A generalization of the quasi-continuum (QC) method to finite temperature is presented. The resulting “hot-QC” formulation is a partitioned domain multiscale method in which atomistic regions modeled via molecular dynamics coexist with surrounding continuum regions. Hot-QC can be used to study equilibrium properties of systems under constant or quasistatic loading conditions. Two variants of the method are presented which differ in how continuum regions are evolved. In “hot-QC-static” the free energy of the continuum is minimized at each step as the atomistic region evolves dynamically. In “hot-QC-dynamic” both the atomistic and continuum regions evolve dynamically in tandem. The latter approach is computationally more efficient, but introduces an anomalous “mesh entropy” which must be corrected. Following a brief review of related finite-temperature methods, this review article provides the theoretical background for hot-QC (including new results), discusses the implementational details, and demonstrates the utility of the method via example test cases including nanoindentation at finite temperature.

References

References
1.
Tadmor
,
E. B.
,
Ortiz
,
M.
, and
Phillips
,
R.
,
1996
, “
Quasi-Continuum Analysis of Defects in Solids
,”
Philos. Mag. A
,
73
(
6
), pp.
1529
1563
.10.1080/01418619608243000
2.
Shenoy
,
V. B.
,
Miller
,
R.
,
Tadmor
,
E. B.
,
Phillips
,
R.
, and
Ortiz
,
M.
,
1998
, “
Quasi-Continuum Models of Interfacial Structure and Deformation
,”
Phys. Rev. Lett.
,
80
(
4
), pp.
742
745
.10.1103/PhysRevLett.80.742
3.
Shenoy
,
V. B.
,
Miller
,
R.
,
Tadmor
,
E.
,
Rodney
,
D.
,
Phillips
,
R.
, and
Ortiz
,
M.
,
1999
, “
An Adaptive Methodology for Atomic Scale Mechanics: The Quasi-Continuum Method
,”
J. Mech. Phys. Solids
,
47
, pp.
611
642
.10.1016/S0022-5096(98)00051-9
4.
Curtin
,
W. A.
, and
Miller
,
R. E.
,
2003
, “
Atomistic/Continuum Coupling Methods in Multi-Scale Materials Modeling
,”
Modell. Simul.Mater. Sci. Eng.
,
11
(
3
), pp.
R33
R68
.10.1088/0965-0393/11/3/201
5.
Miller
,
R. E.
, and
Tadmor
,
E. B.
,
2009
, “
A Unified Framework and Performance Benchmark of Fourteen Multiscale Atomistic/Continuum Coupling Methods
,”
Modell. Simul. Mater. Sci. Eng.
,
17
, p.
053001
.10.1088/0965-0393/17/5/053001
6.
Tadmor
,
E. B.
, and
Miller
,
R. E.
,
2011
,
Modeling Materials: Continuum, Atomistic and Multiscale Techniques
,
Cambridge University Press
,
Cambridge, UK
.
7.
Hoover
,
W. G.
,
1986
,
Molecular Dynamics
(Lecture Notes in Physics, Vol.
258
),
Springer
,
Berlin
, Germany.
8.
Allen
,
M. P.
, and
Tildesley
,
D. J.
,
1987
,
Computer Simulation of Liquids
,
Clarendon Press
,
Oxford, UK
.
9.
Frenkel
,
D.
, and
Smit
,
B.
,
2002
,
Understanding Molecular Simulation: From Algorithms to Applications
,
2nd ed.
,
Academic Press
,
San Diego
, CA.
10.
Holian
,
B. L.
,
Voter
,
A. F.
, and
Ravelo
,
R.
,
1995
, “
Thermostatted Molecular Dynamics: How to Avoid the Toda Demon Hidden in Nosé–Hoover Dynamics
,”
Phys. Rev. E
,
52
(
3
), pp.
2338
2347
.10.1103/PhysRevE.52.2338
11.
