The mechanical behavior of soils may be approximated using different models that depend on particular soil characteristics and simplifying assumptions. For this reason, researchers have proposed and expounded upon a large number of constitutive models and approaches that describe various aspects of soil behavior. However, there are few material models capable of predicting the behavior of soils for engineering applications and are at the same time appropriate for implementation into finite element (FE) and multibody system (MBS) algorithms. This paper presents a survey of some of the commonly used continuum-based soil models. The aim is to provide a summary of continuum-based soil models and examine their suitability for integration with the large-displacement FE absolute nodal coordinate formulation (ANCF) and MBS algorithms. Special emphasis is placed on the formulation of soils used in conjunction with vehicle dynamics models. The implementation of these soil models in MBS algorithms used in the analysis of complex vehicle systems is also discussed. Because semiempirical terramechanics soil models are currently the most widely used to study vehicle/soil interaction, a review of classical terramechanics models is presented in order to be able to explain the modes of displacements that are not captured by these simpler models. Other methods such as the particle-based and mesh-free models are also briefly reviewed. A Cam–Clay soil model is used in this paper to explain how such continuum-mechanics based soil models can be implemented in FE/MBS algorithms.

References

References
1.
Whitlow
,
R.
,
1995
,
Basic Soil Mechanics
,
Wiley
,
New York
.
2.
Maugin
,
G. A.
,
1992
,
The Thermomechanics of Plasticity and Fracture
,
Cambridge University Press
,
Cambridge, UK
.
3.
Wong
,
J. Y.
,
2010
,
Terramechanics and Off-Road Vehicle Engineering
,
Elsevier
,
Oxford, UK
.
4.
Bekker
,
M. G.
,
1969
,
Introduction to Terrain-Vehicle Systems
,
The University of Michigan Press
,
Ann Arbor
.
5.
Priddy
,
J. D.
, and
Willoughby
,
W. E.
,
2006
, “
Clarification of Vehicle Cone Index With Reference to Mean Maximum Pressure
,”
J. Terramech.
,
43
, pp.
85
96
.10.1016/j.jterra.2004.10.001
6.
Schmid
,
I. C.
,
1995
, “
Interaction of Vehicle and Terrain Results From 10 Years Research at IKK
,”
J. Terramech.
,
32
, pp.
3
26
.10.1016/0022-4898(95)00005-L
7.
Ryu
,
H. S.
,
Huh
,
K. S.
,
Bae
,
D. S.
, and
Choi
,
J. H.
,
2003
, “
Development of a Multibody Dynamics Simulation Tool for Tracked Vehicles (Part I, Efficient Contact and Nonlinear Dynamic Modeling)
,”
JSME Int. J. Ser. C
,
46
(
2
), pp.
540
549
.10.1299/jsmec.46.540
8.
Garber
,
M.
, and
Wong
,
J. Y.
,
1981
, “
Prediction of Ground Pressure Distribution Under Tracked Vehicles—Part I. An Analytical Method for Predicting Ground Pressure Distribution
,”
J. Terramech.
,
18
(
1
), pp.
1
23
.10.1016/0022-4898(81)90015-X
9.
Okello
,
J. A.
,
1994
, “
Prediction and Experimental Validation of the Field Tractive Performance of a Rubber Track Unit
,”
J. Agric. Eng. Int.
,
59
, pp.
163
171
.10.1006/jaer.1994.1073
10.
Okello
,
J. A.
,
1998
, “
A Theoretical and Experimental Investigation of Rubber Track Performance Models
,”
J. Agric. Eng. Int.
,
69
, pp.
15
24
.10.1006/jaer.1997.0220
11.
Rubinstein
,
D.
, and
Coppock
,
J. L.
,
2007
, “
A Detailed Single-Link Track Model for Multi-Body Dynamic Simulation of Crawlers
,”
J. Terramech.
,
4
(
4
), pp.
355
364
.10.1016/j.jterra.2007.10.004
12.
Park
,
W. Y.
,
Chang
,
Y. C.
,
Lee
,
S. S.
,
Hong
,
J. H.
,
Park
,
J. G.
, and
Lee
,
K. S.
,
2008
, “
Prediction of the Tractive Performance of a Flexible Tracked Vehicle
,”
J. Terramech.
,
45
, pp.
13
23
.10.1016/j.jterra.2007.11.002
13.
Mao
,
S. G.
, and
Han
,
R. P. S.
,
2008
, “
Nonlinear Complementarity Equations for Modeling Tire–Soil Interaction—An Incremental Bekker Approach
,”
J. Sound Vib.
,
312
, pp.
380
398
.10.1016/j.jsv.2007.07.090
14.
Sandu
,
C.
