This report presents an in-depth review of the current state of knowledge on hull slamming, which is one of several types of slamming problems to be considered in the design and operation of ships. Hull slamming refers to the impact of the hull or a section of the hull as it reenters the water. It can be considered to be part of a larger class of water entry problems that include the water landing of spacecraft and solid rocket boosters, the water landing and ditching of aircraft, ballistic impacts on fuel tanks, and other applications. The problem involves the interaction of a structure with a fluid that has a free surface. Significant simplifications can be achieved by considering a two-dimensional cross section of simple shape (wedge, cone, sphere, and cylinder) and by assuming that the structure is a rigid body. The water is generally modeled as an incompressible, irrotational, inviscid fluid. Two approximate solutions developed by von Karman (1929, “The Impact on Seaplane Floats During Landing,” NACA Technical Note NACA-TN-32) and Wagner (1932, “Uber stoss und Gleitvorgange an der Oberache von Flussigkeiten,” Z. Angew. Math. Mech., 12, pp. 192–215) can be used to predict the motion of the body, the hydrodynamic force, and the pressure distribution on the wetted surface of the body. Near the intersection with the initial water surface, water piles up, a jet is formed, and the solution has a singularity in this region. It was shown that nearly half of the kinetic energy transferred from the solid to the fluid is contained in this jet, the rest being stored in the bulk of the fluid. A number of complicating factors are considered, including oblique or asymmetric impacts, elastic deformations, and more complex geometries. Other marine applications are considered as well as applications in aerospace engineering. Emphasis is placed on basic principles and analytical solutions as an introduction to this topic, but numerical approaches are needed to address practical problems, so extensive references to numerical approaches are also given.

References

References
1.
Mouritz
,
A. P.
,
Gellert
,
E.
,
Burchill
,
P.
, and
Challis
,
K.
,
2001
, “
Review of Advanced Composite Structures for Naval Ships and Submarines
,”
Compos. Struct.
,
53
(
1
), pp.
21
41
.10.1016/S0263-8223(00)00175-6
2.
Lamb
,
G. R.
,
2003
, “
High-Speed, Small Naval Ships Technology Development Plan
,” DTIC Technical Report No. AD A428141.
3.
Ibrahim
,
R. A.
,
2005
,
Liquid Sloshing Dynamics: Theory and Applications
,
Cambridge University Press
,
Cambridge, England
.
4.
Worthington
,
A. M.
,
1895
,
The Splash of a Drop
,
Society for Promoting Christian Knowledge
,
London, England
.
5.
Worthington
,
A. M.
,
1882–1883
, “
On Impact With a Liquid Surface
,”
Proc. R. Soc. London
,
34
, pp.
217
230
. Available at http://www.jstor.org/stable/113987
6.
Von Karman
,
T. H.
,
1929
, “
The Impact on Seaplane Floats During Landing
,” NACA Technical Note No. NACA-TN-32.
7.
Wagner
,
H.
,
1932
, “
Uber stoss und Gleitvorgange an der Oberache von Flussigkeiten
,”
Z. Angew. Math. Mech.
,
12
, pp.
192
215
.10.1002/zamm.19320120402
8.
Seddon
,
C. M.
, and
Moatamedi
,
M.
,
2006
, “
Review of Water Entry With Applications to Aerospace Structures
,”
Int. J. Impact Eng.
,
32
(
7
), pp.
1045
1067
.10.1016/j.ijimpeng.2004.09.002
9.
Mackey
,
A. M.
,
1979
, “
A Mathematical Model of Water Entry
,” Admiralty Underwater Weapons Establishment, Portland, UK, AUWE Technical Note No. 636/79.
10.
Aristoff
,
J. M.
, and
Bush
,
J. W. M.
,
2009
, “
Water Entry of Small Hydrophobic Spheres
,”
J. Fluid Mech.
,
619
, pp.
45
78
.10.1017/S0022112008004382
11.
Akers
,
B.
, and
Belmonte
,
A.
,
2006
, “
Impact Dynamics of a Solid Sphere Falling Into a Viscoelastic Micellar Fluid
,”
J. Non-Newtonian Fluid Mech.
,
135
(
2–3
), pp.
97
108
.10.1016/j.jnnfm.2006.01.004
12.
Tabuteau
,
H.
,
Coussot
,
P.
, and
de Bruyn
,
J. R.
,
2007
, “
Drag Force on a Sphere in Steady Motion Through a Yield Stress Fluid
,”
J. Rheol.
,
51
(
1
), pp.
125
137
.10.1122/1.2401614
13.
Bush
,
J. W. M.
, and
Hu
,
D. L.
,
2006
, “
Walking on Water: Biolocomotion at the Interface
,”
Annu. Rev. Fluid Mech.
,
38
, pp.
339
369
.10.1146/annurev.fluid.38.050304.092157
14.
Hu
,
D. L.
,
Chan
,
B.
, and
Bush
,
J. W. M.
,
2003
, “
The Hydrodynamics of Water Strider Locomotion
,”
Nature
,
424
(
6549
), pp.
663
666
.10.1038/nature01793
15.
Suter
,
R. B.
,
Rosenberg
,
O.
,
Loeb
,
S.
,
Wildman
,
H.
, and
Long
,
H.
,
1997
, “
Locomotion on the Water Surface: Propulsive Mechanisms of the Fisher Spider Dolomedes Triton
,”
J. Exp. Biol.
,
200
(
19
), pp.
2523
2538
.
16.
Hu
,
D. L.
, and
Bush
,
J. W. M.
,
2005
, “
Meniscus-Climbing Insects
,”
Nature
,
437
(
7059
), pp.
733
736
.10.1038/nature03995
17.
Denny
,
M. W.
,
2004
, “
Paradox Lost: Answers and Questions About Walking on Water
,”
J. Exp. Biol.
,
207
(
10
), pp.
1601
1606
.10.1242/jeb.00908
18.
Suter
,
R. B.
,
Stratton
,
G. E.
, and
Miller
,
P. R.
,
2004
, “
Taxonomic Variation Among Spiders in the Ability to Repel Water: Surface Adhesion and Hair Density
,”
J. Arachnology
,
32
(
1
), pp.
11
21
.10.1636/M02-74
19.
Suter
,
R. B.
, and
Gruenwald
,
J.
,
2000
, “
Spider Size and Locomotion on the Water Surface (Araneae, Pisauridae)
,”
J. Arachnology
,
28
(
3
), pp.
300
308
.10.1636/0161-8202(2000)028[0300:SSALOT]2.0.CO;2
20.
Suter
,
R. B.
,
1999
, “
Cheap Transport for Fishing Spiders (Araneae, Pisauridae): The Physics of Sailing on the Water Surface
,”
J. Arachnology
,
27
(
2
), pp.
489
496
. Available at http://www.jstor.org/stable/3706047
21.
Hsieh
,
S. T.
,
2003
, “
Three-Dimensional Hindlimb Kinematics of Water Running in the Plumed Basilisk Lizard (Basiliscus Plumifrons)
,”
J. Exp. Biol.
,
206
(
23
), pp.
4363
4377
.10.1242/jeb.00679
22.
Hsieh
,
S. T.
, and
Lauder
,
G. V.
,
2004
, “
Running on Water: Three-Dimensional Force Generation by Basilisk Lizards
,”
Proc. Natl. Acad. Sci.
,
101
(
48
), pp.
16784
16788
.10.1073/pnas.0405736101
23.
White
,
E. R.
, and
Miller
,
T. F.
,
2010
, “
A Serendipitous Application of Supercavitation Theory to the Water-Running Basilisk Lizard
,”
ASME J. Fluids Eng.
,
132
(
5
), p.
054501
.10.1115/1.4001487
24.
Glasheen
,
J. W.
, and
McMahon
,
T. A.
,
1996
, “
Size-Dependence of Water-Running Ability in Basilisk Lizards (Basiliscus Basiliscus)
,”
J. Exp. Biol.
,
199
(
12
), pp.
2611
2618
.
25.
Cointe
,
R.
, and
Armand
,
J.-L.
,
1987
, “
Hydrodynamic Impact Analysis of a Cylinder
,”
ASME J. Offshore Mech. Arct. Eng.
,
109
(
3
), pp.
237
243
.10.1115/1.3257015
26.
Cointe
,
R.
,
Fontaine
,
E.
,
Molin
,
B.
, and
Scolan
,
Y. M.
,
2004
, “
On Energy Arguments Applied to the Hydrodynamic Impact Force
,”
J. Eng. Math.
,
48
, pp.
305
319
.10.1023/B:engi.0000018189.83070.78
27.
Cointe
,
R.
, and
Armand
,
J. L.
,
1990
, “
Hydrodynamic Impact Analysis of a Cylinder: Modeling the Jet
,”
Proceedings of the 5th Int. Workshop of Water Waves and Floating Bodies
, Manchester, UK,
Mar. 25–28
.
28.
Cointe
,
R.
,
1989
, “
Two-Dimensional Water-Solid Impact
,”
ASME J. Offshore Mech. Arct. Eng.
,
111
(
2
), pp.
109
114
.10.1115/1.3257083
29.
Molin
,
B.
,
Cointe
,
R.
, and
Fontaine
,
E.
,
1996
, “
On Energy Arguments Applied to Slamming Force
,”
Proceedings of the 11th Int. Workshop of Water Waves and Floating Bodies
,
Hamburg
,
Germany
, pp.
162
165
.
30.
Casetta
,
L.
, and
Pesce
,
C. P.
,
2006
, “
The Proper Definition of the Added Mass for the Water Entry Problem
,”
Proceedings of the 21st Int. Workshop on Water Waves and Floating Bodies
,
Loughborough, England
,
Apr. 2–5
.
31.
Casetta
,
L.
, and
Pesce
,
C. P.
,
2007
, “
Hamilton's Principle for Dissipative Systems and Wagner's Problem
,”
Proceedings of the 22nd Int. Workshop of Water Waves and Floating Bodies
,
Plitvice, Croatia
.
32.
Pesce
,
C. P.
,
2003
, “
The Application of Lagrange Equations to Mechanical Systems With Mass Explicitly Dependent on Position
,”
ASME J. Appl. Mech.
,
70
(
5
), pp.
751
756
.10.1115/1.1601249
33.
Pesce
,
C. P.
,
Tannuri
,
E. A.
, and
Casetta
,
L.
,
2006
, “
The Lagrange Equations for Systems With Mass Varying Explicitly With Position: Some Applications to Offshore Engineering
,”
J. Braz. Soc. Mech. Sci.
,
28
(
4
), pp.
496
504
.10.1590/S1678-58782006000400015
34.
Wu
,
G. X.
,
1998
, “
Hydrodynamic Force on a Rigid Body During Impact With Liquid
,”
J. Fluids Struct.
,
12
(
5
), pp.
549
559
.10.1006/jfls.1998.0158
35.
Payne
,
P. R.
,
1993
, “
The Spray Sheets Produced During Vertical Wedge Impact and Steady Planing
,”
Ocean Eng.
,
20
(
3
), pp.
247
261
.10.1016/0029-8018(93)90023-B
36.
Carcaterra
,
A.
, and
Ciappi
,
E.
,
2004
, “
Hydrodynamic Shock of Elastic Structures Impacting on the Water: Theory and Experiments
,”
J. Sound Vib.
,
271
(
1–2
), pp.
411
439
.10.1016/j.jsv.2003.02.005
37.
Payne
,
P. R.
,
1981
, “
The Vertical Impact of a Wedge on a Fluid
,”
Ocean Eng.
,
8
(
4
), pp.
421
436
.10.1016/0029-8018(81)90035-4
38.
Chuang
,
S. L.
,
1966
, “
Slamming of Rigid Wedge-Shaped Bodies With Various Deadrise Angles
,”
DTIC Technical Report No. AD064323
5
.
39.
Vorus
,
W. S.
,
2004
, “
A Compliant-Hull Concept for Planning Craft Wave-Impact Shock Reduction
,”
J. Eng. Math.
,
48
(
3–4
), pp.
253
277
.10.1023/B:engi.0000018161.90860.ab
40.
Dobrovol'skaya
,
Z. N.
,
1969
, “
On Some Problems of Similarity Flow of Fluid With a Free Surface
,”
J. Fluid Mech.
,
36
, pp.
805
829
.10.1017/S0022112069001996
41.
Mei
,
X.
,
Liu
,
Y.
, and
Yue
,
D. K. P.
,
1969
, “
On the Water Impact of General Two-Dimensional Sections
,”
Appl. Ocean Res.
,
21
(
1
), pp.
1
15
.10.1016/S0141-1187(98)00034-0
42.
Iafrati
,
A.
,
Carcaterra
,
A.
,
Ciappi
,
E.
, and
Campana
,
E. F.
,
2000
, “
Hydroelastic Analysis of a Simple Oscillator Impacting the Free Surface
,”
J. Ship Res.
,
44
(
4
), pp.
278
289
.
43.
Skalak
,
R.
, and
Feit
,
D.
,
1963
, “
Impact on the Surface of a Compressible Fluid
,” DTIC Document No. AD0295111.
44.
Feit
,
D.
,
Skalak
,
R.
, and
Bleich
,
H.
,
1964
, “
Impact of an Elastic Wedge on a Compressible Fluid
,” DTIC Document No. AD0612106.
45.
Scolan
,
Y.
, and
Korobkin
,
A. A.
,
2001
, “
Three-Dimensional Theory of Water Impact—Part 1: Inverse Wagner Problem
,”
J. Fluid Mech.
,
440
, pp.
293
326
.10.1017/S002211200100475X
46.
Greenhow
,
M. L.
, and
Lin
,
W. M.
,
1983
, “
Nonlinear-Free Surface Effects: Experiments and Theory
,” DTIC Technical Report No. ADA161079.
47.
Howison
,
S. D.
,
Ockendon
,
J. R.
, and
Wilson
,
S. K.
,
1991
, “
Incompressible Water Entry Problems at Small Dead-Rise Angles
,”
J. Fluid Mech.
,
222
, pp.
215
230
.10.1017/S0022112091001076
48.
Mackie
,
A. G.
,
1968
, “
The Water Entry Problem
,”
Q. J. Mech. Appl. Math.
,
22
, pp.
1
17
.10.1093/qjmam/22.1.1
49.
Cointe
,
R.
,
1987
, “
Two-Dimensional Water-Solid Impact
,”
Proc. Int. Offshore Mech. Arct. Eng. Symp.
, Vol.
2
, pp.
97
104
.
50.
Cointe
,
R.
,
1991
, “
Free-Surface Flows Close to a Surface-Piercing Body
,”
Mathematical Approaches in Hydrodynamics
,
T.
Miloh
, ed.,
SIAM
,
Philadelphia, PA
, pp.
319
334
.
51.
Scolan
,
Y. M.
, and
Korobkin
,
A. A.
,
2001
, “
The Energy Distribution From Impact of Three-Dimensional Body Onto a Liquid Free Surface
,”
Proc. 16th Int. Workshop Water Waves Floating Bodies
,
K.-H.
Mori
, and
H.
Iwashita
, eds.,
Hiroshima
,
Japan
, pp.
141
144
.
52.
Greenhow
,
M.
,
1987
, “
Wedge Entry Into Initially Calm Water
,”
Appl. Ocean Res.
,
9
(
4
), pp.
214
223
.10.1016/0141-1187(87)90003-4
53.
Fontaine
,
E.
, and
Cointe
,
R.
,
1997
, “
Second Order Solution for the Wedge Entry Problem
,”
Proc. 7th Int. Workshop on Water Waves and Floating Bodies
,
Val de Reuil
,
France
.
