Surfaces and interfaces can significantly influence the overall response of a solid body. Their behavior is well described by continuum theories that endow the surface and interface with their own energetic structures. Such theories are becoming increasingly important when modeling the response of structures at the nanoscale. The objectives of this review are as follows. The first is to summarize the key contributions in the literature. The second is to unify a select subset of these contributions using a systematic and thermodynamically consistent procedure to derive the governing equations. Contributions from the bulk and the lower-dimensional surface, interface, and curve are accounted for. The governing equations describe the fully nonlinear response (geometric and material). Expressions for the energy and entropy flux vectors, and the admissible constraints on the temperature field, all subject to the restriction of non-negative dissipation, are explored. A particular emphasis is placed on the structure of these relations at the interface. A weak formulation of the governing equations is then presented that serves as the basis for their approximation using the finite element method. Various forms for a Helmholtz energy that describes the fully coupled thermomechanical response of the system are given. They include the contribution from surface tension. The vast majority of the literature on surface elasticity is framed in the infinitesimal deformation setting. The finite deformation stress measures are, thus, linearized and the structure of the resulting stresses discussed. The final objective is to elucidate the theory using a series of numerical example problems.

References

References
1.
Pawlow
,
P.
,
1908
, “
Über die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Körpers
,”
Z. physik. Chemie
,
65
, pp.
1
35
.
2.
Gibbs
,
J. W.
,
1961
,
The Scientific Papers of J.W. Gibbs
,
Dover Publications, New York
.
3.
Guggenheim
,
E. A.
,
1940
, “
The Thermodynamics of Interfaces in Systems of Several Components
,”
Trans. Faraday Soc.
,
35
, pp.
397
412
.10.1039/tf9403500397
4.
Adam
,
N. K.
,
1941
,
The Physics and Chemistry of Surfaces
,
Oxford University Press
,
London
.
5.
Shuttleworth
,
R.
,
1950
The Surface Tension of Solids
,”
Proc. Phys. Soc. A
,
63
(
5
), pp.
444
457
.10.1088/0370-1298/63/5/302
6.
Herring
,
C.
,
1951
, “
Some Theorems on the Free Energies of Crystal Surfaces
,”
Phys. Rev.
,
82
(
1
), pp.
87
93
.10.1103/PhysRev.82.87
7.
Bikerman
,
J. J.
,
1965
, “
Surface Energy of Solids
,”
Phys. Status Solid. B
,
10
(
1
), pp.
3
16
.10.1002/pssb.19650100102
8.
Orowan
,
E.
,
1970
, “
Surface Energy and Surface Tension in Solids and Liquids
,”
Proc. R. Soc. A
,
316
(
1527
), pp.
473
491
.10.1098/rspa.1970.0091
9.
Cahn
,
J. W.
,
1978
, “
Thermodynamics of Solid and Fluid Surfaces
,”
Segregation to Interfaces
(
ASM Seminar Series
), Cleveland, OH, pp.
3
23
.
10.
Cahn
,
J. W.
,
1989
, “
Interfacial Free Energy and Interfacial Stress: The Case of an Internal Interface in a Solid
,”
Acta Metall. Mater.
,
37
(
3
), pp.
773
776
.10.1016/0001-6160(89)90004-7
11.
Murr
,
L. E.
,
1975
,
Interfacial Phenomena in Metals and Alloys
,
Addison-Wesley
, Boston, MA.
12.
Rottman
,
C.
,
1988
, “
Landau Theory of Coherent Interphase Interfaces
,”
Phys. Rev. B
,
38
, pp.
12031
12034
.10.1103/PhysRevB.38.12031
13.
Adamson
,
A. W.
,
1990
,
Physical Chemistry of Surfaces
,
John Wiley & Sons
, New York.
14.
Howe
,
J. M.
,
1997
,
Interfaces in Materials
,
John Wiley & Sons
, New York.
15.
Marichev
,
V. A.
,
2010
, “
General Thermodynamic Equations for the Surface Tension of Liquids and Solids
,”
Surf. Sci.
,
604
(
3–4
), pp.
458
463
.10.1016/j.susc.2009.12.020
16.
Rusanov
,
A. I.
,
2005
, “
Surface Thermodynamics Revisited
,”
Surf. Sci. Rep.
,
58
, pp.
111
239
.10.1016/j.surfrep.2005.08.002
17.
Rusanov
,
A. I.
,
1996
, “
Thermodynamics of Solid Surfaces
,”
Surf. Sci. Rep.
,
23
, pp.
173
247
.10.1016/0167-5729(95)00007-0
18.
Müller
,
P.
, and
Saul
,
A.