Bažant
,
Z. P.
,
1978
, “
Spurious Reflection of Elastic Waves in Nonuniform Finite Element Grids
,”
Comput. Meth. Appl. Mech. Eng.
,
16
, pp.
91
100
.10.1016/0045-7825(78)90035-X
12.
Mullen
,
R.
, and
Belytschko
,
T.
,
1982
, “
Dispersion Analysis of Finite Element Semidiscretizations of the Two-Dimensional Wave Equation
,”
Int. J. Numer. Methods Eng.
,
18
, pp.
11
29
.10.1002/nme.1620180103
13.
Adelman
,
S. A.
, and
Doll
,
J. D.
,
1974
, “
Generalized Langevin Equation Approach for Atom/Solid-Surface Scattering—Collinear Atom/Harmonic Chain Model
,”
J. Chem. Phys.
,
61
(
10
), pp.
4242
4245
.10.1063/1.1681723
14.
Doll
,
J. D.
,
Myers
,
L. E.
, and
Adelman
,
S. A.
,
1975
, “
Generalized Langevin Equation Approach for Atom/Solid-Surface Scattering: Inelastic Studies
,”
J. Chem. Phys.
,
63
(
11
), pp.
4908
4914
.10.1063/1.431234
15.
Cai
,
W.
,
de Koning
,
M.
,
Bulatov
,
V. V.
, and
Yip
,
S.
,
2000
, “
Minimizing Boundary Reflections in Coupled-Domain Simulations
,”
Phys. Rev. Lett.
,
85
(
15
), pp.
3213
3216
.10.1103/PhysRevLett.85.3213
16.
Weinan
,
E.
, and
Huang
,
Z.
,
2001
, “
Matching Conditions in Atomistic-Continuum Modeling of Materials
,”
Phys. Rev. Lett.
,
87
(
13
), p.
135501
10.1103/PhysRevLett.87.135501
17.
Weinan
,
E.
,
Engquist
,
B.
,
Li
,
X.
,
Ren
,
W.
, and
Vanden-Eijnden
,
E.
,
2007
, “
Heterogeneous Multiscale Methods: A Review
,”
Commun. Comput. Phys.
,
2
(
3
), pp.
367
450
.
18.
Wagner
,
G. J.
, and
Liu
,
W. K.
,
2003
, “
Coupling of Atomistic and Continuum Simulations Using a Bridging Scale Decomposition
,”
J. Comput. Phys.
,
190
, pp.
249
274
.10.1016/S0021-9991(03)00273-0
19.
Wagner
,
G. J.
,
Karpov
,
E. G.
, and
Liu
,
W. K.
,
2004
, “
Molecular Dynamics Boundary Conditions for Regular Crystal Lattices
,”
Comput. Meth. Appl. Mech. Eng.
,
193
, pp.
1579
1601
.10.1016/j.cma.2003.12.012
20.
Mathew
,
N.
,
Picu
,
R. C.
, and
Bloomfield
,
M.
,
2011
, “
Concurrent Coupling of Atomistic and Continuum Models at Finite Temperature
,”
Comput. Meth. Appl. Mech. Eng.
,
200
(
5–8
), pp.
765
773
.10.1016/j.cma.2010.09.018
21.
Karpov
,
E. G.
,
Park
,
H. S.
, and
Liu
,
W. K.
,
2007
, “
A Phonon Heat Bath Approach for the Atomistic and Multiscale Simulation of Solids
,”
Int. J. Numer. Methods Eng.
,
70
(
3
), pp.
351
378
.10.1002/nme.1884
22.
Qu
,
S.
,
Shastry
,
V.
,
Curtin
,
W. A.
, and
Miller
,
R. E.
,
2005
, “
A Finite Temperature, Dynamic, Coupled Atomistic/Discrete Dislocation Method
,”
Modell. Simul. Mater. Sci. Eng.
,
13
(
7
), pp.
1101
1118
.10.1088/0965-0393/13/7/007
23.
Holian
,
B. L.
, and
Ravelo
,
R.
