The well-known Rodrigues' equations for the composition of two finite rotations were introduced in 1840 without a detailed derivation. Although later derivations are available, the one presented here is very simple, is based on rotation results due to Euler, is essentially self-contained, and makes use of analysis techniques familiar to engineering students. As the Rodrigues equations have a strong connection to quaternions, this matter is considered in some detail. Then the equations are used to derive some general results concerning the angle and axis of the composite rotation. If α, β, θ and a, b, d indicate the rotation angles and axes for the two individual rotations and for the composite rotation, respectively, some of the results are as follows. (a) The value of θ does not depend on the order of the two rotations. (b) The vector d is equal to the sum of two vectors, one in the plane Π spanned by a and b, and one perpendicular to Π. Moreover, the vector in Π is always between a and b. (c) The rotation axes for the two possible composite rotations are symmetric with respect to Π. (d) The angle θ decreases from α + β to α − β as the angle between a and b increases from 0 to π. Finally, the Rodrigues equations are used to derive the equations corresponding to the composition of infinitesimal rotations, which are also derived using alternative approaches.

## References

References
1.
Rodrigues
,
O.
,
1840
, “
Des Lois Géométriques qui Régissent les Déplacements d'un Système Solide Dans L'espace, et de la Variation des Coordonnées Provenant de ces Déplacements Considérés Indépendamment des Causes qui Peuvent les Produire
,”
J. Math. Pures Appl.
,
5
, pp.
380
440
.
2.
Altmann
,
S.
,
1989
, “
Hamilton, Rodrigues, and the Quaternion Scandal
,”
Math. Mag.
,
62
, pp.
291
308
.10.2307/2689481
3.
Ames
,
J.
, and
Murnaghan
,
F.
,
1958
,
Theoretical Mechanics
,
Dover
,
New York
, Chap. 2, p.
462
.
4.
Altmann
,
S.
,
1986
,
Rotations, Quaternions, and Double Groups
,
Oxford University
,
London
, Chap. 9, p.
317
.
5.
Paul
,
B.
,
1963
, “
On the Composition of Finite Rotations
,”
Am. Math. Monthly
,
70
(
8
), pp.
859
862
.10.2307/2312674
6.
Euler
,
L.
,
1776a
, “
Formulae Generales pro Translatione Quacunque Corporum Rigidorum
,”
,
20
, pp.
189
207
. Available at http://eulerarchive.maa.org (Enestrom number E478).
7.
Euler
,
L.
,
1776b
, “
Nova Methodus Motum Corporum Rigidorum Determinandi
,”
,
20
, pp.
208
238
. Available at http://eulerarchive.maa.org (Enestrom number E479).
8.
Pujol
,
J.
,
2009
, “
Tutorial on Rotations in the Theories of Finite Deformation and Micropolar (Cosserat) Elasticity
,” Bull. Seismol. Soc. Am.,
99
(
2B
), pp.
1011
1027
. Available at https://umdrive.memphis.edu/jpujol/public/Quaternion/Pujol-2009.pdf
9.
Jansen
,
L.
, and
Boon
,
M.
,
1967
,
Theory of Finite Groups. Applications in Physics
,
North-Holland
,
Amsterdam
, p.
367
.
10.
Palais
,
B.
, and
Palais
,
R.
,
2007
, “
Euler's Fixed Point Theorem: The Axis of a Rotation
,”
J. Fixed Point Theory Appl.
,
2
, pp.
215
220
.10.1007/s11784-007-0042-5
11.
Gauss
,
C.
,
1900
, “
Mutationen des Raumes
,”
Carl Friedrich Gauss Werke, Vol. 8
,
Königlichen Gesellschaft der Wissenschaften
,
Göttingen, Germany
, pp.
357
362
. Available at https://umdrive.memphis.edu/jpujol/public/Quaternion/Gauss-1900.pdf
12.
Pujol
,
2012
, “
Hamilton, Rodrigues, Gauss, Quaternions, and Rotations: A Historical Reassessment
,”
Commun. Math. Anal.
,
13
(
2
), pp.
1
14
. Available at https://umdrive.memphis.edu/jpujol/public/Quaternion/Hamilton-Rodrigues-Gauss-paper.pdf
13.
Cheng
,
H.
, and
Gupta
,
K.
,
1989
, “
An Historical Note on Finite Rotations
,”
J. Appl. Mech.
,
56
, pp.
139
145
.10.1115/1.3176034
14.
Hamilton
,
W.
,
1847
, “
Theory of Quaternions
,”
,
3
, pp.
1
16
. Available at https://umdrive.memphis.edu/jpujol/public/Quaternion/Hamilton-1847.pdf
15.
Shabana
,
A.
,
1994
,
Computational Dynamics
,
Wiley
,
New York
, Chap. 5, p.
464
.
16.
Tenenbaum
,
R.
,
2004
,
Fundamentals of Applied Dynamics
,
Springer-Verlag
,
New York
, Chap. 3, p.
713
.
17.
Routh
,
E.
,
1905
,
The Elementary Part of a Treatise on the Dynamics of a System of Rigid Bodies
,
7th ed.
,
MacMillan and Co.
,
London
, Chap. 5, p.
443
. Available at http://archive.org/details/elementaryrigid05routrich
18.
Hamilton
,
W.
,
1853
,
Lectures on Quaternions
,
Hodges and Smith
,
Dublin
, p.
736
19.
Schaub
,
H.
,
Tsiotras
,
P.
, and
Junkins
,
J.
,
1995
, “
Principal Rotation Representations of Proper N × N Orthogonal Matrices
,”
Int. J. Eng. Sci.
,
33
(
15
), pp.
2277
2295
.10.1016/0020-7225(95)00070-E