This paper is an extension of the previous review, done by the same authors (Mikhlin, Y., and Avramov, K. V., 2010, “Nonlinear Normal Modes for Vibrating Mechanical Systems. Review of Theoretical Developments,” ASME Appl. Mech. Rev., 63(6), p. 060802), and it is devoted to applications of nonlinear normal modes (NNMs) theory. NNMs are typical regimes of motions in wide classes of nonlinear mechanical systems. The significance of NNMs for mechanical engineering is determined by several important properties of these motions. Forced resonances motions of nonlinear systems occur close to NNMs. Nonlinear phenomena, such as nonlinear localization and transfer of energy, can be analyzed using NNMs. The NNMs analysis is an important step to study more complicated behavior of nonlinear mechanical systems.This review focuses on applications of Kauderer–Rosenberg and Shaw–Pierre concepts of nonlinear normal modes. The Kauderer–Rosenberg NNMs are applied for analysis of large amplitude dynamics of finite-degree-of-freedom nonlinear mechanical systems. Systems with cyclic symmetry, impact systems, mechanical systems with essentially nonlinear absorbers, and systems with nonlinear vibration isolation are studied using this concept. Applications of the Kauderer–Rosenberg NNMs for discretized structures are also discussed. The Shaw–Pierre NNMs are applied to analyze dynamics of finite-degree-of-freedom mechanical systems, such as floating offshore platforms, rotors, piece-wise linear systems. Studies of the Shaw–Pierre NNMs of beams, plates, and shallow shells are reviewed, too. Applications of Shaw–Pierre and King–Vakakis continuous nonlinear modes for beam structures are considered. Target energy transfer and localization of structures motions in light of NNMs theory are treated. Application of different asymptotic methods for NNMs analysis and NNMs based model reduction are reviewed.

References

References
1.
Mikhlin
,
Y.
, and
Avramov
,
K. V.
,
2010
, “
Nonlinear Normal Modes for Vibrating Mechanical Systems. Review of Theoretical Developments
,”
ASME Appl. Mech. Rev.
,
63
(6)
, p.
060802
.10.1115/1.4003825
2.
Manevich
,
L. I.
,
Mikhlin
,
Y.
, and
Pilipchuk
,
V. N.
,
1989
,
The Method of Normal Oscillation for Essentially Nonlinear Systems
,
Nauka
,
Moscow
(in Russian).
3.
Vakakis
,
A.
,
Manevitch
,
L.
,
Mikhlin
,
Y.
,
Pilipchuk
,
V.
, and
Zevin
,
A.
,
1996
,
Normal Modes and Localization in Nonlinear Systems
,
Wiley
,
New York
.
4.
Avramov
,
K. V.
, and
Mikhlin
,
Y.
,
2010
,
Nonlinear Dynamics of Elastic Systems: Models, Methods and Approaches
,
Vol. 1, Scientific Centre “Regular and Chaotic Dynamics”
,
Moscow
(in Russian).
5.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
, and
Lee
Y. S.
,
2008
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
(Solid Mechanics and Its Applications), Vol. 156,
Springer
,
New York
.
6.
Pilipchuk
,
V. N.
,
2010
,
Nonlinear Dynamics: Between Linear and Impact Limits
,
Springer-Verlag
,
Berlin
.
7.
Amabili
,
M.
,
2008
,
Nonlinear Vibrations and Stability of Shells and Plates
,
Cambridge University Press
,
New York
.
8.
Leissa
,
A. W.
,
1993
, “
Vibration of Shells
,” NASA Report No. SP-288, Government Printing Office, Washington, DC.
9.
Vakakis
,
A. F.
, and
Cetinkaya
,
C.
,
1993
, “
Mode Localization in a Class of Multi Degrees-of-Freedom Nonlinear Systems With Cyclic Symmetry
,”
SIAM J. Appl. Math.
,
35
, pp.
265
282
.10.1137/0153016
10.
Mikhlin
,
Y.
,
Vakakis
,
A. F.
, and
Salenger
,
G.
,
1998
, “
Direct and Inverse Problems Encountered in Vibro-Impact Oscillations of a Discrete System
,”
J. Sound Vib.
,
216
, pp.
227
250
.10.1006/jsvi.1998.1613
11.
Vedenova
,
E.
,
Manevich
,
L.
, and
Pilipchuk
,
V.
,
1985
, “
Normal Oscillations of a String With Concentrated Masses on Non-Linearly Elastic Support
,”
Prikl Matem i Mekh (PMM USSR)
,
49
, pp.
203
211
.
12.
Mikhlin
,
Y.
, and
Morgunov
,
B. I.
,
2001
, “
Normal Vibrations in Near-Conservative Self-Excited and Viscoelastic Nonlinear Systems
,”
Nonlinear Dyn.
,
25
, pp.
33
48
.10.1023/A:1012942413955
13.
Peeters
,
M.
,
Kerschen
,
G.
, and
Golinval
,
J. C.
,
2011
, “
Dynamic Testing of Nonlinear Vibrating Structures Using Nonlinear Normal Modes
,”
J. Sound Vib.
,
330
, pp.
486
509
.10.1016/j.jsv.2010.08.028
14.
Mikhlin
,
Y.
, and
Reshetnikova
,
S. N.
,
2005
, “
Dynamical Interaction of an Elastic System and Essentially Nonlinear Absorber
,”
J. Sound Vib.
,
283
, pp.
91
120
.10.1016/j.jsv.2004.03.061
15.
Mikhlin
,
Y.
, and
Reshetnikova
,
S. N.
,
2006
, “
Dynamical Interaction of an Elastic System and an Vibro-Impact Absorber
,”
Math. Probl. Eng.
,
2006
, p.
37980
.10.1155/MPE/2006/37980
16.
Mikhlin
,
Y.
, and
Reshetnikova
,
S. N.
,
2004
, “
Analysis of Some Problems of the Elastic Vibrations Absorption by Using the Vibro-Impact Oscillators
,”
Dynamics and Strength of Machines
, Vol. 20, O. K. Morachkovsky, ed., National Technical University “KhPI”, Kharkiv, Ukraine, pp.