,
2004
, “
Elastic Effects on Surface Physics
,”
Surf. Sci. Rep.
,
54
(
5–8
), pp.
157
258
.10.1016/j.surfrep.2004.05.001
19.
Ibach
,
H.
,
1997
, “
The Role of Surface Stress in Reconstruction, Epitaxial Growth and Stabilization of Mesoscopic Structures
,”
Surf. Sci. Rep.
,
29
(
5–6
), pp.
195
263
.10.1016/S0167-5729(97)00010-1
20.
Leo
,
P. H.
, and
Sekerka
,
R. F.
,
1989
, “
Overview No. 86: The Effect of Surface Stress on Crystal-Melt and Crystal-Crystal Equilibrium
,”
Acta Metall. Mater.
,
37
(
12
), pp.
3119
3138
.10.1016/0001-6160(89)90184-3
21.
Cammarata
,
R. C.
,
1997
, “
Surface and Interface Stress Effects on Interfacial and Nanostructured Materials
,”
Mater. Sci. Eng. A,
,
237
(
2
), pp.
180
184
.10.1016/S0921-5093(97)00128-7
22.
Cammarata
,
R. C.
,
1994
, “
Surface and Interface Stress Effects in Thin Films
,”
Prog. Surf. Sci.
,
46
(
1
), pp.
1
38
.10.1016/0079-6816(94)90005-1
23.
Cammarata
,
R. C.
,
Sieradzki
,
K.
, and
Spaepen
,
F.
,
2000
, “
Simple Model for Interface Stresses With Application to Misfit Dislocation Generation in Epitaxial Thin Films
,”
J. Appl. Phys.
,
87
(
3
), pp.
1227
1234
.10.1063/1.372001
24.
Cammarata
,
R. C.
,
2009
, “
Generalized Thermodynamics of Surfaces With Applications to Small Solid Systems
,”
Solid State Phys.
,
61
, pp.
1
75
.10.1016/S0081-1947(09)00001-0
25.
Fischer
,
F. D.
,
Waitz
,
T.
,
Vollath
,
D.
, and
Simha
,
N. K.
,
2008
, “
On the Role of Surface Energy and Surface Stress in Phase-Transforming Nanoparticles
,”
Prog. Mater. Sci.
,
53
(
3
), pp.
481
527
.10.1016/j.pmatsci.2007.09.001
26.
Gutman
,
E. M.
,
1995
, “
On the Thermodynamic Definition of Surface Stress
,”
J. Phys. Condens. Mat.
,
7
(
48
), pp.
L663
L667
.10.1088/0953-8984/7/48/001
27.
Bottomley
,
D. J.
, and
Ogino
,
T.
,
2001
, “
Alternative to the Shuttleworth Formulation of Solid Surface Stress
,”
Phys. Rev. B
,
63
, p.
165412
.10.1103/PhysRevB.63.165412
28.
Marichev
,
V. A.
,
2006
, “
Structure-Mechanical Approach to Surface Tension of Solids
,”
Surf. Sci.
,
600
(
19
), pp.
4527
4536
.10.1016/j.susc.2006.07.018
29.
Kramer
,
D.
, and
Weissmüller
,
J.
,
2007
, “
A Note on Surface Stress and Surface Tension and Their Interrelation via Shuttleworth's Equation and the Lippmann Equation
,”
Surf. Sci.
,
601
(
14
), pp.
3042
3051
.10.1016/j.susc.2007.05.005
30.
Maugin
,
G. A.
,
2010
,
Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics
,
CRC Press
, Boca Raton, FL.
31.
Steinmann
,
P.
,
McBride
,
A.
,
Bargmann
,
S.
, and
Javili
,
A.
,
2012
, “
A Deformational and Configurational Framework for Geometrically Non-Linear Continuum Thermomechanics Coupled to Diffusion
,”
Int. J. Nonlinear Mech.
,
47
(
2
), pp.
215
227
.10.1016/j.ijnonlinmec.2011.05.009
32.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. An.
,
57
(
4
), pp.
291
323
.10.1007/BF00261375
33.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1978
, “
Surface Stress in Solids
,”
Int. J. Solid. Struct.
,
14
(
6
), pp.
43
440
.10.1016/0020-7683(78)90008-2
34.
Dingreville
,
R.
, and
Qu
,
J.
,
2005
, “
Surface Free Energy and Its Effect on the Elastic Behavior of Nano-Sized Particles, Wires and Films
,”
J. Mech. Phys. Solid.
,
53
(
8
), pp.
1827
1854
.10.1016/j.jmps.2005.02.012
35.
He
,
J.
, and
Lilley
,
C. M.
,
2008
, “
Surface Effect on the Elastic Behavior of Static Bending Nanowires
,”
Nano Lett.
