The time-independent integrals, here referred to as motion constants, for general nth-order linear autonomous systems are developed. Although it is commonly believed that this topic has been fully addressed, close inspection of the literature reveals that a comprehensive development is missing. This paper provides a complete tutorial treatment of the calculation of these motion constants. The process involves a state transformation to a canonical form of uncoupled real subsystems. Following this, motion constants that are internal to each subsystem are found, after which motion constants that connect the subsystems to each other are computed. Complete sets of n − 1 real single-valued motion constants can be formed for all linear autonomous systems with a single exception. The exception is systems composed of undamped oscillators whose frequency ratio is irrational. Such systems are known to exhibit ergodic behavior and lack a number of analytic motion constants.

References

References
1.
Beer
,
F. P.
,
Johnston
,
E. R.
, and
Cornwell
,
P. J.
,
2010
,
Vector Mechanics for Engineers: Dynamics
,
9th ed.
,
McGraw-Hill
,
New York.
Sec. 11.5.
2.
Battin
,
R. H.
,
1999
,
An Introduction to the Mathematics and Methods of Astrodynamics
, revised ed.,
AIAA
,
Reston, VA
, Secs. 3.3-3.4.
3.
Hughes
,
P. C.
,
1986
,
Spacecraft Attitude Dynamics
,
John Wiley and Sons
,
New York
, p.
105
.
4.
Boyce
,
W. E.
, and
DiPrima
,
R. C.
,
1992
,
Elementary Differential Equations and Boundary Value Problems
,
5th ed.
,
Wiley
,
New York
, Sec. 9.5.
5.
Noether
,
E.
,
1918
, “
Invariante Variationsprobleme
,”
Nachr. Ges. Wiss. Gottingen, Math.-Phys. Kl.
,
II
, pp.
235
257
.
6.
Noether
,
E.
,
1971
, “
Invariant Variation Problems
,”
Transp.Theory Stat.Phys.
,
1
(
3
), pp.
186
207
(translation by M. A. Tavel of the original article).10.1080/00411457108231446
7.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1969
,
Mechanics
,
2nd ed.
Pergamon
,
New York
, Chap. 2.
8.
Marsden
,
J. E.
, and
Ratiu
,
T. S.
,
1999
,
Introduction to Mechanics and Symmetry
,
2nd ed.
,
Springer
,
New York
.
9.
Kailath
,
T.
,
1980
,
Linear Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
10.
Cairó
,
L.
,
Feix
,
M. R.
, and
Llibre
,
J.
,
1999
, “
Darboux Method and Search of Invariants for the Lotka-Volterra and Complex Quadratic Systems
,”
J. Math. Phys.
,
40
(
4
), pp.
2074
2091
.10.1063/1.532852
11.
Christopher
,
C.
and
Llibre
,
J.
,
1999
, “
Algebraic Aspects of Integrability for Polynomial Systems
,”
Qual. Theory Dyn. Syst.
,
1
, pp.
71
95
.10.1007/BF02969405
12.
Szebehely
,
V.
,
1967
,
Theory of Orbits
,
Academic
,
New York
, Sec. 1.3.
13.
Whittaker
,
E. T.
,
1970
,
A Treatise on the Analytical Dynamics of Particles and Rigid Bodies
,
4th ed.
,
Cambridge University Press
,
Cambridge, UK
, Sec. 37.
14.
Isidori
,
A.
,
1989
,
Nonlinear Control Systems
,
2nd ed.
,
Springer-Verlag
,
Berlin
, Sec. 1.4.
15.
Bohlin
,
K.
,
1908
, “
Analytische merkmale des dreikörper-problemes
,”
Astronomiska Iakttagelser och Undersökningar å Stockholms Observatorium
,
9
(
1
), pp.
1
72
.
16.
Whittaker
,
E. T.
,
1970
,
A Treatise on the Analytical Dynamics of Particles and Rigid Bodies
,
4th ed.
,
Cambridge University Press
,
Cambridge, UK
, Sec. 164.
17.
Burns
,
S. A.
, and
Palmore
,
J. I.
,
1989
, “
The Newton Transform: An Operational Method for Constructing Integrals of Dynamical Systems
,”
Physica D
,
37
, pp.
83
90
.10.1016/0167-2789(89)90118-8
18.
Perko
,
L.
,
2001
,
Differential Equations and Dynamical Systems
,
3rd ed.
,
Springer
,
New York
, Sec. 1.6.
19.
Strang
,
G.
,
2006
,
Linear Algebra and Its Applications
, 4th ed., Thomson, Belmont, CA, Appendix B, pp.
422
427
.
20.
Ablowitz
,
M. J.
, and
Fokas
,
A. S.
,
2003
,
Complex Variables
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
, p.
185
.
21.
Contopoulos
,
G.
,
2002
,
Order and Chaos in Dynamical Astronomy
,
Springer
,
Berlin
, p.
14
.
22.
Hill
,
G. W.
,
1878
, “
Researches in the Lunar Theory
,”
Am. J. Math.
,
1
(
1
), pp.
5
26
.10.2307/2369430
23.
Clohessy
,
W. H.
and
Wiltshire
,
R. S.
,
1960
, “
Terminal Guidance System for Satellite Rendezvous
,”
J. Aerosp. Sci.
,
27
(
9
), pp.
653
658
.10.2514/8.8704
24.
Battin
,
R. H.
,
1999
,
An Introduction to the Mathematics and Methods of Astrodynamics
, revised ed.,
AIAA
,
Reston, VA
, Sec. 9.1.
You do not currently have access to this content.