,
1995
, “
Fracture Simulations Using Large-Scale Molecular Dynamics
,”
Phys. Rev. B
,
51
(
17
), pp.
11275
11288
.10.1103/PhysRevB.51.11275
24.
Holland
,
D.
, and
Marder
,
M.
,
1999
, “
Cracks and Atoms
,”
Adv. Mater.
,
11
, pp.
793
806
.10.1002/(SICI)1521-4095(199907)11:10<793::AID-ADMA793>3.0.CO;2-B
25.
Shiari
,
B.
,
Miller
,
R. E.
, and
Curtin
,
W. A.
,
2005
, “
Coupled Atomistic/Discrete Dislocation Simulations of Nanoindentation at Finite Temperature
,”
ASME J. Eng. Mater. Technol.
,
127
(
4
), pp.
358
368
.10.1115/1.1924561
26.
Shiari
,
B.
,
Miller
,
R. E.
, and
Klug
,
D. D.
,
2007
, “
Multiscale Simulation of Material Removal Processes at the Nanoscale
,”
J. Mech. Phys. Solids
,
55
(
11
), pp.
2384
2405
.10.1016/j.jmps.2007.03.018
27.
Gill
,
S.
,
Jia
,
Z.
,
Leimkuhler
,
B.
, and
Cocks
,
A.
,
2006
, “
Rapid Thermal Equilibration in Coarse-Grained Molecular Dynamics
,”
Phys. Rev. B
,
73
(
18
), p.
184304
.10.1103/PhysRevB.73.184304
28.
Finnis
,
M. W.
,
Agnew
,
P.
, and
Foreman
,
A. J. E.
,
1991
, “
Thermal Excitation of Electrons in Energetic Displacement Cascades
,”
Phys. Rev. B
,
44
(
2
), pp.
567
574
.10.1103/PhysRevB.44.567
29.
Li
,
S.
, and
Sheng
,
N.
,
2010
, “
On Multiscale Non-Equilibrium Molecular Dynamics Simulations
,”
Int. J. Numer. Methods Eng.
,
83
(
8–9
), pp.
998
1038
.10.1002/nme.2849
30.
Kulkarni
,
Y.
,
Knap
,
J.
, and
Ortiz
,
M.
,
2008
, “
A Variational Approach to Coarse Graining of Equilibrium and Non-Equilibrium Atomistic Description at Finite Temperature
,”
J. Mech. Phys. Solids
,
56
(
4
), pp.
1417
1449
.10.1016/j.jmps.2007.09.005
31.
Fish
,
J.
,
Chen
,
W.
, and
Li
,
R.
,
2007
, “
Generalized Mathematical Homogenization of Atomistic Media at Finite Temperatures in Three Dimensions
,”
Comput. Meth. Appl. Mech. Eng.
,
196
(
4–6
), pp.
908
922
.10.1016/j.cma.2006.08.001
32.
Liu
,
X.
, and
Li
,
S.
,
2007
, “
Nonequilibrium Multiscale Computational Model
,”
J. Chem. Phys.
,
126
(
12
), p.
124105
.10.1063/1.2711432
33.
Wagner
,
G. J.
,
Jones
,
R. E.
,
Templeton
,
J. A.
, and
Parks
,
M. L.
,
2008
, “
An Atomistic-to-Continuum Coupling Method for Heat Transfer in Solids
,”
Comput. Meth. Appl. Mech. Eng.
,
197
(
41–42
), pp.
3351
3365
.10.1016/j.cma.2008.02.004
34.
Jolley
,
K.
, and
Gill
,
S. P. A.
,
2009
, “
Modelling Transient Heat Conduction in Solids at Multiple Length and Time Scales: A Coupled Non-Equilibrium Molecular Dynamics/Continuum Approach
,”
J. Comput. Phys.
,
228
(
19
), pp.
7412
7425
.10.1016/j.jcp.2009.06.035
35.
Luan
,
B. Q.
,
Hyun
,
S.