,
Worley
,
M. E.
, and
Morgan
,
J. P.
,
2010
, “
Experimental Study on the Contact Patch Pressure and Sinkage of a Lightweight Vehicle on Sand
,”
J. Terramech.
,
47
, pp.
343
359
.10.1016/j.jterra.2010.04.005
15.
Schwanghart
,
H.
,
1991
, “
Measurement of Contact Area, Contact Pressure and Compaction under Tires in Soft Soil
,”
J. Terramech.
,
28
(
4
), pp.
309
318
.10.1016/0022-4898(91)90012-U
16.
Reece
,
A. R.
,
1965
, “
Principles of Soil-Vehicle Mechanics
,”
Proc. Inst. Mech. Eng., Part D
(J. Automob. Eng.),
180
(
1
), pp.
45
66
.10.1243/PIME_AUTO_1965_180_009_02
17.
Sandu
,
C.
,
Sandu
,
A.
,
Chan
,
B. J.
, and
Ahmadian
,
M.
,
2004
, “
Treating Uncertainties in Multibody Dynamic Systems Using a Polynomial Chaos Spectral Decomposition
,”
Proceedings of the ASME IMECE 2004, 6th Annual Symposium on “Advanced Vehicle Technology
,”
Anaheim, CA
, Nov. 14–19.
18.
Irani
,
R. A.
,
Bauer
,
R. J.
, and
Warkentin
,
A.
,
2011
, “
A Dynamic Terramechanic Model for Small Lightweight Vehicles With Rigid Wheels and Grousers Operating in Sandy Soil
,”
J. Terramech.
,
48
, pp.
307
318
.10.1016/j.jterra.2011.05.001
19.
Fossum
,
A. F.
, and
Brannon
,
R. M.
,
2004
, “
The Sandia Geomodel: Theory and User's Guide
,” Technical Report, Sandia National Laboratories, Albuquerque, NM.
20.
de Souza Neto
,
E. A.
,
Peric
,
D.
, and
Owen
,
D. R. J.
,
2008
,
Computational Methods for Plasticity
,
Wiley
,
New York
.
21.
Araya
,
K.
, and
Gao
,
R.
,
1995
, “
A Non-Linear Three-Dimensional Finite Element Analysis of Subsoiler Cutting With Pressurized Air Injection
,”
J. Agric. Eng. Res.
,
61
, pp.
115
128
.10.1006/jaer.1995.1038
22.
Mouazen
,
A. M.
, and
Nemenyi
,
M.
,
1999
, “
Finite Element Analysis of Subsoiler Cutting in Non-Homogeneous Sandy Loam Soil
,”
Soil Tillage Res.
,
51
, pp.
1
15
.10.1016/S0167-1987(99)00015-X
23.
Rudnicki
,
J. W.
, and
Rice
,
J. R.
,
1975
, “
Conditions for Localization of Deformation in Pressure-Sensitive Dilatant Materials
,”
J. Mech. Phys. Solids
,
23
(
6
), pp.
371
394
.10.1016/0022-5096(75)90001-0
24.
Scott
,
R.
,
1985
, “
Plasticity and Constitutive Relations in Soil Mechanics
,”
J. Geotech. Eng.
,
111
(
5
), pp.
559
605
.10.1061/(ASCE)0733-9410(1985)111:5(559)
25.
Goldscheider
,
M.
,
1982
, “
True Triaxial Tests on Dense Sands
,”
Results of the International Workshop on Constitutive Relations for Soils, Balkema
,
Rotterdam, The Netherlands
, June 9.
26.
An
,
J.
,
2010
, “
Soil Behavior Under Blast Loading
,” Ph.D. thesis, The University of Nebraska, Licoln, NE.
27.
Seta
,
E.
,
Kamegawa
,
T.
, and
Nakajima
,
Y.
,
2003
, “
Prediction of Snow/Tire Interaction Using Explicit FEM and FVM
,”
Tire Sci. Technol.
,
31
(
3
), pp.
173
188
.10.2346/1.2135267
28.
Drucker
,
D. C.
,
Greenberg
,
J.
, and
Prager
,
W.
,
1952
, “
Extended Limit Design Theorems for Continuous Media
,”
Q. Appl. Math.
,
9
, pp.
381
389
.
29.
Vermeer
,
P. A.
, and
De Borst
,
R.
,
1984
, “
Non-Associated Plasticity for Soils, Concrete, and Rock
,”
Heron
,
29
(
3
), pp.
1
64
.
30.
DiMaggio
,
F. L.
, and
Sandler
,
I. S.
,
1971
, “
Material Model for Granular Soils
,”
J. Eng. Mech. Div.
,
97
(
EM3
), pp.
935
950
.
