Laminated glass elements are sandwich structures where the glass presents linear-elastic behavior, whereas the polymer interlayer is, in general, a linear-viscoelastic material. Several analytical models have been proposed since the 1950s to determine the response of laminated glass elements to both frequency and thermal conditions. In this paper, it is proved that Ross, Kerwin, and Ungar's model can be considered as a particular case of the Mead and Markus model when the exponential decay rate per unit length is neglected. The predictions of these models are compared with those obtained from operational modal tests carried out on a laminated glass beam at different temperatures. Finally, a new effective thickness for the dynamic behavior of laminated glass beams, which allows the determination of the dynamic response using a simple monolithic elastic model, is proposed.

References

References
1.
Jones
,
D. I. G.
,
1996
, “
Reflections on Damping Technology at the End of the Twentieth Century
,”
J. Sound Vib.
,
190
(
3
), pp.
449
462
.10.1006/jsvi.1996.0073
2.
Koutsawa
,
Y.
, and
Daya
,
E. M.
,
2007
, “
Static and Free Vibration Analysis of Laminated Glass Beam on Viscoelastic Supports
,”
Int. J. Solids Struct.
,
44
, pp.
8735
8750
.10.1016/j.ijsolstr.2007.07.009
3.
Hooper
,
J. A.
,
1973
, “
On the Bending of Architectural Laminated Glass
,”
Int. J. Mech. Sci.
,
15
, pp.
309
323
.10.1016/0020-7403(73)90012-X
4.
Behr
,
R. A.
,
Minor
,
J. E.
, and
Norville
,
H. S.
,
1993
, “
Structural Behavior of Architectural Laminated Glass
,”
J. Struct. Eng.
,
119
(
1
), pp.
202
222
.10.1061/(ASCE)0733-9445(1993)119:1(202)
5.
Edel
,
M. T.
,
1997
, “
The Effect of Temperature on the Bending of Laminated Glass Units
,” M.S. thesis, Department of Civil Engineering, Texas A&M University, College Station, TX.
6.
Norville
,
H. S.
,
King
,
K. W.
, and
Swoord
,
J. L.
,
1998
, “
Behavior and Strength of Laminated Glass
,”
J. Eng. Mech.
,
124
(
1
), pp.
46
53
.10.1061/(ASCE)0733-9399(1998)124:1(46)
7.
Asik
,
M. Z.
, and
Tezcan
,
S.
,
2005
, “
A Mathematical Model for the Behavior of Laminated Glass Beams
,”
Comput. Struct.
,
83
, pp.
1742
1753
.10.1016/j.compstruc.2005.02.020
8.
Ivanov
,
I. V.
,
2006
, “
Analysis, Modeling and Optimization of Laminated Glasses as Plane Beam
,”
Int. J. Solids Struct.
,
43
(
22-23
), pp.
6887
6907
.10.1016/j.ijsolstr.2006.02.014
9.
Galuppi
,
L.
, and
Royer-Carfagni
,
G. F.
,
2012
, “
Laminated Beams With Viscoelastic Interlayer
,”
J. Solids Struct.
,
49
(
18
), pp.
2637
2645
.10.1016/j.ijsolstr.2012.05.028
10.
Calderone
, I
.
,
Davies
,
P. S.
, and
Benninson
,
S. J.
,
2009
, “
Effective Laminate Thickness for the Design of Laminated Glass
,”
Glass Processing Days
,
Tampere
,
Finland
.
11.
Wölfel
,
E.
,
1987
, “
Nachgiebiger Verbund Eine Näherungslösung und Deren Anwendungsmöglichkeiten
,”
Stahlbau
,
6
, pp.
173
180
.
12.
Galuppi
,
L.
, and
Royer-Carfagni
,
G. F.
,
2012
, “
Effective Thickness of Laminated Glass Beams: New Expression via a Variational Approach
,”
Eng. Struct.
,
38
, pp.
53
67
.10.1016/j.engstruct.2011.12.039
13.
Galuppi
,
L.
, and
Royer-Carfagni
,
G. F.
,
2012
, “
The Effective Thickness of Laminated Glass Plates
,”
J. Mech. Mater. Struct.
,
7
(
4
), pp.
375
400
.10.2140/jomms.2012.7.375
14.
Kerwin
,
E. M.
,
1959
, “
Damping of Flexural Waves by a Constrained Viscoelastic Layer
,”
J. Acoust. Soc. Am.
,
31
(
7
), pp.
952
962
.10.1121/1.1907821
15.
Ross
,
D.
,
Ungar
,
E. E.
, and
Kerwin
,
E. M.
,
1959
, “
Damping of Plate Flexural Vibrations by Means of Viscoelastic Laminate
,”
Structural Damping
,
American Society of Mechanical Engineers (ASME)
,
New York
, pp.
49
88
.
16.
Lu
,
Y. P.
, and
Douglas
,
B. E.
,
1974
, “
On the Forced Vibrations of Three Layer Damped Sandwich Beams
,”
J. Sound Vib.
,
32
(
4
), pp.
513
516
.10.1016/S0022-460X(74)80145-8
17.
Sadasiva Rao
,
Y. V. K.
, and
Nakra
,
B. C.
,
1974
, “
Vibrations of Unsymmetrical Sandwich Beams and Plates With Viscoelastic Cores
,”
J. Sound Vib.
,
34
(
3
), pp.
309
326
.10.1016/S0022-460X(74)80315-9
18.
DiTaranto
,
R. A.
, and
McGraw
,
J. R.
, Jr
.,
1969
, “
Vibratory Bending of Damped Laminated Plates
,”
ASME J. Eng. Industry
,
91
(
4
), pp.
1081
1090
.10.1115/1.3591752
19.