,
Molinari
,
J. F.
,
Bernstein
,
N.
, and
Robbins
,
M. O.
,
2007
, “
Multiscale Modeling of Two-Dimensional Contacts
,”
Phys. Rev. E
,
74
, p.
046710
.10.1103/PhysRevE.74.046710
36.
Rudd
,
R. E.
, and
Broughton
,
J. Q.
,
2000
, “
Concurrent Coupling of Length Scales in Solid State Systems
,”
Phys. Status Solidi B
,
217
, pp.
251
291
.10.1002/(SICI)1521-3951(200001)217:1<251::AID-PSSB251>3.0.CO;2-A
37.
Rudd
,
R. E.
, and
Broughton
,
J. Q.
,
2005
, “
Coarse-Grained Molecular Dynamics: Nonlinear Finite Elements and Finite Temperature
,”
Phys. Rev. B
,
72
(
14
), p.
144104
.10.1103/PhysRevB.72.144104
38.
Kobayashi
,
R.
,
Nakamura
,
T.
, and
Ogata
,
S.
,
2010
, “
A Simple Dynamical Scale-Coupling Method for Concurrent Simulation of Hybridized Atomistic/Coarse-Grained-Particle System
,”
Int. J. Numer. Methods Eng.
,
83
(
2
), pp.
249
268
.10.1002/nme.2846
39.
Kobayashi
,
R.
,
Nakamura
,
T.
, and
Ogata
,
S.
,
2011
, “
A Coupled Molecular Dynamics/Coarse-Grained-Particle Method for Dynamic Simulation of Crack Growth at Finite Temperatures
,”
Mater. Trans.
,
52
(
8
), pp.
1603
1610
.10.2320/matertrans.M2011116
40.
Xiao
,
S.
, and
Yang
,
W.
,
2007
, “
A Temperature-Related Homogenization Technique and its Implementation in the Meshfree Particle Method for Nanoscale Simulations
,”
Int. J. Numer. Methods Eng.
,
69
(
10
), pp.
2099
2125
.10.1002/nme.1841
41.
To
,
A. C.
,
Liu
,
W. K.
, and
Kopacz
,
A.
,
2008
, “
A Finite Temperature Continuum Theory Based on Interatomic Potential in Crystalline Solids
,”
Comput. Mech.
,
42
(
4
), pp.
531
541
.10.1007/s00466-007-0239-x
42.
Dupuy
,
L. M.
,
Tadmor
,
E. B.
,
Miller
,
R. E.
, and
Phillips
,
R.
,
2005
, “
Finite Temperature Quasicontinuum: Molecular Dynamics Without all the Atoms
,”
Phys. Rev. Lett.
,
95
, p.
060202
.10.1103/PhysRevLett.95.060202
43.
LeSar
,
R.
,
Najafabadi
,
R.
, and
Srolovitz
,
D.
,
1989
, “
Finite-Temperature Defect Properties From Free-Energy Minimization
,”
Phys. Rev. Lett.
,
63
, pp.
624
627
.10.1103/PhysRevLett.63.624
44.
Kirkwood
,
J. G.
,
1935
, “
Statistical Mechanics of Fluid Mixtures
,”
J. Chem. Phys.
,
3
(
5
), pp.
300
313
.10.1063/1.1749657
45.
Kimmer
,
C. J.
, and
Jones
,
R. E.
,
2007
, “
Continuum Constitutive Models From Analytical Free Energies
,”
J. Phys. Condens. Matter
,
19
(
32
), p.
326207
.10.1088/0953-8984/19/32/326207
46.
Khoei
,
A. R.
,
Ghahrernani
,
P.
,
Qomi
,
M. J. A.
, and
Banihashemi
,
P.
,
2011
, “
Stability and Size-Dependency of Temperature-Related Cauchy–Born Hypothesis
,”
Comput. Mater. Sci.
,
50
(
5
), pp.
1731
1743
.10.1016/j.commatsci.2011.01.004
47.
