,
G. J.
,
Grimbergen
,
J.
,
Nijhof
,
E. J.
,
Sixma
,
J. J.
, and
Brakenhoff
,
G. J.
,
1995
, “
A New Method to Study Shape Recovery of Red Blood Cells Using Multiple Optical Trapping
,”
Biophys. J.
,
69
(
5
), pp.
1666
1673
.10.1016/S0006-3495(95)80084-6
217.
Hormeno
,
S.
, and
Arias-Gonzalez
,
J. R.
,
2006
, “
Exploring Mechanochemical Processes in the Cell With Optical Tweezers
,”
Biol. Cell
,
98
(
12
), pp.
679
695
.10.1042/BC20060036
218.
Lincoln
,
B.
,
Wottawah
,
F.
,
Schinkinger
,
S.
,
Ebert
,
S.
, and
Guck
,
J.
,
2007
, “
High-Throughput Rheological Measurements With an Optical Stretcher
,”
Cell Mech.
,
83
, pp.
397
423
.10.1016/S0091-679X(07)83017-2
219.
Mohanty
,
S.
,
2012
, “
Optically-Actuated Translational and Rotational Motion at the Microscale for Microfluidic Manipulation and Characterization
,”
Lab Chip
,
12
(
19
), pp.
3624
3636
.10.1039/c2lc40538e
220.
Sraj
,
I.
,
Eggleton
,
C. D.
,
Jimenez
,
R.
,
Hoover
,
E.
,
Squier
,
J.
,
Chichester
,
J.
, and
Marr
,
D. W.
,
2010
, “
Cell Deformation Cytometry Using Diode-Bar Optical Stretchers
,”
J. Biomed. Opt.
,
15
(
4
), p.
047010
.10.1117/1.3470124
221.
Kreysing
,
M. K.
,
Kiessling
,
T.
,
Fritsch
,
A.
,
Dietrich
,
C.
,
Guck
,
J. R.
, and
Kas
,
J. A.
,
2008
, “
The Optical Cell Rotator
,”
Optics Express
,
16
(
21
), pp.
16984
16992
.10.1364/OE.16.016984
222.
Ziemann
,
F.
,
Radler
,
J.
, and
Sackmann
,
E.
,
1994
, “
Local Measurements of Viscoelastic Moduli of Entangled Actin Networks Using an Oscillating Magnetic Bead Micro-Rheometer
,”
Biophys. J.
,
66
(
6
), pp.
2210
2216
.10.1016/S0006-3495(94)81017-3
223.
Bausch
,
A. R.
,
Moller
,
W.
, and
Sackmann
,
E.
,
1999
, “
Measurement of Local Viscoelasticity and Forces in Living Cells by Magnetic Tweezers
,”
Biophys. J.
,
76
, pp.
573
579
.10.1016/S0006-3495(99)77225-5
224.
Bausch
,
A. R.
,
Ziemann
,
F.
,
Boulbitch
,
A. A.
,
Jacobson
,
K.
, and
Sackmann
,
E.
,
1998
, “
Local Measurements of Viscoelastic Parameters of Adherent Cell Surfaces by Magnetic Bead Microrheometry
,”
Biophys. J.
,
75
(
4
), pp.
2038
2049
.10.1016/S0006-3495(98)77646-5
225.
Crick
,
F. H. C.
,
1950
, “
The Physical Properties of Cytoplasm. A Study by Means of the Magnetic Particle Method. Part 2. Theoretical Treatment.
,”
Exp. Cell Res.
,
1
, pp.
505
533
.10.1016/0014-4827(50)90002-4
226.
Crick
,
F. H. C.
, and
Hughes
,
A. F. W.
,
1950
, “
The Physical Properties of the Cytoplasm. A Study by Means of the Magnetic Particle Method. Part 1
,”
Exp. Cell Res.
,
1
, pp.
37
80
.10.1016/0014-4827(50)90048-6
227.
Strick
,
T. R.
,
Allemand
,
J. F.
,
Bensimon
,
D.
,
Bensimon
,
A.
, and
Croquette
,
V.
,
1996
, “
The Elasticity of a Single Supercoiled DNA Molecule
,”
Science
,
271
(
5257
), pp.
1835
1837
.10.1126/science.271.5257.1835
228.
Smith
,
S. B.
,
Finzi
,
L.
, and
Bustamante
,
C.
,
1992
, “
Direct Mechanical Measurements of the Elasticity of Single DNA Molecules by Using Magnetic Beads
,”
Science
,
258
(
5085
), pp.
1122
1126
.10.1126/science.1439819
229.
Strick
,
T. R.
,
Croquette
,
V.
, and
Bensimon
,
D.
,
2000
, “
Single-Molecule Analysis of DNA Uncoiling by a Type II Topoisomerase
,”
Nature
,
404
(
6780
), pp.
901
904
.10.1038/35009144
230.
Heinrich
,
V.
, and
Waugh
,
R. E.
,
1996
, “
A Piconewton Force Transducer and its Application to Measurement of the Bending Stiffness of Phospholipid Membranes
,”
Ann. Biomed. Eng.
,
24
(
5
), pp.
595
605
.10.1007/BF02684228
231.
Mannix
,
R. J.
,
Kumar
,
S.
,
Cassiola
,
F.
,
Montoya-Zavala
,
M.
,
Feinstein
,
E.
,
Prentiss
,
M.
, and
Ingber
,
D. E.
,
2008
, “
Nanomagnetic Actuation of Receptor-Mediated Signal Transduction
,”
Nat. Nanotechnol.
,
3
(
1
), pp.
36
40
.10.1038/nnano.2007.418
232.
Danilowicz
,
C.
,
Greenfield
,
D.
, and
Prentiss
,
M.
,
2005
, “
Dissociation of Ligand-Receptor Complexes Using Magnetic Tweezers
,”
Anal. Chem.
,
77
(
10
), pp.
3023
3028
.10.1021/ac050057+
233.
Glogauer
,
M.
,
Arora
,
P.
,
Yao
,
G.
,
Sokholov
,
I.
,
Ferrier
,
J.
, and
McCulloch
,
C. A.
,
1997
, “
Calcium Ions and Tyrosine Phosphorylation Interact Coordinately With Actin to Regulate Cytoprotective Responses to Stretching
,”
J. Cell Sci.
,
110
, pp.
11
21
.
234.
Del Rio
,
A.
,
Perez-Jimenez
,
R.
,
Liu
,
R.
,
Roca-Cusachs
,
P.
,
Fernandez
,
J. M.
, and
Sheetz
,
M. P.
,
2009
, “
Stretching Single Talin Rod Molecules Activates Vinculin Binding
,”
Science
,
323
(
5914
), pp.
638
641
.10.1126/science.1162912
235.
Matthews
,
B. D.
,
Overby
,
D. R.
,
Alenghat
,
F. J.
,
Karavitis
,
J.
,
Numaguchi
,
Y.