54.
Iafrati
,
A.
, and
Korobkin
,
A. A.
,
2005
, “
Starting Flow Generated by the Impulsive Start of a Floating Wedge
,”
J. Eng. Math.
,
51
(
2
), pp.
99
126
.10.1007/s10665-004-3686-9
55.
Iafrati
,
A.
, and
Korobkin
,
A. A.
,
2001
, “
Starting Flow Generated by a Floating Wedge Impact
,”
Proceedings of the 16th Int. Workshop on Water Waves and Floating Bodies
,
K.-H.
Mori
, and
H.
Iwashita
, eds.,
Hiroshima
,
Japan
.
56.
Iafrati
,
A.
, and
Korobkin
,
A. A.
,
2000
, “
Liquid Flow Close to Intersection Point
,”
Proc. 15th Workshop on Water Waves and Floating Bodies
,
Caesarea, Israel
,
Feb. 27–Mar. 1
.
57.
Korobkin
,
A. A.
, and
Iafrati
,
A.
,
2005
, “
Hydrodynamic Loads During Initial Stage of Floating Body Impact
,”
J. Fluids Struct.
,
21
(
4
), pp.
413
427
.10.1016/j.jfluidstructs.2005.08.002
58.
Korobkin
,
A. A.
, and
Iafrati
,
A.
,
2004
, “
Jetting by Floating Wedge Impact
,”
Proceedings of the 19th Int. Workshop on Water Waves and Floating Bodies
,
Cortona, Italy
,
Mar. 28–31
.
59.
Hughes
,
O. F.
,
1972
, “
Solution of the Wedge Entry Problem by Numerical Conformal Mapping
,”
J. Fluid Mech.
,
56
, pp.
173
192
.10.1017/S0022112072002253
60.
de Divitiis
,
N.
, and
de Socio
,
L. M.
,
2002
, “
Impact of Floats on Water
,”
J. Fluid Mech.
,
471
, pp.
365
379
.10.1017/S002211200200229X
61.
Molin
,
B.
, and
Korobkin
,
A. A.
,
2001
, “
Water Entry of a Perforated Wedge
,”
Proceedings of the 16th Int. Workshop on Water Waves and Floating Bodies
,
Hiroshima, Japan
,
Apr. 22–25
.
62.
Johnstone
,
E. A.
, and
Mackie
,
A. G.
,
1973
, “
The Use of Lagrangian Coordinates in the Water Entry and Related Problems
,”
Math. Proc. Cambridge Philos. Soc.
,
74
(
3
), pp.
529
538
.10.1017/S030500410007729X
63.
Battistin
,
D.
, and
Iafrati
,
A.
,
2004
, “
A Numerical Model for the Jet Flow Generated by Water Impact
,”
J. Eng. Math.
,
48
(
3–4
), pp.
353
374
.10.1023/B:engi.0000018173.66342.9f
64.
Iafrati
,
A.
, and
Battistin
,
D.
,
2003
, “
Accurate Description of the Jet Flow Developing During Water Impact
,”
Proceedings of the 18th Int. Workshop on Water Waves and Floating Bodies
,
Le Croisic, France
,
Apr. 6–9
.
65.
Battistin
,
D.
, and
Iafrati
,
A.
,
2003
, “
Hydrodynamic Loads During Water Entry of Two-Dimensional and Axisymmetric Bodies
,”
J. Fluids Struct.
,
17
(
5
), pp.
643
664
.10.1016/S0889-9746(03)00010-0
66.
Chuang
,
S. L.
,
1965
, “
Experimental Investigation of Rigid Flat Bottom Body Slamming
,” DTIC Document No. AD0622427.
67.
Lewison
,
G.
, and
Maclean
,
W.
,
1968
, “
On the Cushioning of Water Impact by Entrapped Air
,”
J. Ship Res.
,
12
(
2
), pp.
116
130
.
68.
Johnson
,
R. S.
,
1968
, “
The Effect of Air Compressibility in a First Approximation to the Ship Slamming Problem
,”
J. Ship Res.
,
12
, pp.
57
68
.
69.
Chung
,
J. Y.
,
Nahm
,
J. O.
,
Kang
,
H. D.
, and
Kwon
,
S. H.
,
2007
, “
A Novel Experimental Technique in Slamming
,”
Proc. 22nd Int. Workshop on Water Waves and Floating Bodies
,
Plitvice, Croatia
, Apr. 15–18.
70.
Chuang
,
S. L.
,
1970
, “
Investigation of Impact of Rigid and Elastic Bodies With Water
,” DTIC Technical Report No. AD0702727.
71.
Verhagen
,
J. H. G.
,
1967
, “
The Impact of a Flat Plate on a Water Surface
,”
J. Ship Res.
,
10
, pp.
211
223
.
72.
Oh
,
S. H.
,
Kwon
,
S. H.
, and
Chung
,
J. Y.
,
2009
, “
A Close Look at Air Pocket Evolution in Flat Impact
,”
Proceedings of the 24th Int. Workshop on Water Waves and Floating Bodies
,
Zelenogorsk, Russia
,
Apr. 19–22
.
73.
Iwanowski
,
B.
, and
Yao
,
T.
,
1992
, “
Numerical Simulation of Air Flow Beneath a Rigid Body Falling on a Deformable Surface
,”
J. Soc. Naval Archit. Jpn.
,
172
, pp.
465
475
.10.2534/jjasnaoe1968.1992.172_465
74.
Koehler
,
B. R.
, Jr.
,
1977
, “
Hydrodynamic Impact of a Falling Body Upon a Viscous Incompressible Fluid
,”
J. Ship Res.
,
21
(
3
), pp.
165
181
.
75.
Huang
,
Z.
, and
Hsiung
,
C. C.
,
1991
, “
A Hydro-Aero-Elastic Model for Slamming of a 2-D Ship Hull Section
,”
Proceedings of the 6th Int. Workshop on Water Waves and Floating Bodies
,
Woods Hole
,
M
A,
Apr. 14–17
.
76.
Ng
,
C. O.
, and
Kot
,
S. C.
,
1992
, “
Computations of Water Impact on a Two-Dimensional Flat-Bottomed Body With a Volume-of-Fluid Method
,”
Ocean Eng.
,
19
(
4
), pp.
377
393
.10.1016/0029-8018(92)90036-4
77.
Gallagher
,
P.
, and
McGregor
,
R. C.
,
1985
, “
Slamming Simulations: An Application of Computational Fluid Dynamics
,”
Proc. of the 4th Int. Conf. on Numerical Ship Hydrodynamics
,
Sept. 24–27
,
National Academy of Sciences, Washington, DC
, pp.
117
137
.
78.
Lin
,
M.
, and
Shieh
,
L.
,
1997
, “
Simultaneous Measurements of Water Impact on a Two-Dimensional Body
,”
Fluid Dyn. Res.
,
19
(
3
), pp.
125
148
.10.1016/S0169-5983(96)00033-0
79.
Garabedian
,
P. R.
,
1953
, “
Oblique Water Entry of a Wedge
,”
Commun. Pure Appl. Math.
,
6
(
2
), pp.
157
165
.10.1002/cpa.3160060201
80.
Chekin
,
B. S.
,
1989
, “
The Entry of a Wedge Into an Incompressible Fluid
,”
J. Appl. Math. Mech.
,
53
(
3
), pp.
300
307
.10.1016/0021-8928(89)90026-9
81.
Chekin
,
B. S.
,
1994
, “
The Inclined Entry of a Thin Wedge Into an Incompressible Fluid
,”
J. Appl. Math. Mech.
,
58
(
3
), pp.
487
492
.10.1016/0021-8928(94)90098-1
82.
Korobkin
,
A.
, and
Malenica
,
S.
,
2005
, “
Modified Logvinovich Model for Hydrodynamic Loads on Asymmetric Contours Entering Water
,”
20th Int. Workshop on Water Waves and Floating Bodies,
Longyearbyen, Norway
,
May 29–June 1
.
83.
Xu
,
L.
,
Troesch
,
A. W.
, and
Vorus
,
W. S.
,
1998
, “
Asymmetric Vessel Impact and Planing Hydrodynamics
,”
J. Ship Res.
,
42
(
3
), pp.
187
198
.
84.
Xu
,
L.
,
Troesch
,
A. W.
, and
Peterson
,
R.
,
1999
, “
Asymmetric Hydrodynamic Impact and Dynamic Response of Vessels
,”
ASME J. Offshore Mech. Arct. Eng.
,
121
(
2
), pp.
83
89
.10.1115/1.2830082
85.
Judge
,
C.
,
Troesch
,
A.
, and
Perlin
,
M.
,
2004
, “
Initial Water Impact of a Wedge at Vertical and Oblique Angles
,”
J. Eng. Math.
,
48
(
3–4
), pp.
279
303
.10.1023/B:engi.0000018187.33001.e1
86.
Yoon
,
B. S.
, and
Semenov
,
Y. A.
,
2009
, “
Flow Separation at the Initial Stage of the Oblique Water Entry of a Wedge
,”
Proceedings of the 24th Int. Workshop on Water Waves and Floating Bodies
,
Zelenogorsk, Russia
,
Apr. 19–22
.
87.
Xu
,
G. D.
,
Duan
,
W. Y.
, and
Wu
,
G. X.
,
2008
, “
Numerical Simulation of Oblique Water Entry of an Asymmetrical Wedge
,”
Ocean Eng.
,
35
(
16
), pp.
1597
1603
.10.1016/j.oceaneng.2008.08.002
88.
Hua
,
J.
,
Wu
,
J. L.
, and
Wang
,
W. H.
,
2000
, “
Effect of Asymmetric Hydrodynamic Impact on the Dynamic Response a Plate Structure
,”
J. Mar. Sci. Technol.
,
8
(
2
), pp.
71
77
.
89.
Toyama
,
Y.
,
1993
, “
Two-Dimensional Water Impact of Unsymmetrical Bodies
,”
J. Naval Arch.
,
173
, pp.
285
291
.10.2534/jjasnaoe1968.1993.285
90.
Riccardi
,
G.
, and
Iafrati
,
A.
,
2003
, “
Vortex Shedding Due to Water Impact of an Asymmetric Wedge
,”
2nd MIT Conference on Computational Fluid and Solid Mechanics
, pp.
1106
1108
.
91.
Riccardi
,
G.
, and
Iafrati
,
A.
,
2004
, “
Water Impact of an Asymmetric Floating Wedge
,”
J. Eng. Math.
,
49
(
1
), pp.
19
39
.10.1023/B:ENGI.0000014885.89822.f5
92.
Korobkin
,
A. A.
, and
Pukhnachov
,
V. V.
,
1988
, “
Initial Stage of Water Impact
,”
Annu. Rev. Fluid Mech.
,
20
, pp.
159
185
.10.1146/annurev.fl.20.010188.001111
93.
Korobkin
,
A. A.
, and
Iafrati
,
A.
,
2006
, “
Numerical Study of Jet Flow Generated by Impact on Weakly Compressible Liquid
,”
Phys. Fluids
,
18
(
3
), p.
032108
.10.1063/1.2182003
94.
Campana
,
E. F.
,
Carcaterra
,
A.
,
Ciappi
,
E.
, and
Iafrati
,
A.
,
2000
, “
Some Insights Into Slamming Forces: Compressible and Incompressible Phases
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
214
(
6
), pp.
881
888
.10.1243/0954406001523867
95.
Korobkin
,
A. A.
,
1995
, “
Acoustic Effects on Water Impact
,”
Proceedings of the 10th Workshop on Water Waves and Floating Bodies
,
Oxford, UK
,
Apr. 2–5
.
96.
Korobkin
,
A. A.
,
1992
, “
Blunt-Body Impact on the Free Surface of a Compressible Liquid
,”
J. Fluid Mech.
,
263
, pp.
319
342
.10.1017/S0022112094004131
97.
Korobkin
,
A. A.
,
1992
, “
Blunt-Body Impact on a Compressible Liquid Surface
,”
J. Fluid Mech.
,
244
, pp.
437
453
.10.1017/S0022112092003136
98.
Korobkin
,
A. A.
,
1999
, “
Shallow-Water Impact Problems
,”
J. Eng. Math.
,
35
, pp.
233
250
.10.1023/A:1004382117949
99.
Miller
,
R. W.
, and
Merten
,
K. P.
,
1951
, “
Hydrodynamic Impact of a System With a Single Elastic Mode. II. Comparison of Experimental Force and Response With Theory
,” NACA Report No. 1075.
100.
Bogaert
,
H.
, and
Kaminski
,
M.
,
2007
, “
Hydro-Elastic Criterion for Practical Design
,”
10th Int. Symposium on Practical Design of Ships and Other Floating Structures (PRADS 2007)
,
Houston, TX
,
Sept. 30–Oct. 5
.
101.
Carcaterra
,
A.
, and
Ciappi
,
E.
,
2000
, “
Prediction of the Compressible Stage Slamming Force on Rigid and Elastic Systems Impacting on the Water Surface
,”
Nonlinear Dyn.
,
21
(
2
), pp.
193
220
.10.1023/A:1008338301185
102.
Gollwitzer
,
R. M.
, and
Petersen
,
R. S.
,
1995
, “
Repeated Water Entry Shocks on Highspeed Planing Boats
,” CSS/TR-96/27, Technical Report No. ADA317132.
103.
Carcaterra
,
A.
,
Ciappi
,
E.
,
Iafrati
,
A.
, and
Campana
,
E. F.
,
2000
, “
Shock Spectral Analysis of Elastic Systems Impacting on the Water Surface
,”
J. Sound Vib.
,
229
(
3
), pp.
579
605
.10.1006/jsvi.1999.2517
104.
Khabakhpasheva
,
T. I.
, and
Korobkin
,
A. A.
,
2003
, “
Approximate Models of Elastic Wedge Impact
,”
Proc. 18th Int. Workshop on Water Waves and Floating Bodies
,
Le Croisic, France
,
Apr. 6–9
.
105.
Datta
,
N.
,
Kim
,
D. H.
, and
Troesch
,
A. W.
,
2009
, “
Hydrodynamic Impact-Induced Vibration Characteristics of a Uniform Euler-Bernoulli Beam
,”
Vibro-Impact Dynamics of Ocean Systems and Related Problems
,
R.
Ibrahim
,
V. I.
Babitsky
, and
M.
Okuma
, eds.,
Springer
,
New York
.
106.
Maki
,
K. J.
,
Lee
,
D.
,
Troesch
,
A. W.
, and
Vlahopoulos
,
N.
,
2011
, “
Hydroelastic Impact of a Wedge-Shaped Body
,”
Ocean Eng.
,
38
(
4
), pp.
621
629
.10.1016/j.oceaneng.2010.12.011
107.
Korobkin
,
A.
,
Guéret
,
R.
, and
Malenica
,
S.
,
2006
, “
Hydroelastic Coupling of Beam Finite Element Model With Wagner Theory of Water Impact
,”
J. Fluids Struct.
,
22
(
4
), pp.
493
504
.10.1016/j.jfluidstructs.2006.01.001
108.
Luo
,
H.
,
Hu
,
J.
, and
Soares
,
C.
G.,
2010
, “
Numerical Simulation of Hydroelastic Responses of Flat Stiffened Panels Under Slamming Loads
,” Proc.
ASME
29th Int. Conference on Ocean, Offshore and Arctic Engineering, Vol.
6
, pp.
373
381
.10.1115/OMAE2010-20027
109.
Panciroli
,
R.
,
Abrate
,
S.