55
64
(in Russian).
17.
Avramov
,
K. V.
, and
Mikhlin
,
Y.
,
2004
, “
Snap-Through Truss as a Vibration Absorber
,”
J. Vib. Control
,
10
, pp.
291
308
.10.1177/1077546304035604
18.
Avramov
,
K. V.
, and
Mikhlin
,
Y.
,
2004
, “
Forced Oscillations of a System Containing a Snap-Through Truss, Close to Its Equilibrium Position
,”
Nonlinear Dyn.
,
35
, pp.
361
379
.10.1023/B:NODY.0000027757.72648.b5
19.
Avramov
,
K. V.
, and
Mikhlin
,
Y.
,
2006
, “
Snap-Through Truss as an Absorber of Forced Oscillations
,”
J. Sound Vib.
,
290
, pp.
705
722
.10.1016/j.jsv.2005.04.022
20.
Jiang
,
X.
, and
Vakakis
,
A. F.
,
2003
, “
Dual Mode Vibration Isolation Based on Non-Linear Mode Localization
,”
Int. J. Nonlinear Mech.
,
37
, pp.
837
850
.10.1016/S0020-7462(01)00137-8
21.
Breslavsky
,
I.
,
Avramov
,
K. V.
,
Mikhlin
,
Y.
, and
Kochurov
,
R.
,
2008
, “
Nonlinear Modes of Snap-Through Motions of a Shallow Arch
,”
J. Sound Vib.
,
311
, pp.
297
313
.10.1016/j.jsv.2007.09.015
22.
Avramov
,
K. V.
, and
Gendelman
,
O. V.
,
2010
, “
On Interaction of Vibrating Beam With Essentially Nonlinear Absorber
,”
Mecanica
,
45
, pp.
355
365
.10.1007/s11012-009-9252-9
23.
Chati
,
M.
,
Rand
,
R.
, and
Mukherjee
,
S.
,
1997
, “
Modal Analysis of a Cracked Beam
,”
J. Sound Vib.
,
207
, pp.
249
270
.10.1006/jsvi.1997.1099
24.
Donnell
,
L. H.
,
1934
, “
A New Theory for the Buckling of Thin Cylinders Under Axial Compression and Bending
,”
Trans. ASME
,
56
, pp.
795
806
.
25.
Avramov
,
K. V.
, and
Mikhlin
,
Y.
,
2002
, “
Analysis of Nonlinear Normal Modes in Cylindrical Shells
,”
Nonlinear Dynamics of Shells With Fluid-Structure Interaction, NATO CLG Grant Report Proceedings
,
F.
Pellicano
,
Y.
Mikhlin
, and
I.
Zolotarev
, eds.,
Institute of Thermomechanics
,
Prague
, pp.
33
44
.
26.
Avramov
,
K. V.
,
Mikhlin
,
Y.
, and
Kurilov
,
E.
,
2007
, “
Asymptotic Analysis of Nonlinear Dynamics of Simply Supported Cylindrical Shells
,”
Nonlinear Dyn.
,
47
, pp.
331
352
.10.1007/s11071-006-9032-1
27.
Kubenko
,
V. D.
,
Koval'shuk
,
P. S.
, and
Krasnopolskaya
,
T. S.
,
1984
,
Nonlinear Interaction of Modes of Bending Shell Oscillations
,
Naukova Dumka
,
Kiev
(in Russian).
28.
Avramov
,
K. V.
,
2012
, “
Nonlinear Modes of Vibrations for Simply Supported Cylindrical Shell With Geometrical Nonlinearity
,”
Acta Mech.
,
223
, pp.
279
292
.10.1007/s00707-011-0556-1
29.
Avramov
,
K. V.
,
2011
, “
Many-Dimensional Models of Traveling Waves and Nonlinear Modes in Cylindrical Shell
,”
Int. Appl. Mech.
,
47
, pp.
70
77
.10.1007/s10778-011-0444-3
30.
Kochurov
,
R.
, and
Avramov
,
K. V.
,
2010
, “
Nonlinear Modes and Traveling Waves of Parametrically Excited Cylindrical Shells
,”
J. Sound Vib.
,
329
, pp.
2193
2204
.10.1016/j.jsv.2009.12.018
31.
Kochurov
,
R.
, and
Avramov
,
K. V.
,
2011
, “
Parametric Vibrations of Cylindrical Shells Subject to Geometrically Nonlinear Deformation: Multimode Models
,”
Int. Appl. Mech.
,
46
, pp.
1010
1018
.10.1007/s10778-011-0392-y
32.
Mikhlin
,
Y.
, and
Kurilov
,
E.
,
2009
, “
On Nonlinear Vibrations of Cylindrical Shells in Supersonic Flow
,”
J. Mech. Eng.
,
12
, pp.
52
58
(in Russian).
33.
Kurilov
,
E.
, and
Mikhlin
,
Y.
,
2007
, “
Nonlinear Vibrations of Cylindrical Shells With Initial Imperfections in a Supersonic Flow
,”
Int. Appl. Mech.
,
43
, pp.
1000
1008
.10.1007/s10778-007-0099-2
34.
Shaw
,
S. W.
, and
Pierre
,
C.
,
1993
, “
Normal Modes for Non-Linear Vibratory Systems
,”
J. Sound Vib.
,
164
, pp.
85
124
.10.1006/jsvi.1993.1198
35.
Pesheck
,
E.
,
Pierre
,
C.
, and
Shaw
,
S. W.
,
2002
, “
A New Galerkin-Based Approach for Accurate Non-Linear Normal Modes Through Invariant Manifolds
,”
J. Sound Vib.
,
249
, pp.
971
993
.10.1006/jsvi.2001.3914
36.
Jiang
,
D.
,
Pierre
,
C.
, and
Shaw
,
S. W.
,
2005
, “
Nonlinear Normal Modes for Vibratory Systems Under Harmonic Excitation
,”
J. Sound Vib.
,
288
, pp.
791
812
.10.1016/j.jsv.2005.01.009
37.