Daw
,
M. S.
, and
Baskes
,
M. I.
,
1984
, “
Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals
,”
Phys. Rev. B
,
29
, pp.
6443
6453
.10.1103/PhysRevB.29.6443
48.
Penrose
,
O.
, and
Lebowitz
,
J. L.
,
1971
, “
Rigorous Treatment of Metastable States in the van der Walls–Maxwell Theory
,”
J. Stat. Phys.
,
3
(
2
), pp.
211
236
.10.1007/BF01019851
49.
Lebowitz
,
J. L.
, and
Penrose
,
O.
,
1979
, “
Towards a Rigorous Molecular Theory of Metastability
,”
Fluctuation Phenomena (Studies in Statistical Mechanics), Vol. 7
,
E. W.
Montroll
and
J. L.
Lebowitz
, eds.,
North-Holland
,
New York
, pp.
293
340
.
50.
Penrose
,
O.
,
2002
, “
Statistical Mechanics of Nonlinear Elasticity
,”
Markov Processes Relat. Fields
,
8
, pp.
351
364
.
51.
Shenoy
,
V.
,
Shenoy
,
V.
, and
Phillips
,
R.
,
1999
, “
Finite Temperature Quasicontinuum Methods
,”
Multi-Scale Modelling of Materials, Mater. Res. Soc. Symp. Proc.
, Vol.
538
,
T. D.
de la Rubia
,
E.
Kaxiras
,
V.
Bulatov
,
N. M.
Ghoniem
, and
R.
Phillips
, eds., pp.
465
471
.
52.
Leibfried
,
G.
, and
Ludwig
,
W.
,
1961
, “
Theory of Anharmonic Effects in Crystals
,”
Solid State Physics: Advances in Research and Applications
, Vol.
12
,
F.
Seitz
and
D.
Turnbull
, eds.,
Academic Press
,
New York
, pp.
275
459
.
53.
Ashcroft
,
N. W.
, and
Mermin
,
N. D.
,
1976
,
Solid State Physics
,
Saunders College
,
Philadelphia, PA
.
54.
Weiner
,
J. H.
,
1983
,
Statistical Mechanics of Elasticity
,
John Wiley and Sons
,
New York
.
55.
Dove
,
M. T.
,
1993
,
Introduction to Lattice Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
56.
Blanc
,
X.
,
Le Bris
,
C.
,
Legoll
,
F.
, and
Patz
,
C.
,
2010
, “
Finite-Temperature Coarse-Graining of One-Dimensional Models: Mathematical Analysis and Computational Approaches
,”
J. Nonlinear Sci.
,
20
(
2
), pp.
241
275
.10.1007/s00332-009-9057-y
57.
Rickman
,
J. M.
, and
LeSar
,
R.
,
2002
, “
Free-Energy Calculations in Materials Research
,”
Ann. Rev. Mater. Res.
,
32
, pp.
195
217
.10.1146/annurev.matsci.32.111901.153708
58.
Prudhomme
,
S.
,
Oden
,
J.
, and
Romkes
,
A.
,
2004
, “
Modeling Error Estimation and Adaptivity for Multi-Scale Problems
,”
Computational Mechanics, Proceedings of the 6th World Congress on Computational Mechanics and the 2nd Asian-Pacific Congress on Computational Mechanics, Beijing, PRC
,
Z. H.
Yao
,
M. W.
Yuan
, and
W. X.
Zhong
, eds., pp.
553
557
59.
Tadmor
,
E.
, and
Miller
,
R.
,
2006
, “
The Theory and Implementation of the Quasicontinuum Method
,”
Handbook of Materials Modeling, Part A, Methods
,
S.
Yip
, ed.,
Springer Science and Business Media
,
New York
, pp. 663–682.
60.
Oden
,
J. T.
,
Prudhomme
,
S.
,
Romkes
,
A.
, and
Bauman
,
P. T.
,
2006
, “
Multiscale Modeling of Physical Phenomena: Adaptive Control of Models
,”
SIAM J. Sci. Comput.