,
Allen
,
P. G.
, and
Ingber
,
D. E.
,
2004
, “
Mechanical Properties of Individual Focal Adhesions Probed With a Magnetic Microneedle
,”
Biochem. Biophys. Res. Commun.
,
313
(
3
), pp.
758
764
.10.1016/j.bbrc.2003.12.005
236.
D'addario
,
M.
,
Arora
,
P. D.
,
Ellen
,
R. P.
, and
McCulloch
,
C. A.
,
2003
, “
Regulation of Tension-Induced Mechanotranscriptional Signals by the Microtubule Network in Fibroblasts
,”
J. Biol. Chem.
,
278
(
52
), pp.
53090
53097
.10.1074/jbc.M309027200
237.
Browe
,
D. M.
, and
Baumgarten
,
C. M.
,
2003
, “
Stretch of Beta 1 Integrin Activates an Outwardly Rectifying Chloride Current via FAK and SRC in Rabbit Ventricular Myocytes
,”
J. Gen. Physiol.
,
122
(
6
), pp.
689
702
.10.1085/jgp.200308899
238.
D'addario
,
M.
,
Arora
,
P. D.
,
Ellen
,
R. P.
, and
McCulloch
,
C. A.
,
2002
, “
Interaction of P38 and SP1 in a Mechanical Force-Induced, Beta 1 Integrin-Mediated Transcriptional Circuit That Regulates the Actin-Binding Protein Filamin-A
,”
J. Biol. Chem.
,
277
(
49
), pp.
47541
47550
.10.1074/jbc.M207681200
239.
D'addario
,
M.
,
Arora
,
P. D.
,
Fan
,
J.
,
Ganss
,
B.
,
Ellen
,
R. P.
, and
McCulloch
,
C. A. G.
,
2001
, “
Cytoprotection Against Mechanical Forces Delivered Through β1 Integrins Requires Induction of Filamin A
,”
J. Biol. Chem.
,
276
(
34
), pp.
31969
31977
.10.1074/jbc.M102715200
240.
Glogauer
,
M.
,
Arora
,
P.
,
Chou
,
D.
,
Janmey
,
P. A.
,
Downey
,
G. P.
, and
McCulloch
,
C. A.
,
1998
, “
The Role of Actin-Binding Protein 280 in Integrin-Dependent Mechanoprotection
,”
J. Biol. Chem.
,
273
(
3
), pp.
1689
1698
.10.1074/jbc.273.3.1689
241.
Mack
,
P. J.
,
Kaazempur-Mofrad
,
M. R.
,
Karcher
,
H.
,
Lee
,
R. T.
, and
Kamm
,
R. D.
,
2004
, “
Force-Induced Focal Adhesion Translocation: Effects of Force Amplitude and Frequency
,”
Am. J. Physiol. Cell Physiol.
,
287
(
4
), pp.
C954
C9562
.10.1152/ajpcell.00567.2003
242.
Shifrin
,
Y.
,
Arora
,
P. D.
,
Ohta
,
Y.
,
Calderwood
,
D. A.
, and
McCulloch
,
C. A.
,
2009
, “
The Role of Filgap-Filamin a Interactions in Mechanoprotection
,”
Mol. Biol. Cell
,
20
(
5
), pp.
1269
1279
.10.1091/mbc.E08-08-0872
243.
Balasubramanian
,
L.
,
Ahmed
,
A.
,
Lo
,
C. M.
,
Sham
,
J. S.
, and
Yip
,
K. P.
,
2007
, “
Integrin-Mediated Mechanotransduction in Renal Vascular Smooth Muscle Cells: Activation of Calcium Sparks
,”
Am. J. Physiol. Regul. Integr. Comput. Physiol.
,
293
(
4
), pp.
R1586
R1594
.10.1152/ajpregu.00025.2007
244.
Glogauer
,
M.
,
Ferrier
,
J.
, and
McCulloch
,
C. A.
,
1995
, “
Magnetic Fields Applied to Collagen-Coated Ferric Oxide Beads Induce Stretch-Activated Ca2+ Flux in Fibroblasts
,”
Am. J. Physiol.
,
269
, pp.
C1093
C1104
.
245.
Wu
,
Z.
,
Wong
,
K.
,
Glogauer
,
M.
,
Ellen
,
R. P.
, and
McCulloch
,
C. A. G.
,
1999
, “
Regulation of Stretch-Activated Intracellular Calcium Transients by Actin Filaments
,”
Biochem. Biophys. Res. Commun.
,
261
(
2
), pp.
419
425
.10.1006/bbrc.1999.1057
246.
Kris
,
A. S.
,
Kamm
,
R. D.
, and
Sieminski
,
A. L.
,
2008
, “
Vasp Involvement in Force-Mediated Adherens Junction Strengthening
,”
Biochem. Biophys. Res. Commun.
,
375
(
1
), pp.
134
138
.10.1016/j.bbrc.2008.07.132
247.
Tseng
,
P.
,
Judy
,
J. W.
, and
Di Carlo
,
D.
,
2012
, “
Magnetic Nanoparticle-Mediated Massively Parallel Mechanical Modulation of Single-Cell Behavior
,”
Nat. Methods
,
9
(
11
), pp.
1113
1119
.10.1038/nmeth.2210
248.
Kim
,
D. H.
,
Wong
,
P. K.
,
Park
,
J.
,
Levchenko
,
A.
, and
Sun
,
Y.
,
2009
, “
Microengineered Platforms for Cell Mechanobiology
,”
Ann. Rev. Biomed. Eng.
,
11
, pp.
203
233
.10.1146/annurev-bioeng-061008-124915
249.
Neuman
,
K. C.
, and
Nagy
,
A.
,
2008
, “
Single-Molecule Force Spectroscopy: Optical Tweezers, Magnetic Tweezers and Atomic Force Microscopy
,”
Nat. Methods
,
5
(
6
), pp.
491
505
.10.1038/nmeth.1218
250.
Sen
,
S.
, and
Kumar
,
S.
,
2010
, “
Combining Mechanical and Optical Approaches to Dissect Cellular Mechanobiology
,”
J. Biomech.
,
43
(
1
), pp.
45
54
.10.1016/j.jbiomech.2009.09.008
251.
Lele
,
T. P.
,
Sero
,
J. E.
,
Matthews
,
B. D.
,
Kumar
,
S.
,
Xia
,
S.
,
Montoya-Zavala
,
M.
,
Polte
,
T.
,
Overby
,
D.
,
Wang
,
N.
, and
Ingber
,
D. E.
,
2007
, “
Tools to Study Cell Mechanics and Mechanotransduction
,”
Methods Cell Biol.
,
83
, pp.
443
472
.
252.
Wang
,
N.
,
Butler
,
J. P.
, and
Ingber
,
D. E.
,
1993
, “
Mechanotransduction Across the Cell Surface and Through the Cytoskeleton
,”
Science
,
260
(
5111
), pp.
1124
1127
.10.1126/science.7684161
253.
Fabry
,
B.