,
8
(
7
), pp.
1798
1802
.10.1021/nl0733233
36.
Duan
,
H. L.
,
Wang
,
J.
, and
Karihaloo
,
B. L.
,
2009
, “
Theory of Elasticity at the Nanoscale
,”
Adv. Appl. Mech.
,
42
, pp.
1
68
.10.1016/S0065-2156(08)00001-X
37.
Murdoch
,
A. I.
,
1976
, “
A Thermodynamical Theory of Elastic Material Interfaces
,”
Q. J. Mech. Appl. Math.
,
29
(
3
), pp.
245
275
.10.1093/qjmam/29.3.245
38.
Gurtin
,
M. E.
, and
Struthers
,
A.
,
1990
, “
Multiphase Thermomechanics With Interfacial Structure 3. Evolving Phase Boundaries in the Presence of Bulk Deformation
,”
Arch. Ration. Mech. An.
,
112
(
2
), pp.
97
160
.10.1007/BF00375667
39.
Gurtin
,
M. E.
,
Weissmüller
,
J.
, and
Larché
,
F.
,
1998
, “
A General Theory of Curved Deformable Interfaces in Solids at Equilibrium
,”
Philos. Mag. A
,
78
(
5
), pp.
1093
1109
.10.1080/01418619808239977
40.
Steigmann
,
D. J.
, and
Ogden
,
R. W.
,
1999
, “
Elastic Surface-Substrate Interactions
,”
Proc. R. Soc. A
,
455
(
1982
), pp.
437
474
.10.1098/rspa.1999.0320
41.
Fried
,
E.
, and
Todres
,
R.
,
2005
, “
Mind the Gap: The Shape of the Free Surface of a Rubber-Like Material in Proximity to a Rigid Contactor
,”
J. Elasticity
,
80
, pp.
97
151
.10.1007/s10659-005-9019-z
42.
Chhapadia
,
P.
,
Mohammadi
,
P.
, and
Sharma
,
P.
,
2011
, “
Curvature-Dependent Surface Energy and Implications for Nanostructures
,”
J. Mech. Phys. Solid.
,
59
(
10
), pp.
2103
2115
.10.1016/j.jmps.2011.06.007
43.
Moeckel
,
G. P.
,
1975
, “
Thermodynamics of an Interface
,”
Arch. Ration. Mech. An.
,
57
, pp.
255
280
.10.1007/BF00280158
44.
dell'Isola
,
F.
, and
Romano
,
A.
,
1987
, “
On the Derivation of Thermomechanical Balance Equations for Continuous Systems With a Nonmaterial Interface
,”
Int. J. Eng. Sci.
,
25
(
11–12
), pp.
1459
1468
.10.1016/0020-7225(87)90023-1
45.
Müller
,
I.
,
1971
, “
Entropy, Absolute Temperature, and Coldness in Thermodynamics
,”
Courses and Lectures—International Centre for Mechanical Sciences
,
Springer
,
New York
.
46.
Gogosov
,
V. V.
,
Naletova
,
V. A.
,
Bin
,
C. Z.
, and
Shaposhnikova
,
G. A.
,
1983
, “
Conservation Laws for the Mass, Momentum, and Energy on a Phase Interface for True and Excess Surface Parameters
,”
Fluid Dyn.
,
18
, pp.
923
930
.10.1007/BF01090749
47.
Daher
,
N.
, and
Maugin
,
G. A.
,
1986
, “
The Method of Virtual Power in Continuum Mechanics Application to Media Presenting Singular Surfaces and Interfaces
,”
Acta Mech.
,
60
(
3–4
), pp.
217
240
.10.1007/BF01176354
48.
Germain
,
P.
,
1973
, “
The Method of Virtual Power in Continuum Mechanics—Part 2: Microstructure
,”
SIAM J. Appl. Math.
,
25
, pp.
556
575
.10.1137/0125053
49.
Maugin
,
G. A.
,
1980
, “
The Method of Virtual Power in Continuum Mechanics: Application to Coupled Fields
,”
Acta Mech.
,
35
, pp.
1
70
.10.1007/BF01190057
50.
Daher
,
N.
, and
Maugin
,
G. A.
,
1987
, “
Deformable Semiconductors With Interfaces: Basic Continuum Equations
,”
Int. J. Eng. Sci.
,
25
(
9
), pp.
1093
1129
.10.1016/0020-7225(87)90076-0
51.
Daher
,
N.
, and
Maugin
,
G. A.
,
1986
, “
Virtual Power and Thermodynamics for Electromagnetic Continua With Interfaces
,”
J. Math. Phys.
,
27
, p.