,
Minak
,
G.
, and
Zucchelli
,
A.
,
2012
, “
Hydroelasticity in Water-Entry Problems: Comparison Between Experimental and SPH Results
,”
Compos. Struct.
,
94
(
2
), pp.
532
539
.10.1016/j.compstruct.2011.08.016
110.
May
,
A.
,
1975
, “
Water Entry and the Cavity-Running Behavior of Missiles
,” NAVSEA Hydroballistics Advisory Committee, Silver Spring, MD, Technical Report No. ADA020429.
111.
McMillen
,
J. H.
,
1945
, “
Shock Wave Pressures in Water Produced by Impact of Small Spheres
,”
Phys. Rev.
,
68
(
9–10
), pp.
198
309
.10.1103/PhysRev.68.198
112.
Richardson
,
E. G.
,
1948
, “
The Impact of a Solid on a Liquid Surface
,”
Proc. Phys. Soc.
,
61
, pp.
352
367
.10.1088/0959-5309/61/4/308
113.
Hoover
,
W. R.
, and
Dawson
,
V. C. D.
,
1966
, “
Hydrodynamic Pressure Measurements of the Vertical Water Entry of a Sphere
,” Technical Report No. AD0658323.
114.
Cappelli
,
A. P.
, and
Wilkinson
,
J. P. D.
,
1967
, “
Study of Apollo Water Impact. Vol. 2—Dynamic Response of Shells of Revolution During Vertical Impact into Water—No Interaction Final Report
,” Report No. NASA-CR-92020, SID-67-498.
115.
Lamb
,
H.
,
1916
,
Hydrodynamics, Cambridge University Press, London
.
116.
Cappelli
,
A. P.
,
Salzman
,
R. N.
, and
Wilkinson
,
J. P. D.
,
1967
, “
Study of Apollo Water Impact. Vol. 3—Dynamic Response of Shells of Revolution During Vertical Impact into Water—Hydroelastic Interaction
,” Final Report No. NASA-CR-92021, SID-67-498.
117.
Nisewanger
,
C. R.
,
1961
, “
Experimental Determination of Pressure Distribution on a Sphere During Water Entry
,” DTIC Document No. AD0272577.
118.
Johnson
,
W.
,
1998
, “
Ricochet of Non-Spinning Projectiles, Mainly From Water—Part I: Some Historical Contributions
,”
Int. J. Impact Eng.
,
21
(
1–2
), pp.
15
24
.10.1016/S0734-743X(97)00032-8
119.
Soliman
,
A. S.
,
Reid
,
S. R.
, and
Johnson
,
W.
,
1976
, “
The Effect of Spherical Projectile Speed in Ricochet Off Water and Sand
,”
Int. J. Mech. Sci.
,
18
(
6
), pp.
279
284
.10.1016/0020-7403(76)90029-1
120.
Hutchings
,
I. M.
,
1976
, “
Ricochet of Spheres and Cylinders From Surface of Water
,”
Int. J. Mech. Sci.
,
18
(
5
), pp.
243
247
.10.1016/0020-7403(76)90006-0
121.
De Jonquieres
,
E.
,
1883
, “Sur le ricochet des projectiles sphériques à la surface de l'eau,”
C. R. Acad. Sci.
,
97
, p.
1278
.
122.
Daneshi
,
G. H.
, and
Johnson
,
W.
,
1977
, “
Ricochet of Spherical Projectiles Off Sand
,”
Int. J. Mech. Sci.
,
19
(
8
), pp.
491
497
.10.1016/0020-7403(77)90022-4
123.
Bai
,
Y. L.
, and
Johnson
,
W.
,
1981
, “
The Effects of Projectile Speed and Medium Resistance in Ricochet Off Sand
,”
J. Mech. Eng. Sci.
,
23
(
2
), pp.
69
75
.10.1243/JMES_JOUR_1981_023_015_02
124.
Johnson
,
W.
,
1998
, “
The Ricochet of Spinning and Non-spinning Spherical Projectiles, Mainly From Water—Part II: An Outline of Theory and Warlike Applications
,”
Int. J. Impact Eng.
,
21
(
1–2
), pp.
25
34
.10.1016/S0734-743X(97)00033-X
125.
de Podesta
,
M.
,
2007
, “
Bouncing Steel Balls on Water
,”
Phys. Educ.
,
42
(
5
), pp.
466
477
.10.1088/0031-9120/42/5/003
126.
Miloh
,
T.
, and
Shukron
,
Y.
,
1991
, “
Ricochet Off Water of Spherical Projectiles
,”
J. Ship Res.
,
35
(
2
), pp.
91
100
.
127.
Miloh
,
T.
,
1990
, “
Oblique Water Entry of Spherical Shapes With Special Reference to the Ricocheting Phenomenon
,”
Proceedings of the 5th Int. Workshop on Water Waves and Floating Bodies
,
Manchester, UK
,
Mar. 25–28
.
128.
Miloh
,
T.
,
1991
, “
On the Oblique Water-Entry Problem of a Rigid Sphere
,”
J. Eng. Math.
,
25
, pp.
77
92
.10.1007/BF00036603
129.
Truscott
,
T. T.
, and
Techet
,
A. H.
,
2009
, “
Water Entry of Spinning Spheres
,”
J. Fluid Mech.
,
625
, pp.
135
165
.10.1017/S0022112008005533
130.
Truscott
,
T. T.
, and
Techet
,
A. H.
,
2006
, “
Cavity Formation in the Wake of a Spinning Sphere Impacting the Free Surface
,”
Phys. Fluids
,
18
(
9
), p.
091113
.10.1063/1.2335903
131.
Shlien
,
D. J.
,
1994
, “
Unexpected Ricochet of Spheres Off Water
,”
Exp. Fluids
,
17
(
4
), pp.
267
271
.10.1007/BF00203046
132.
Baldwin
,
J. L.
,
1975
, “
Prediction of Vertical Water-Entry Forces on Ogives From Cone
,” DTIC Document No. ADA023616.
133.
Chuang
,
S. L.
,
1971
, “
Drop Tests of Cones to Investigate the Three-Dimensional Effects of Slamming
,” DTIC Document No. AD0881183.
134.
Schiffman
,
M.
, and
Spencer
,
D. C.
,
1951
, “
The Force of Impact on a Cone Striking a Water Surface Vertical Entry
,”
Comm. Pure Appl. Math.
,
4
, pp.
379
417
.10.1002/cpa.3160040402
135.
Kleefsman
,
K. M. T.
,
Fekken
,
G.
,
Veldman
,
A. E. P.
,
Iwanowski
,
B.
, and
Buchner
,
B.
,
2005
, “
A Volume-of-Fluid Based Simulation Method for Wave Impact Problems
,”
J. Comput. Phys.
,
206
, pp.
363
393
.10.1016/j.jcp.2004.12.007
136.
General Dynamics
,
1961
, “
Study of High Speed Projectile Impacts, Loads, and Motions at Water Entry
,” Convair Div. Technical Report No. AD0263557.
137.
Poruchikov
,
V. B.
,
1973
, “
Penetration of a Cone Into a Compressible Fluid
,”
J. Appl. Math. Mech.
,
37
(
1
), pp.
84
93
.10.1016/0021-8928(73)90137-8
138.
De Backer
,
G.
,
Vantorre
,
M.
,
Beels
,
C.
,
De Pré
,
J.
,
Victor
,
S.
,
De Rouck
,
J.
,
Blommaert
,
C.
, and
Van Paepegem
,
W.
,
2009
, “
Experimental Investigation of Water Impact on Axisymmetric Bodies
,”
Appl. Ocean Res.
,
31
(
3
), pp.
143
156
.10.1016/j.apor.2009.07.003
139.
Gurney
,
J. O.
, Jr.
,
1966
, “
A Preliminary Study of the Mechanism of Water-Entry Whip of 20-Degree Cone Nosed Models
,” DTIC Technical Report No. AD0650925.
140.
Park
,
M. S.
,
Jung
,
Y. R.
, and
Park
,
W. G.
,
2003
, “
Numerical Study of Impact Force and Ricochet Behavior of High Speed Water-Entry Bodies
,”
Comput. Fluids
,
32
(
7
), pp.
939
951
.10.1016/S0045-7930(02)00087-7
141.
Noonan
,
B. J.
, and
Steves
,
H. K.
,
1970
, “
The Performance of Small Arms Ammunition When Fired Into Water
,” DTIC Document No. AD0713445.
142.
Mirshak
,
R.
,
2011
, “
Assessing the Risk of Bullet Ricochet From Waves
,”
J. Def. Model. Simul.: Appl., Methodol., Technol.
,
8
(4)
, pp.
205
216
.10.1177/0037549710388796
143.
Kleefsman
,
K. M. T.
,
Fekken
,
G.
,
Veldman
,
A. E. P.
, and
Iwanowski
,
B.
,
2004
, “
An Improved Volume-of-Fluid Method for Wave Impact Problems
,”
Proceedings of the 14th Int. Offshore and Polar Engineering Conference (ISOPE 2004)
, p.
334
.
144.
Molin
,
B.
,
2002
,
Hydrodynamique des structures offshore
, Editions TECHNIP, Paris.
145.
Korobkin
,
A. A.
, and
Wu
,
G. X.
,
2000
, “
Impact on a Floating Circular Cylinder
,”
Proc. R. Soc. London
,
456
(2002)
, pp.
2489
2514
.10.1098/rspa.2000.0622
146.
Zhu
,
X.
,
2006
, “
Application of the CIP Method to Strongly Nonlinear Wave-Body Interaction Problems
,” Ph.D. thesis, Norwegian University of Science and Technology, Trondheim, Norway.
147.
Zhu
,
X.
,
Faltinsen
,
O. M.
, and
Hu
,
C.
,
2007
, “
Water Entry and Exit of a Horizontal Circular Cylinder
,”
ASME J. Offshore Mech. Arct. Eng.
,
129
(4)
, pp.
253
264
.10.1115/1.2199558
148.
Colicchio
,
G.
,
Greco
,
M.
,
Miozzi
,
M.
, and
Lugni
,
C.
,
2009
, “
Experimental and Numerical Investigation of the Water-Entry and Water-Exit of a Circular Cylinder
,”
Proceedings of the 24th Int. Workshop on Water Waves and Floating Bodies
,
Zelenogorsk, Russia
,
Apr. 19–22
.
149.
Lin
,
M.
, and
Shieh
,
L.
,
1997
, “
Flow Visualization and Pressure Characteristics of a Cylinder for Water Impact
,”
Appl. Ocean Res.
,
19
(
2
), pp.
101
112
.10.1016/S0141-1187(97)00014-X
150.
Wardlaw
,
A. B.
, Jr.
,
1977
, “
Prediction of Impact Pressures, Forces, and Moments During Vertical and Oblique Water Entry
,” DTIC Document No. ADA041852.
151.
Okada
,
S.
, and
Sumi
,
Y.
,
2000
, “
On the Water Impact and Elastic Response of a Flat Plate at Small Impact Angles
,”
J. Mar. Sci. Technol.
,
5
(
1
), pp.
31
39
.10.1007/s007730070019
152.
Faltinsen
,
O. M.
, and
Semenov
,
Y. A.
,
2008
, “
Nonlinear Problem of Flat-Plate Entry Into an Incompressible Liquid
,”
J. Fluid Mech.
,
611
, pp.
151
173
.10.1017/S0022112008002735
153.
Glasheen
,
J. W.
, and
McMahon
,
T. A.
,
1996
, “
Vertical Water Entry of Disks at Low Froude Numbers
,”
Phys. Fluids
,
8
(
8
), pp.
2078
2083
.10.1063/1.869010
154.
Gaudet
,
S.
,
1998
, “
Numerical Simulation of Circular Disks Entering the Free Surface of a Fluid
,”
Phys. Fluids
,
10
(
10
), pp.
2489
2499
.10.1063/1.869787
155.
Korobkin
,
A. A.
, and
Iafrati
,
A.
,
2006
, “
Hydrodynamic Loads on Flat Plate Entering Water
,”
Proceedings of the 21st Int. Workshop on Water Waves and Floating Bodies
,
Loughborough, UK
,
Apr. 2–5
.
156.
Payne
,
P. R.
,
1981
, “
The Virtual Mass of a Rectangular Flat Plate of Finite Aspect Ratio
,”
Ocean Eng.
,
8
, pp.
541
545
.10.1016/0029-8018(81)90018-4
157.
Yakimov
,
Y. L.
,
1973
, “
Influence of Atmosphere at Falling of Bodies on Water
,”
Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza
,
5
(
3
), pp.
3
7
.
158.
Iafrati
,
A.
, and
Korobkin
,
A. A.
,
2004
, “
Initial Stage of Flat Plate Impact Onto Liquid Free Surface
,”
Phys. Fluids
,
16
(
7
), pp.
2214
2227
.10.1063/1.1714667
159.
Bulgarelli
,
U.
,
Iafrati
,
A.
, and
Korobkin
,
A.
,
2008
, “
Hydrodynamic Loads During Water Entry of a Flat Plate
,”
IUTAM Symposium on Fluid-Structure Interaction in Ocean Engineering
(
IUTAM Book Series
), Springer Science + Business Media B. V., New York, pp.
13
24
.
160.
Iafrati
,
A.
, and
Korobkin
,
A. A.
,
2008
, “
Hydrodynamic Loads During Early Stage of Flat Plate Impact Onto Water Surface
,”
Phys. Fluids
,
20
(
8
), p.
082104
.10.1063/1.2970776
161.
Iafrati
,
A.
, and
Korobkin
,
A.
,
2007
, “
Numerical Analysis of Initial Stage of Plate Impact on Water Surface
,”
Proceedings of the 22nd Int. Workshop on Water Waves and Floating Bodies
,
Plitvice, Croatia
.
162.
Iafrati
,
A.
, and
Korobkin
,
A. A.
,
2008
, “
Second Order Solution of Circular Disc Impact Problem
,”
Proceedings of the 23rd Int. Workshop on Water Waves and Floating Bodies
,
Jeju, Korea
,
Apr. 13–16
.
163.
King
,
A. C.
,
Cooper
,
R. J.
, and
Needham
,
D. J.
,
2002
, “
Free Surface Deformation Due to an Impulsively Moved Plate
,”
Proceedings of the 17th Int. Workshop on Water Waves and Floating Bodies
,
Cambridge, UK
,
Apr. 14–17
.
164.
King
,
A. C.
, and
Needham
,
D. J.
,
1994
, “
The Initial Development of a Jet Caused by Fluid, Body and Free-Surface Interaction—Part 1: A Uniformly Accelerating Plate
,”
J. Fluid Mech.
,
268
, pp.
89
101
.10.1017/S0022112094001278
165.
Korobkin
,
A.
,
2000
, “
Unsteady Hydroelasticity of Floating Plates
,”
J. Fluids Struct.
,
14
, pp.
971
991
.10.1006/jfls.2000.0304
166.
Tkacheva
,
L. A.
,
2008
, “
Impact of a Box With an Elastic Bottom on a Thin Liquid Layer
,”
J. Appl. Math. Mech.
,
72
(
4
), pp.
427
436
.10.1016/j.jappmathmech.2008.08.011
167.
Korobkin
,
A. A.
, and
Ohkusu
,
M.
,
2004
, “
Impact of Two Circular Plates, One of Which is Floating on a Thin Layer of Liquid
,”
J. Eng. Math.
,
50
(
4
), pp.
343
358
.10.1007/s10665-004-1015-y
168.
Ermanyuk
,
E. V.
, and
Ohkusu
,
M.