,
Maksym
,
G. N.
,
Shore
,
S. A.
,
Moore
,
P. E.
,
Panettieri
,
R. A.
, Jr.
,
Butler
,
J. P.
, and
Fredberg
,
J. J.
,
2001
, “
Selected Contribution: Time Course and Heterogeneity of Contractile Responses in Cultured Human Airway Smooth Muscle Cells
,”
J. Appl. Physiol.
,
91
(
2
), pp.
986
994
.
254.
Wang
,
N.
,
Tolic-Norrelykke
,
I. M.
,
Chen
,
J.
,
Mijailovich
,
S. M.
,
Butler
,
J. P.
,
Fredberg
,
J. J.
, and
Stamenovic
,
D.
,
2002
, “
Cell Prestress. I. Stiffness and Prestress Are Closely Associated in Adherent Contractile Cells
,”
Am. J. Physiol. Cell Physiol.
,
282
(
3
), pp.
C606
C616
.10.1152/ajpcell.00269.2001
255.
Wang
,
N.
, and
Ingber
,
D. E.
,
1995
, “
Probing Transmembrane Mechanical Coupling and Cytomechanics Using Magnetic Twisting Cytometry
,”
Biochem. Cell Biol.
,
73
(
7–8
), pp.
327
335
.10.1139/o95-041
256.
Chen
,
J.
,
Fabry
,
B.
,
Schiffrin
,
E. L.
, and
Wang
,
N.
,
2001
, “
Twisting Integrin Receptors Increases Endothelin-1 Gene Expression in Endothelial Cells
,”
Am. J. Physiol. Cell Physiol.
,
280
(
6
), pp.
C1475
C1484
.
257.
Goldschmidt
,
M. E.
,
Mcleod
,
K. J.
, and
Taylor
,
W. R.
,
2001
, “
Integrin-Mediated Mechanotransduction in Vascular Smooth Muscle Cells: Frequency and Force Response Characteristics
,”
Circ. Res.
,
88
(
7
), pp.
674
680
.10.1161/hh0701.089749
258.
Yoshida
,
M.
,
Westlin
,
W. F.
,
Wang
,
N.
,
Ingber
,
D. E.
,
Rosenzweig
,
A.
,
Resnick
,
N.
, and
Gimbrone
,
M. A.
, Jr.
,
1996
, “
Leukocyte Adhesion to Vascular Endothelium Induces E-Selectin Linkage to the Actin Cytoskeleton
,”
J. Cell Biol.
,
133
(
2
), pp.
445
455
.10.1083/jcb.133.2.445
259.
Potard
,
U. S.
,
Butler
,
J. P.
, and
Wang
,
N.
,
1997
, “
Cytoskeletal Mechanics in Confluent Epithelial Cells Probed through Integrins and E-Cadherins
,”
Am. J. Physiol.
,
272
, pp.
C1654
C1663
.
260.
Lenormand
,
G.
,
Millet
,
E.
,
Fabry
,
B.
,
Butler
,
J. P.
, and
Fredberg
,
J. J.
,
2004
, “
Linearity and Time-Scale Invariance of the Creep Function in Living Cells
,”
J. R. Soc. Interface
,
1
(
1
), pp.
91
97
.10.1098/rsif.2004.0010
261.
Na
,
S.
, and
Wang
,
N.
,
2008
, “
Application of Fluorescence Resonance Energy Transfer and Magnetic Twisting Cytometry to Quantify Mechanochemical Signaling Activities in a Living Cell
,”
Sci. Signal
,
1
(
34
), p.
69932
.10.1126/scisignal.134pl1
262.
Meyer
,
C. J.
,
Alenghat
,
F. J.
,
Rim
,
P.
,
Fong
,
J. H.
,
Fabry
,
B.
, and
Ingber
,
D. E.
,
2000
, “
Mechanical Control of Cyclic Amp Signalling and Gene Transcription Through Integrins
,”
Nat. Cell Biol.
,
2
(
9
), pp.
666
668
.10.1038/35023621
263.
Deng
,
L.
,
Fairbank
,
N. J.
,
Fabry
,
B.
,
Smith
,
P. G.
, and
Maksym
,
G. N.
,
2004
, “
Localized Mechanical Stress Induces Time-Dependent Actin Cytoskeletal Remodeling and Stiffening in Cultured Airway Smooth Muscle Cells
,”
Am. J. Physiol. Cell Physiol.
,
287
(
2
), pp.
C440
C448
.10.1152/ajpcell.00374.2003
264.
Hu
,
S.
,
Eberhard
,
L.
,
Chen
,
J.
,
Love
,
J. C.
,
Butler
,
J. P.
,
Fredberg
,
J. J.
,
Whitesides
,
G. M.
, and
Wang
,
N.
,
2004
, “
Mechanical Anisotropy of Adherent Cells Probed by a Three-Dimensional Magnetic Twisting Device
,”
Am. J. Physiol. Cell Physiol.
,
287
(
5
), pp.
C1184
C1191
.10.1152/ajpcell.00224.2004
265.
Hu
,
S.
,
Chen
,
J.
,
Fabry
,
B.
,
Numaguchi
,
Y.
,
Gouldstone
,
A.
,
Ingber
,
D. E.
,
Fredberg
,
J. J.
,
Butler
,
J. P.
, and
Wang
,
N.
,
2003
, “
Intracellular Stress Tomography Reveals Stress Focusing and Structural Anisotropy in Cytoskeleton of Living Cells
,”
Am. J. Physiol. Cell Physiol.
,
285
(
5
), pp.
C1082
C1090
.10.1152/ajpcell.00159.2003
266.
Chen
,
C.
,
Krishnan
,
R.
,
Zhou
,
E.
,
Ramachandran
,
A.
,
Tambe
,
D.
,
Rajendran
,
K.
,
Adam
,
R. M.
,
Deng
,
L.
, and
Fredberg
,
J. J.
,
2010
, “
Fluidization and Resolidification of the Human Bladder Smooth Muscle Cell in Response to Transient Stretch
,”
PLoS One
,
5
(
8
),
e12035
.10.1371/journal.pone.0012035
267.
Krishnan
,
R.
Trepat
,
X.
Nguyen
,
T. T.
Lenormand
,
G.
Oliver
,
M.
and
Fredberg
,
J. J.
,
2008
, “
Airway Smooth Muscle and Bronchospasm: Fluctuating, Fluidizing, Freezing
,”
Respir. Physiol. Neurobiol.
,
163
(
1–3
), pp.
17
24
.10.1016/j.resp.2008.04.006
268.
Dipaolo
,
B. C.
,
Lenormand
,
G.
,
Fredberg
,
J. J.
, and
Margulies
,
S. S.
,
2010
, “
Stretch Magnitude and Frequency-Dependent Actin Cytoskeleton Remodeling in Alveolar Epithelia
,”
Am. J. Physiol. Cell Physiol.
,
299
(
2
), pp.
C345
C353
.10.1152/ajpcell.00379.2009
269.
Kang
,
J.
,
Steward
,
R. L.
,
Kim
,
Y.