3022
.10.1063/1.527231
52.
Murdoch
,
A. I.
,
2005
, “
Some Fundamental Aspects of Surface Modelling
,”
J. Elasticity
,
80
(
1
), pp.
33
52
.10.1007/s10659-005-9024-2
53.
Šilhavý
,
M.
,
2011
, “
Equilibrium of Phases With Interfacial Energy: A Variational Approach
,”
J. Elasticity
,
105
, pp.
271
303
.10.1007/s10659-011-9341-6
54.
Park
,
H. S.
,
Klein
,
P. A.
, and
Wagner
,
G. J.
,
2006
, “
A Surface Cauchy–Born Model for Nanoscale Materials
,”
Int. J. Num. Meth. Eng.
,
68
(
10
), pp.
1072
1095
.10.1002/nme.1754
55.
Park
,
H. S.
, and
Klein
,
P. A.
,
2008
, “
A Surface Cauchy–Born Model for Silicon Nanostructures
,”
Comput. Meth. Appl. Mech. Eng.
,
197
(
41–42
), pp.
3249
3260
.10.1016/j.cma.2007.12.004
56.
Park
,
H. S.
, and
Klein
,
P. A.
,
2007
, “
Surface Cauchy–Born Analysis of Surface Stress Effects on Metallic Nanowires
,”
Phys. Rev. B
,
75
(
8
), p.
085408
.10.1103/PhysRevB.75.085408
57.
Park
,
H. S.
,
Cai
,
W.
, and
Espinosa
,
H. D.
,
2009
, “
Mechanics of Crystalline Nanowires
,”
MRS Bulletin
,
34
(
3
), pp.
178
183
.10.1557/mrs2009.49
58.
Sharma
,
P.
,
Ganti
,
S.
, and
Bhate
,
N.
,
2003
, “
Effect of Surfaces on the Size-Dependent Elastic State of Nano-Inhomogeneities
,”
Appl. Phys. Lett.
,
82
(
4
), pp.
535
537
.10.1063/1.1539929
59.
Sharma
,
P.
, and
Ganti
,
S.
,
2004
, “
Size-Dependent Eshelby's Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies
,”
ASME J. Appl. Mech.
,
71
(5)
, pp.
663
671
.10.1115/1.1781177
60.
Sharma
,
P.
, and
Wheeler
,
L. T.
,
2007
, “
Size-Dependent Elastic State of Ellipsoidal Nano-Inclusions Incorporating Surface/Interface Tension
,”
ASME J. Appl. Mech.
,
74
(
3
), pp.
447
454
.10.1115/1.2338052
61.
Eshelby
,
J. D.
,
1951
, “
The Force on an Elastic Singularity
,”
Philos. Trans. R. Soc. A
,
244
(
877
), pp.
87
112
.10.1098/rsta.1951.0016
62.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. A
,
241
(
1226
), pp.
376
396
.10.1098/rspa.1957.0133
63.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
,
2005
, “
Eshelby Formalism for Nano-Inhomogeneities
,”
Proc. R. Soc. A
,
461
(
2062
), pp.
3335
3353
.10.1098/rspa.2005.1520
64.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
,
2005
, “
Size-Dependent Effective Elastic Constants of Solids Containing Nano-Inhomogeneities With Interface Stress
,”
J. Mech. Phys. Solid.
,
53
(
7
), pp.
1574
1596
.10.1016/j.jmps.2005.02.009
65.
Duan
,
H. L.
, and
Karihaloo
,
B. L.
,
2007
, “
Effective Thermal Conductivities of Heterogeneous Media Containing Multiple Imperfectly Bonded Inclusions
,”
Phys. Rev. B
,
75
, p.
064206
.10.1103/PhysRevB.75.064206
66.
Benveniste
,
Y.
, and
Miloh
,
T.
,
2001
, “
Imperfect Soft and Stiff Interfaces in Two-Dimensional Elasticity
,”
Mech. Mater.
,
33
(
6
), pp.
309
323
.10.1016/S0167-6636(01)00055-2
67.
Huang
,
Z.
, and
Sun
,
L.
,
2007
, “
Size-Dependent Effective Properties of a Heterogeneous Material With Interface Energy Effect: From Finite Deformation Theory to Infinitesimal Strain Analysis
,”
Acta Mech.
,
190
, pp.
151
163
.10.1007/s00707-006-0381-0
68.
Fischer
,
F. D.
, and
Svoboda
,
J.
,
2010
, “
Stresses in Hollow Nanoparticles
,”
Int. J. Solid. Struct.
,
47
(
20
), pp.
2799
2805
.10.1016/j.ijsolstr.2010.06.008
69.