,
2005
, “
Impact of a Disk on Shallow Water
,”
J. Fluids Struct.
,
20
(
3
), pp.
345
357
.10.1016/j.jfluidstructs.2004.10.002
169.
Ermanyuk
,
E. V.
,
Gavrilov
,
N. V.
, and
Kostomakha
,
V. A.
,
2009
, “
Impact of a Circular Disk With Flat, Concave and Convex Bottom on Shallow Water
,”
Proceedings of the 24th Int. Workshop on Water Waves and Floating Bodies
,
Zelenogorsk, Russia
,
Apr. 19–22
.
170.
Ryabchenko
,
V. P.
,
2001
, “
Method of Integral Equations in 2D and 3D Problems of Plate Impact on a Fluid of Finite Depth
,”
J. Appl. Mech. Tech. Phys.
,
42
(
4
), pp.
647
658
.10.1023/A:1019255831131
171.
Bocquet
,
L.
, and
Clanet
,
C.
,
2006
, “
The Mystery of the Skipping Stone
,”
Phys. World
,
19
(
2
), pp.
29
31
.
172.
Clanet
,
C.
,
Hersen
,
F.
, and
Bocquet
,
L.
,
2004
, “
Secrets of Successful Stone-Skipping
,”
Nature
,
427
(
6969
), p.
29
.10.1038/427029a
173.
Bocquet
,
L.
,
2003
, “
The Physics of Stone Skipping
,”
Am. J. Phys.
,
71
(
2
), pp.
150
155
.10.1119/1.1519232
174.
Rosellini
,
L.
,
Hersen
,
F.
,
Clanet
,
C.
, and
Bocquet
,
L.
,
2005
, “
Skipping Stones
,”
J. Fluid Mech.
,
543
, pp.
137
146
.10.1017/S0022112005006373
175.
Nagahiro
,
S.
, and
Hayakawa
,
Y.
,
2005
, “
Theoretical and Numerical Approach to ‘Magic Angle’ of Stone Skipping
,”
Phys. Rev. Lett.
,
94
(
17
), p.
174501
.10.1103/PhysRevLett.94.174501
176.
Lee
,
B. H.
,
Park
,
J. C.
,
Kim
,
M. H.
,
Jung
,
S. J.
,
Ryu
,
M. C.
, and
Kim
,
Y. S.
,
2010
, “
Numerical Simulation of Impact Loads Using a Particle Method
,”
Ocean Eng.
,
37
, pp.
164
173
.10.1016/j.oceaneng.2009.12.003
177.
Do
,
J. Y.
,
Lee
,
N.
, and
Ryu
,
K. W.
,
2007
, “
Real-Time Simulation of Stone Skipping
,”
Int. J. Comput.
,
1
(
4
), pp.
251
254
.
178.
Do
,
J. Y.
,
Lee
,
N.
, and
Ryu
,
K. W.
,
2008
, “
A Simulation of Stone Skipping Using Physically Based Modeling
,”
7th WSEAS Int. Conf. on Applied Computer & Applied Computational Science (ACACOS'08)
,
Hangzhou, China
,
Apr. 6–8
.
179.
Tanizawa
,
K.
,
Ogawa
,
Y.
,
Minami
,
M.
, and
Yamada
,
Y.
,
2003
, “
Water Surface Impact Load Acts on Bulbous Bow of Ships
,” Proceedings of the
ASME
/JSME Joint Fluids Summer Engineering Conference (FEDSM2003),
Honolulu, HI
,
July 6–10
, Paper No. FEDSM2003-45281. 10.1115/FEDSM2003-45281
180.
Scolan
,
Y.
, and
Korobkin
,
A. A.
,
2003
, “
Energy Distribution From Vertical Impact of a Three-Dimensional Solid Body Onto the Flat Free Surface of an Ideal Fluid
,”
J. Fluids Struct.
,
17
(
2
), pp.
275
286
.10.1016/S0889-9746(02)00118-4
181.
Gazzola
,
T.
,
Korobkin
,
A.
,
Malenica
,
S.
, and
Scolan
,
Y. M.
,
2005
, “
Three-Dimensional Wagner Problem Using Variational Inequalities
,”
Proceedings of the Int. 20th Workshop on Water Waves and Floating Bodies
,
Longyearbyen, Norway
,
May 29–June 1
.
182.
Takagi
,
K.
,
2004
, “
Numerical Evaluation of Three-Dimensional Water Impact by the Displacement Potential Formulation
,”
J. Eng. Math.
,
48
(
3–4
), pp.
339
352
.10.1023/B:engi.0000018160.18745.73
183.
Donguy
,
B.
,
Peseux
,
B.
,
Gornet
,
L.
, and
Fontaine
,
E.
,
2001
, “
Three-Dimensional Hydroelastic Water Entry: Preliminary Results
,”
Proc. Int. Offshore and Polar Eng. Conf.
, Stavanger, Norway, June 17–22, Vol.
4
, pp.
324
330
.
184.
Peseux
,
B.
,
Gornet
,
L.
, and
Donguy
,
B.
,
2005
, “
Hydrodynamic Impact: Numerical and Experimental Investigations
,”
J. Fluids Struct.
,
21
(
3
), pp.
277
303
.10.1016/j.jfluidstructs.2005.04.011
185.
Korobkin
,
A. A.
,
2002
, “
The Entry of an Elliptical Paraboloid Into a Liquid at Variable Velocity
,”
J. Appl. Math. Mech.
,
66
(
1
), pp.
39
48
.10.1016/S0021-8928(02)00006-0
186.
Sames
,
P. C.
,
Schellin
,
T. E.
,
Muzaferija
,
S.
, and
Peric
,
M.
,
1999
, “
Application of a Two-Fluid Finite Volume Method to Ship Slamming
,”
ASME J. Offshore Mech. Arct. Eng.
,
121
(
1
), pp.
47
52
.10.1115/1.2829554
187.
Kim
,
B.
, and
Shin
,
Y. S.
,
2003
, “
An Efficient Numerical Method for the Solution of Two-Dimensional Hydrodynamic Impact Problems
,”
Proceedings of the 13th Int. Offshore and Polar Engineering Conference
,
Honolulu, HI
,
May 25–30
, pp.
2806
2811
.
188.
Brizzolara
,
S.
,
Couty
,
N.
,
Hermundstad
,
O.
,
Ioan
,
A.
,
Kukkanen
,
T.
,
Viviani
,
M.
, and
Temarel
,
P.
,
2008
, “
Comparison of Experimental and Numerical Loads on an Impacting Bow Section
,”
Ships Offshore Struct.
,
3
(
4
), pp.
305
324
.10.1080/17445300802371162
189.
Sun
,
H.
, and
Faltinsen
,
O. M.
,
2006
, “
Water Impact of Horizontal Circular Cylinders and Cylindrical Shells
,”
Appl. Ocean Res.
,
28
(
5
), pp.
299
311
.10.1016/j.apor.2007.02.002
190.
Zhao
,
R.
, and
Faltinsen
,
O.
,
1993
, “
Water Entry of Two-Dimensional Bodies
,”
J. Fluid Mech.
,
246
, pp.
593
612
.10.1017/S002211209300028X
191.
Korobkin
,
A. A.
, and
Khabakhpasheva
,
T. I.
,
1999
, “
Plane Linear Problem of the Immersion of an Elastic Plate in an Ideal Incompressible Fluid
,”
J. Appl. Mech. Tech. Phys.
,
40
(
3
), pp.
491
500
.10.1007/BF02468406
192.
Charca
,
S.
, and
Shafiq
,
B.
,
2011
, “
Damage Assessment Due to Repeated Slamming of Foam Core Sandwich Composites
,”
J. Sandwich Struct. Mater.
,
13
(
1
), pp.
97
109
.10.1177/1099636209344131
193.
Charca
,
S.
, and
Shafiq
,
B.
,
2010
, “
Damage Assessment Due to Single Slamming of Foam Core Sandwich Composites
,”
J. Sandwich Struct. Mater.
,
12
(
1
), pp.
97
112
.10.1177/1099636209105402
194.
Charca
,
S.
,
Shafiq
,
B.
, and
Just
,
F.
,
2009
, “
Slamming of Sandwich Composite Panels on Water
,”
J. Sandwich Struct. Mater.
,
11
(
5
), pp.
409
424
.10.1177/1099636209103169
195.
Das
,
K.
, and
Batra
,
R. C.
,
2011
, “
Local Water Slamming Impact on Sandwich Composite Hulls
,”
J. Fluids Struct.
,
27
(
4
), pp.
523
551
.10.1016/j.jfluidstructs.2011.02.001
196.
Arai
,
M.
, and
Miyauchi
,
T.
,
1997
, “
Numerical Simulation of the Water Impact on Cylindrical Shells Considering Fluid-Structure Interaction
,”
J. Soc. Nav. Arch. Jpn.
,
182
, pp.
827
835
.10.2534/jjasnaoe1968.1997.182_827
197.
Arai
,
M.
, and
Miyanchi
,
T.
,
1998
, “
Numerical Study of the Impact of Water on Cylindrical Shells, Considering Fluid–Structure Interaction
,”
Proceedings of Conference on Practical Design of Ships and Mobile Structure (PRADS'98)
,
The Hague, Netherlands
, pp.
59
68
.
198.
Ionina
,
M. F.
,
1999
, “
Penetration of an Elastic Circular Cylindrical Shell Into an Incompressible Liquid
,”
J. Appl. Mech. Tech. Phys.
,
40
(
6
), pp.
1163
1172
.10.1007/BF02469191
199.
Ionina
,
M. F.
, and
Korobkin
,
A. A.
,
1999
, “
Water Impact on Cylindrical Shell
,”
Proceedings of 14th Int. Workshop on Water Waves and Floating Bodies
,
Michigan
, pp.
44
47
.
200.
Sun
,
H.,
2007
, “
A Boundary Element Method Applied to Strongly Nonlinear Wave-Body Interaction Problems
,” Ph.D. thesis, Norwegian University of Science and Technology, Trondheim, Norway.
201.
Khabakhpasheva
,
T. I.
,
2009
, “
Fluid–Structure Interaction During the Impact of a Cylindrical Shell on a Thin Layer of Water
,”
J. Fluids Struct.
,
25
(
3
), pp.
431
444
.10.1016/j.jfluidstructs.2008.09.004
202.
Khabakhpasheva
,
T. I.
,
2006
, “
Impact of a Cylindrical Shell on a Thin Layer of Water
,”
Proceedings of 21st Int. Workshop on Water Waves and Floating Bodies
,
Loughborough, UK
,
Apr. 2–5
.
203.
Korobkin
,
A. A.
,
1994
, “
Shallow Water Entry Problem
,”
Proceedings of the 9th Int. Workshop on Water Waves and Floating Bodies
,
Kuju, Fukuoka, Japan
,
Apr. 17–20
.
204.
Gorshkov
,
A. G.
, and
Grigolyuk
,
E. I.
,
1971
, “
Impact of Spherical Shells Against the Surface of a Liquid
,” NASA Technical Translation No. NASA-TT-F-13576.
205.
Scolan
,
Y. M.
,
2003
, “
Slamming Effects on Elastic Cone
,”
Proceedings of the 18th Int. Workshop on Water Waves and Floating Bodies
,
Le Croisic, France
,
Apr. 6–9
.
206.
Scolan
,
Y. M.
,
2004
, “
Hydroelastic Behaviour of a Conical Shell Impacting on a Quiescent-Free Surface of an Incompressible Liquid
,”
J. Sound Vib.
,
277
(
1–2
), pp.
163
203
.10.1016/j.jsv.2003.08.051
207.
Constantinescu
,
A.
,
Bertram
,
V.
,
Fuiorea
,
I.
, and
Neme
,
A.
,
2005
, “
Wedge-Shaped Shell Structure Impacting a Water Surface
,” Fluid Structure Interaction, Proceedings of the
ASME
Pressure Vessels and Piping Conference (PVP2005), Vol.
4
, pp.
55
62
.10.1115/PVP2005-71186
208.
Constantinescu
,
A.
,
Fuiorea
,
I.
,
Neme
,
A.
,
Bertram
,
V.
, and
Salas
,
M.
,
2008
, “
Hydro-Elastic Numeric Analyses of a Wedge-Shaped Shell Structure Impacting a Water Surface
,”
Lat. Am. Appl. Res.
,
38
, pp.
35
43
.
209.
Payton
,
R. G.
,
1962
, “
Initial Bending Stresses in Elastic Shells Impacting Into Compressible Fluids
,”
Q. J. Mech. Appl. Math.
,
15
(Part
1
), pp.
77
90
.10.1093/qjmam/15.1.77
210.
Bingman
,
R. N.
,
1967
, “
Water Impact Loads on Structures
,” Technical Report No. AD0817805.
211.
Xu
,
G. D.
,
Duan
,
W. Y.
, and
Wu
,
G. X.
,
2011
, “
Numerical Simulation of Water Entry of a Cone in Free-Fall Motion
,”
Q. J. Mech. Appl. Math.
,
64
(
3
), pp.
265
285
.10.1093/qjmam/hbr003
212.
Lin
,
M. C.
, and
Ho
,
T. Y.
,
1994
, “
Water Entry for a Wedge in Arbitrary Water Depth
,”
Eng. Anal. Boundary Elem.
,
14
(
2
), pp.
179
185
.10.1016/0955-7997(94)90094-9
213.
Yan
,
H.
,
Liu
,
Y.
, and
Yue
,
D. K. P.
,
2009
, “
Water Surface Impact of Axisymmetric Bodies
,”
Proceedings of the 24th Int. Workshop on Water Waves and Floating Bodies
,
Zelenogorsk, Russia
.
214.
Yan
,
H.
,
Liu
,
Y.
, and
Yue
,
D. K. P.
,
2007
, “
Fully-Nonlinear Computation of Water Surface Impact of Axisymmetric Bodies
,”
New Trends in Fluid Mechanics Research, Proc. 5th Int. Conference on Fluid Mechanics
,
Shangai, China
,
Aug. 15–19
, pp.
292
295
.
215.
Yan
,
H.
, and
Liu
,
Y.
,
2011
, “
Nonlinear Computation of Water Impact of Axisymmetric Bodies
,”
J. Ship Res.
,
55
(
1
), pp.
29
44
.
216.
Kihara
,
H.
,
2004
, “
Numerical Modeling of Flow in Water Entry of a Wedge
,”
Proc. 19th Int. Workshop on Water Waves and Floating Bodies
,
Cortona, Italy
,
Mar. 28–31
.
217.
Lu
,
C. H.
,
He
,
Y. S.
, and
Wu
,
G. X.
,
2000
, “
Coupled Analysis of Nonlinear Interaction Between Fluid and Structure During Impact
,”
J. Fluids Struct.
,
14
, pp.
127
146
.10.1006/jfls.1999.0257
218.
Gingold
,
R. A.
, and
Monaghan
,
J. J.
,
1977
, “
Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars
,”
Mon. Not. R. Astron. Soc.
,
181
, pp.
375
389
.
219.
Monaghan
,
J. J.
,
1992
, “
Smoothed Particle Hydrodynamics
,”
Annu. Rev. Astron. Astrophys.
,
30
, pp.
543
547
.10.1146/annurev.aa.30.090192.002551
220.
Monaghan
,
J. J.
,
2005
, “
Smoothed Particle Hydrodynamics
,”
Rep. Prog. Phys.
,
68
, pp.
1703
1759
.10.1088/0034-4885/68/8/R01
221.