,
Schwartz
,
R. S.
,
Leduc
,
P. R.
, and
Puskar
,
K. M.
,
2011
, “
Response of an Actin Filament Network Model Under Cyclic Stretching Through a Coarse Grained Monte Carlo Approach
,”
J. Theor. Biol.
,
274
(
1
), pp.
109
119
.10.1016/j.jtbi.2011.01.011
270.
Steward
,
R. L.
,
Cheng
,
C. M.
,
Ye
,
J. D.
,
Bellin
,
R. M.
, and
Leduc
,
P. R.
,
2011
, “
Mechanical Stretch and Shear Flow Induced Reorganization and Recruitment of Fibronectin in Fibroblasts
,”
Sci. Rep.
,
1
, pp.
147
159
.10.1038/srep00147
271.
Lin
,
Y. W.
,
Cheng
,
C. M.
,
Leduc
,
P. R.
, and
Chen
,
C. C.
,
2009
, “
Understanding Sensory Nerve Mechanotransduction Through Localized Elastomeric Matrix Control
,”
PLoS One
,
4
(
1
), p.
e4293
.10.1371/journal.pone.0004293
272.
Diederichs
,
S.
,
Bohm
,
S.
,
Peterbauer
,
A.
,
Kasper
,
C.
,
Scheper
,
T.
, and
Van Griensven
,
M.
,
2010
, “
Application of Different Strain Regimes in Two-Dimensional and Three-Dimensional Adipose Tissue-Derived Stem Cell Cultures Induces Osteogenesis: Implications for Bone Tissue Engineering
,”
J. Biomed. Mater. Res. A
,
94
(
3
), pp.
927
936
.
273.
Katsumi
,
A.
,
Milanini
,
J.
,
Kiosses
,
W. B.
,
Del Pozo
,
M. A.
,
Kaunas
,
R.
,
Chien
,
S.
,
Hahn
,
K. M.
, and
Schwartz
,
M. A.
,
2002
, “
Effects of Cell Tension on the Small GTPase RAC
,”
J. Cell Biol.
,
158
(
1
), pp.
153
164
.10.1083/jcb.200201105
274.
Brown
,
T. D.
,
2000
, “
Techniques for Mechanical Stimulation of Cells in vitro: A Review
,”
J. Biomech.
,
33
(
1
), pp.
3
14
.10.1016/S0021-9290(99)00177-3
275.
Freeman
,
P. M.
,
Natarajan
,
R. N.
,
Kimura
,
J. H.
, and
Andriacchi
,
T. P.
,
1994
, “
Chondrocyte Cells Respond Mechanically to Compressive Loads
,”
J. Orthop. Res.
,
12
(
3
), pp.
311
320
.10.1002/jor.1100120303
276.
Bader
,
D. L.
,
Ohashi
,
T.
,
Knight
,
M. M.
,
Lee
,
D. A.
, and
Sato
,
M.
,
2002
, “
Deformation Properties of Articular Chondrocytes: A Critique of Three Separate Techniques
,”
Biorheology
,
39
(
1–2
), pp.
69
78
.
277.
Cheng
,
C. M.
,
Steward
,
R. L.
, Jr.
, and
Leduc
,
P. R.
,
2009
, “
Probing Cell Structure by Controlling the Mechanical Environment with Cell–Substrate Interactions
,”
J. Biomech.
,
42
(
2
), pp.
187
192
.10.1016/j.jbiomech.2008.10.014
278.
Hiramoto
,
Y.
,
1970
, “
Rheological Properties of Sea Urchin Eggs
,”
Biorheology
,
6
(
3
), pp.
201
234
.
279.
Cole
,
K. S.
,
1932
, “
Surface Forces of the Arbacia Egg
,”
J. Cell. Comp. Physiol.
,
1
(
1
), pp.
1
9
.10.1002/jcp.1030010102
280.
Danielli
,
J. F.
,
1952
, “
Division of the Flattened Egg
,”
Nature
,
170
(
4325
), p.
496
.10.1038/170496a0
281.
Hiramoto
,
Y.
,
1963
, “
Mechanical Properties of Sea Urchin Eggs. II. Changes in Mechanical Properties from Fertilization to Cleavage
,”
Exp. Cell Res.
,
32
, pp.
76
89
.10.1016/0014-4827(63)90070-3
282.
Hiramoto
,
Y.
,
1963
, “
Mechanical Properties of Sea Urchin Eggs. I. Surface Force and Elastic Modulus of the Cell Membrane
,”
Exp. Cell Res.
,
32
, pp.
59
75
.10.1016/0014-4827(63)90069-7
283.
Yoneda
,
M.
,
1964
, “
Tension at the Surface of Sea-Urchin Egg: A Critical Examination of Cole's Experiment
,”
J. Exp. Biol.
,
41
, pp.
893
906
.
284.
Brighton
,
C. T.
,
Fisher
,
J. R.
, Jr.
,
Levine
,
S. E.
,
Corsetti
,
J. R.
,
Reilly
,
T.
,
Landsman
,
A. S.
,
Williams
,
J. L.
, and
Thibault
,
L. E.
,
1996
, “
The Biochemical Pathway Mediating the Proliferative Response of Bone Cells to a Mechanical Stimulus
,”
J. Bone Joint Surg. Am.
,
78
(
9
), pp.
1337
1347
.
285.
Thoumine
,
O.
, and
Ott
,
A.
,
1997
, “
Time Scale Dependent Viscoelastic and Contractile Regimes in Fibroblasts Probed by Microplate Manipulation
,”
J. Cell Sci.
,
110
, pp.
2109
2116
.
286.
Peeters
,
E. A.
,
Oomens
,
C. W.
,
Bouten
,
C. V.
,
Bader
,
D. L.
, and
Baaijens
,
F. P.
,
2005
, “
Viscoelastic Properties of Single Attached Cells under Compression
,”
ASME J. Biomech. Eng.
,
127
(
2
), pp.
237
243
.10.1115/1.1865198
287.
Shieh
,
A. C.
, and
Athanasiou
,
K. A.
,
2006
, “
Biomechanics of Single Zonal Chondrocytes
,”
J. Biomech.
,
39
(
9
), pp.
1595
1602
.10.1016/j.jbiomech.2005.05.002
288.
Leipzig
,
N. D.
, and
Athanasiou
,
K. A.
,
2005
, “
Unconfined Creep Compression of Chondrocytes
,”
J. Biomech.
,
38
(
1
), pp.
77
85
.10.1016/j.jbiomech.2004.03.013
289.
Caille
,
N.
,
Thoumine
,
O.
,
Tardy
,
Y.
, and
Meister
,
J. J.
,
2002
, “
Contribution of the Nucleus to the Mechanical Properties of Endothelial Cells
,”
J. Biomech.
,
35
(
2
), pp.
177
187
.10.1016/S0021-9290(01)00201-9
290.
Blackman
,
B. R.
,
Garcia-Cardena
,
G.