31.
Matsuoka
,
H.
, and
Nakai
,
T.
,
1974
, “
Stress-Deformation and Strength Characteristics of Soil Under Three Different Principal Stresses
,”
Proc. Jpn. Soc. Civil Eng.
,
232
, pp.
59
70
.10.2208/jscej1969.1974.232_59
32.
Brinkgreve
,
R. B. J.
,
2005
, “
Selection of Soil Models and Parameters for Geotechnical Engineering Application
,”
Proceedings of the Soil Constitutive Models: Evaluation, Selection, and Calibration, Geo-Frontier Conference of ASCE
,
Austin, Texas
, Jan. 24–25, pp.
69
98
.
33.
Xia
,
K.
,
2011
, “
Finite Element Modeling of Tire/Terrain Interaction: Application to Predicting Soil Compaction and Tire Mobility
,”
J. Terramech.
,
48
(
2
), pp.
113
123
.10.1016/j.jterra.2010.05.001
34.
Lee
,
J. H.
,
2011
, “
Finite Element Modeling of Interfacial Forces and Contact Stresses of Pneumatic Tire on Fresh Snow for Combined Longitudinal and Lateral Slips
,”
J. Terramech.
,
48
, pp.
171
197
.10.1016/j.jterra.2010.12.003
35.
Fassbender
,
F. R.
,
Fervers
,
C. W.
, and
Harnisch
,
C.
,
1997
, “
Approaches to Predict the Vehicle Dynamics of Soft Soil
,”
Int. J. Veh. Mech. Mobility
,
27
, pp.
173
188
.10.1080/00423119708969653
36.
Meschke
,
G.
,
Liu
,
C.
, and
Mang
,
H. A.
,
1996
, “
Large Strain Finite-Element Analysis of Snow
,”
J. Eng. Mech.
,
122
, pp.
591
602
.10.1061/(ASCE)0733-9399(1996)122:7(591)
37.
Gudehus
,
G.
,
1973
, “
Elastoplastiche Stoffgleichungen Guer Trockenen Sand
,”
Ing.-Arch.
,
42
(
3
), pp.
151
169
.10.1007/BF00533041
38.
William
,
K. J.
, and
Warnke
,
E. P.
,
1975
, “
Constitutive Model for Triaxial Behavior of Concrete
,”
ISMES Seminar on Concrete Structures to Triaxial Stresses
,
Bergamo, Italy
, May 1974, pp.
1
30
.
39.
Wood
,
D. M.
,
1990
,
Soil Behaviour and Critical State Soil Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
40.
Roscoe
,
K. H.
, and
Burland
,
J. B.
,
1968
, “
On the Generalized Stress-Strain Behaviour of Wet Clay
,”
Engineering Plasticity
,
J.
Heymann
, and
F. A.
Leckie
, eds.,
Cambridge University Press
,
Cambridge, UK
, pp.
535
609
.
41.
Carter
,
J. P.
,
Booker
,
J. R.
, and
Wroth
,
C. P.
,
1979
, “
A Critical State Soil Model for Cyclic Loading
,” Research Report No. CE 6, Monograph.
42.
Borja
,
R. I.
, and
Tamagnini
,
C.
,
1996
, “
Cam–Clay Plasticity, Part III: Extension of the Infinitesimal Model to Include Finite Strains
,”
Comput. Methods Appl. Mech. Eng.
,
155
, pp.
73
95
.10.1016/S0045-7825(97)00141-2
43.
Karim
,
M. R.
, and
Gnanendran
,
C. T.
,
2008
, “
Review of Visco-Plastic Soil Models for Predicting the Performance of Embankments on Soft Soils
,”
Proceedings of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics
,
Goa, India
, Oct. 1–6.
44.
Berli
,
M.
,
Kirby
,
J. M.
,
Springman
,
S. M.
, and
Schulin
,
R.
,
2003
, “
Modeling Compaction of Agricultural Subsoils by Tracked Heavy Construction Machinery Under Various Moisture Conditions in Switzerland
,”
Soil Tillage Res.
,
73
, pp.
57
66
.10.1016/S0167-1987(03)00099-0
45.
Bryson
,
L. S.
, and
Salehian
,
A.
,
2011
, “
Performance of Constitutive Models in Predicting Behavior of Remolded Clay
,”
Acta Geotech.
,
6
, pp.
143
154
.10.1007/s11440-011-0144-5
46.
Masin
,
D.
,
Tamagnini
,
C.
,
Viggiani
,
G.
, and
Costanzo
,
D.
,
2006
, “
Directional Response of a Reconstituted Fine-Grained Soil Part II: Performance of Different Constitutive Models
,”
Int. J. Numer. Anal. Methods Geomech.