Monaghan
,
J. J.
,
2012
, “
Smoothed Particle Hydrodynamics and Its Diverse Applications
,”
Annu. Rev. Fluid Mech.
,
44
, pp.
323
346
.10.1146/annurev-fluid-120710-101220
222.
Liu
,
G. R.
, and
Liu
,
M. B.
,
2003
,
Smoothed Particle Hydrodynamics: A Meshfree Particle Method
,
World Scientific
,
Singapore
.
223.
Li
,
S.
, and
Liu
,
W. K.
,
2004
,
Meshfree Particle Methods
,
Springer
,
Berlin, Germany
.
224.
Liu
,
G. R.
,
2009
,
Mesh Free Methods: Moving Beyond the Finite Element Method
,
2nd ed.
,
CRC, Boca Raton, FL
.
225.
Veen
,
D. J.
, and
Gourlay
,
T. P.
,
2011
, “
A 2D Smoothed Particle Hydrodynamics Theory for Calculating Slamming Loads on Ship Hull Sections
,”
Proceedings, High Speed Marine Vessels Conference
,
Fremantle, Australia
,
March
.
226.
Vandamme
,
J.
,
Zou
,
Q.
, and
Reeve
,
D. E.
,
2011
, “
Modeling Floating Object Entry and Exit Using Smoothed Particle Hydrodynamics
,”
J. Waterway, Port, Coastal, Ocean Eng.
,
137
(
5
), pp.
213
224
.10.1061/(ASCE)WW.1943-5460.0000086
227.
Viviani
,
M.
,
Brizzolara
,
S.
, and
Savio
,
L.
,
2009
, “
Evaluation of Slamming Loads Using Smoothed Particle Hydrodynamics and Reynolds-Averaged Navier-Stokes Methods
,”
Proc. Inst. Mech. Eng., M: J. Eng. Marit. Environ.
,
223
(
M1
), pp.
17
31
.10.1243/13506501JET453
228.
Gong
,
K.
,
Liu
,
H.
, and
Wang
,
B. L.
,
2009
, “
Water Entry of a Wedge Based on SPH Model With an Improved Boundary Treatment
,”
J. Hydrodyn.
,
21
(
6
), pp.
750
757
.10.1016/S1001-6058(08)60209-7
229.
Gong
,
K.
,
Wang
,
B. L.
, and
Liu
,
H.
,
2010
, “
Numerical Simulation of Wedge Water Entry Based on Two-Dimensional Two Phase SPH Model
,”
25th Int. Workshop on Water Waves and Floating Bodies
,
Harbin, China
,
May 9–12
.
230.
Doring
,
M.
,
Oger
,
G.
,
Alessandrini
,
B.
, and
Ferrant
,
P.
,
2004
, “
SPH Simulations of Floating Bodies in Waves
,”
19th Int. Workshop on Water Waves and Floating Bodies
,
Cortona, Italy
,
Mar. 28–31
.
231.
Oger
,
G.
,
Alessandrini
,
B.
, and
Ferrant
,
P.
,
2005
, “
Capture of Air Cushion Effects in a Wedge Water Entry SPH Simulation
,”
Proc. Int. Offshore and Polar Eng. Conf.
, pp.
241
246
.
232.
Oger
,
G.
,
Doring
,
M.
,
Alessandrini
,
B.
, and
Ferrant
,
P.
,
2006
, “
Two-Dimensional SPH Simulations of Wedge Water Entries
,”
J. Comput. Phys.
,
213
(
2
), pp.
803
822
.10.1016/j.jcp.2005.09.004
233.
Oger
,
G.
,
Ferrant
,
P.
, and
Alessandrini
,
B.
,
2005
, “
Free Surface Impact in a Biphasic SPH Simulation
,”
Proc. 20th Int. Workshop on Water Waves and Floating Bodies
,
Longyearbyen, Norway
,
May 29–June 1
.
234.
Veen
,
D. J.
, and
Gourlay
,
T. P.
,
2009
, “
An Investigation of Slam Events in Two Dimensions Using Smoothed Particle Hydrodynamics
,”
10th Int. Conference on Fast Sea Transportation (FAST 2009)
,
Athens, Greece
.
235.
Veen
,
D.
, and
Gourlay
,
T.
,
2012
, “
A Combined Strip Theory and Smoothed Particle Hydrodynamics Approach for Estimating Slamming Loads on a Ship in Head Seas
,”
Ocean Eng.
,
43
, pp.
64
71
.10.1016/j.oceaneng.2012.01.026
236.
Shao
,
S. D.
,
2009
, “
Incompressible SPH Simulation of Water Entry of a Free-Falling Object
,”
Int. J. Numer. Methods Fluids
,
59
(
1
), pp.
91
115
.10.1002/fld.1813
237.
Veen
,
D. J.
, and
Gourlay
,
T. P.
,
2008
, “
SPH Study of High Speed Ship Slamming
,”
3rd ERCOFTAC SPHERIC Workshop on SPH Applications
,
Lausanne, Switzerland
,
June 4–6
.
238.
Monaghan
,
J. J.
,
1994
, “
Simulating Free Surface Flows With SPH
,”
J. Comput. Phys.
,
110
, pp.
399
406
.10.1006/jcph.1994.1034
239.
Oger
,
G.
,
Le Touzé
,
D.
,
Alessandrini
,
B.
, and
Maruzewski
,
P.
,
2007
, “
A New Parallelized 3D SPH Model: Resolution of Water Entry Problems and Scalability Study
,”
Proceedings of the 2nd International SPHERIC Workshop, Madrid, Spain, May 23–25
, pp.
99
102
.
240.
Maruzewski
,
P.
,
Le Touze
,
D.
,
Oger
,
G.
, and
Avellan
,
F.
,
2010
, “
SPH High-Performance Computing Simulations of Rigid Solids Impacting the Free-Surface of Water
,”
J. Hydraul. Res.
,
48
, pp.
126
134
.10.1080/00221686.2010.9641253
241.
Maruzewski
,
P.
,
Le Touzé
,
D.
,
Oger
,
G.
, and
Biddisccombe
,
J.
,
2008
, “
High Performance Computing 3D SPH Model: Sphere Impacting the Free-Surface of Water
,”
3rd ERCOFTAC SPHERIC Workshop on SPH Applications
,
Lausanne, Switzerland
,
June 4–6
.
242.
Bøckmann
,
A.
,
Shipilova
,
O.
, and
Skeie
,
G.
,
2012
, “
Incompressible SPH for Free Surface Flows
,”
Comput. Fluids
,
67
, pp.
138
151
.10.1016/j.compfluid.2012.07.007
243.
Fourey
,
G.
,
Le Touzé
,
D.
,
Alessandrini
,
B.
, and
Oger
,
G.
,
2010
, “
SPH-FEM Coupling to Simulate Fluid-Structure Interactions With Complex Free-Surface Flows
,”
5th International SPHERIC Workshop
,
Manchester, UK
,
June 23–25
pp.
20
25
.
244.
Groenenboom
,
P.
,
Cartwright
,
B.
, and
McGuckin
,
D.
,
2009
, “
Numerical Simulation of Ships in High Seas Using a Coupled SPH-FE Approach
,”
Int. Conference on Innovation in High Speed Marine Vessels
, pp.
1
8
.
245.
Groenenboom
,
P. H. L.
, and
Cartwright
,
B. K.
,
2010
, “
Hydrodynamics and Fluid-Structure Interaction by Coupled SPH-FE Method
,”
J. Hydraul. Res.
,
48
, pp.
61
73
.10.1080/00221686.2010.9641246
246.
Grimaldi
,
A.
,
Benson
,
D. J.
,
Marulo
,
F.
, and
Guida
,
M.
,
2011
, “
Steel Structure Impacting Onto Water: Coupled Finite Element-Smoothed-Particle-Hydrodynamics Numerical Modeling
,”
J. Aircr.
,
48
(
4
), pp.
1299
1308
.10.2514/1.C031258
247.
Antoci
,
C.
,
Gallati
,
M.
, and
Sibilla
,
S.
,
2007
, “
Numerical Simulation of Fluid-Structure Interaction by SPH
,”
Comput. Struct.
,
85
(
11–14
), pp.
879
890
.10.1016/j.compstruc.2007.01.002
248.
Potapov
,
S.
,
Maurel
,
B.
,
Combescure
,
A.
, and
Fabis
,
J.
,
2009
, “
Modeling Accidental-Type Fluid–Structure Interaction Problems With the SPH Method
,”
Comput. Struct.
,
87
(
11–12
), pp.
721
734
.10.1016/j.compstruc.2008.09.009
249.
Oger
,
G.
,
Guilcher
,
P.-M.
,
Jacquin
,
E.
,
Brosset
,
L.
,
Deuff
,
J.-B.
, and
Le Touzé
,
D.
,
2010
, “
Simulations of Hydro-Elastic Impacts Using a Parallel SPH Model
,”
Int. J. Offshore Polar Eng.
,
20
(
3
), pp.
181
189
.
250.
Oger
,
G.
,
Brosset
,
L.
,
Guilcher
,
P. M.
,
Jacquin
,
E.
,
Deuff
,
J. B.
, and
Le Touzé
,
D.
,
2009
, “
Simulations of Hydro-Elastic Impacts Using a Parallel SPH Model
,”
Proceedings of the 19th Int. Offshore and Polar Engineering Conference
, pp.
316
324
.
251.
Ribet
,
H.
,
1999
, “
Numerical Modeling of the Impact on Water of a Flexible Structure by Explicit Finite Element Method—Comparisons With Radios Numerical Results and Experiments
,”
Aerosp. Sci. Technol.
,
3
(
2
), pp.
83
91
.10.1016/S1270-9638(99)80032-7
252.
Stenius
,
I.
,
Rosen
,
A.
, and
Kuttenkeuler
,
J.
,
2011
, “
Hydroelastic Interaction in Panel-Water Impacts of High-Speed Craft
,”
Ocean Eng.
,
38
(
2–3
), pp.
371
381
.10.1016/j.oceaneng.2010.11.010
253.
Stenius
,
I.
,
2006
, “
Finite Element Modelling of Hydroelasticity in Hull-Water Impacts
,” Ph.D. thesis, KTH Centre for Naval Architecture Aeronautical and Vehicle Engineering, Stockholm, Sweden.
254.
Stenius
,
I.
,
Rosén
,
A.
, and
Kuttenkeuler
,
J.
,
2006
, “
Explicit FE-Modelling of Fluid-Structure Interaction in Hull-Water Impacts
,”
Int. Shipbuild. Prog.
,
53
(
2
), pp.
103
121
.
255.
Stenius
,
I.
,
Rosén
,
A.
, and
Kuttenkeuler
,
J.
,
2007
, “
Explicit FE-Modelling of Hydroelasticity in Panel-Water Impacts
,”
Int. Shipbuild. Prog.
,
54
(
2–3
), pp.
111
127
.
256.
Stenius
,
I.
, and
Rosén
,
A.
,
2007
, “
FE-Modelling of Hydrodynamic Hull-Water Impact Loads
,”
6th European LS-DYNA Users' Conference
,
Gothenburg, Sweden
.
257.
Lewis
,
S. G.
,
Hudson
,
D. A.
, and
Turnock
,
S. R.
,
2007
, “
Simulation of a Free Falling Wedge Into Water Using 2D CFD With Applications in the Prediction of High Speed Craft Motions
,”
10th Numerical Towing Tank Symposium (NuTTS'07)
,
Hamburg, Germany
,
Sept. 23–25
.
258.
Aquelet
,
N.
,
Souli
,
M.
, and
Olovsson
,
L.
,
2005
, “
Euler–Lagrange Coupling With Damping Effects: Application to Slamming Problems
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
1–3
), pp.
110
132
.10.1016/j.cma.2005.01.010
259.
Aquelet
,
N.
, and
Souli
,
M.
,
2003
, “
Damping Effect in Fluid-Structure Interaction: Application to Slamming Problem
,”
ASME
Pressure Vessels and Piping Conference, pp.
233
242
.10.1115/PVP2003-1968
260.
Aquelet
,
N.
, and
Souli
,
M.
,
2004
, “
Fluid-Structure Coupling in a Water-Wedge Impact Problem
,”
ASME
/JSME Pressure Vessels and Piping Conference, pp.
91
99
.10.1115/PVP2004-2887
261.
Yang
,
Q.
, and
Qiu
,
W.
,
2012
, “
Numerical Solution of 3-D Water Entry Problems With a Constrained Interpolation Profile Method
,”
ASME J. Offshore Mech. Arct. Eng.
,
134
(
4
), p.
041101
.10.1115/1.4006152
262.
Yang
,
Q.
, and
Qiu
,
W.
,
2012
, “
Numerical Simulation of Water Impact for 2D and 3D Bodies
,”
Ocean Eng.
,
43
, pp.
82
89
.10.1016/j.oceaneng.2012.01.008
263.
Yang
,
Q.
, and
Qiu
,
W.
,
2011
, “
Numerical Solutions of 2D and 3D Slamming Problems
,”
Int. J. Marit. Eng.
,
153
, pp.
A89
A97
.10.3940/rina.ijme.2011.a2.wf3
264.
Yang
,
Q.
, and
Qiu
,
W.
,
2010
, “
Computation of Slamming Forces on 3-D Bodies With a CIP Method
,” Proceedings of the
ASME
29th Int. Conference on Ocean, Offshore and Arctic Engineering, Vol.
3
, pp.
757
764
.10.1115/OMAE2010-20654
265.
Yang
,
Q.
, and
Qiu
,
W.
,
2008
, “
Computation of Slamming Forces on Wedges of Small Deadrise Angles Using a CIP Method
,”
Proc. of the 18th Int. Offshore and Polar Engineering Conference (ISOPE 2008)
, pp.
484
488
.
266.
Hu
,
C.
,
Faltinsen
,
O. M.
, and
Kashiwagi
,
M.
,
2005
, “
3-D Numerical Simulation of Water-Entry Problem by CIP Based Cartesian Grid Method
,”
Proc. 20th Int. Workshop on Water Waves and Floating Bodies
,
Longyearbyen, Norway
,
May 29–June 1
.
267.
Tajima
,
M.
, and
Yabe
,
T.
,
1999
, “
Simulation on Slamming of a Vessel by CIP Method
,”
J. Phys. Soc. Jpn.
,
68
(
8
), pp.
2576
2584
.10.1143/JPSJ.68.2576
268.
Scardovelli
,
R.
, and
Zaleski
,
S.
,
1999
, “
Direct Numerical Simulation of Free-Surface and Interfacial Flow
,”
Annu. Rev. Fluid Mech.
,
31
, pp.
567
603
.10.1146/annurev.fluid.31.1.567
269.
Hirt
,
C. R.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
, pp.
201
225
.10.1016/0021-9991(81)90145-5
270.
Mnasri
,
C.
,
Hafsia
,
Z.
,
Omri
,
M.
, and
Maalel
,
K.
,
2010
, “
Moving Grid Model for Simulation of Free Surface Behavior Induced by Horizontal Cylinders Exit and Entry
,”
Eng. Appl. Comput. Fluid Mech.
,
4
(
2
), pp.
260
275
.
271.
Panahi
,
R.
,
Jahanbakhsh
,
E.
, and
Seif
,
M. S.
,
2006
, “
Development of a VoF-Fractional Step Solver for Floating Body Motion Simulation
,”
Appl. Ocean Res.
,
28
(
3
), pp.
171
181
.10.1016/j.apor.2006.08.004
272.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
,
1994
, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
,
114
, pp.
146
159
.10.1006/jcph.1994.1155
273.