, and
Gimbrone
,
M. A.
, Jr.
,
2002
, “
A New in vitro Model to Evaluate Differential Responses of Endothelial Cells to Simulated Arterial Shear Stress Waveforms
,”
ASME J. Biomech. Eng.
,
124
(
4
), pp.
397
407
.10.1115/1.1486468
291.
Bussolari
,
S. R.
,
Dewey
,
C. F.
, and
Gimbrone
,
M. A.
,
1982
, “
Apparatus for Subjecting Living Cells to Fluid Shear-Stress
,”
Rev. Sci. Instrum.
,
53
(
12
), pp.
1851
1854
.10.1063/1.1136909
292.
Davies
,
P. F.
,
Dewey
,
C. F.
, Jr.
,
Bussolari
,
S. R.
,
Gordon
,
E. J.
, and
Gimbrone
,
M. A.
, Jr.
,
1984
, “
Influence of Hemodynamic Forces on Vascular Endothelial Function. in vitro Studies of Shear Stress and Pinocytosis in Bovine Aortic Cells
,”
J. Clin. Invest.
,
73
(
4
), pp.
1121
1129
.10.1172/JCI111298
293.
Dewey
,
C. F.
, Jr.
,
Bussolari
,
S. R.
,
Gimbrone
,
M. A.
, Jr.
, and
Davies
,
P. F.
,
1981
, “
The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress
,”
ASME J. Biomech. Eng.
,
103
(
3
), pp.
177
185
.10.1115/1.3138276
294.
Li
,
S.
,
Kim
,
M.
,
Hu
,
Y. L.
,
Jalali
,
S.
,
Schlaepfer
,
D. D.
,
Hunter
,
T.
,
Chien
,
S.
, and
Shyy
,
J. Y.
,
1997
, “
Fluid Shear Stress Activation of Focal Adhesion Kinase. Linking to Mitogen-Activated Protein Kinases
,”
J. Biol. Chem.
,
272
(
48
), pp.
30455
30462
.10.1074/jbc.272.48.30455
295.
Galbraith
,
C. G.
,
Skalak
,
R.
, and
Chien
,
S.
,
1998
, “
Shear Stress Induces Spatial Reorganization of the Endothelial Cell Cytoskeleton
,”
Cell Motil. Cytoskeleton
,
40
(
4
), pp.
317
330
.10.1002/(SICI)1097-0169(1998)40:4<317::AID-CM1>3.0.CO;2-8
296.
Li
,
S.
,
Chen
,
B. P. C.
,
Azuma
,
N.
,
Hu
,
Y. L.
,
Wu
,
S. Z.
,
Sumpio
,
B. E.
,
Shyy
,
J. Y. J.
, and
Chien
,
S.
,
1999
, “
Distinct Roles for the Small GTPases CDC42 and Rho in Endothelial Responses to Shear Stress
,”
J. Clin. Invest.
,
103
(
8
), pp.
1141
1150
.10.1172/JCI5367
297.
Davies
,
P. F.
,
1995
, “
Flow-Mediated Endothelial Mechanotransduction
,”
Physiol. Rev.
,
75
(
3
), pp.
519
560
.
298.
Del Alamo
,
J. C.
,
Norwich
,
G. N.
,
Li
,
Y. S.
,
Lasheras
,
J. C.
, and
Chien
,
S.
,
2008
, “
Anisotropic Rheology and Directional Mechanotransduction in Vascular Endothelial Cells
,”
Proc. Natl. Acad. Sci. U.S.A.
,
105
(
40
), pp.
15411
15416
.10.1073/pnas.0804573105
299.
Chen
,
K. D.
,
Li
,
Y. S.
,
Kim
,
M.
,
Li
,
S.
,
Yuan
,
S.
,
Chien
,
S.
, and
Shyy
,
J. Y.
,
1999
, “
Mechanotransduction in Response to Shear Stress. Roles of Receptor Tyrosine Kinases, Integrins, and SHC
,”
J. Biol. Chem.
,
274
(
26
), pp.
18393
183400
.10.1074/jbc.274.26.18393
300.
Young
,
A.
,
Wu
,
W.
,
Sun
,
W.
,
Larman
,
H. B.
,
Wang
,
N. P.
,
Li
,
Y. S.
,
Shyy
,
J. Y.
,
Chien
,
S.
, and
Garcia-Cardena
,
G.
,
2009
, “
Flow Activation of Amp-Activated Protein Kinase in Vascular Endothelium Leads to Kruppel-Like Factor 2 Expression
,”
Arterioscler., Thromb., Vasc. Biol.
,
29
(
11
), pp.
1902
1908
.10.1161/ATVBAHA.109.193540
301.
Lin
,
K.
,
Hsu
,
P. P.
,
Chen
,
B. P.
,
Yuan
,
S.
,
Usami
,
S.
,
Shyy
,
J. Y.
,
Li
,
Y. S.
, and
Chien
,
S.
,
2000
, “
Molecular Mechanism of Endothelial Growth Arrest by Laminar Shear Stress
,”
Proc. Natl. Acad. Sci. U.S.A.
,
97
(
17
), pp.
9385
9389
.10.1073/pnas.170282597
302.
Lee
,
D. Y.
,
Li
,
Y. S. J.
,
Chang
,
S. F.
,
Zhou
,
J.
,
Ho
,
H. M.
,
Chiu
,
J. J.
, and
Chien
,
S.
,
2010
, “
Oscillatory Flow-Induced Proliferation of Osteoblast-Like Cells Is Mediated by αVβ3 and β1 Integrins through Synergistic Interactions of Focal Adhesion Kinase and SHC with Phosphatidylinositol 3-Kinase and the Akt/Mtor/P70s6k Pathway
,”
J. Biol. Chem.
,
285
(
1
), pp.
30
42
.10.1074/jbc.M109.010512
303.
Sotoudeh
,
M.
,
Li
,
Y. S.
,
Yajima
,
N.
,
Chang
,
C. C.
,
Tsou
,
T. C.
,
Wang
,
Y. B.
,
Usami
,
S.
,
Ratcliffe
,
A.
,
Chien
,
S.
, and
Shyy
,
J. Y. J.
,
2002
, “
Induction of Apoptosis in Vascular Smooth Muscle Cells by Mechanical Stretch
,”
Am. J. Physiol. Heart Circ. Physiol.
,
282
(
5
), pp.
H1709
H1716
.
304.
Wu
,
C. C.
,
Li
,
Y. S.
,
Haga
,
J. H.
,
Kaunas
,
R.
,
Chiu
,
J. J.
,
Su
,
F. C.
,
Usami
,
S.
, and
Chien
,
S.
,
2007
, “
Directional Shear Flow and Rho Activation Prevent the Endothelial Cell Apoptosis Induced by Micropatterned Anisotropic Geometry
,”
Proc. Natl. Acad. Sci. U.S.A.
,
104
(
4
), pp.
1254
1259
.10.1073/pnas.0609806104
305.