Mogilevskaya
,
S. G.
,
Crouch
,
S. L.
, and
Stolarski
,
H. K.
,
2008
, “
Multiple Interacting Circular Nano-Inhomogeneities With Surface/Interface Effects
,”
J. Mech. Phys. Solid.
,
56
(
6
), pp.
2298
2327
.10.1016/j.jmps.2008.01.001
70.
Lim
,
C. W.
,
Li
,
Z. R.
, and
He
,
L. H.
,
2006
, “
Size Dependent, Non-Uniform Elastic Field Inside a Nano-Scale Spherical Inclusion Due to Interface Stress
,”
Int. J. Solid. Struct.
,
43
(
17
), pp.
5055
5065
.10.1016/j.ijsolstr.2005.08.007
71.
He
,
L. H.
, and
Li
,
Z. R.
,
2006
, “
Impact of Surface Stress on Stress Concentration
,”
Int. J. Solid. Struct.
,
43
(
20
), pp.
6208
6219
.10.1016/j.ijsolstr.2005.05.041
72.
Mi
,
C.
, and
Kouris
,
D. A.
,
2006
, “
Nanoparticles Under the Influence of Surface/Interface Elasticity
,”
J. Mech. Mater. Struct.
,
1
(
4
), pp.
763
791
.10.2140/jomms.2006.1.763
73.
Zöllner
,
A. M.
,
Buganza Tepole
,
A.
, and
Kuhl
,
E.
,
2012
, “
On the Biomechanics and Mechanobiology of Growing Skin
,”
J. Theoret. Biol.
,
297
, pp.
166
175
.10.1016/j.jtbi.2011.12.022
74.
Sun
,
C. Q.
,
2009
, “
Thermo-Mechanical Behavior of Low-Dimensional Systems: The Local Bond Average Approach
,”
Prog. Mater. Sci.
,
54
(
2
), pp.
179
307
.10.1016/j.pmatsci.2008.08.001
75.
Johnson
,
W. C.
,
2000
, “
Superficial Stress and Strain at Coherent Interfaces
,”
Acta Mater.
,
48
(
2
), pp.
433
444
.10.1016/S1359-6454(99)00359-6
76.
Yvonnet
,
J.
,
Mitrushchenkov
,
A.
,
Chambaud
,
G.
, and
He
,
Q.-C.
,
2011
, “
Finite Element Model of Ionic Nanowires With Size-Dependent Mechanical Properties Determined by Ab Initio Calculations
,”
Comput. Meth. Appl. Mech. Eng.
,
200
(5-8)
, pp.
614
625
.10.1016/j.cma.2010.09.007
77.
McBride
,
A.
,
Javili
,
A.
,
Steinmann
,
P.
, and
Bargmann
,
S.
,
2011
, “
Geometrically Nonlinear Continuum Thermomechanics With Surface Energies Coupled to Diffusion
,”
J. Mech. Phys. Solid.
,
59
(
10
), pp.
2116
2133
.10.1016/j.jmps.2011.06.002
78.
Özdemir
,
I.
,
Brekelmans
,
W. A. M.
, and
Geers
,
M. G. D.
,
2010
, “
A Thermo-Mechanical Cohesive Zone Model
,”
Computat. Mech.
,
46
(
5
), pp.
735
745
.10.1007/s00466-010-0507-z
79.
Benveniste
,
Y.
,
2006
, “
A General Interface Model for a Three-Dimensional Curved Thin Anisotropic Interphase Between Two Anisotropic Media
,”
J. Mech. Phys. Solid.
,
54
(
4
), pp.
708
734
.10.1016/j.jmps.2005.10.009
80.
Le-Quang
,
H.
,
Bonnet
,
G.
, and
He
,
Q.-C.
,
2010
, “
Size-Dependent Eshelby Tensor Fields and Effective Conductivity of Composites Made of Anisotropic Phases With Highly Conducting Imperfect Interfaces
,”
Phys. Rev. B
,
81
(
6
), p.
064203
.10.1103/PhysRevB.81.064203
81.
Gu
,
S. T.
, and
He
,
Q.-C.
,
2011
, “
Interfacial Discontinuity Relations for Coupled Multifield Phenomena and Their Application to the Modeling of Thin Interphases as Imperfect Interfaces
,”
J. Mech. Phys. Solid.
,
59
(
7
), pp.
1413
1426
.10.1016/j.jmps.2011.04.004
82.
Kapitza
,
P. L.
,
1941
, “
The Study of Heat Transfer in Helium II
,”
J. Phys. (USSR)
,
4
, pp.
181
210
.
83.
Yvonnet
,
J.
,
He
,
Q.-C.