Yang
,
J. M.
, and
Stern
,
F.
,
2009
, “
Sharp Interface Immersed-Boundary/Level-Set Method for Wave-Body Interactions
,”
J. Comput. Phys.
,
228
(
17
), pp.
6590
6616
.10.1016/j.jcp.2009.05.047
274.
Zhang
,
Y.
,
Zou
,
Q.
,
Greaves
,
D.
,
Reeve
,
D.
,
Hunt-Raby
,
A.
,
Graham
,
D.
,
James
,
P.
, and
Lv
,
X.
,
2010
, “
A Level Set Immersed Boundary Method for Water Entry and Exit
,”
Comm. Comput. Phys.
,
8
(
2
), pp.
265
288
.10.4208/cicp.060709.060110a
275.
Raman-Nair
,
W.
,
Re
,
A. S.
, and
Veitch
,
B.
,
2005
, “
Dynamics of Lifeboat and Boom in Deployment From a Moving Support
,”
Multibody Syst. Dyn.
,
13
(
3
), pp.
267
298
.10.1007/s11044-005-4084-4
276.
Reaz
,
M.
,
Khondoker
,
H.
, and
Arai
,
M.
,
2000
, “
A Comparative Study on the Behaviour of Free-Fall Lifeboat Launching From a Skid and From a Hook
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
214
(
2
), pp.
359
370
.10.1243/0954406001523029
277.
Reaz
,
M.
, and
Khondoker
,
H.
,
1998
, “
Effects of Launching Parameters on the Performance of a Free-Fall Lifeboat
,”
Nav. Eng. J.
,
110
(
4
), pp.
67
73
.10.1111/j.1559-3584.1998.tb02612.x
278.
Soding
,
H.
,
2002
, “
Flow Computations for Ship Safety Problems
,”
Ocean Eng.
,
29
(
7
), pp.
721
738
.10.1016/S0029-8018(01)00048-8
279.
Boef
,
W. J. C.
,
1992
, “
Launch and Impact of Free-Fall Lifeboats—Part I: Impact Theory
,”
Ocean Eng.
,
19
(
2
), pp.
119
138
.10.1016/0029-8018(92)90011-R
280.
Boef
,
W. J. C.
,
1992
, “
Launch and Impact of Free-Fall Lifeboats—Part II: Implementation and Applications
,”
Ocean Eng.
,
1
(
2
), pp.
139
159
.10.1016/0029-8018(92)90012-S
281.
Willis
,
V. L.
,
Nelson
,
J. K.
,
Reinhold
,
T. A.
, and
Verhoef
,
J.
,
1999
, “
Anticipated Performance of Free-Fall Lifeboats in a High Wind Environment
,”
J. Wind Eng. Ind. Aerodyn.
,
83
, pp.
479
492
.10.1016/S0167-6105(99)00095-1
282.
Nelson
,
J. K.
,
Fallon
,
D. J.
, and
Hirsch
,
T. J.
,
1995
, “
Effects of CG Location on the Launch Behavior of Free-Fall Lifeboats
,”
ASME J. Offshore Mech. Arct. Eng.
,
117
(
2
), pp.
133
136
.10.1115/1.2827063
283.
Nelson
,
J. K.
,
Hirsch
,
T. J.
, and
Magill
,
J. M.
,
1988
, “
Measured Accelerations on Free-Fall Lifeboats
,”
ASME J. Offshore Mech. Arct. Eng.
,
110
(
3
), pp.
226
231
.10.1115/1.3257055
284.
Nelson
,
J. K.
,
Hirsch
,
T. J.
, and
Phillips
,
N. S.
,
1989
, “
Evaluation of Occupant Accelerations in Lifeboats
,”
ASME J. Offshore Mech. Arct. Eng.
,
111
(
4
), pp.
344
349
.10.1115/1.3257105
285.
Nelson
,
J. K.
, Jr.
,
Waugh
,
P. J.
, and
Schweickhardt
,
A. J.
,
1996
, “
Injury Criteria of the IMO and the Hybrid III Dummy as Indicators of Injury Potential in Free-Fall Lifeboats
,”
Ocean Eng.
,
23
(
5
), pp.
385
401
.10.1016/0029-8018(95)00041-0
286.
Brinkley
,
J. W.
,
1968
, “
Development of Aerospace Escape Systems
,”
Air Univ. Rev.
,
19
(
5
), pp.
34
49
.
287.
Brinkley
,
J. W.
, and
Shaffer
,
J. T.
,
1971
, “
Dynamic Simulation Techniques for the Design of Escape Systems: Current Applications and Future Air Force Requirements
,” Aerospace Medical Research Laboratory Report No. AMRL TR 71-292.
288.
Lawrence
,
C.
,
Littell
,
J. D.
,
Fasanella
,
E. L.
, and
Tabiei
,
A.
,
2008
, “
Orion Crew Member Injury Predictions During Land and Water Landings
,” Report No. NASA/TM-2008-215171.
289.
Lawrence
,
C.
,
Fasanella
,
E. L.
,
Tabiei
,
A.
,
Brinkley
,
J. W.
, and
Shemwell
,
D. M.
,
2008
, “
The Use of a Vehicle Acceleration Exposure Limit Model and a Finite Element Crash Test Dummy Model to Evaluate the Risk of Injuries During Orion Crew Module Landings
,” Report No. NASA/TM-2008-215198.
290.
Lawrence
,
C.
,
Littell
,
J. D.
,
Fasanella
,
E. L.
, and
Tabiei
,
A.
,
2009
, “
Orion Crew Member Injury Predictions During Land and Water Landings
,”
J. Aerosp. Eng.
,
22
(
3
), pp.
214
221
.10.1061/(ASCE)0893-1321(2009)22:3(214)
291.
Tabiei
,
A.
,
Lawrence
,
C.
, and
Fasanella
,
E. L.
,
2009
, “
Validation of Finite Element Crash Test Dummy Models for Predicting Orion Crew Member Injuries During a Simulated Vehicle Landing
,” NASA Technical Manual No. NASA-TM-2010-215476.
292.
Chu
,
P. C.
,
2008
, “
Mine Impact Burial Prediction From One to Three Dimensions
,”
ASME Appl. Mech. Rev.
,
62
(
1
), p.
010802
.10.1115/1.3013823
293.
Arnone
,
R. A.
, and
Bowen
,
L. E.
,
1980
, “
Prediction Model of the Time History Penetration of a Cylinder Through the Air-Water-Sediment Phases
,” NCSC Technical Note No. 734-36.
294.
Satkowiak
,
L. J.
,
1987
, “
Modifications to the NCSC Impact Burial Prediction Model
,” NCSC Technical Note No. 883-87.
295.
Satkowiak
,
L. J.
,
1987
, “
User's Guide for the Modified Impact Burial Prediction Model
,” NCSC Technical Note No. 884-87.
296.
Hurst
,
R. B.
,
1992
, “
Mine Impact Burial Prediction Model—Technical Description of Recent Changes and Developments
,” Defense Scientific Establishment Report No. 149.
297.
Chu
,
P. C.
,
Fan
,
C.
,
Evans
,
A. D.
, and
Gilles
,
A.
,
2004
, “
Triple Coordinate Transforms for Prediction of Falling Cylinder Through the Water Column
,”
ASME J. Appl. Mech.
,
71
(
2
), pp.
292
298
.10.1115/1.1651093
298.
Chu
,
P. C.
,
Allen
,
C.
, and
Fleischer
,
P.
,
2006
, “
Non-Cylindrical Mine Drop Experiment
,” Technical Report No. ADA483330.
299.
Chu
,
P. C.
,
Evans
,
A.
,
Gilles
,
A.
,
Smith
,
A.
, and
Taber
,
V.
,
2004
, “
Development of the Navy's 3D Mine Impact Burial Prediction Model (IMPACT35)
,”
Proc. 6th Int. Symp. Technol. Mine Problem
,
Monterey, CA
,
May 10–13
, pp.
1
10
.
300.
Chu
,
P. C.
, and
Fan
,
C.
,
2011
, “
Probability Density Function of Underwater Bomb Trajectory Deviation Due to Stochastic Ocean Surface Slope
,”
ASME J. Dyn. Sys., Meas., Control
,
133
(
3
), p.
031002
.10.1115/1.4003378
301.
Chu
,
P. C.
, and
Fan
,
C. W.
,
2007
, “
Mine-Impact Burial Model (IMPACT35) Verification and Improvement Using Sediment Bearing Factor Method
,”
IEEE J. Ocean. Eng.
,
32
(
1
), pp.
34
48
.10.1109/JOE.2007.890942
302.
Chu
,
P. C.
, and
Fan
,
C. W.
,
2006
, “
Prediction of Falling Cylinder Through Air-Water-Sediment Columns
,”
ASME J. Appl. Mech.
,
73
(
2
), pp.
300
314
.10.1115/1.2125975
303.
Chu
,
P. C.
, and
Fan
,
C. W.
,
2005
, “
Pseudocylinder Parameterization for Mine Impact Burial Prediction
,”
ASME J. Fluids Eng.
,
127
(
6
), pp.
1215
1220
.10.1115/1.2060741
304.
Chu
,
P. C.
,
Fan
,
C. W.
,
Evans
,
A.
,
Gilles
,
A. F.
, and
Fleischer
,
P.
,
2003
, “
Three-Dimensional Hydrodynamic Model for Prediction of Falling Cylinder Through Water Column
,”
Proc. Oceans, IEEE
, Vol. 4, pp.
2047
2057
.10.1109/OCEANS.2003.178217
305.
Chu
,
P. C.
,
Fan
,
C. W.
, and
Gefken
,
P. R.
,
2010
, “
Diagnostic-Photographic Determination of Drag/Lift/Torque Coefficients of a High Speed Rigid Body in a Water Column
,”
ASME J. Appl. Mech.
,
77
(
1
), p.
011015
.10.1115/1.3173767
306.
Chu
,
P. C.
,
Fan
,
C. W.
, and
Gefken
,
P. R.
,
2008
, “
Semi-Empirical Formulas of Drag/Lift Coefficients for High Speed Rigid Body Manoeuvring in Water Column
,”
Advances in Fluid Mechanics VII
, Vol.
59
,
Wessex Institute
, pp.
163
172
.
307.
Chu
,
P. C.
,
Gilles
,
A.
, and
Fan
,
C. W.
,
2005
, “
Experiment of Falling Cylinder Through the Water Column
,”
Exp. Therm. Fluid Sci.
,
29
(
5
), pp.
555
568
.10.1016/j.expthermflusci.2004.08.001
308.
Chu
,
P. C.
,
Gilles
,
A. F.
,
Fan
,
C. W.
, and
Fleischer
,
P.
,
2000
, “
Hydrodynamics of Falling Mine in Water Column
,”
Proc. 4th Int. Symp. Technol. Mine Problem
.
309.
Chu
,
P. C.
,
Gilles
,
A. F.
,
Fan
,
C. W.
,
Lan
,
J.
, and
Fleischer
,
P.
,
2002
, “
Hydrodynamical Characteristics of a Falling Cylinder in Water Column
,”
Advances in Fluid Mechanics IV
,
M.
Rahman
,
R.
Verhoeven
, and
C. A.
Brebbia
, eds.,
WIT
,
Southampton, UK
, pp.
163
181
.
310.
Chu
,
P. C.
, and
Ray
,
G.
,
2006
, “
Prediction of High-Speed Rigid Body Maneuvering in Air-Water-Sediment
,”
Adv. Fluid Mech.
,
6
, pp.
123
132
.10.2495/AFM06013
311.
Chu
,
P. C.
,
Ray
,
G.
,
Fleischer
,
P.
, and
Gefken
,
P.
,
2006
, “
Development of Three Dimensional Bomb Maneuvering Model
,”
Proceedings of the 7th Monterey Int. Symposium on Technology and Mine Problems, Naval Postgraduate School
,
Monterey, CA
, p.
10
.
312.
Kim
,
Y.
,
Liu
,
Y.
, and
Yue
,
D. K. P.
,
2002
, “
Motion Dynamics of Three-Dimensional Bodies Falling Through Water
,”
Proc. 17th Int. Workshop on Water Waves and Floating Bodies
,
Cambridge
,
UK
.
313.
Mann
,
J.
,
Liu
,
Y.
,
Kim
,
Y.
, and
Yue
,
D. K. P.
,
2007
, “
Deterministic and Stochastic Predictions of Motion Dynamics of Cylindrical Mines Falling Through Water
,”
IEEE J. Ocean. Eng.
,
32
(
1
), pp.
21
33
.10.1109/JOE.2007.890940
314.
Zhu
,
X.
, and
Liu
,
Y.
,
2008
, “
Deterministic and Stochastic Prediction of the Hydrodynamics of a Three-Dimensional Body Falling Through Water
,” Proceedings of the 27th Int. Conference on Offshore Mechanics and Arctic Engineering (
OMAE2008
), Vol.
4
, pp.
175
183
.10.1115/OMAE2008-57270
315.
Richardson
,
M.
,
Valent
,
P.
,
Briggs
,
K.
,
Bradley
,
J.
, and
Griffin
,
S.
,
2001
, “
NRL Mine Burial Experiments
,” DTIC Document No. ADA403441.
316.
Abelev
,
A. V.
,
Valent
,
P. J.
, and
Holland
,
K. T.
,
2007
, “
Behavior of a Large Cylinder in Free-Fall Through Water
,”
IEEE J. Ocean. Eng.
,
32
(
1
), pp.
10
20
.10.1109/JOE.2007.890938
317.
Abelev
,
A. V.
,
Valent
,
P. J.
,
Plant
,
N. G.
, and
Holland
,
K. T.
,
2003
, “
Evaluation and Quantification of Randomness in Free-Fall Trajectories of Instrumented Cylinders
,” Proc. MTS/
IEEE
Conf. OCEANS Mar. Technol. Ocean Sci.,
San Diego, CA
,
Sept. 22–26
, pp.
2355
2365
.10.1109/OCEANS.2003.178280
318.
Abelev
,
A. V.
, and
Valent
,
P. J.
,
2004
, “
Dynamics of Bottom Mine Burial in Soft Sediments: Experimental Evidence and Predictions
,”
Proc. Mine Countermeasures Demining Conf. Asia-Pacific Issues MCM in Wet Environments
,
Canberra, Australia
,
Feb. 9–11
, Australian Defence Force Academy.
319.
Abelev
,
A. V.
, and
Valent
,
P. J.
,
2004
, “
Impact Burial of Cylinders in Soft Marine Sediments
,” Proceedings of ASCE Conference: Civil Engineering in the Oceans VI,
Baltimore, MD
,
Oct. 20–22
, pp.
419
433
.
320.
Valent
,
P. J.
,
Dunlap
,
W.
, and
Abelev
,
A. V.
,
2003
, “
Mine Impact Burial Prediction
,”
3rd Annual ONR Mine Burial Prediction Workshop
,
St. Petersburg, FL
,
Jan. 28–30
.
321.
Holland
,
K. T.
,
2004
, “
Parameterization of the In-Water Motions of Falling Cylinders Using High-Speed Video
,”
Exp. Fluids
,
37
(
5
), pp.
690
700
.10.1007/s00348-004-0859-2
322.
Barbu
,
C.
,
Valent
,
P.
,
Richardson
,
M.
,
Abelev
,
A. V.
, and
Plant
,
N.
,
2004
, “
A Probabilistic Approach for Mine Burial Prediction
,” Detection and Remediation Technologies for Mines and Minelike Targets IX,
R. S.
Harmon
,
J. T.
Broach
, and
J. H.
Holloway
, Jr.