,
28
(
6
), pp.
2359
2389
.10.1137/050632488
61.
Nuggehally
,
M. A.
,
Shephard
,
M. S.
,
Picu
,
C. R.
, and
Fish
,
J.
,
2007
, “
Adaptive Model Selection Procedure for Concurrent Multiscale Problems
,”
Int. J. Multiscale Comput. Eng.
,
5
(
5
), pp.
369
386
.10.1615/IntJMultCompEng.v5.i5.20
62.
Ben Dhia
,
H.
,
Chamoin
,
L.
,
Oden
,
J. T.
, and
Prudhomme
,
S.
,
2011
, “
A New Adaptive Modeling Strategy Based on Optimal Control for Atomic-to-Continuum Coupling Simulations
,”
Comput. Meth. Appl. Mech. Eng.
,
200
(
37–40
), pp.
2675
2696
.10.1016/j.cma.2010.12.011
63.
Foiles
,
S.
,
1994
, “
Evaluation of Harmonic Methods for Calculating the Free Energy of Defects in Solids
,”
Phys. Rev. B
,
49
, pp.
14930
14938
.10.1103/PhysRevB.49.14930
64.
Miller
,
R. E.
, and
Tadmor
,
E.
,
2007
, “
Hybrid Continuum Mechanics and Atomistic Methods for Simulating Materials Deformation and Failure
,”
MRS Bull.
,
32
, pp.
920
926
.10.1557/mrs2007.189
65.
Marian
,
J.
,
Venturini
,
G.
,
Hansen
,
B. L.
,
Knap
,
J.
,
Ortiz
,
M.
, and
Campbell
,
G. H.
,
2010
, “
Finite-Temperature Extension of the Quasicontinuum Method Using Langevin Dynamics: Entropy Losses and Analysis of Errors
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015003
.10.1088/0965-0393/18/1/015003
66.
Cancès
,
E.
,
Legoll
,
F.
, and
Stoltz
,
G.
,
2007
, “
Theoretical and Numerical Comparison of Some Sampling Methods for Molecular Dynamics
,”
Math. Modell. Numer. Anal. (M2AN)
,
41
(
2
), pp.
351
389
.10.1051/m2an:2007014
67.
Bond
,
S. D.
,
Leimkuhler
,
B.
, and
Laird
,
B. B.
,
1999
, “
The Nosé–Poincaré Method for Constant Temperature Molecular Dynamics
,”
J. Comput. Phys.
,
151
, pp.
114
134
.10.1006/jcph.1998.6171
68.
Hairer
,
E.
,
Lubich
,
C.
, and
Wanner
,
G.
,
2003
, “
Geometric Numerical Integration Illustrated by the Störmer–Verlet Method
,”
Acta Numer.
,
12
, pp.
399
450
.10.1017/S0962492902000144
69.
Ezra
,
G. S.
,
2006
, “
Reversible Measure-Preserving Integrators for Non-Hamiltonian Systems
,”
J. Chem. Phys.
,
125
(
3
), p.
034104
.10.1063/1.2215608
70.
Legoll
,
F.
, and
Monneau
,
R.
,
2002
, “
Designing Reversible Measure Invariant Algorithms With Applications to Molecular Dynamics
,”
J. Chem. Phys.
,
117
(
23
), pp.
10452
10464
.10.1063/1.1519842
71.
Legoll
,
F.
,
Luskin
,
M.
, and
Moeckel
,
R.
,
2007
, “
Non-Ergodicity of the Nosé–Hoover Thermostatted Harmonic Oscillator
,”
Arch. Ration. Mech. Anal.
,
184
(
3
), pp.
449
463
.10.1007/s00205-006-0029-1
72.
Legoll
,
F.
,
Luskin
,
M.
, and
Moeckel
,
R.
,
2009
, “
Non-Ergodicity of Nosé–Hoover Dynamics
,”
Nonlinearity
,
22
(
7
), pp.