,
30
(
1
), pp.
1303
1336
.10.1002/nag.527
47.
McDowell
,
G. R.
, and
Hau
,
K. W.
,
2004
, “
A Generalized Modified Cam Clay Model for Clay and Sand
,”
Granular Matter
,
1
, pp.
11
16
.
48.
Drucker
,
D. C.
,
Gibson
,
R. E.
, and
Henkel
,
D. J.
,
1957
, “
Soil Mechanics and Work Hardening Theories of Plasticity
,”
Trans. Am. Soc. Civil Eng.
,
122
, pp.
338
346
.
49.
Chen
,
W. F.
, and
Baladi
,
G. Y.
,
1985
,
Soil Plasticity: Theory and Implementation
,
Elsevier
,
Amsterdam
.
50.
Sandler
,
I. S.
, and
Rubin
,
D.
,
1979
, “
An Algorithm and a Modular Subroutine for the Cap Model
,”
Int. J. Numer. Anal. Methods Geomech.
,
3
, pp.
173
186
.10.1002/nag.1610030206
51.
Simo
,
J. C.
,
Ju
,
J. W.
,
Pister
,
K. S.
, and
Taylor
,
R. L.
,
1988
, “
Assessment of Cap Model: Consistent Return Algorithms and Rate-Dependent Extension
,”
ASCE J. Eng. Mech.
,
114
(
2
), pp.
191
218
.10.1061/(ASCE)0733-9399(1988)114:2(191)
52.
Foster
,
C. D.
,
Regueiro
,
R. A.
,
Fossum
,
A. F.
, and
Borja
,
R. I.
,
2005
, “
Implicit Numerical Integration of a Three-Invariant, Isotropic/Kinematic Hardening Cap Plasticity Model for Geomaterials
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
50–52
), pp.
5109
5138
.10.1016/j.cma.2005.01.001
53.
Brannon
,
R. M.
,
Fossum
,
A. F.
, and
Strack
,
O. E.
,
2009
, “
KAYENTA: Theory and User's Guide
,” Sandia Report No. SAND2009-2282.
54.
Wan
,
R. G.
, and
Guo
,
P. J.
,
2001
, “
Drained Cyclic Behavior of Sand With Fabric Dependence
,”
J. Eng. Mech.
,
127
(
11
), pp.
1106
1116
.10.1061/(ASCE)0733-9399(2001)127:11(1106)
55.
Whittle
,
A. J.
, and
Kavvadas
,
M. J.
,
1994
, “
Formulation of MIT-E3 Constitutive Model for Overconsolidated Clays
,”
J. Geotech. Eng.
,
120
(
1
), pp.
173
198
.10.1061/(ASCE)0733-9410(1994)120:1(173)
56.
Wheeler
,
S. J.
,
Naatanen
,
A.
,
Karstunen
,
M.
, and
Lojander
,
M.
,
2003
, “
An Anisotropic Elastoplastic Model for Soft Clays
,”
Can. Geotech. J.
,
40
, pp.
403
418
.10.1139/t02-119
57.
Perzyna
,
P.
,
1966
, “
Fundamental Problems in Viscoplasticity
,”
Adv. Appl. Mech.
,
9
, pp.
243
377
.10.1016/S0065-2156(08)70009-7
58.
Lorefice
,
R.
,
Etse
,
G.
, and
Carol
,
I.
,
2008
, “
Viscoplastic Approach for Rate-Dependent Failure Analysis of Concrete Joints and Interfaces
,”
Int. J. Solids Struct.
,
45
, pp.
2686
2705
.10.1016/j.ijsolstr.2007.12.016
59.
Darabi
,
M. K.
,
Abu Al-Rub
,
R. K.
,
Masad
,
E. A.
, and
Little
,
D. N.
,
2011
, “
Thermodynamic-Based Model for Coupling Temperature-Dependent Viscoelastic, Viscoplastic, and Viscodamage Constitutive Behavior of Asphalt Mixtures
,”
Int. J. Numer. Anal. Methods Geomech.
,
48
(
1
), pp.
191
207
.
60.
Katona
,
M. G.
,
1984
, “
Verification of Viscoplastic Cap Model
,”
J. Geotech. Eng.
,
110
(
8
), pp.
1106
1125
.10.1061/(ASCE)0733-9410(1984)110:8(1106)
61.
Tong
,
X.
, and
Tuan
,
C. Y.
,
2007
, “
Viscoplastic Cap Model for Soils Under High Strain Rate Loading
,”
J. Geotech. Geoenviron. Eng.
,
133
(
2
), pp.
206
214
.10.1061/(ASCE)1090-0241(2007)133:2(206)
62.
Liu
,
H.