, eds.,
SPIE
,
Bellingham,WA
, Vol.
5415
.10.1117/12.542661
323.
Seddon
,
C. M.
, and
Moatamedi
,
M.
,
2006
, “
Review of Water Entry With Applications to Aerospace Structures
,”
Int. J. Impact Eng.
,
32
(
7
), pp.
1045
1067
.10.1016/j.ijimpeng.2004.09.002
324.
Batterson
,
S. A.
,
1944
, “
The NACA Impact Basin and Water Landing Tests of a Float Model at Various Velocities and Weights,
” NACA Report No. 795.
325.
Benscoter
,
S. U.
,
1947
, “
Impact Theory for Seaplane Landings
,” National Advisory Committee for Aeronautics Technical Note No. NACA-TN-1437.
326.
Milwitzky
,
B.
,
1952
, “
Generalized Theory for Seaplane Impact
,” Report No. NACA-TR-1103.
327.
Milwitzky
,
B.
,
1947
, “
A Theoretical Investigation of Hydrodynamic Impact Loads on Scalloped-Bottom Seaplanes and Comparisons With Experiment
,” Report No. NACA-TR-867.
328.
Milwitzky
,
B.
,
1948
, “
Generalized Theoretical and Experimental Investigation of Motions and Hydrodynamic Loads Experienced by V-Bottom Seaplanes During Step-Landing Impacts
,” National Advisory Committee for Aeronautics Technical Note No. NACA TN 1516.
329.
Schnitzer
,
E.
,
1958
, “
Water-Impact Theory for Aircraft Equipped With Non-Trimming Hydro-Skis Mounted on Shock Struts
,” NACA Technical Note No. 4256.
330.
Schnitzer
,
E.
,
1960
, “
Theoretical Determination of Water Loads on Pitching Hulls and Shock-Mounted Hydro-Skis
,” National Aeronautics and Space Administration Technical Note No. D-392.
331.
Schnitzer
,
E.
,
1952
, “
Theory and Procedure for Determining Loads and Motions in Chine-Immersed Hydrodynamic Impacts of Prismatic Bodies
,” National Advisory Committee for Aeronautics Report No. NACA-TR-1152.
332.
Schnitzer
,
E.
,
1953
, “
Estimation of Water Landing Loads on Hydro-Ski-Equipped Aircraft
,” National Advisory Committee for Aeronautics Report No. NACA-RM-L53D29.
333.
Schnitzer
,
E.
, and
Hathaway
,
M. E.
,
1953
, “
Estimation of Hydrodynamic Impact Loads and Pressure Distributions on Bodies Approximating Elliptical Cylinders With Special Reference to Water Landings of Helicopters
,” National Advisory Committee for Aeronautics Technical Note No. NACA-TN-2889.
334.
Smiley
,
R. F.
,
1952
, “
A Theoretical and Experimental Investigation of the Effects of Yaw on Pressures, Forces, and Moments During Seaplane Landings and Planing
,” National Advisory Committee for Aeronautics Technical Note No. NACA TN 2817.
335.
Smiley
,
R. F.
,
1951
, “
An Experimental Study of Water-Pressure Distributions During Landings and Planing of a Heavily Loaded Rectangular Flat Plate Model
,” National Advisory Committee for Aeronautics Report No. NACA TM 2453.
336.
Mayo
,
W. L.
,
1943
, “
Analysis and Modification of Theory for Impact of Seaplanes on Water
,” National Advisory Committee for Aeronautics Report No. NACA TM 1008.
337.
Mayo
,
W. L.
,
1945
, “
Analysis and Modification of Theory for Impact of Seaplanes on Water
,” National Advisory Committee for Aeronautics Report No. 810.
338.
Mayo
,
W. L.
,
1945
, “
Theoretical and Experimental Dynamic Loads for a Prismatic Float Having an Angle of Dead Rise of 22-1/2 Degrees
,” National Advisory Committee for Aeronautics Report No. NACA-RB-L5F15, NACA-WR-L-70.
339.
Kagawa
,
T.
,
Hiraoka
,
K.
,
Orihara
,
R.
,
Ito
,
K.
, and
Aoki
,
Y.
,
2007
, “
Optimum Structural Design of Light Float for Small Seaplane
,”
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, Vol.
7
, pp.
7198
7202
.
340.
Steiner
,
M. F.
,
1944
, “
Ditching Tests With a 1/11-Size Model of the Army B-25 Airplane in NACA Tank Number 2 and on an Outdoor Catapult
,” National Advisory Committee for Aeronautics Report No. NACA-MR-L4J11, NACA-WR-L-623.
341.
Steiner
,
M. F.
,
1945
, “
Ditching Tests With a 1/16-Size Dynamic Model of the Army B-24 Airplane in Langley Tank Number 2 and on an Outdoor Catapult
,” National Advisory Committee for Aeronautics Report No. NACA-MR-L5D07.
342.
Fisher
,
L. J.
, and
Tarshis
,
R. P.
,
1950
, “
Ditching Tests With a 1/16-Size Model of the Navy XP2V-1 Airplane at the Langley Tank No. 2 Monorail
,” National Advisory Committee for Aeronautics Report No. NACA-RM-L50C23.
343.
Kolbe
,
C. D.
,
1946
, “
Ditching Tests of a 1/8-Scale Model of the Navy SB2C-1 Airplane (Army A-25) in Langley Tank Number 2 and on an Outdoor Catapult
,” National Advisory Committee for Aeronautics Report No. NACA-MR-L5L07, NACA-WR-L-622.
344.
Thompson
,
W. C.
,
1959
, “
Rough Water Ditching Investigation of Model of Jet Transport With Landing Gear Extended and With Various Ditching Aids
,” Technical Note No. NASA-TN-D-101.
345.
Fisher
,
L. J.
, and
Hoffman
,
E. L.
,
1957
, “
Ditching Investigations of Dynamic Models and Effects of Design Parameters on Ditching Characteristics
,” National Advisory Committee for Aeronautics Technical Note No. NACA-TN-3946.
346.
Fisher
,
L. J.
, and
Hoffman
,
E. L.
,
1958
, “
Ditching Investigations of Dynamic Models and Effects of Design Parameters on Ditching Characteristics
,” National Advisory Committee for Aeronautics Report No. NACA-TR-1347.
347.
McBride
,
E. E.
, and
Fisher
,
L. J.
,
1953
, “
Experimental Investigation of Effect of Rear-Fuselage Shape on Ditching Behavior
,” National Advisory Committee for Aeronautics Technical Note No. NACA-TN-2929.
348.
McBride
,
E. E.
,
1956
, “
Preliminary Investigation of the Effects of External Wing Fuel Tanks on Ditching Behavior of a Sweptback-Wing Airplane
,” National Advisory Committee for Aeronautics Technical Note No. NACA-TN-3710.
349.
Fisher
,
L. J.
,
1953
, “
Model Ditching Investigations of Three Airplanes Equipped With Hydro-Skis
,” National Advisory Committee for Aeronautics Report No. NACA-RM-L53G24a.
350.
Thompson
,
W. C.
,
1972
, “
Ditching Investigation of a 1/30 Scale Dynamic Model of a Heavy Jet Transport Airplane
,” NASA Technical Memorandum No. TM X-2445.
351.
Dawson
,
J. R.
,
1945
, “
The Effect of Some Design Parameters on Ditching Characteristics
,” National Advisory Committee for Aeronautics Report No. NACA-MR-L5G06, NACA-WR-L-646.
352.
Leigh
,
B. R.
,
1988
, “
Using the Momentum Method to Estimate Aircraft Ditching Loads
,”
Can. Aeronautics Space J.
,
34
(
3
), pp.
162
169
.
353.
Streckwall
,
H.
,
Lindenau
,
O.
, and
Bensch
,
L.
,
2007
, “
Aircraft Ditching: A Free Surface/Free Motion Problem
,”
Arch. Civ. Mech. Eng.
,
7
(
3
), pp.
177
190
.
354.
Sareen
,
A. K.
,
Fasanella
,
E.
,
Sparks
,
C.
,
Jackson
,
K.
,
Mullins
,
B. R.
, Jr.
, and
Kellas
,
S.
,
2002
, “
Comparison of Hard Surface and Soft Soil Impact Performance of a Crashworthy, Composite Fuselage Concept
,” NASA Document ID No. 20030015396.
355.
Delsart
,
D.
,
Langrand
,
B.
, and
Vagnot
,
A.
,
2009
, “
Evaluation of a Euler/Lagrange Coupling Method for the Ditching Simulation of Helicopter Structures
,”
WIT Trans. Built Environ.
,
105
, pp.
259
268
.10.2495/FSI09
356.
Delsart
,
D.
,
Toso-Pentecote
,
N.
, and
Vagnot
,
A.
,
2009
, “
Assessment of the SPH Method: Simulation of Simple Body Shapes Impacting on Water and a PUMA Helicopter Ditching
,”
10th ONERA-DLR Aerospace Symposium
,
Berlin, Germany
,
Oct. 10–14
.
357.
Campbell
,
J. C.
, and
Vignjevic
,
R.
,
2012
, “
Simulating Structural Response to Water Impact
,”
Int. J. Impact Eng.
,
49
, pp.
1
10
.10.1016/j.ijimpeng.2012.03.007
358.
Hua
,
C.
,
Fang
,
C.
, and
Cheng
,
J.
,
2011
, “
Simulation of Fluid-Solid Interaction on Water Ditching of an Airplane by ALE Method
,”
J. Hydrodynam., Ser. B
,
23
(
5
), pp.
637
642
.10.1016/S1001-6058(10)60159-X
359.
Anghileri
,
M.
,
Castelletti
,
L. M. L.
,
Francesconi
,
E.
,
Milanese
,
A.
, and
Pittofrati
,
M.
,
2011
, “
Rigid Body Water Impact-Experimental Tests and Numerical Simulations Using the SPH Method
,”
Int. J. Impact Eng.
,
38
(
4
), pp.
141
151
.10.1016/j.ijimpeng.2010.11.002
360.
Anghileri
,
M.
,
2002
, “
Rigid Bodies Impacts on Water Surface. Numerical and Experimental Activity
,”
23rd Int. Congress of the Aeronautical Sciences
,
Toronto, Canada
.
361.
Anghileri
,
M.
,
Francesconi
,
E.
, and
Castelletti
,
L. M. L.
,
2006
, “
Helicopter Subfloor-Integrated Fuel-Tank Crashworthiness
,”
25th Int. Congress of the Aeronautical Sciences
,
Hamburg, Germany
.
362.
Ortiz
,
R.
,
Portemont
,
G.
,
Charles
,
J. L.
, and
Sobry
,
J. F.
,
2002
, “
Assessment of Explicit F. E. Capabilities for Full Scale Coupled Fluid/Structure Aircraft Ditching Simulation
,”
23rd Int. Congress of the Aeronautical Sciences
,
Toronto, Canada
.
363.
Ortiz
,
R.
,
Charles
,
J.-L.
, and
Sobry
,
J. F.
,
2004
, “
Structural Loading of a Complete Aircraft Under Realistic Crash Conditions: Generation of a Load Database for Passenger Safety and Innovative Design
,”
24th Congress of the Int. Council of the Aeronautical Sciences
,
Yokohama, Japan
.
364.
Climent
,
H.
,
Benitez
,
L.
,
Rosich
,
F.
,
Rueda
,
F.
, and
Pentecote
,
N.
,
2006
, “
Aircraft Ditching Numerical Simulation
,”
25th Int. Congress of the Aeronautical Sciences
,
Hamburg, Germany
.
365.
Cartwright
,
B. K.
,
Chhor
,
A.
, and
Groenenboom
,
P. H. L.
,
2010
, “
Numerical Simulation of a Helicopter Ditching With Emergency Flotation Devices
,”
5th Int. SPHERIC Workshop
,
Manchester, UK
.
366.
Bensch
,
L.
,
Shigunov
,
V.
, and
Sodling
,
H.
,
2003
, “
Computational Method to Simulate Planned Ditching of a Transport Airplane
,”
Proc. 2nd MIT Conference on Computational Fluid and Solid Mechanics
,
Cambridge, MA, June 17–20
,
MIT
, pp.
1251
1254
.
367.
Toso
,
N. R. S.
,
2009
, “
Contribution to the Modelling and Simulation of Aircraft Structures Impacting on Water
,” Ph.D. thesis, University of Stuttgart, Germany.
368.
Thomas
,
W. Z. L.
,
1975
, “
Ditching Investigation of a 1/20 Scale Model of the Space Shuttle Orbiter
,” NASA Contractor Report No. NASA CR-2593.
369.
Carden
,
H. D.
,
Fasanella
,
E. L.
, and
Jones
,
L. E.
,
1988
, “
Analysis of the Space Shuttle Orbiter Skin Panels Under Simulated Hydrodynamic Loads
,” NASA Technical Manual No. NASA-TM-4082.
370.
Ghaffari
,
F.
,
1988
, “
Analytical Method for Ditching Analysis of an Airborne Vehicle
,” NASA Contractor Report No. 4120.
371.
Ghaffari
,
F.
,
1990
, “
Analytical Method for the Ditching Analysis of an Airborne Vehicle
,”
J. Aircr.
,
27
(
4
), pp.
312
319
.10.2514/3.25274
372.
Wierzbicki
,
T.
, and
Yue
,
D. K.
,
1986
, “
Impact Damage of the Challenger Crew Compartment
,”
J. Spacecr. Rockets
,
23
(
6
), pp.
646
654
.10.2514/3.25859
373.
Wierzbicki
,
T.
, and
Yue
,
D. K.
,
1986
, “
Spacecraft Crashworthiness—Towards Reconstruction of the Challenger Accident
,”
AMD (Am. Soc. Mech. Eng.)
,
79
, pp.
31
46
.
374.
Anonymous
,
2005
,
Summary Report on Helicopter Ditching and Crashworthiness Research
,
Civil Aviation Authority
,
UK
.
375.
Thompson
,
W. C.
,
1961
, “
Ditching Investigation of a Dynamic Model of a HU2K-1 Helicopter
,” NASA Technical Manual No. NASA-TM-SX-626.
376.
Randhawa
,
H. S.
, and
Lankarani
,
H. M.
,
2003
, “
Finite Element Analysis of Impacts on Water and Its Application to Helicopter Water Landing and Occupant Safety
,”
Int. J. Crashworthiness
,
8
(
2
), pp.
189
200
.10.1533/ijcr.2003.0229
377.
Hughes
,
K.
, and
Campbell
,
J.
,
2008
, “
Helicopter Crashworthiness: A Chronological Review of Research Related to Water Impact From 1982 to 2006
,”
J. Am. Helicopter Soc.
,
53
(
4
), pp.
429
441
.10.4050/JAHS.53.429
378.
Wittlin
,
G.
, and
Gamon
,
M.
,
2007
, “
The Development of Ditching and Water Impact Design Limit Curves for Civil Rotorcraft
,” U.S. Department of Transportation Report No. DOT/FAA/AR-07/8.
379.
Hughes
,
K.
,
Vignjevic
,
R.
, and
Campbell
,
J.
,
2007
, “
Experimental Observations of an 8 m/s Drop Test of a Metallic Helicopter Underfloor Structure Onto a Hard Surface: Part 1
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
221
(
5
), pp.
661
678
.10.1243/09544100JAERO214
380.
Hughes
,
K.
,
Campbell
,
J.
, and
Vignjevic
,
R.