,
Zhu
,
Q.-Z.
, and
Shao
,
J. F.
,
2011
, “
A General and Efficient Computational Procedure for Modelling the Kapitza Thermal Resistance Based on XFEM
,”
Comput. Mater. Sci.
,
50
(
4
), pp.
1220
1224
.10.1016/j.commatsci.2010.02.040
84.
Yvonnet
,
J.
,
He
,
Q.-C.
, and
Toulemonde
,
C.
,
2008
, “
Numerical Modelling of the Effective Conductivities of Composites With Arbitrarily Shaped Inclusions and Highly Conducting Interface
,”
Composit. Sci. Tech.
,
68
(
13
), pp.
2818
2825
.10.1016/j.compscitech.2008.06.008
85.
Miloh
,
T.
, and
Benveniste
,
Y.
,
1999
, “
On the Effective Conductivity of Composites With Ellipsoidal Inhomogeneities and Highly Conducting Interfaces
,”
Proc. R. Soc. A
,
455
(
1987
), pp.
2687
2706
.10.1098/rspa.1999.0422
86.
Javili
,
A.
,
McBride
,
A.
, and
Steinmann
,
P.
,
2013
, “
Numerical Modelling of Thermomechanical Solids With Highly Conductive Energetic Interfaces
,”
Int. J. Numer. Meth. Eng.
,
93
(5)
, pp.
551
574
.10.1002/nme.4402
87.
Mosler
,
J.
, and
Scheider
,
I.
,
2011
, “
A Thermodynamically and Variationally Consistent Class of Damage-Type Cohesive Models
,” Technical Report.
88.
Steinmann
,
P.
, and
Häsner
,
O.
,
2005
, “
On Material Interfaces in Thermomechanical Solids
,”
Arch. Appl. Mech.
,
75
(
1
), pp.
31
41
.10.1007/s00419-005-0383-8
89.
Steinmann
,
P.
,
2008
, “
On Boundary Potential Energies in Deformational and Configurational Mechanics
,”
J. Mech. Phys. Solid.
,
56
(
3
), pp.
772
800
.10.1016/j.jmps.2007.07.001
90.
Javili
,
A.
, and
Steinmann
,
P.
,
2009
, “
A Finite Element Framework for Continua With Boundary Energies—Part I: The Two-Dimensional Case
,”
Comput. Meth. Appl. Mech. Eng.
,
198
(
27–29
), pp.
2198
2208
.10.1016/j.cma.2009.02.008
91.
Javili
,
A.
, and
Steinmann
,
P.
,
2010
, “
A Finite Element Framework for Continua With Boundary Energies—Part II: The Three-Dimensional Case
,”
Comput. Meth. Appl. Mech. Eng.
,
199
(
9–12
), pp.
755
765
.10.1016/j.cma.2009.11.003
92.
Javili
,
A.
, and
Steinmann
,
P.
,
2010
, “
On Thermomechanical Solids With Boundary Structures
,”
Int. J. Solid. Struct.
,
47
(
24
), pp.
3245
3253
.10.1016/j.ijsolstr.2010.08.009
93.
Javili
,
A.
, and
Steinmann
,
P.
,
2011
, “
A Finite Element Framework for Continua With Boundary Energies—Part III: The Thermomechanical Case
,”
Comput. Meth. Appl. Mech. Eng.
,
200
(
21–22
), pp.
1963
1977
.10.1016/j.cma.2010.12.013
94.
Gough
,
J.
,
1805
, “
A Description of a Property of Caoutchouc on Indian Rubber; With Some Reflections on the Case of the Elasticity of This Substance
,”
Memoirs of the Literary and Philosophical Society of Manchester
, Vol. 1, pp.
288
295
.
95.
Joule
,
J. P.
,
1859
, “
On Some Thermo-Dynamic Properties of Solids
,”
Philos. Trans. R. Soc. A
,
149
, pp.
91
131
.10.1098/rstl.1859.0005
96.
Marsden
,
J. E.
, and
Hughes
,
T. J. R.
,
1994
,
Mathematical Foundations of Elasticity
,
Dover Publications
,
New York
.
97.
Šilhavý
,
M.
,
1997
,
The Mechanics and Thermodynamics of Continuous Media
,
Springer
,
Berlin, Germany
.
98.
Truesdell
,
C.
, and
Noll
,
W.
,
2004
,
The Non-Linear Field Theories of Mechanics
,
Springer
,
Berlin, Germany
.
99.
Gurtin
,
M. E.
,
Fried
,
E.
, and
Anand
,
L.
,
2009
,
The Mechanics and Thermodynamics of Continua
,
Cambridge University Press
,
New York
.