Chen
,
B. P.
,
Li
,
Y. S.
,
Zhao
,
Y.
,
Chen
,
K. D.
,
Li
,
S.
,
Lao
,
J.
,
Yuan
,
S.
,
Shyy
,
J. Y.
, and
Chien
,
S.
,
2001
, “
DNA Microarray Analysis of Gene Expression in Endothelial Cells in Response to 24-H Shear Stress
,”
Physiol. Genomics
,
7
(
1
), pp.
55
63
.10.1006/geno.2001.6511
306.
Wang
,
N. P.
,
Miao
,
H.
,
Li
,
Y. S.
,
Zhang
,
P.
,
Haga
,
J. H.
,
Hu
,
Y. L.
,
Young
,
A.
,
Yuan
,
S. L.
,
Nguyen
,
P.
,
Wu
,
C. C.
, and
Chien
,
S.
,
2006
, “
Shear Stress Regulation of Kruppel-Like Factor 2 Expression is Flow Pattern-Specific
,”
Biochem. Biophys. Res. Commun.
,
341
(
4
), pp.
1244
1251
.10.1016/j.bbrc.2006.01.089
307.
Hsu
,
P. P.
,
Li
,
S.
,
Li
,
Y. S.
,
Usami
,
S.
,
Ratcliffe
,
A.
,
Wang
,
X.
, and
Chien
,
S.
,
2001
, “
Effects of Flow Patterns on Endothelial Cell Migration into a Zone of Mechanical Denudation
,”
Biochem. Biophys. Res. Commun.
,
285
(
3
), pp.
751
759
.10.1006/bbrc.2001.5221
308.
Li
,
S.
,
Bhatia
,
S.
,
Hu
,
Y. L.
,
Shiu
,
Y. T.
,
Li
,
Y. S.
,
Usami
,
S.
, and
Chien
,
S.
,
2001
, “
Effects of Morphological Patterning on Endothelial Cell Migration
,”
Biorheology
,
38
(
2–3
), pp.
101
108
.
309.
Li
,
S.
,
Butler
,
P.
,
Wang
,
Y.
,
Hu
,
Y.
,
Han
,
D. C.
,
Usami
,
S.
,
Guan
,
J. L.
, and
Chien
,
S.
,
2002
, “
The Role of the Dynamics of Focal Adhesion Kinase in the Mechanotaxis of Endothelial Cells
,”
Proc. Natl. Acad. Sci. U.S.A.
,
99
(
6
), pp.
3546
3551
.10.1073/pnas.052018099
310.
Shiu
,
Y. T.
,
Li
,
S.
,
Marganski
,
W. A.
,
Usami
,
S.
,
Schwartz
,
M. A.
,
Wang
,
Y. L.
,
Dembo
,
M.
, and
Chien
,
S.
,
2004
, “
Rho Mediates the Shear-Enhancement of Endothelial Cell Migration and Traction Force Generation
,”
Biophys. J.
,
86
(
4
), pp.
2558
2565
.10.1016/S0006-3495(04)74311-8
311.
Chien
,
S.
,
Li
,
S.
,
Shiu
,
Y. T.
, and
Li
,
Y. S.
,
2005
, “
Molecular Basis of Mechanical Modulation of Endothelial Cell Migration
,”
Front Biosci.
,
10
, pp.
1985
2000
.10.2741/1673
312.
Jalali
,
S.
,
Del
Pozo
,
M. A.
,
Chen
,
K.
,
Miao
,
H.
,
Li
,
Y.
,
Schwartz
,
M. A.
,
Shyy
,
J. Y.
, and
Chien
,
S.
,
2001
, “
Integrin-Mediated Mechanotransduction Requires its Dynamic Interaction With Specific Extracellular Matrix (ECM) Ligands
,”
Proc. Natl. Acad. Sci. U.S.A.
,
98
(
3
), pp.
1042
1046
.10.1073/pnas.98.3.1042
313.
Wang
,
Y. X.
,
Miao
,
H.
,
Li
,
S.
,
Chen
,
K. D.
,
Li
,
Y. S.
,
Yuan
,
S. L.
,
Shyy
,
J. Y. J.
, and
Chien
,
S.
,
2002
, “
Interplay Between Integrins and FLK-1 in Shear Stress-Induced Signaling
,”
Am. J. Physiol. Cell Physiol.
,
283
(
5
), pp.
C1540
C1547
.10.1152/ajpcell.00222.2002
314.
Tong
,
Z.
,
Cheung
,
L. S.
,
Stebe
,
K. J.
, and
Konstantopoulos
,
K.
,
2012
, “
Selectin-Mediated Adhesion in Shear Flow Using Micropatterned Substrates: Multiple-Bond Interactions Govern the Critical Length for Cell Binding
,”
Integr. Biol. (Camb)
,
4
(
8
), pp.
847
856
.10.1039/c2ib20036h
315.
Miao
,
H.
,
Hu
,
Y. L.
,
Shiu
,
Y. T.
,
Yuan
,
S. L.
,
Zhao
,
Y. H.
,
Kaunas
,
R.
,
Wang
,
Y. X.
,
Jin
,
G.
,
Usami
,
S.
, and
Chien
,
S.
,
2005
, “
Effects of Flow Patterns on the Localization and Expression of Ve-Cadherin at Vascular Endothelial Cell Junctions: In Vivo and In Vitro Investigations
,”
J. Vasc. Res.
,
42
(
1
), pp.
77
89
.10.1159/000083094
316.
Gossett
,
D. R.
,
Tse
,
H. T.
,
Lee
,
S. A.
,
Ying
,
Y.
,
Lindgren
,
A. G.
,
Yang
,
O. O.
,
Rao
,
J.
,
Clark
,
A. T.
, and
Di Carlo
,
D.
,
2012
, “
Hydrodynamic Stretching of Single Cells for Large Population Mechanical Phenotyping
,”
Proc. Natl. Acad. Sci. U.S.A.
,
109
(
20
), pp.
7630
7635
.10.1073/pnas.1200107109
317.
Shelby
,
J. P.
,
White
,
J.
,
Ganesan
,
K.
,
Rathod
,
P. K.
, and
Chiu
,
D. T.
,
2003
, “
A Microfluidic Model for Single-Cell Capillary Obstruction by Plasmodium Falciparum-Infected Erythrocytes
,”
Proc. Natl. Acad. Sci. U.S.A.
,
100
(
25
), pp.
14618
14622
.10.1073/pnas.2433968100
318.
Rosenbluth
,
M. J.
,
Lam
,
W. A.
, and
Fletcher
,
D. A.
,
2008
, “
Analyzing Cell Mechanics in Hematologic Diseases With Microfluidic Biophysical Flow Cytometry
,”
Lab Chip
,
8
(
7
), pp.
1062
1070
.10.1039/b802931h
319.
Preira
,
P.
,
Leoni
,
T.
,
Valignat
,
M. P.
,
Lellouch
,
A.
,
Robert
,
P.
,
Forel
,
J. M.
,
Papazian
,
L.