Falzarano
,
J. M.
,
Clague
,
R. E.
, and
Kota
,
R. S.
,
2001
, “
Application of Nonlinear Normal Mode Analysis to the Nonlinear and Coupled Dynamics of a Floating Offshore Platform With Damping
,”
Nonlinear Dyn.
,
25
, pp.
255
274
.10.1023/A:1012971204385
38.
Mikhlin
,
Y.
, and
Mitrokhin
,
S.
,
2011
, “
Nonlinear Oscillatory Processes in Wheeled Vehicles
,”
Int. Appl. Mech.
,
46
, pp.
1311
1318
.10.1007/s10778-011-0424-7
39.
Mikhlin
,
Y.
, and
Perepelkin
,
N. V.
,
2011
, “
Nonlinear Normal Modes and Their Applications in Mechanical Systems
,”
Proc. Inst. Mech. Eng., Part C
,
225
, pp.
2369
2384
.10.1177/0954406211411254
40.
Villa
,
C. V. S.
,
Sinou
,
J. J.
,
Thouverez
,
F.
,
2005
, “
The Invariant Manifold Approach Applied to Nonlinear Dynamics of a Rotor-Bearing System
,”
Eur. J. Mech. A/Solids
,
24
, pp.
676
689
.10.1016/j.euromechsol.2005.01.008
41.
Avramov
,
K. V.
, and
Borisuk
,
A.
,
2011
, “
Nonlinear Dynamics of One Disk Asymmetrical Rotor Supported by Two Journal Bearings
,”
Nonlinear Dyn.
,
67
, pp.
1201
1219
.10.1007/s11071-011-0063-x
42.
Avramov
,
K. V.
,
2010
, “
A Model of Asymmetric Single-Disk Rotor Self-Vibrations
,”
Strength Mater.
,
42
, pp.
459
470
.10.1007/s11223-010-9237-x
43.
Perepelkin
,
N. V.
, and
Mikhlin
,
Y.
,
2011
, “
Analysis of Forced Modes of One-Disk Rotors on Nonlinear Elastic Base
,”
Proc. Inst. Appl. Math. Mech.: Mech. Solids
,
40
, pp.
221
232
(in Russian).
44.
Perepelkin
,
N. V.
, and
Mikhlin
,
Y.
,
2011
, “
Construction and Analysis of Stability of Resonance Regimes of the One-Disk Rotor Motion on Nonlinear Flexible Supports
,”
Dyn. Systems
,
29
(2)
, pp.
269
280
(in Russian). Available at http://dynsys.crimea.edu/issue/29_2/dynsys_29_2_perepelkin.pdf
45.
Perepelkin
,
N. V.
, and
Mikhlin
,
Y.
,
2011
, “
Nonlinear Normal Modes of Forced Vibrations in Rotor Systems
,”
Proceedings of the 7th European Nonlinear Dynamics Conference
,
Roma, Italy
.
46.
Avramov
,
K. V.
,
2008
, “
Analysis of Forced Vibrations by Nonlinear Modes
,”
Nonlinear Dyn.
,
53
, pp.
117
127
.10.1007/s11071-007-9300-8
47.
Warminski
,
J.
,
2008
, “
Nonlinear Normal Modes of Coupled Self-Excited Oscillators in Regular and Chaotic Vibration Regimes
,”
J. Theor. Appl. Mech.
,
46
, pp.
693
714
. Available at http://ptmts.org.pl/Warminski-3-08.pdf
48.
Chen
,
S. L.
, and
Shaw
,
S. W.
,
1996
, “
Normal Modes for Piecewise Linear Vibratory Systems
,”
Nonlinear Dyn.
,
10
, pp.
135
164
.10.1007/BF00045454
49.
Jiang
,
D.
,
Pierre
,
C.
, and
Shaw
,
S. W.
,
2004
, “
Large-Amplitude Non-Linear Normal Modes of Piecewise Linear Systems
,”
J. Sound Vib.
,
272
, pp.
869
891
.10.1016/S0022-460X(03)00497-8
50.
Boivin
,
N.
,
Pierre
,
C.
, and
Shaw
,
S. W.
,
1995
, “
Non-Linear Normal Modes, Invariance, and Modal Dynamics Approximations of Non-Linear Systems
,”
Nonlinear Dyn.
,
8
, pp.
315
346
. Available at http://deepblue.lib.umich.edu/bitstream/handle/2027.42/43333/11071_2004_Article_BF00045620.pdf;jsessionid=078F06677999DA229F323481CFDBB5AD?sequence=1
51.
Pesheck
,
E.
,
Boivin
,
N.
, and
Pierre
,
C.
,
2001
, “
Nonlinear Modal Analysis of Structural Systems Using Multi-Mode Invariant Manifolds
,”
Nonlinear Dyn.
,
25
, pp.
183
205
.10.1023/A:1012910918498
52.
Pesheck
,
E.
,
Pierre
,
C.
, and
Shaw
,
S. W.
,
2001
, “
Accurate Reduced-Order Models for a Simple Rotor Blade Model Using Nonlinear Normal Modes
,”
Math Comput. Model.
,
33
, pp.
1085
1097
.10.1016/S0895-7177(00)00301-0
53.
Pesheck
,
E.
,
Pierre
,
C.
, and
Shaw
,
S. W.
,
2002
, “
Modal Reduction of a Nonlinear Rotating Beams Through Nonlinear Normal Modes
,”
ASME J.Vib. Acoust.
,
124
(2)
, pp.
229
236
.10.1115/1.1426071
54.
Jiang
,
D.
,
Pierre
,
C.
, and
Shaw
,
S. W.
,
2005
, “
The Construction of Non-Linear Normal Modes for Systems With Internal Resonances
,”
Int. J. Nonlinear Mech.
,
40
, pp.
729
746
.10.1016/j.ijnonlinmec.2004.08.010
55.
Xie
,
W. C.
,
Lee
,
H. P.
, and
Lim
,
S. P.
,
2002
, “
Normal Modes of a Non-Linear Clamped-Clamped Beam
,”
J. Sound Vib.
,
250
, pp.
339
349
.10.1006/jsvi.2001.3918
56.