, and
Ling
,
H. I.
,
2007
, “
Unified Elastoplastic-Viscoplastic Bounding Surface Model of Geosynthetics and its Applications to Geosynthetic Reinforced Soil-Retaining Wall Analysis
,”
J. Eng. Mech.
,
133
(
7
), pp.
801
814
.10.1061/(ASCE)0733-9399(2007)133:7(801)
63.
Yin
,
J. H.
, and
Graham
,
J.
,
1999
, “
Elastic Viscoplastic Modeling of the Time Dependent Stress–Strain Behavior of Soils
,”
Can. Geotech. J.
,
36
, pp.
736
745
.10.1139/t99-042
64.
Simo
,
J. C.
, and
Hughes
,
T. J. R.
,
1998
,
Computational Inelasticity
,
Springer
,
New York
.
65.
Duvaut
,
G.
, and
Lions
,
J. L.
,
1972
, “
Les Inequations en Mechanique et en Physique
,”
Travaux et Recherches
, Vol.
21
,
Dunod
,
Paris
.
66.
Abdullah
,
W. S.
,
2011
, “
Viscoplastic Finite Element Analysis of Complex Geotechnical Problems
,”
Jordan J. Civil Eng.
,
5
(
2
), pp.
302
314
.
67.
Saliba
,
J. E.
,
1990
, “
Elastic–Viscoplastic Finite Element Program for Modeling Tire–Soil Interaction
,”
J. Aircr.
,
27
(
4
), pp.
350
357
.10.2514/3.25279
68.
Brezzi
,
F.
,
1990
, “
A Discourse on the Stability Conditions for Mixed Finite Element Formulations
,”
Comput. Methods Appl. Mech. Eng.
,
82
(
1–3
), pp.
27
57
.10.1016/0045-7825(90)90157-H
69.
White
,
J. A.
, and
Borja
,
R. I.
,
2008
, “
Stabilized Low-Order Finite Elements for Coupled Solid-Deformation/Fluid Diffusion and their Application to Fault Zone Transients
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
49–50
), pp.
4353
4366
.10.1016/j.cma.2008.05.015
70.
Alonso
,
E. E.
,
Gens
,
A.
, and
Josa
,
A.
,
1990
, “
A Constitutive Model for Partially Saturated Soils
,”
Geotechnique
,
46
(
2
), pp.
405
430
.10.1680/geot.1990.40.3.405
71.
Kohler
,
R.
,
2007
, “
Numerical Modeling of Partially Saturated Soils in the Context of a Three-Phase FE-Formulation
,” Ph.D. thesis, University of Innsbruck, Innsbruck, Austria.
72.
Dafalias
,
Y. F.
, and
Popov
,
E.
,
1976
, “
Plastic Internal Variables Formalism of Cyclic Plasticity
,”
J. Appl. Mech.
,
98
(
4
), pp.
645
651
.10.1115/1.3423948
73.
Dafalias
,
Y. F.
, and
Herrmann
,
L. R.
,
1982
, “
Bounding Surface Formulation of Soil and Cyclic Loads
,”
Soil Mechanics-Transient and Cyclic Loads
,
G. N.
Pande
, and
O. C.
Zienkiewicz
, eds.,
Wiley
,
London
.
74.
McVay
,
M.
, and
Taesiri
,
Y.
,
1985
, “
Cyclic Behavior of Pavement Base Materials
,”
ASCE J. Geotech. Eng. Div.
,
111
(
1
), pp.
399
416
.10.1061/(ASCE)0733-9410(1985)111:1(1)
75.
Hashiguchi
,
K.
, and
Ueno
,
M.
,
1977
, “
Elastic-Plastic Constitutive Laws of Granular Materials
,”
Proceedings of the 9th International Conference on Soil mechanics and Foundation Engineering
,
Tokyo, Japan
, July 10–15.
76.
Aboim
,
C. A.
, and
Roth
,
W. H.
,
1982
, “
Bounding Surface Plasticity Applied to Cyclic Loading of Sand
,”
Proceedings of the International Symposium on Numerical Models
, September,
Zurich, Switzerland
, pp.
65
72
.
77.
Bardet
,
J. P.
,
1985
, “
Application of Bounding Surface Plasticity to Cyclic Sand Behavior
,”
Proceedings of the 2nd International Conference on Soil Dynamics and Earthquake Engineering
, pp.
3
16
.
78.
Wong
,
H.
,
Morvan
,
M.
, and
Branque
,
D.
,
2009
, “
A 13-Parameter Model for Unsaturated Soil Based on Bounding Surface Plasticity
,”
J. Rock Mech. Geotech. Eng.
,
2
(
2
), pp.
135
142
.
79.