,
Dumenil
,
G.
,
Bongrand
,
P.
, and
Theodoly
,
O.
,
2012
, “
Microfluidic Tools to Investigate Pathologies in the Blood Microcirculation
,”
Int. J. Nanotechnol.
,
9
(
3–7
), pp.
529
547
.10.1504/IJNT.2012.045340
320.
Bow
,
H.
,
Pivkin
,
I. V.
,
Diez-Silva
,
M.
,
Goldfless
,
S. J.
,
Dao
,
M.
,
Niles
,
J. C.
,
Suresh
,
S.
, and
Han
,
J.
,
2011
, “
A Microfabricated Deformability-Based Flow Cytometer with Application to Malaria
,”
Lab Chip
,
11
(
6
), pp.
1065
1073
.10.1039/c0lc00472c
321.
Abkarian
,
M.
,
Faivre
,
M.
, and
Stone
,
H. A.
,
2006
, “
High-Speed Microfluidic Differential Manometer for Cellular-Scale Hydrodynamics
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
3
), pp.
538
542
.10.1073/pnas.0507171102
322.
Zheng
,
W.
,
Jiang
,
B.
,
Wang
,
D.
,
Zhang
,
W.
,
Wang
,
Z.
, and
Jiang
,
X.
,
2012
, “
A Microfluidic Flow-Stretch Chip for Investigating Blood Vessel Biomechanics
,”
Lab Chip
,
12
(
18
), pp.
3441
3450
.10.1039/c2lc40173h
323.
Douville
,
N. J.
,
Zamankhan
,
P.
,
Tung
,
Y. C.
,
Li
,
R.
,
Vaughan
,
B. L.
,
Tai
,
C. F.
,
White
,
J.
,
Christensen
,
P. J.
,
Grotberg
,
J. B.
, and
Takayama
,
S.
,
2011
, “
Combination of Fluid and Solid Mechanical Stresses Contribute to Cell Death and Detachment in a Microfluidic Alveolar Model
,”
Lab Chip
,
11
(
4
), pp.
609
619
.10.1039/c0lc00251h
324.
Wang
,
F.
,
Wang
,
H.
,
Wang
,
J.
,
Wang
,
H. Y.
,
Rummel
,
P. L.
,
Garimella
,
S. V.
, and
Lu
,
C.
,
2008
, “
Microfluidic Delivery of Small Molecules into Mammalian Cells Based on Hydrodynamic Focusing
,”
Biotechnol. Bioeng.
,
100
(
1
), pp.
150
158
.10.1002/bit.21737
325.
Li
,
J.
,
Zhu
,
L.
,
Zhang
,
M.
, and
Lin
,
F.
,
2012
, “
Microfluidic Device for Studying Cell Migration in Single or Co-Existing Chemical Gradients and Electric Fields
,”
Biomicrofluidics
,
6
(
2
), pp.
24121
24123
10.1063/1.4718721
326.
Vanapalli
,
S. A.
,
Duits
,
M. H.
, and
Mugele
,
F.
,
2009
, “
Microfluidics as a Functional Tool for Cell Mechanics
,”
Biomicrofluidics
,
3
(
1
), p.
012006
.10.1063/1.3067820
327.
Shi
,
J.
,
Ahmed
,
D.
,
Mao
,
X.
,
Lin
,
S. C.
,
Lawit
,
A.
, and
Huang
,
T. J.
,
2009
, “
Acoustic Tweezers: Patterning Cells and Microparticles Using Standing Surface Acoustic Waves (SSAW)
,”
Lab Chip
,
9
(
20
), pp.
2890
2895
.10.1039/b910595f
328.
Campbell
,
C.
, and
Burgess
,
J. C.
,
1991
, “
Surface Acoustic Wave Devices and Their Signal Processing Applications
,”
J. Acoust. Soc. Am.
,
89
(
3
), pp.
1479
1480
.10.1121/1.400569
329.
Ding
,
X.
,
Lin
,
S. C.
,
Kiraly
,
B.
,
Yue
,
H.
,
Li
,
S.
,
Chiang
,
I. K.
,
Shi
,
J.
,
Benkovic
,
S. J.
, and
Huang
,
T. J.
,
2012
, “
On-Chip Manipulation of Single Microparticles, Cells, and Organisms Using Surface Acoustic Waves
,”
Proc. Natl. Acad. Sci. U.S.A.
,
109
(
28
), pp.
11105
11109
.10.1073/pnas.1209288109
330.
Kim
,
D. H.
,
Haake
,
A.
,
Sun
,
Y.
,
Neild
,
A. P.
,
Ihm
,
J. E.
,
Dual
,
J.
,
Hubbell
,
J. A.
,
Ju
,
B. K.
, and
Nelson
,
B. J.
,
2004
, “
High-Throughput Cell Manipulation Using Ultrasound Fields
,”
Conf. Proc. IEEE Eng. Med. Biol. Soc.
,
4
, pp.
2571
2574
.
331.
Saitakis
,
M.
, and
Gizeli
,
E.
,
2012
, “
Acoustic Sensors as a Biophysical Tool for Probing Cell Attachment and Cell/Surface Interactions
,”
Cell Mol. Life Sci.
,
69
(
3
), pp.
357
371
.10.1007/s00018-011-0854-8
332.
Tymchenko
,
N.
,
Nileback
,
E.
,
Voinova
,
M. V.
,
Gold
,
J.
,
Kasemo
,
B.
, and
Svedhem
,
S.
,
2012
, “
Reversible Changes in Cell Morphology Due to Cytoskeletal Rearrangements Measured in Real-Time by QCM-D
,”
Biointerphases
,
7
(
1–4
), pp.
43
–51.10.1007/s13758-012-0043-9
333.
Kobayashi
,
Y.
,
Sakai
,
D.
,
Iwashina
,
T.
,
Iwabuchi
,
S.
, and
Mochida
,
J.
,
2009
, “
Low-Intensity Pulsed Ultrasound Stimulates Cell Proliferation, Proteoglycan Synthesis and Expression of Growth Factor-Related Genes in Human Nucleus Pulposus Cell Line
,”
Eur. Cell Mater.
,
17
, pp.
15
22
.
334.
Duarte
,
L. R.
,
1983
, “
The Stimulation of Bone Growth by Ultrasound
,”
Arch. Orthop. Trauma Surg.
,
101
(
3
), pp.
153
159
.10.1007/BF00436764
335.
Iwashina
,
T.
,
Mochida
,
J.
,
Miyazaki
,
T.
,
Watanabe
,
T.
,
Iwabuchi
,
S.
,
Ando
,
K.
,
Hotta
,
T.
, and
Sakai
,
D.
,
2006
, “
Low-Intensity Pulsed Ultrasound Stimulates Cell Proliferation and Proteoglycan Production in Rabbit Intervertebral Disc Cells Cultured in Alginate
,”
Biomaterials
,
27
(
3
), pp.
354
361
.10.1016/j.biomaterials.2005.06.031
336.
Fassina
,
L.