Avramov
,
K. V.
,
Pierre
,
C.
, and
Shyriaieva
,
N.
,
2007
, “
Flexural-Flexural-Torsional Nonlinear Vibrations of Pre-Twisted Rotating Beams With Asymmetric Cross-Sections
,”
J. Vib. Control
,
13
, pp.
329
364
.10.1177/1077546307073675
57.
Avramov
,
K. V.
,
Galas
,
O. S.
, and
Morachkovskii
,
O. K.
,
2009
, “
Analysis of Flexural-Flexural-Torsional Nonlinear Vibrations of Twisted Rotating Beams With Cross-Sectional Deplanation
,”
Strength Mater.
,
41
, pp.
200
208
.10.1007/s11223-009-9111-x
58.
Avramov
,
K. V.
,
2009
, “
Nonlinear Modes of Parametric Vibrations and Their Applications to Beams Dynamics
,”
J. Sound Vib.
,
322
, pp.
476
489
.10.1016/j.jsv.2008.07.013
59.
Touze
,
C.
,
Thomas
,
O.
, and
Chaigne
,
A.
,
2004
, “
Hardening/Softening Behaviour in Non-Linear Oscillations of Structural Systems Using Non-Linear Normal Modes
,”
J. Sound Vib.
,
273
, pp.
77
101
.10.1016/j.jsv.2003.04.005
60.
Li
,
X.
,
Chen
,
Y.
,
Wu
,
Z.
, and
Chen
,
F.
,
2002
, “
Bifurcation of Nonlinear Internal Resonant Normal Modes of a Class of Multi-Degrees-Of-Freedom Systems
,”
Mech. Res. Commun.
,
29
, pp.
299
306
.10.1016/S0093-6413(02)00269-0
61.
Soares
,
M. E. S.
, and
Mazzilli
,
C. E. N.
,
2000
, “
Nonlinear Normal Modes of Planar Frames Discretised by the Finite Element Method
,”
Comput. Struct.
,
77
, pp.
485
493
.10.1016/S0045-7949(99)00233-3
62.
Legrand
,
M.
,
Jiang
,
D.
,
Pierre
,
C.
, and
Shaw
,
S. W.
,
2004
, “
Nonlinear Normal Modes of a Rotating Shaft Based on the Invariant Manifold Method
,”
Int. J. Rotating Mach.
,
10
, pp.
319
335
.10.1155/S1023621X04000338
63.
Mazzilli
,
C. E. N.
,
Monticelli
,
G. C.
, and
Galan Neto
,
N. A.
,
2011
, “
Reduced-Order Modeling in Non-Linear Dynamics: An Approach Based on Non-Linear Modes
,”
Proc. Inst. Mech. Eng., Part C
,
225
, pp.
2354
2368
.10.1177/0954406211410267
64.
Avramov
,
K. V.
, and
Strel'nikova
,
E. A.
,
2011
, “
Nonlinear Normal Modes of Self-Sustained Vibrations of Finite-Degrees-of-Freedom Mechanical Systems
,”
Not. Nat. Acad. Sci. Ukraine
,
2
, pp.
44
51
(in Russian). Available at http://www.nbuv.gov.ua/portal/All/reports/2011-02/11-02-07.pdf
65.
Breslavsky
,
I.
, and
Avramov
,
K. V.
,
2011
, “
Nonlinear Modes of Cylindrical Panels With Complex Boundaries. R-Function Method
,”
Meccanica
,
46
, pp.
817
832
.10.1007/s11012-010-9340-x
66.
Breslavsky
,
I. D.
, and
Avramov
,
K. V.
,
2010
, “
Vibrations of a Complex-Shaped Panel
,”
Int. Appl. Mech.
,
46
, pp.
580
587
.10.1007/s10778-010-0344-y
67.
Rvachev
,
V. L.
,
1982
,
R-Functions Theory and Some of Its Applications
,
Naukova Dumka
,
Kiev
(in Russian).
68.
Avramov
,
K. V.
,
Tyshkovets
,
O.
, and
Maksymenko-Sheyko
,
K. V.
,
2010
, “
Analysis of Nonlinear Free Vibration of Circular Plates With Cut-Outs Using R-Function Method
,”
ASME J. Vib. Acoust.
,
132
(5), p.
051001
.10.1115/1.4001496
69.
Breslavsky
,
I. D.
,
Strel'nikova
,
E. A.
, and
Avramov
,
K. V.
,
2011
, “
Dynamics of Shallow Shells With Geometrical Nonlinearity Interacting With Fluid
,”
Comput. Struct.
,
89
, pp.
496
506
.10.1016/j.compstruc.2010.12.006
70.
Belotserkovskii
,
S. M.
,
1977
, “
Study of the Unsteady Aerodynamics of Lifting Surfaces Using the Computer
,”
Ann. Rev. Fluid Mech.
,
9
, pp.
469
494
.10.1146/annurev.fl.09.010177.002345
71.
Shaw
,
S.
, and
Pierre
,
C.
,
1994
, “
Normal Modes of Vibration for Non-Linear Continuous Systems
,”
J. Sound Vib.
,
169
, pp.
319
347
.10.1006/jsvi.1994.1021
72.
Hsieh
,
S. R.
,
Shaw
,
S. W.
, and
Pierre
,
C.
,
1994
, “
Normal Modes for Large Amplitude Vibration of a Cantilever Beam
,”
Int. J. Solids Struct.
,
31
, pp.
1981
2014
.10.1016/0020-7683(94)90203-8
73.
Pellicano
,
F.
, and
Vakakis
,
A. F.
,
2001
, “
Normal Modes and Boundary Layers for a Slender Tensioned Beam on a Nonlinear Foundation
,”
Nonlinear Dyn.
,
25
, pp.
79
93
.10.1023/A:1012986128976
74.
King
,
M. E.
, and
Vakakis
,
A. F.
,
1995
, “
Asymptotic Analysis of Nonlinear Mode Localization in a Class of Coupled Continuous Structures
,”
Int. J. Soilds Struct.
,
32
, pp.
1161
1177
.10.1016/0020-7683(94)00180-5
75.