Belytschlo
,
T.
,
Liu
,
W. K.
, and
Moran
,
B.
,
2000
,
Nonlinear Finite Elements for Continua and Structures
,
Wiley
,
New York
.
80.
Li
,
S.
, and
Liu
,
W. K.
,
2002
, “
Meshfree and Particle Methods and their Applications
,”
Appl. Mech. Rev.
,
55
(
1
), pp.
1
34
.10.1115/1.1431547
81.
Tutumluer
,
E.
,
Huang
,
H.
,
Hashash
,
Y.
, and
Ghaboussi
,
J.
,
2006
, “
Aggregate Shape Effects on Ballast Tamping and Railroad Track Lateral Stability
,”
AREMA Annual Conference
,
Loisville, KY
, Sept. 17–20.
82.
Reeves
,
T.
,
Biggers
,
S.
,
Joseph
,
P.
,
Summers
,
J. D.
, and
Ma
,
J.
,
2010
, “
Exploration of Discrete Element Method to Dynamically Model Sandy Terrain
,”
Proceedings of the SAE 2010 World Congress & Exhibition
,
Detroit, MI
, Apr. 12–15, pp.
67
74
.
83.
Knuth
,
M. A.
,
Johnson
,
J. B.
,
Hopkins
,
M. A.
,
Sullivan
,
R. J.
, and
Moore
,
J. M.
,
2012
, “
Discrete Element Modeling of a Mars Exploration Rover Wheel in Granular Material
,”
J. Terramech.
,
49
, pp.
27
36
.10.1016/j.jterra.2011.09.003
84.
Oida
,
A.
, and
Momozu
,
M.
,
2002
, “
Simulation of Soil Behavior and Reaction by Machine Part by Means of DEM
,”
Agric. Eng. Int.: CIGR J. Sci. Res. Dev.
,
4
, pp.
1
7
.
85.
Khulief
,
Y. A.
, and
Shabana
,
A. A.
,
1987
, “
A Continuous Force Model for the Impact Analysis of Flexible Multi-Body Systems
,”
Mech. Mach. Theory
,
22
(
3
), pp.
213
224
.10.1016/0094-114X(87)90004-8
86.
Asaf
,
Z.
,
Rubinstein
,
D.
, and
Shmulevich
,
I.
,
2006
, “
Evaluation of Link-Track Performances Using DEM
,”
J. Terramech.
,
43
(
2
), pp.
141
161
.10.1016/j.jterra.2004.10.004
87.
Nakashima
,
H.
,
Fujii
,
H.
,
Oida
,
A.
,
Momozu
,
M.
,
Kanamori
,
H.
,
Aoki
,
S.
,
Yokoyama
,
T.
,
Shimizu
,
H.
,
Miyasaka
,
J.
, and
Ohdoi
,
K.
,
2010
, “
Discrete Element Method Analysis of Single Wheel Performance for a Small Lunar Rover on Sloped Terrain
,”
J. Terramech.
,
47
, pp.
307
321
.10.1016/j.jterra.2010.04.001
88.
Li
,
W.
,
Huang
,
Y.
,
Cui
,
Y.
,
Dong
,
S.
, and
Wang
,
J.
,
2010
, “
Trafficability Analysis of Lunar Mare Terrain by Means of the Discrete Element Method for Wheeled Rover Locomotion
,”
J. Terramech.
,
47
, pp.
161
172
.10.1016/j.jterra.2009.09.002
89.
Bui
,
H. H.
,
Fukagawa
,
R.
,
Sako
,
K.
, and
Ohno
,
S.
,
2008
, “
Lagrangian MeshFree Particle Method (SPH) for Large Deformation and Failure Flows of Geomaterial Using Elastic-Plastic Soil Constitutive Model
,”
Int. J. Numer. Anal. Methods Geomech.
,
32
, pp.
1537
1570
.10.1002/nag.688
90.
Chen
,
J. S.
,
Pan
,
C.
, and
Wu
,
C. T.
,
1997
, “
Large Deformation Analysis of Rubber Based on a Reproducing Kernel Particle Method
,”
Comput. Mech.
,
19
, pp.
211
227
.10.1007/s004660050170
91.
Nakashima
,
H.
, and
Oida
,
A.
,
2004
, “
Algorithm and Implementation of Soil–Tire Contact Analysis Code Based on Dynamic FE–DE Method
,”
J. Terramech.
,
41
, pp.
127
137
.10.1016/j.jterra.2004.02.002
92.
El-Gindy
,
M.
,
Lescoe
,
R.
,
Oijer
,
F.
,
Johansson
,
I.
, and
Trivedl
,
M.