100.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
John Wiley & Sons
,
Chichester, UK
.
101.
Besson
,
J.
,
Cailletaud
,
G.
,
Chaboche
,
J. L.
, and
Forest
,
S.
,
2010
,
Non-Linear Mechanics of Materials
,
Springer
,
Heidelberg, Germany
.
102.
Bowen
,
R. M.
, and
Wang
,
C. C.
,
1976
,
Introduction to Vectors and Tensors: Linear and Multilinear Algebra
,
Plenum Press, New York
.
103.
Kreyszig
,
E.
,
1991
,
Differential Geometry
,
Dover Publications
,
New York
.
104.
Ciarlet
,
P. G.
,
2005
,
An Introduction to Differential Geometry With Applications to Elasticity
,
Springer
,
The Netherlands
.
105.
Gurtin
,
M. E.
,
2000
,
Configurational Forces as Basic Concepts of Continuum Physics
,
Springer
, New York.
106.
Eringen
,
A. C.
,
1967
,
Mechanics of Continua
,
Wiley
,
New York
.
107.
Hutter
,
K.
,
1977
, “
The Foundations of Thermodynamics, Its Basic Postulates and Implications: A Review of Modern Thermodynamics
,”
Acta Mech.
,
27
, pp.
1
54
.10.1007/BF01180075
108.
Müller
,
I.
,
1967
, “
On the Entropy Inequality
,”
Arch. Ration. Mech. An.
,
26
, pp.
118
141
.10.1007/BF00285677
109.
Simha
,
N. K.
, and
Bhattacharya
,
K.
,
2000
, “
Kinetics of Phase Boundaries With Edges and Junctions in a Three-Dimensional Multi-Phase Body
,”
J. Mech. Phys. Solid.
,
48
(
12
), pp.
2619
2641
.10.1016/S0022-5096(00)00008-9
110.
Miehe
,
C.
,
1995
, “
Entropic Thermoelasticity at Finite Strains. Aspects of the Formulation and Numerical Implementation
,”
Comput. Meth. Appl. Mech. Eng.
,
120
(
3–4
), pp.
243
269
.10.1016/0045-7825(94)00057-T
111.
Javili
,
A.
,
McBride
,
A.
, and
Steinmann
,
P.
,
2012
, “
Numerical Modelling of Thermomechanical Solids With Mechanically Energetic (Generalised) Kapitza Interfaces
,”
Computat. Mater. Sci.
,
65
, pp.
542
551
.10.1016/j.commatsci.2012.06.006
112.
Ye
,
J. C.
,
Lu
,
J.
,
Liu
,
C. T.
,
Wang
,
Q.
, and
Yang
,
Y.
,
2010
, “
Atomistic Free-Volume Zones and Inelastic Deformation of Metallic Glasses
,”
Nature Mater.
,
9
(
8
), pp.
619
623
.10.1038/nmat2802
113.
Javili
,
A.
,
McBride
,
A.
,
Steinmann
,
P.
, and
Reddy
,
B. D.
,
2012
, “
Relationships Between the Admissible Range of Surface Material Parameters and Stability of Linearly Elastic Bodies
,”
Philosoph. Mag.
,
92
(
28–30
), pp.
3540
3563
.10.1080/14786435.2012.682175
114.
Ciarlet
,
P. G.
,
1988
,
Mathematical Elasticity
, Vol.
1
,
Elsevier, Amsterdam, The Netherlands
.
115.
Ogden
,
R. W.
,
1997
,
Non-Linear Elastic Deformations
,
Dover Publications
, New York.
116.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
Addenda to Our Paper a Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. An.
,
59
(
4
), pp.
1
2
.10.1007/BF00281513
117.
Ru
,
C. Q.
,
2010
, “
Simple Geometrical Explanation of Gurtin–Murdoch Model of Surface Elasticity With Clarification of Its Related Versions
,”
Sci. China, Phys. Mech. Astron.
,
53
(3)
, pp.
536
544
.10.1007/s11433-010-0144-8
118.
Haiss
,
W.
,
2001
, “
Surface Stress of Clean and Adsorbate-Covered Solids
,”
Rep. Progress Phys.
,
64
(
5
), pp.
591
648
.10.1088/0034-4885/64/5/201
119.
Dingreville
,
R.
, and
Qu
,
J.
,
2007
, “
A Semi-Analytical Method to Compute Surface Elastic Properties
,”
Acta Mater.
,
55
(
1
), pp.
141
147
.10.1016/j.actamat.2006.08.007
120.
Malvern
,
L. E.
,
1969
,
Introduction to the Mechanics of a Continuous Medium
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
121.
Huang
,
Z. P.
, and
Wang
,
J.