Samaranayake
,
S.
, and
Bajaj
,
A. K.
,
1997
, “
Subharmonic Oscillations in Harmonically Excited Mechanical Systems With Cyclic Symmetry
,”
J. Sound Vib.
,
206
, pp.
39
60
.10.1006/jsvi.1997.1075
76.
Wang
,
F.
,
Bajaj
,
A.
, and
Kamiya
,
K.
,
2005
, “
Nonlinear Normal Modes and Their Bifurcations for an Inertially Coupled Nonlinear Conservative System
,”
Nonlinear Dyn.
,
42
, pp.
233
265
.10.1007/s11071-005-3582-5
77.
Wang
,
F.
,
Bajaj
,
A. K.
,
2011
, “
Model Reduction for Discrete and Elastic Structures With Internal Quadratic Non-Linearities
,”
Proc. Inst. Mech Eng., Part C
,
225
, pp.
2422
2435
.10.1177/0954406211413658
78.
Vestroni
,
F.
,
Luongo
,
A.
, and
Paolone
,
A.
,
2008
, “
A Perturbation Method for Evaluating Nonlinear Normal Modes of a Piecewise Linear Two-Degrees-of-Freedom System
,”
Nonlinear Dyn.
,
54
, pp.
379
393
.10.1007/s11071-008-9337-3
79.
Warminski
,
J.
,
2010
, “
Nonlinear Normal Modes of a Self-Excited System Driven by Parametric and External Excitation
,”
Nonlinear Dyn.
,
61
, pp.
677
689
.10.1007/s11071-010-9679-5
80.
Nayfeh
,
A. H.
, and
Nayfeh
,
S. A.
,
1994
, “
On Nonlinear Modes of Continuous Systems
,”
ASME J. Vib. Acoust.
,
116
(1), pp.
129
136
.10.1115/1.2930388
81.
Nayfeh
,
A. H.
, and
Nayfeh
,
S. A.
,
1995
, “
Nonlinear Normal Modes of a Continuous System With Quadratic Nonlinarities
,”
ASME J. Vib. Acoust.
,
117
(2), pp.
199
205
.10.1115/1.2873898
82.
Nayfeh
,
A. H.
,
Lacarbonara
,
W.
, and
Chin
,
C. M.
,
1999
, “
Nonlinear Normal Modes of Buckled Beams: Three-to-One and One-to-One Internal Resonances
,”
Nonlinear Dyn.
,
18
, pp.
253
273
.10.1023/A:1008389024738
83.
Yabuno
,
H.
, and
Nayfeh
,
A. H.
,
2001
, “
Nonlinear Normal Modes of a Parametrically Excited Cantilever Beam
,”
Nonlinear Dyn.
,
25
, pp.
65
77
.10.1023/A:1012938213046
84.
Pilipchuk
,
V. N.
,
2009
, “
Transition From Normal to Local Modes in an Elastic Beam Supported by Nonlinear Springs
,”
J. Sound Vib.
,
322
, pp.
554
563
.10.1016/j.jsv.2008.09.022
85.
Ma
,
X.
,
Azeez
,
M. F. A.
, and
Vakakis
,
A. F.
,
2000
, “
Non-Linear Normal Modes and Non-Parametric System Identification of Non-Linear Oscillators
,”
Mech. Syst. Signal Process.
,
14
, pp.
37
48
.10.1006/mssp.1999.1267
86.
Lacarbonara
,
W.
, and
Rega
,
G.
,
2003
, “
Resonant Non-Linear Normal Modes. Part II: Activation/Orthogonality Conditions for Shallow Structural Systems
,”
Int. J. Nonlinear Mech.
,
38
, pp.
873
887
.10.1016/S0020-7462(02)00034-3
87.
Touze
,
C.
, and
Amabili
,
M.
,
2006
, “
Nonlinear Normal Modes for Damped Geometrically Nonlinear Systems: Applications to Reduced-Order Modelling of Harmonically Forced Structures
,”
J. Sound Vib.
,
298
, pp.
958
981
.10.1016/j.jsv.2006.06.032
88.
Touze
,
C.
,
Amabili
,
M.
, and
Thomas
,
O.
,
2008
, “
Reduced-Order Models for Large-Amplitude Vibrations of Shells Including In-Plane Inertia
,”
Comput. Methods Appl. Mech. Eng.
,
197
, pp.
2030
2045
.10.1016/j.cma.2008.01.002
89.
Amabili
,
M.
, and
Touze
,
C.
,
2007
, “
Reduced-Order Models for Nonlinear Vibrations of Fluids-Filled Circular Cylindrical Shells: Comparison of POD and Asymptotic Nonlinear Normal Modes Methods
,”
J. Fluids Struct.
,
23
, pp.
885
903
.10.1016/j.jfluidstructs.2006.12.004
90.
Pellicano
,
F.
,
Amabili
,
M.
, and
Vakakis
,
A. F.
,
2000
, “
Nonlinear Vibrations and Multiple Resonances of Fluid-Filled, Circular Shells. Part 2: Perturbation Analysis
,”
ASME J. Vib. Acoust.
,
122
(4)
, pp.
355
364
.10.1115/1.1288591
91.
Amabili
,
M.
,
Pellicano
,
F.
,
Paidoussis
,
M. P.
,
1998
, “
Nonlinear Vibrations of Simply Supported, Circular Cylindrical Shells, Coupled to Quiescent Fluid
,”
J. Fluids Struct.
,
12
, pp.
883
918
.10.1006/jfls.1998.0173
92.
King
,
M. E.
, and
Vakakis
,
A. F.
,
1996
, “
An Energy-Based Approach to Computing Resonant Nonlinear Normal Modes
,”
ASME J. Appl. Mech.
,
63
(3)
, pp.
810
819
.10.1115/1.2823367
93.
Boivin
,
N.
,
Pierre
,
C.
, and
Shaw
,
S. W.
,
1995
, “
Nonlinear Modal Analysis of Structural Systems Featuring Internal Resonances
,”
J. Sound Vib.
,
182
, pp.
336
341
.10.1006/jsvi.1995.0201
94.