,
2011
, “
Soil Modeling Using FEA and SPH Techniques for a Tire-Soil Interaction
,”
Proceedings of the ASME 2011 IDET/CIE
,
Washington, DC
, Aug. 28–31.
93.
Lescoe
,
R.
,
El-Gindy
,
M.
,
Koudela
,
K.
,
2010
, “
Tire–Soil Modeling Using Finite Element Analysis and Smooth Particle Hydrodynamics Techniques
,”
Proceedings of the 12th International Conference on Advanced Vehicle and Tire Technologies
,
Montreal, Canada
, Aug. 15–18, pp.
3
18
.
94.
Shoop
,
S. A.
,
2001
, “
Finite Element Modeling of Tire–Terrain Interaction
,” U.S. Army Corps of Engineers, Engineering Research and Development Center, Technical Report No. ERDC/CRREL TR-01-16.
95.
Chi
,
L.
, and
Tessier
,
S.
,
1995
, “
Finite Element Analysis of Soil Compaction Reduction With High Flotation Tires
,”
Proceedings of the 5th North American Conference of the ISTVS
,
Saskatoon, Saskatchewan, Canada
, pp.
167
176
.
96.
Ding
,
L.
,
Deng
,
Z.
,
Gao
,
K.
,
Nagatani
,
K.
, and
Yoshida
,
K.
,
2011
, “
Planetary Rovers' Wheel–Soil Interaction Mechanics: New Challenges and Applications for Wheeled Mobile Robots
,”
Intell. Serv. Rob.
,
4
(
1
), pp.
17
38
.10.1007/s11370-010-0080-5
97.
Azimi
,
A.
,
Hirschkorn
,
M.
,
Ghotbi
,
B. J.
,
Kovecses
,
J.
,
Angeles
,
J.
,
Radziszewski
,
P.
,
Tiechmann
,
M.
,
Courchnesne
,
M.
, and
Gonthier
,
Y.
,
2010
, “
Simulation-Based Rover Performance Evaluation and Effects of Terrain Modeling
,”
In Proceedings of CASI Astronautics Conference ASTRO 2010
, May 4–6.
98.
Liu
,
C. H.
, and
Wong
,
J. Y.
,
1996
, “
Numerical Simulations of Tire–Soil Interaction Based on Critical State Soil Mechanics
,”
J. Terramech.
,
33
(
5
), pp.
209
221
.10.1016/S0022-4898(97)00005-0
99.
Liu
,
C. H.
,
Wong
,
J. Y.
, and
Mang
,
H. A.
,
2000
, “
Large Strain Finite Element Analysis of Sand: Model, Algorithm and Application to Numerical Simulation of Tire–Sand Interaction
,”
Comput. Struct.
,
74
(
3
), pp.
253
265
.10.1016/S0045-7949(99)00049-8
100.
Fervers
,
C. W.
,
2004
, “
Improved FEM Simulation Model for Tire–Soil Interaction
,”
J. Terramech.
,
41
(
2
), pp.
87
100
.10.1016/j.jterra.2004.02.012
101.
Haehnel
,
R. B.
, and
Shoop
,
S. A.
,
2004
, “
A Macroscale Model for Low Density Snow Subjected to Rapid Loading
,”
Cold Reg. Sci. Technol.
,
40
(
3
), pp.
193
211
.10.1016/j.coldregions.2004.08.001
102.
Chiroux
,
R. C.
,
Foster
,
W. A.
,
Johnson
,
C. E.
,
Shoop
,
S. A.
, and
Raper
,
R. L.
,
2005
, “
Three-Dimensional Finite Element Analysis of Soil Interaction With a Rigid Wheel
,”
Appl. Math. Comput.
,
162
(
2
), pp.
707
722
.10.1016/j.amc.2004.01.013
103.
Shoop
,
S. A.
,
Kestler
,
K.
, and
Haehnel
,
R.
,
2006
, “
Finite Element Modeling of Tires on Snow
,”
Tire Sci. Technol.
,
34
(
1
), pp.
2
37
.10.2346/1.2169827
104.
Hambleton
,
J. P.
, and
Drescher
,
A.
,
2008
, “
Modeling Wheel-Induced Rutting in Soils: Indentation
,”
J. Terramech.
,
45
(
6
), pp.
201
211
.10.1016/j.jterra.2008.11.001
105.
Hambleton
,
J. P.
, and
Drescher
,
A.
,
2009
, “
Modeling Wheel-Induced Rutting in Soils: Rolling
,”
J. Terramech.
,
46
(
2
), pp.
35
47
.10.1016/j.jterra.2009.02.003
106.
Grujicic
,
M.
,
Bell
,
W. C.
,
Arakere
,
G.
, and
Haque
,
I.