1673
1694
.10.1088/0951-7715/22/7/011
73.
Leimkuhler
,
B. J.
, and
Sweet
,
C. R.
,
2005
, “
A Hamiltonian Formulation for Recursive Multiple Thermostats in a Common Timescale
,”
SIAM J. Appl. Dyn. Sys.
,
4
(
1
), pp.
187
216
.10.1137/040606090
74.
Davidchack
,
R.
,
2010
, “
Discretization Errors in Molecular Dynamics Simulations With Deterministic and Stochastic Thermostats
,”
J. Comput. Phys.
,
229
, pp.
9323
9346
.10.1016/j.jcp.2010.09.004
75.
Meyn
,
S. P.
, and
Tweedie
,
R. L.
,
1993
,
Markov Chains and Stochastic Stability
,
Springer-Verlag
,
Berlin
, Germany.
76.
Mattingly
,
J. C.
,
Stuart
,
A. M.
, and
Higham
,
D. J.
,
2002
, “
Ergodicity for SDEs and Approximations: Locally Lipschitz Vector Fields and Degenerate Noise
,”
Stoch. Proc. Appl.
,
101
(
2
), pp.
185
232
.10.1016/S0304-4149(02)00150-3
77.
Shardlow
,
T.
,
2003
, “
Splitting for Dissipative Particle Dynamics
,”
SIAM J. Sci. Comput.
,
24
(
4
), pp.
1267
1282
.10.1137/S1064827501392879
78.
Angelo
,
J. E.
,
Moody
,
N. R.
, and
Baskes
,
M. I.
,
1995
, “
Trapping of Hydrogen to Lattice-Defects in Nickel
,”
Modell. Simul. Mater. Sci. Eng.
,
3
(
3
), pp.
289
307
.10.1088/0965-0393/3/3/001
79.
Martyna
,
G. J.
,
Klein
,
M. L.
, and
Tuckerman
,
M.
,
1992
, “
Nosé–Hoover Chains: The Canonical Ensemble via Continuous Dynamics
,”
J. Chem. Phys.
,
97
, pp.
2635
2643
.10.1063/1.463940
80.
Kim
,
W. K.
, and
Tadmor
,
E. B.
,
2012
, “
An Analytical Self-Consistent Solution for the Free Energy of a 1-D Chain of Atoms Including Anharmonic Effects
,”
J. Stat. Phys.
,
148
(
5
), pp.
951
971
.10.1007/s10955-012-0559-x
81.
Guthikonda
,
V. S.
, and
Elliott
,
R. S.
, “
Modeling Martensitic Phase Transformation in Shape Memory Alloys With the Self-Consistent Lattice Dynamics Approach
,”
J. Mech. Phys. Solids
(in press).
82.
Kelchner
,
C. L.
,
Plimpton
,
S. J.
, and
Hamilton
,
J. C.
,
1998
, “
Dislocation Nucleation and Defect Structure During Surface Indentation
,”
Phys. Rev. B
,
58
, pp.
11085
11088
.10.1103/PhysRevB.58.11085
83.
van Gunsteren
,
W. F.
, and
Berendsen
,
H. J. C.
,
1982
, “
Algorithms for Brownian Dynamics
,”
Mol. Phys.
,
45
, pp.
637
647
.10.1080/00268978200100491
84.
Tomlinson
,
G. A.
,
1929
, “
A Molecular Theory of Friction
,”
Philos. Mag.
,
7
, pp.
905
939
.
85.
Gnecco
,
E.
,
Bennewitz
,
R.
,
Gyalog
,
T.
,
Loppacher
,
C.
,
Bammerlin
,
M.
,
Meyer
,
E.
, and
Güntherodt
,
H.-J.
,
2000
, “
Velocity Dependence of Atomic Friction
,”
Phys. Rev. Lett.
,
84
(
6
), pp.
1172
1175
.10.1103/PhysRevLett.84.1172
You do not currently have access to this content.