Vakakis
,
A. F.
,
1996
, “
Nonlinear Mode Localization in Systems Governed by Partial Differential Equations
,”
ASME Appl. Mech. Rev.
,
49
, pp.
87
99
.10.1115/1.3101890
95.
Lacarbonara
,
W.
,
Rega
,
G.
, and
Nayfeh
,
A. H.
,
2003
, “
Resonant Nonlinear Normal Modes, Part I: Analytical Treatment for Structural One Dimensional Systems
,”
Int. J. Nonlinear Mech.
,
38
, pp.
851
872
.10.1016/S0020-7462(02)00033-1
96.
Zaslavskii
,
G. M.
,
2005
,
Hamiltonian Chaos and Fractional Dynamics
,
Oxford University Press
,
Oxford
.
97.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1995
,
Nonlinear Oscillations
,
John Wiley & Sons
,
New York
.
98.
Nayfeh
,
A. H.
,
2000
,
Nonlinear Interactions: Analytical, Computational and Experimental Methods
,
Wiley Interscience
,
New York
.
99.
Nayfeh
,
S. A.
, and
Nayfeh
,
A. H.
,
1994
, “
Energy Transfer From High- to Low-Frequency Modes in a Flexible Structure via Modulation
,”
ASME J. Vib. Acoust.
,
116
(2)
, pp.
203
207
.10.1115/1.2930413
100.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1995
, “
Energy Transfer From High-Frequency to Low-Frequency Modes in Structures
,”
ASME J. Vib. Acoust.
,
117
(B)
, pp.
186
195
.10.1115/1.2838662
101.
Oh
,
K.
, and
Nayfeh
,
A. H.
,
1998
, “
High- to Low-Frequency Modal Interactions in a Cantilever Composite Plate
,”
ASME J. Vib. Acoust.
,
120
(2)
, pp.
579
587
.10.1115/1.2893867
102.
Malatkar
,
P.
, and
Nayfeh
,
A. H.
,
2003
, “
On the Transfer of Energy Between Widely Spaced Modes in Structures
,”
Nonlinear Dyn.
,
31
, pp.
225
242
.10.1023/A:1022072808880
103.
Kerschen
,
G.
,
Peeters
,
M.
,
Golinval
,
J. C.
, and
Vakakis
,
A. F.
,
2009
, “
Nonlinear Normal Modes, Part I: A Useful Framework for the Structural Dynamics
,”
Mech. Syst. Signal Process.
,
23
, pp.
195
216
.10.1016/j.ymssp.2008.04.002
104.
Breslavsky
,
I. D.
, and
Avramov
,
K. V.
,
2012
, “
Two Modes Nonresonance Interaction for Rectangular Plate With Geometrical Non-Linearity
,”
Nonlinear Dyn.
,
69
, pp.
285
294
.10.1007/s11071-011-0264-3
105.
Manevitch
,
L. I.
,
2007
, “
New Approach to Beating Phenomenon in Coupled Nonlinear Oscillatory Chain
,”
Arch. Appl. Mech.
,
77
, pp.
301
312
.10.1007/s00419-006-0081-1
106.
Manevitch
,
L. I.
, and
Gendelman
,
O. V.
,
2011
,
Tractable Models of Solid Mechanics
,
Springer
,
Berlin
.
107.
Anderson
,
P. W.
,
1958
, “
Absence of Diffusion in Certain Random Lattices
,”
Phys. Rev.
,
109
, pp.
1492
1505
.10.1103/PhysRev.109.1492
108.
Pierre
,
C.
, and
Dowell
,
E. H.
,
1987
, “
Localization of Vibrations by Structural Irregularity
,”
J. Sound Vib.
,
114
, pp.
549
564
.10.1016/S0022-460X(87)80023-8
109.
Hodges
,
C. H.
,
1982
, “
Confinement of Vibration by Structural Irregularity
,”
J. Sound Vib.
,
82
, pp.
411
424
.10.1016/S0022-460X(82)80022-9
110.
Vakakis
,
A. F.
,
Nayfeh
,
A. H.
, and
King
,
M. E.
,
1993
, “
A Multiple-Scales Analysis of Nonlinear, Localized Modes in a Cyclic Periodic System
,”
ASME J. Appl. Mech.
,
60
(2)
, pp.
388
397
.10.1115/1.2900806
111.
Vakakis
,
A. F.
,
King
,
M. E.
, and
Pearlstein
,
A. J.
,
1994
, “
Forced Localization in a Periodic Chain of Nonlinear Oscillators
,”
Int. J. Nonlinear Mech.
,
29
, pp.
429
447
.10.1016/0020-7462(94)90013-2
112.
King
,
M. E.
, and
Vakakis
,
A. F.
,
1995
, “
Mode Localization in a System of Coupled Flexible Beams With Geometric Nonlinearities
,”
ZAMM
,
75
, pp.
127
139
.10.1002/zamm.19950750209
113.
Vakakis
,
A. F.
,
1992
, “
Fundamental and Subharmonic Resonances in a System With a 1-1 Internal Resonance
,”
Nonlinear Dyn.
,
3
, pp.
123
143
.10.1007/BF00118989
114.
Vakakis
,
A. F.
,
1994
, “
Passive Spatial Confinement of Impulsive Responses in Coupled Nonlinear Beams
,”
AIAA J.
,
32
, pp.
1902
1910
.10.2514/3.12190
115.
Aubrecht
,
J.
, and
Vakakis
,
A. F.
,
1996
, “
Localized and Non-Localized Nonlinear Normal Modes in a Multi-Span Beam With Geometric Nonlinearities
,”
ASME J. Vib. Acoust.
,
118
(4), pp.
533
542
.10.1115/1.2888332
116.
Aubrecht
,
J.
,
Vakakis
,
A. F.
,
Tsao
,
T. C.
, and
Bentsman
,
J.
,
1996
, “
Experimental Study of Nonlinear Transient Motion Confinement in a System of Coupled Beams
,”
J. Sound Vib.
,
195
, pp.
629
648
.10.1006/jsvi.1996.0451
117.
Emaci
,
E.