,
2009
, “
Finite Element Analysis of the Effect of Ep-Armouring on the Off-Road Braking and Sharp-Turn Performance of a High-Mobility Multi-Purpose Wheeled Vehicle
,”
Proc. Inst. Mech. Eng.
, Part D (J. Automob. Eng.),
223
(
11
), pp.
1419
1434
.10.1243/09544070JAUTO1187
107.
Mohsenimanesh
,
A.
,
Ward
,
S. M.
,
Owende
,
P. O. M.
, and
Javadi
,
A.
,
2009
, “
Modelling of Pneumatic Tractor Tyre Interaction With Multi-Layered Soil
,”
Biosyst. Eng.
,
104
(
2
), pp.
191
198
.10.1016/j.biosystemseng.2009.06.020
108.
Hambleton
,
J. P.
, and
Drescher
,
A.
,
2009
, “
On Modeling a Rolling Wheel in the Presence of Plastic Deformation as a Three- or Two-Dimensional Process
,”
Int. J. Mech. Sci.
,
51
(
11
), pp.
846
855
.10.1016/j.ijmecsci.2009.09.024
109.
Grujicic
,
M.
,
Marvi
,
H.
,
Arakere
,
G.
, and
Haque
,
I.
,
2010
, “
A Finite Element Analysis of Pneumatic–Tire/Sand Interactions During Off-Road Vehicle Travel
,”
Multidiscip. Model. Mater. Struct.
,
6
(
2
), pp.
284
308
.
110.
Pruiksma
,
J. P.
,
Kruse
,
G. A. M.
,
Teunissen
,
J. A. M.
, and
van Winnendael
,
M. F. P.
,
2011
, “
Tractive Performance Modelling of the Exomars Rover Wheel Design on Loosely Packed Soil Using the Coupled EulerianLagrangian Finite Element Technique
,”
Proceedings of the 11th Symposium on Advanced Space Technologies in Robotics and Automation
,
Noordwijk, The Netherlands
, Apr. 12–14.
111.
Li
,
H.
, and
Schindler
,
C.
,
2012
, “
Three-Dimensional Finite Element and Analytical Modelling of Tyre–Soil Interaction
,”
Proc. Inst. Mech. Eng., Part K: J. Multibody Dyn.
,
227
(
1
), pp.
42
60
.10.1177/1464419312464183
112.
Nankali
,
N.
,
Namjoo
,
M.
, and
Maleki
,
M. R.
,
2012
, “
Stress Analysis of Tractor Tire Interaction With Soft Soil using 2D Finite Element Method
,”
Int. J. Adv. Des. Manuf. Technol.
,
5
(
3
), pp.
107
111
.
113.
Li
,
H.
, and
Schindler
,
C.
,
2012
, “
Application of Analytical and Finite Element Method in Tyre–Soil Modelling
,”
Int. J. Heavy Veh. Syst.
,
19
(
4
), pp.
333
354
.10.1504/IJHVS.2012.049846
114.
Xia
,
K.
, and
Yang
,
Y.
,
2012
, “
Three-Dimensional Finite Element Modeling of Tire/Ground Interaction
,”
Int. J. Numer. Anal. Methods Geomech.
,
36
(
4
), pp.
498
516
.10.1002/nag.1018
115.
Carter
,
J. P.
,
Booker
,
J. R.
, and
Wroth
,
P.
,
1982
, “
A Critical State Soil Model for Cyclic Loading
,”
Soil Mechanics—Transient and Cyclic Loads
,
G. N.
Pande
,
O. C.
Zienkewicz
, eds.,
Wiley
,
London
, pp.
219
252
.
116.
Shabana
,
A. A.
,
2012
,
Computational Continuum Mechanics
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
.
117.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
,
3rd ed.
,
Cambridge University Press
,
Cambridge, UK
.
118.
Shabana
,
A. A.
,
1998
, “
Computer Implementation of the Absolute Nodal Coordinate Formulation for Flexible Multibody Dynamics
,”
Nonlinear Dyn.
,
16
(
3
), pp.
293
306
.10.1023/A:1008072517368
119.
Nachbagauer
,
K.
,
2012
, “
Development of Shear and Cross Section Deformable Beam Finite Elements Applied to Large Deformation and Dynamic Problems
,” Ph.D. thesis, Johannes Kepler University, Lenz, Austria.
120.
Shabana
,
A. A.
,
Hamed
,
A. M.
,
Mohamed
,
A. A.
,
Jayakumar
,
P.
, and
Letherwood
,
M. D.
,
2012
, “
Use of B-Spline in the Finite Element Analysis: Comparison With ANCF Geometry
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
1
), p.
011008
.10.1115/1.4004377
You do not currently have access to this content.