,
2006
, “
A Theory of Hyperelasticity of Multi-Phase Media With Surface/Interface Energy Effect
,”
Acta Mech.
,
182
(
3-4
), pp.
195
210
.10.1007/s00707-005-0286-3
122.
Miller
,
R. E.
, and
Shenoy
,
V. B.
,
2000
, “
Size-Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
,
11
(
3
), p.
139
.10.1088/0957-4484/11/3/301
123.
Wei
,
G. W.
,
Shouwen
,
Y. U.
, and
Ganyun
,
H.
,
2006
, “
Finite Element Characterization of the Size-Dependent Mechanical Behaviour in Nanosystems
,”
Nanotechnology
,
17
(
4
), pp.
1118
1122
.10.1088/0957-4484/17/4/045
124.
Hill
,
R.
,
1958
, “
A General Theory of Uniqueness and Stability in Elastic-Plastic Solids
,”
J. Mech. Phys. Solid.
,
6
(
3
), pp.
236
249
.10.1016/0022-5096(58)90029-2
125.
Simpson
,
H. C.
, and
Spector
,
S. J.
,
1985
, “
On Failure of the Complementing Condition and Nonuniqueness in Linear Elastostatics
,”
J. Elasticity
,
15
, pp.
229
231
.10.1007/BF00041996
126.
Benallal
,
A.
,
Billardon
,
R.
, and
Geymonat
,
G.
,
1993
, “
Bifurcation and Localization in Rate-Independent Materials. Some General Considerations
,”
Bifurcation and Stability of Dissipative Systems
(CISM Courses and Lectures, Vol.
327
),
Springer
,
Berlin, Germany
, pp.
1
44
.
127.
Reddy
,
B. D.
,
1982
, “
Surface Instabilities on an Equibiaxially Stretched Elastic Half-Space
,”
Math. Proc. Cambridge Phil. Soc.
,
91
, pp.
491
501
.10.1017/S0305004100059569
128.
Reddy
,
B. D.
,
1983
, “
The Occurrence of Surface Instabilities and Shear Bands in Plane Strain Deformation of an Elastic Half-Space
,”
Q. J. Mech. Appl. Math.
,
36
, pp.
337
350
.10.1093/qjmam/36.3.337
129.
Bigoni
,
D.
,
Ortiz
,
M.
, and
Needleman
,
A.
,
1997
, “
Effect of Interfacial Compliance on Bifurcation of a Layer Bonded to a Substrate
,”
Int. J. Solid. Struct.
,
34
(
97
), pp.
4305
4326
.10.1016/S0020-7683(97)00025-5
130.
Han
,
W.
, and
Reddy
,
B. D.
,
1999
,
Plasticity: Mathematical Theory and Numerical Analysis
, Vol.
9
,
Springer
,
New York
.
131.
Bigoni
,
D.
, and
Gei
,
M.
,
2001
, “
Bifurcations of a Coated, Elastic Cylinder
,”
Int. J. Solid. Struct.
,
38
(
30–31
), pp.
5117
5148
.10.1016/S0020-7683(00)00322-X
132.
Steigmann
,
D. J.
,
2010
, “
Elastic Waves Interacting With a Thin, Prestressed, Fiber-Reinforced Surface Film
,”
Int. J. Eng. Sci.
,
48
(
11
), pp.
1604
1609
.10.1016/j.ijengsci.2010.06.032
133.
Steigmann
,
D. J.
,
2012
, “
Refined Theory for Linearly Elastic Plates: Laminae and Laminates
,”
Math. Mech. Solid
,
17
(4)
, pp.
351
363
.10.1177/1081286511419971
134.
Shenoy
,
V. B.
,
2005
, “
Atomistic Calculations of Elastic Properties of Metallic FCC Crystal Surfaces
,”
Phys. Rev. B
,
71
(
9
), p.
094104
.10.1103/PhysRevB.71.094104
135.
Forest
,
S.
,
Cordero
,
N. M.
, and
Busso
,
E. P.
,
2011
, “
First vs. Second Gradient of Strain Theory for Capillarity Effects in an Elastic Fluid at Small Length Scales
,”
Computat. Mater. Sci.
,
50
(
4
), pp.
1299
1304
.10.1016/j.commatsci.2010.03.048
136.
Gurtin
,
M. E.
, and
Jabbour
,
M. E.
,
2002
, “
Interface Evolution in Three Dimensions With Curvature-Dependent Energy and Surface Diffusion: Interface-Controlled Evolution, Phase Transitions, Epitaxial Growth of Elastic Films
,”
Arch. Ration. Mech. An.
,
163
, pp.
171
208
.10.1007/s002050200193
This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.