DiTaranto
,
R. A.
,
1965
, “
Theory of Vibratory Bending for Elastic and Viscoelastic Layered Finite-Length Beams
,”
ASME J. Appl. Mech.
,
32
(4), pp.
881
886
.10.1115/1.3627330
20.
Mead
,
D. J.
, and
Markus
,
S.
,
1969
, “
The Forced Vibration of a Three-Layer, Damped Sandwich Beam With Arbitrary Boundary Conditions
,”
J. Sound Vib.
,
10
(
2
), pp.
163
175
.10.1016/0022-460X(69)90193-X
21.
Mead
,
D. J.
, and
Markus
,
S.
,
1970
, “
Loss Factors and Resonant Frequencies of Encastré Damped Sandwich Beam
,”
J. Sound Vib.
,
12
(
1
), pp.
99
112
.10.1016/0022-460X(70)90050-7
22.
Rao
,
D. K.
,
1978
, “
Frequency and Loss Factors of Sandwich Beams Under Various Boundary Conditions
,”
J. Mech. Eng. Sci.
,
20
(
5
), pp.
271
282
.10.1243/JMES_JOUR_1978_020_047_02
23.
Mead
,
D. J.
,
2007
, “
The Measurements of the Loss Factors of Beams and Plates With Constrained and Unconstrained Layers: A Critical Comparison
,”
J. Sound Vib.
,
300
, pp.
744
762
.10.1016/j.jsv.2006.08.023
24.
Bennison
,
S. J.
,
Jagota
,
A.
, and
Smith
,
C. A.
,
1999
, “
Fracture of Glass/PVB Laminates in Biaxial Flexure
,”
J. Am. Ceram. Soc.
,
82
(
7
), pp.
1761
1770
.10.1111/j.1151-2916.1999.tb01997.x
25.
Lee
,
E. H.
,
1955
, “
Stress Analysis in Viscoelastic Bodies
,”
Q. J. Mech. Appl. Math.
,
13
, pp.
183
190
.
26.
Read
,
W. T.
,
1950
, “
Stress Analysis for Compressible Viscoelastic Materials
,”
J. Appl. Phys.
,
21
, pp.
671
674
.10.1063/1.1699729
27.
Ferry
,
J. D.
,
1980
,
Viscoelastic Properties of Polymers
,
3rd ed.
,
John Wiley and Sons
,
New York
.
28.
Williams
,
M. L.
,
Landel
,
R. F.
, and
Ferry
,
J.
,
1955
, “
The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids
,”
J. Am. Chem. Soc.
,
77
, pp.
3701
3707
.10.1021/ja01619a008
29.
Van Duser
,
A.
,
Jagota
,
A.
, and
Bennison
,
S. J.
,
1999
, “
Analysis of Glass/Polyvinyl Butyral Laminates Subjected to Uniform Pressure
,”
J. Eng. Mech.
,
125
(
4
), pp.
435
442
.10.1061/(ASCE)0733-9399(1999)125:4(435)
30.
Park
,
S. W.
, and
Schapery
,
R. A.
,
1999
, “
Methods of Interconversion Between Linear Viscoelastic Material Functions: Part I: A Numerical Method Based on Prony Series
,”
Int. J. Solids Struct.
,
36
(
11
), pp.
1653
1675
.10.1016/S0020-7683(98)00055-9
31.
Fernández
,
P.
,
Rodríguez
,
D.
,
Lamela
,
M. J.
, and
Fernández-Canteli
,
A.
,
2010
, “
Study of the Interconversion Between Viscoelastic Behaviour Functions of PMMA
,”
Mech. Time-Depend. Mater.
,
15
(
2
), pp.
169
180
.10.1007/s11043-010-9128-3
32.
Garcia-Barruetabeña
,
J.
,
Cortés
,
F.
,
Abete
,
J. M.
,
Fernández
,
P.
,
Lamela
,
M. J.
, and
Fernández-Canteli
,
A.
, “
Relaxation Modulus—Complex Modulus Interconversion for Linear Viscoelastic Materials,
Mech. Time-Depend. Mater.
(in press).10.1007/s11043-012-9197-6
33.
Tschoegl
,
N. W.
,
1989
,
The Phenomenological Theory of Linear Viscoelastic Behavior
,
Springer-Verlag
,
Berlin
.
34.
Tzikang
,
C.
,
2000
, “
Determining a Prony Series for a Viscoelastic Material From Time Varying Strain Data
,” Report No. NASA /TM–2000–210123, ARL–TR–2206.
35.
Jones
,
D. I. G.
,
2001
,
Handbook of Viscoelastic Vibration Damping
,
John Wiley and Sons
,
New York
.
36.
Povolo
,
F.
, and
Hermida
,
E.
,
1988
, “
Scaling Concept and the Williams-Landel-Ferry Relationship
,”
J. Mater. Sci.
,
23
, pp.
1255
1259
.10.1007/BF01154587
37.
Enelund
,
M.
,
1995
, “
Vibration and Damping of a Plate on a Viscous Fluid Layer
,”
Proceedings of the 13th IMAC
, pp.
261
267
.
38.
Brincker
,
R.
,
Zhang
,
L.-M.
, and
Anderson
,
P.
,
2000
, “
Modal Identification From Ambient Response Using Frequency Domain Decomposition
,”
Proceedings of the 18th IMAC
, pp.
625
630
.
39.
Van Overschee
,
P.
, and
De Moor
,
B.
,
1996
,
Subspace Identification for Linear Systems: Theory, Implementation and Applications
,
Kluwer Academic
,
Dordrecht, The Netherlands
.
40.
Wanbo
,
L.
,
2008
, “
Experimental and Analytical Estimation of Damping in Beams and Plates With Damping Treatments
,” Ph.D. thesis, University of Kansas, Lawrence, KS.
You do not currently have access to this content.