,
Nayfeh
,
T. A.
, and
Vakakis
,
A. F.
,
1997
, “
Numerical and Experimental Study of Nonlinear Localization in a Flexible Structure With Vibro-Impacts
,”
ZAMM
,
77
, pp.
527
541
.10.1002/zamm.19970770712
118.
Avramov
,
K. V.
, and
Gendelman
,
O. V.
,
2009
, “
Interaction of Elastic System With Snap-Through Vibration Absorber
,”
Int. J. Nonlinear Mech.
,
44
, pp.
81
89
.10.1016/j.ijnonlinmec.2008.09.004
119.
Gendelman
,
O. V.
,
2001
, “
Transition of Energy to a Nonlinear Localized Mode in a Highly Asymmetric System of Two Oscillators
,”
Nonlinear Dyn.
,
25
, pp.
237
253
.10.1023/A:1012967003477
120.
Vakakis
,
A. F.
,
2001
, “
Inducing Passive Nonlinear Energy Sinks in Vibrating Systems
,”
ASME J. Vib. Acoust.
,
123
(3), pp.
324
332
.10.1115/1.1368883
121.
Vakakis
,
A. F.
, and
Gendelman
,
O.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators: Part II—Resonance Capture
,”
ASME J. Appl. Mech.
,
68
(1), pp.
42
48
.10.1115/1.1345525
122.
Gendelman
,
O. V.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
McCloskey
,
R.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators: Part I—Dynamics of the Underlying Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
68
(1), pp.
34
41
.10.1115/1.1345524
123.
Gendelman
,
O.
,
2011
, “
Targeted Energy Transfer in Systems With External and Self–Excitation
,”
Proc. Inst. Mech. Eng.
, Part C,
225
, pp.
2007
2043
.10.1177/0954405411403253
124.
Manevitch
,
L. I.
,
1999
, “
Complex Representation of Dynamics of Coupled Nonlinear Oscillators
,”
Mathematical Models of Non-Linear Excitations, Transfer, Dynamics, and Control in Condensed Systems and Other Media
,
Kluwer Academic/Plenum Publishers
,
New York
, pp.
269
300
.
125.
McFarland
,
D. M.
,
Kerschen
,
G.
,
Kowtko
,
J. J.
,
Lee
,
Y. S.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2005
, “
Experimental Investigation of Targeted Energy Transfer in Strongly and Nonlinearly Coupled Oscillators
,”
J. Acoust. Soc. Am.
,
118
, pp.
791
799
.10.1121/1.1944649
126.
Gendelman
,
O. V.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2003
, “
A Degenerate Bifurcation Structure in the Dynamics of Coupled Oscillators With Essential Stiffness Nonlinearities
,”
Nonlinear Dyn.
,
33
, pp.
1
10
.10.1023/A:1025515112708
127.
Vakakis
,
A. F.
, and
Rand
,
R. H.
,
2004
, “
Non-Linear Dynamics of a System of Coupled Oscillators With Essential Stiffness Non-Linearities
,”
Int. J. Nonlinear Mech.
,
39
, pp.
1079
1091
.10.1016/S0020-7462(03)00098-2
128.
Gendelman
,
O. V.
,
2004
, “
Bifurcations of Nonlinear Normal Modes of Linear Oscillator With Strongly Nonlinear Damped Attachment
,”
Nonlinear Dyn.
,
37
, pp.
115
128
.10.1023/B:NODY.0000042911.49430.25
129.
Pilipchuk
,
V. N.
,
Vakakis
,
A. F.
, and
Azeez
,
M. A. F.
,
1997
, “
Study of a Class of Subharmonic Motions Using a Non-Smooth Temporal Transformation
,”
Phys. D.
,
100
, pp.
145
164
.10.1016/S0167-2789(96)00171-6
130.
Vakakis
,
A. F.
,
McFarland
,
D. M.
,
Bergman
,
L.
,
Manevitch
,
L. I.
, and
Gendelman
,
O.
,
2004
, “
Isolated Resonance Captures and Resonance Capture Cascades Leading to Single- or Multi-Mode Passive Energy Pumping in Damped Coupled Oscillators
,”
ASME J. Vib. Acoust.
,
126
(2)
, pp.
235
244
.10.1115/1.1687397
131.
Starosvetsky
,
Y.
, and
Gendelman
,
O. V.
,
2009
, “
Vibration Absorption in Systems Comprising Nonlinear Energy Sink: Nonlinear Damping
,”
J. Sound Vib.
,
324
, pp.
916
939
.10.1016/j.jsv.2009.02.052
132.
Gourdon
,
E.
, and
Lamarque
,
C. H.
,
2005
, “
Energy Pumping for a Larger Span of Energy
,”
J. Sound Vib.
,
285
, pp.
711
720
.10.1016/j.jsv.2004.10.003
133.
Musienko
,
A. I.
,
Lamarque
,
C. H.
, and
Manevitch
,
L. I.
,
2006
, “
Design of Mechanical Energy Pumping Devices
,”
J. Vib. Control
,
12
, pp.
355
371
.10.1177/1077546306062098
134.
Tsakirtzis
,
S.
,
Panagopoulos
,
P. N.
,
Kerschen
,
G.
,
Gendelman
,
O.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2007
, “
Complex Dynamics and Targeted Energy Transfer in Systems of Linear Oscillators Coupled to Multi-Degrees-of-Freedom Essentially Nonlinear Attachments
,”
Nonlinear Dyn.
,
48
, pp.
285
318
.10.1007/s11071-006-9089-x
135.
Vakakis
,
A. F.
,
Manevitch
,
L. I.
,
Gendelman
,
O.
,
Bergman
,
L. A.
,
2003
, “
Dynamics of Linear Discrete Systems Connected to Local Essentially NonLinear Attachments
,”
J. Sound Vib.
,
264
, pp.
559
577
.10.1016/S0022-460X(02)01207-5
136.
Tsakirtzis
,
S.
,
Vakakis
,
A. F.
, and
Panagopoulos
,
S.