,
Saino
,
E.
,
De Angelis
,
M. G.
,
Magenes
,
G.
,
Benazzo
,
F.
, and
Visai
,
L.
,
2010
, “
Low-Power Ultrasounds as a Tool to Culture Human Osteoblasts inside Cancellous Hydroxyapatite
,”
Bioinorg. Chem. Appl.
,
456240
.
337.
Choi
,
W. H.
,
Choi
,
B. H.
,
Min
,
B. H.
, and
Park
,
S. R.
,
2011
, “
Low-Intensity Ultrasound Increased Colony Forming Unit-Fibroblasts of Mesenchymal Stem Cells During Primary Culture
,”
Tissue Eng. Part C, Methods
,
17
(
5
), pp.
517
526
.10.1089/ten.tec.2010.0231
338.
Lee
,
J.
,
Lee
,
C.
,
Kim
,
H. H.
,
Jakob
,
A.
,
Lemor
,
R.
,
Teh
,
S. Y.
,
Lee
,
A.
, and
Shung
,
K. K.
,
2011
, “
Targeted Cell Immobilization by Ultrasound Microbeam
,”
Biotechnol. Bioeng.
,
108
(
7
), pp.
1643
1650
.10.1002/bit.23073
339.
Lee
,
H. J.
,
Choi
,
B. H.
,
Min
,
B. H.
,
Son
,
Y. S.
, and
Park
,
S. R.
,
2006
, “
Low-Intensity Ultrasound Stimulation Enhances Chondrogenic Differentiation in Alginate Culture of Mesenchymal Stem Cells
,”
Artif. Organs
,
30
(
9
), pp.
707
715
.10.1111/j.1525-1594.2006.00288.x
340.
Hwang
,
J. Y.
,
Lee
,
J.
,
Lee
,
C.
,
Jakob
,
A.
,
Lemor
,
R.
,
Medina-Kauwe
,
L. K.
, and
Shung
,
K. K.
,
2012
, “
Fluorescence Response of Human HEr2+ Cancer- and MCF-12f Normal Cells to 200 Mhz Ultrasound Microbeam Stimulation: A Preliminary Study of Membrane Permeability Variation
,”
Ultrasonics
,
52
(
7
), pp.
803
808
.10.1016/j.ultras.2012.03.002
341.
Stark
,
D. J.
,
Killian
,
T. C.
, and
Raphael
,
R. M.
,
2011
, “
A Microfabricated Magnetic Force Transducer-Microaspiration System for Studying Membrane Mechanics
,”
Phys. Biol.
,
8
(
5
), p.
056008
.10.1088/1478-3975/8/5/056008
342.
Macqueen
,
L. A.
,
Buschmann
,
M. D.
, and
Wertheimer
,
M. R.
,
2010
, “
Mechanical Properties of Mammalian Cells in Suspension Measured by Electro-Deformation
,”
J. Micromech.Microeng.
,
20
(
6
), p.
065007
.10.1088/0960-1317/20/6/065007
343.
Chen
,
J.
,
Abdelgawad
,
M.
,
Yu
,
L. M.
,
Shakiba
,
N.
,
Chien
,
W. Y.
,
Lu
,
Z.
,
Geddie
,
W. R.
,
Jewett
,
M. A. S.
, and
Sun
,
Y.
,
2011
, “
Electrodeformation for Single Cell Mechanical Characterization
,”
J. Micromech. Microeng.
,
21
(
5
), p.
054012
.10.1088/0960-1317/21/5/054012
344.
Voldman
,
J.
,
Gray
,
M. L.
,
Toner
,
M.
, and
Schmidt
,
M. A.
,
2002
, “
A Microfabrication-Based Dynamic Array Cytometer
,”
Anal. Chem.
,
74
(
16
), pp.
3984
3990
.10.1021/ac0256235
345.
Guido
,
I.
,
Jaeger
,
M. S.
, and
Duschl
,
C.
,
2011
, “
Dielectrophoretic Stretching of Cells Allows for Characterization of Their Mechanical Properties
,”
Eur. Biophys. J. Biophys. Lett.
,
40
(
3
), pp.
281
288
.10.1007/s00249-010-0646-3
346.
Pethig
,
R.
, and
Markx
,
G. H.
,
1997
, “
Applications of Dielectrophoresis in Biotechnology
,”
Trends Biotechnol.
,
15
(
10
), pp.
426
432
.10.1016/S0167-7799(97)01096-2
347.
Gnerlich
,
M.
,
Perry
,
S. F.
, and
Tatic-Lucic
,
S.
,
2012
, “
A Submersible Piezoresistive Mems Lateral Force Sensor for a Diagnostic Biomechanics Platform
,”
Sens. Actuators A
,
188
, pp.
111
119
.10.1016/j.sna.2012.05.033
348.
Hsu
,
Y. H.
, and
Tang
,
W. C.
,
2009
, “
A Microfabricated Piezoelectric Transducer Platform for Mechanical Characterization of Cellular Events
,”
Smart Mater. Struct.
,
18
(
9
), p.
095014
.10.1088/0964-1726/18/9/095014
349.
Doll
,
J. C.
,
Harjee
,
N.
,
Klejwa
,
N.
,
Kwon
,
R.
,
Coulthard
,
S. M.
,
Petzold
,
B.
,
Goodman
,
M. B.
, and
Pruitt
,
B. L.
,
2009
, “
SU-8 Force Sensing Pillar Arrays for Biological Measurements
,”
Lab Chip
,
9
(
10
), pp.
1449
1454
.10.1039/b818622g
350.
Wong
,
P. K.
,
Tan
,
W.
, and
Ho
,
C. M.
,
2005
, “
Cell Relaxation after Electrodeformation: Effect of Latrunculin a on Cytoskeletal Actin
,”
J. Biomech.
,
38
(
3
), pp.
529
535
.10.1016/j.jbiomech.2004.04.008
351.
Hronik-Tupaj
,
M.
, and
Kaplan
,
D. L.
,
2012
, “
A Review of the Responses of Two- and Three-Dimensional Engineered Tissues to Electric Fields
,”
Tissue Eng. Part B, Rev.
,
18
(
3
), pp.
167
180
.10.1089/ten.teb.2011.0244
352.
McCaig
,
C. D.
,
Rajnicek
,
A. M.
,
Song
,
B.
, and
Zhao
,
M.
,
2005
, “
Controlling Cell Behavior Electrically: Current Views and Future Potential
,”
Physiol. Rev.
,
85
(
3
), pp.
943
978
.10.1152/physrev.00020.2004
353.
Tai
,
G.
,
Reid
,
B.
,
Cao
,
L.
, and
Zhao
,
M.
,
2009
, “
Electrotaxis and Wound Healing: Experimental Methods to Study Electric Fields as a Directional Signal for Cell Migration
,”
Methods Mol. Biol.
,
571
, pp.
77
97
.10.1007/978-1-60761-198-1
354.
Zhao
,
Z.
,
Watt
,
C.
,