,
2007
, “
Broadband Energy Exchanges Between a Dissipative Elastic Rod and a Multi-Degrees-of-Freedom Dissipative, Essentially Nonlinear Attachment
,”
Int. J. Nonlinear Mech.
,
42
, pp.
36
57
.10.1016/j.ijnonlinmec.2006.11.013
137.
Georgiades
,
F.
, and
Vakakis
,
A. F.
,
2007
, “
Dynamics of a Linear Beam With an Attached Local Nonlinear Energy Sink
,”
Commun Nonlinear Sci Numer Simul.
,
12
, pp.
643
661
.10.1016/j.cnsns.2005.07.003
138.
Panagopoulos
,
P. N.
,
Georgiades
,
F.
,
Tsakirtzis
,
S.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2007
, “
Multi-Scaled Analysis of the Damped Dynamics of an Elastic Continuum With an Essentially Nonlinear End Attachment
,”
Int. J. Solids Struct.
,
44
, pp.
6256
6278
.10.1016/j.ijsolstr.2007.02.025
139.
Georgiades
,
F.
, and
Vakakis
,
A. F.
,
2009
, “
Passive Targeted Energy Transfers and Strong Modal Interactions in the Dynamics of a Thin Plate With Strongly Nonlinear End Attachments
,”
Int. J. Solids Struct.
,
46
, pp.
2330
2353
.10.1016/j.ijsolstr.2009.01.020
140.
Gendelman
,
O. V.
,
Gourdon
,
E.
, and
Lamarque
,
C. H.
,
2006
, “
Quasi-Periodic Energy Pumping in Coupled Oscillators Under Periodic Forcing
,”
J. Sound Vib.
,
294
, pp.
651
662
.10.1016/j.jsv.2005.11.031
141.
Gendelman
,
O. V.
, and
Starosvetsky
,
Y.
,
2007
, “
Quasi-Periodic Response Regimes of Linear Oscillator Coupled to Nonlinear Energy Sink Under Periodic Forcing
,”
ASME J. Appl. Mech.
,
74
(2)
, pp.
325
331
.10.1115/1.2198546
142.
Gendelman
,
O. V.
,
Starosvetsky
,
Y.
, and
Feldman
,
M.
,
2008
, “
Attractors of Harmonically Forced Linear Oscillator With Attached Nonlinear Energy Sink I: Description of Response Regimes
,”
Nonlinear Dyn.
,
51
, pp.
31
46
.10.1007/s11071-006-9167-0
143.
Starosvetsky
,
Y.
, and
Gendelman
,
O. V.
,
2008
, “
Strongly Modulated Response in Forced 2DOF Oscillatory System With Essential Mass and Potential Asymmetry
,”
Phys. D.
,
237
, pp.
1719
1733
.10.1016/j.physd.2008.01.019
144.
Shiroky
,
I. B.
, and
Gendelman
,
O. V.
,
2008
, “
Essentially Nonlinear Vibration Absorber in a Parametrically Excited System
,”
ZAMM
,
88
, pp.
573
596
.10.1002/zamm.200800009
145.
Sinha
,
S. C.
,
Redkara
,
S.
, and
Butcher
,
E. A.
,
2005
, “
Order Reduction of Nonlinear Systems with Time Periodic Coefficients Using Invariant Manifolds
,”
J. Sound Vib.
,
284
, pp.
985
1002
.10.1016/j.jsv.2004.07.027
146.
Gabale
,
A. P.
, and
Sinha
,
S. C.
,
2011
, “
Model Reduction of Nonlinear Systems With External Periodic Excitations via Construction of Invariant Manifolds
,”
J. Sound Vib.
,
330
, pp.
2596
2607
.10.1016/j.jsv.2010.12.013
147.
Gabale
,
A.
, and
Sinha
,
S. C.
,
2010
, “
Construction of Reduced Order Controllers for Nonlinear Systems With Periodic Coefficients
,”
J. Vib. Control
,
17
, pp.
391
406
.10.1177/1077546309356009
148.
Steindl
,
A.
, and
Troger
,
H.
,
2001
, “
Methods for Dimension Reduction and their Application in Nonlinear Dynamics
,”
Int. J. Solids Struct.
,
38
, pp.
2131
2147
.10.1016/S0020-7683(00)00157-8
149.
Apiwattanalunggarn
,
P.
,
Shaw
,
S.
, and
Pierre
,
C.
,
2005
, “
Component Mode Synthesis Using Nonlinear Normal Modes
,”
Nonlinear Dyn.
,
41
, pp.
17
46
.10.1007/s11071-005-2791-2
150.
Rand
,
R. H.
, and
Ramani
,
D. V.
,
2001
, “
Nonlinear Normal Modes in a System With Nonholonomic Constraints
,”
Nonlinear Dyn.
,
25
, pp.
49
64
.10.1023/A:1012946515772
151.
Georgiou
,
I. T.
, and
Schwartz
,
I. B.
,
2001
, “
Invariant Manifolds, Nonclassical Normal Modes, and Proper Orthogonal Modes in the Dynamics of the Flexible Spherical Pendulum
,”
Nonlinear Dyn.
,
25
, pp.
3
31
.10.1023/A:1012990329884
152.
Jayaprakash
,
K. R.
,
Starosvetsky
,
Y.
,
Vakakis
,
A. F.
,
Peeters
,
M.
, and
Kerschen
,
G.
,
2011
, “
Nonlinear Normal Modes and Band Zones in Granular Chains With No Pre-Compression
,”
Nonlinear Dyn.
,
63
, pp.
359
385
.10.1007/s11071-010-9809-0
153.
Mikhlin
,
Y. V.
, and
Volok
,
A. M.
,
2000
, “
Solitary Transversal Waves and Vibro-Impact Motions in Infinite Chains and Rods
,”
Int. J. Solids Struct.
,
37
(
25
), pp.
3403
3420
.10.1016/S0020-7683(99)00029-3
154.
Burton
,
T. D.
,
2007
, “
Numerical Calculations of Nonlinear Normal Modes in Structural Systems
,”
Nonlinear Dyn.
,
49
, pp.
425
441
.10.1007/s11071-006-9128-7
You do not currently have access to this content.