,
2008
, “
Application of the Finite Element Method to Predict the Crashworthy Response of a Metallic Helicopter Under Floor Structure Onto Water
,”
Int. J. Impact Eng.
,
35
(
5
), pp.
347
362
.10.1016/j.ijimpeng.2007.03.009
381.
Hughes
,
K.
,
Vignjevic
,
R.
, and
Campbell
,
J.
,
2007
, “
Experimental Observations of an 8 m/s Drop Test of a Metallic Helicopter Underfloor Structure Onto Water: Part 2
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
221
(
5
), pp.
679
690
.10.1243/09544100JAERO228
382.
Fasanella
,
E. L.
,
Jackson
,
K. E.
,
Sparks
,
C. E.
, and
Sareen
,
A. K.
,
2005
, “
Water Impact Test and Simulation of a Composite Energy Absorbing Fuselage Section
,”
J. Am. Helicopter Soc.
,
50
(
2
), pp.
150
164
.10.4050/1.3092852
383.
Jackson
,
K. E.
, and
Fuchs
,
Y. T.
,
2008
, “
Comparison of ALE and SPH Simulations of Vertical Drop Tests of a Composite Fuselage Section Into Water
,”
Proceedings of the 10th LS-DYNA Users Conference
,
Dearborn, MI
, Document ID No. 20080022946.
384.
Jackson
,
K. E.
,
Fuchs
,
Y. T.
, and
Kellas
,
S.
,
2009
, “
Overview of the NASA Subsonic Rotary Wing Aeronautics Research Program in Rotorcraft Crashworthiness
,”
J. Aerospace Eng.
,
22
(
3
), pp.
229
239
.10.1061/(ASCE)0893-1321(2009)22:3(229)
385.
Kohlgruber
,
D.
,
Vigliotti
,
A.
,
Weissberg
,
V.
, and
Bartosch
,
H.
,
2004
, “
Numerical Simulation of a Composite Helicopter Sub-Floor Structure Subjected to Water Impact
,”
Proceedings of the 60th Annual Forum of the American Helicopter Society
,
Baltimore, MD
,
June 7–10
.
386.
Wittlin
,
G.
,
Schultz
,
M.
, and
Smith
,
M. R.
,
2000
, “
Rotary Wing Aircraft Water Impact Test and Analyses Correlation
,”
American Helicopter Society 56th Annual Forum
,
Virginia
,
May 2–4
.
387.
Pentecôte
,
N.
, and
Vigliotti
,
A.
,
2003
, “
Crashworthiness of Helicopters on Water: Test and Simulation of Full-Scale WG30 Impacting On Water
,”
Int. J. Crashworthiness
,
8
(
6
), pp.
559
572
.10.1533/ijcr.2003.0259
388.
Pentecôte
,
N.
, and
Vigliotti
,
A.
,
2002
, “
Simulation of the Impact on Water of a Sub-Floor Component and a Full-Scale WG30 Helicopter
,”
58th Annual Forum, American Helicopter Society
,
Montreal, Canada
.
389.
Pentecôte
,
N.
, and
Kindervater
,
C. M.
,
1999
, “
Airframe Water Impact Analysis Using a Local/Global Methodology
,”
Annu. Forum Proc., Am. Helicopter Soc.
, Vol.
2
, pp.
1633
1643
.
390.
Tho
,
C. H.
,
Sparks
,
C. E.
, and
Sareen
,
A. K.
,
2004
, “
Hard Surface and Water Impact Simulations of Two Helicopter Subfloor Concepts
,”
Proceedings of the 60th Annual Forum of the American Helicopter Society
,
Baltimore, MD
, Vol.
2
, pp.
1474
1489
.
391.
Pentecote
,
N.
, and
Kindervater
,
C. M.
,
2002
, “
Airframe Water Impact Analysis Using a Local/Global Methodology
,”
Proceedings of the AHS Forum
, Montreal, Canada, June 11–13, Vol.
58
.
392.
Pentecote
,
N.
,
Kohlgrueber
,
D.
, and
Kamoulakos
,
A.
,
2003
, “
Simulation of Water Impact Problems Using the Smoothed Particle Hydrodynamic Method
,”
Int. Crashworthiness and Design Symposium (ICD03)
,
Lille, France
,
Dec. 2–4
.
393.
Vignjevic
,
R.
, and
Meo
,
M.
,
2001
, “
Simulation of Helicopter Under-Floor Structure Impact on Water
,”
Int. J. Crashworthiness
,
6
(
3
), pp.
425
443
.10.1533/cras.2001.0188
394.
Vignjevic
,
R.
, and
Meo
,
M.
,
2002
, “
A New Concept for a Helicopter Sub-Floor Structure Crashworthy in Impacts on Water and Rigid Surfaces
,”
Int. J. Crashworthiness
,
7
(
3
), pp.
321
330
.10.1533/cras.2002.0222
395.
Kindervater
,
C.
, and
Deletombe
,
E.
,
2000
, “
Composite Helicopter Structural Crashworthiness: Progress in Design and Crash Simulation Approaches
,”
Congrès ODAS 2000-2nd ONERA-DLR Aerospace Symposium
,
Berlin, Germany
.
396.
Aksenov
,
A. A.
,
Iliine
,
K.
,
Schelayev
,
A.
, and
Shmelev
,
V.
,
2007
, “
Modeling Fluid Structure Interaction for Aerospace Applications
,”
West-East High Speed Flow Field Conference
,
Moscow, Russia
,
Nov. 19–22
.
397.
Halbout
,
S.
,
Audier
,
F.
,
Kimmoun
,
O.
,
Malleron
,
N.
,
Remy
,
F.
, and
Scolan
,
Y. M.
,
2009
, “
Impact de Structures Gonflées sur un Liquide au Repos
,”
19th Congrès Français de Mécanique
,
Marseille, France
.
398.
Halbout
,
S.
,
Malleron
,
N.
,
Remy
,
F.
, and
Scolan
,
Y. M.
,
2008
, “
Impact of Inflated Structures on a Liquid Free Surface
,”
Proceedings of the 23rd Int. Workshop on Water Waves and Floating Bodies
,
Zelenogorsk, Russia
.
399.
Michielsen
,
A.
,
Wiggenraad
,
J. F. M.
,
Ubels
,
L. C.
,
Frijns
,
R.
,
Kohlgrüber
,
D.
,
Labeas
,
G.
, and
McCarthy
,
M. A.
,
1998
, “
Design, Test and Analysis of Tensor Skin Panels for Improved Crashworthiness in Case of Water Impact
,” Report No. NLR-TP-98356.
400.
Ubels
,
L. C.
, and
Wiggenraad
,
J. F. M.
,
2002
, “
Increasing the Survivability of Helicopter Accidents Over Water
,”
1st European Survivability Workshop
,
Cologne-Wahn, Germany
.
401.
Fasanella
,
E. L.
,
Jackson
,
K. E.
,
Sparks
,
C.
, and
Sareen
,
A.
,
2003
, “
Water Impact Test and Simulation of a Composite Energy Absorbing Fuselage Section
,” NTRS Document ID No. 20030068933.
402.
Fasanella
,
E. L.
,
Jackson
,
K. E.
,
Sparks
,
C. E.
, and
Sareen
,
A. K.
,
2005
, “
Water Impact Test and Simulation of a Composite Energy Absorbing Fuselage Section
,”
J. Am. Helicopter Soc.
,
50
(
2
), pp.
150
164
.10.4050/1.3092852
403.
Fasanella
,
E. L.
,
Jackson
,
K. E.
,
Lyle
,
K. H.
,
Sparks
,
C. E.
, and
Sareen
,
A. K.
,
2007
, “
Multi-Terrain Impact Testing and Simulation of a Composite Energy Absorbing Fuselage Section
,” NTRS Document ID No. 20080006847.
404.
Jackson
,
K. E.
, and
Fuchs
,
Y. T.
,
2008
, “
Comparison of ALE and SPH Simulations of Vertical Drop Tests of a Composite Fuselage Section Into Water
,”
Proceedings of the 10th LS-DYNA Users Conference
,
Dearborn, MI
, Document ID No. 20080022946.
405.
Stapp
,
J. P.
,
1951
, “
Human Tolerance to Deceleration: Summary of 166 Runs
,”
J. Aviat. Med.
,
22
(
1
), pp.
42
45
.
406.
Weis
,
E. B.
,
Clarke
,
N. P.
, and
Brinkley
,
J. W.
,
1963
, “
Human Response to Several Impact Orientations and Patterns
,”
Aerosp. Med.
,
34
(
12
), pp.
1122
1129
.
407.
Stapp
,
J. P.
, and
Taylor
,
E. R.
,
1964
, “
Space Cabin Landing Impact Vector Effects on Human Physiology
,”
Aerosp. Med.
,
35
(
12
), pp.
1117
1133
.
408.
Brown
,
W. K.
,
Rothstein
,
J. D.
, and
Foster
,
P.
,
1966
, “
Human Response to Predicted Apollo Landing Impacts in Selected Body Orientations
,”
Aerosp. Med.
,
37
(
4
), pp.
394
398
.
409.
Liu
,
B.
,
Ma
,
H.
, and
Jiang
,
S.
,
2008
, “
Dynamic Responses to Landing Impact at Different Key Segments in Selected Body Positions
,”
Aerosp. Sci. Technol.
,
12
(
4
), pp.
331
336
.10.1016/j.ast.2007.08.004
410.
Hatch
,
H. G., Jr.
,
1959
, “
Effects of Water-Landing Impact on Orbital Capsule From Standpoint of Occupant Protection
,” Report No. NASA-TN-D-39.
411.
McGehee
,
J. R.
,
Hathaway
,
M. E.
, and
Vaughan
,
V. L.
, Jr.
,
1959
, “
Water-Landing Characteristics of Reentry Capsule
,” Report No. NASA-MEMO-5-23-59L.
412.
Vaughan
,
V. L.
, Jr.
,
1959
, “
Water-Landing Impact Accelerations for Three Models of Reentry Capsules
,” National Aeronautics and Space Administration Technical Note No. D-145.
413.
Benson
,
H. E.
,
1966
, “
Water Impact of Apollo Spacecraft
,”
J. Spacecr. Rockets
,
3
(
8
), pp.
1282
1284
.10.2514/3.28640
414.
Jensen
,
W. R.
, and
Rosenbaum
,
J. D.
,
1962
, “
Water Impact of the Mercury Capsule Correlation of Analysis With NASA Tests
,” Report No. NASA-CR-55251.
415.
Baker
,
W. E.
,
Garza
,
L. R.
,
Hunter
,
P. A.
, and
Westine
,
P. S.
,
1965
, “
Water Impact Studies of Model Apollo Command Module
,” Report No. NASA-CR-114949.
416.
Stubbs
,
S.
,
1967
, “
Dynamic Model Investigation of Water Pressures and Accelerations Encountered During Landings of the Apollo Spacecraft
,” Report No. NASA TN D–3980.
417.
Stubbs
,
S. M.
, and
Hathaway
,
M. E.
,
1969
, “
Effects of Bottom-Structure Flexibility on Water Landing Loads of Apollo Spacecraft Models
,” Report No. NASA TN D 5108.
418.
Li
,
T.
, and
Sugimura
,
T.
,
1967
, “
Study of Apollo Water Impact. Volume 1—Hydrodynamic Analysis of Apollo Water Impact
,” Report No. NASA-CR-92019, SID-67-498.
419.
Cappelli
,
A. P.
,
Nishimoto
,
T.
,
Pauley
,
K. E.
, and
Radkowski
,
P. P.
,
1967
, “
Study of Apollo Water Impact. Volume 8—Unsymmetric Shells of Revolution Analysis
,” Report No. NASA-CR-92024, SID-67-498.
420.
Littell
,
J. D.
,
Lawrence
,
C.
, and
Carney
,
K. S.
,
2007
, “
Crew Exploration Vehicle (CEV) Water Landing Simulation
,” Report No. NASA/TM-2007-214681.
421.
Hiraki
,
K.
,
Tsugawa
,
K.
,
Ideno
,
K.
, and
Inoue
,
M.
,
2008
, “
Water-Impact of Reentry Bodies With Inclined Angles
,”
26th International Symposium on Space Technology and Science
,
Hamamatsu City, Japan
.
422.
Wang
,
J. T.
, and
Lyle
,
K. H.
,
2007
, “
Simulating Space Capsule Water Landing With Explicit Finite Element Method
,”
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, Vol.
1
, pp.
947
965
.
423.
Brooks
,
J. R.
, and
Anderson
,
L. A.
,
1994
, “
Dynamics of a Space Module Impacting Water
,”
J. Spacecr. Rockets
,
31
(
3
), pp.
509
515
.10.2514/3.26468
424.
Lorenz
,
R. D.
,
2003
, “
Splashdown and Post-Impact Dynamics of the Huygens Probe: Model Studies
,”
Proceedings of the Int. Workshop Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science
, Lisbon, Portugal,
Oct. 6–9
,
ESA Publications Division
, pp.
117
123
.
425.
Buyukozturk
,
O.
,
Hibbitt
,
H. D.
, and
Sorensen
,
E. P.
,
1974
, “
Water Impact Analysis of Space Shuttle Solid Rocket Motor by the Finite Element Method
,” Report No. NASA-CR-120319, TR73.
426.
Herting
,
D. N.
,
1975
, “
The NASTRAN SRB Slapdown Water Impact Analysis
,” Report No. NASA-CR-143862.
427.
Schmidt
,
A. A.
,
Kross
,
D. A.
, and
Keefe
,
R. T.
,
1985
, “
Water Impact Testing of a Filament Wound Case
,”
Shock Vib. Bull.
,
55
(
2
), pp.
57
67
.
428.
Melis
,
M. E.
,
2003
, “
Finite Element Simulation of a Space Shuttle Solid Rocket Booster Aft Skirt Splashdown Using an Arbitrary Lagrangian-Eulerian Approach
,” Report No. NASA/TM-2003-212093.
429.
Mitchell
,
K. N.
, and
Mahadevan
,
S.
,
2004
, “
SRB Splashdown Analysis and Structural Damage Risk Assessment
,”
Proceedings of the 9th Biennial ASCE Aerospace Division Int. Conference on Engineering, Construction, and Operations in Challenging Environments
,
League City/Houston, TX
,
Mar. 7–10
, pp.
461
468
.
430.
Anderson
,
T.
,
Childress
,
J.
, and
Lang
,
S.
,
1986
, “
Hybrid Composite Response to Hydraulic Ram
,” DTIC Report No. ADA178750.
431.
Fry
,
P. F.
,
1976
, “
A Review of the Analyses of Hydrodynamic Ram
,” Air Force Flight Dynamics Lab, Wright-Patterson AFB, Ohio, No. ADA031996.
432.
Gilbarg
,
D.
, and
Anderson
,
R. A.
,
1948
, “
Influence of Atmospheric Pressure on the Phenomena Accompanying the Entry of Spheres Into Water
,”
J. Appl. Phys.
,
19
, pp.
127
139
.10.1063/1.1698377
433.
May
,
A.
,
1952
, “
Vertical Entry of Missiles Into Water
,”
J. Appl. Phys.
,
23
, pp.
1362
1372
.10.1063/1.1702076
434.
Duclaux
,
V.
,
Caille
,
F.
,
Duez
,
C.
,
Ybert
,
C.
,
Bocquet
,
L.
, and
Clanet
,
C.
,
2007
, “
Dynamics of Transient Cavities
,”
J. Fluid Mech.
,
591
, pp.
1
19
.10.1017/S0022112007007343
435.
Disimile
,
P. J.
,
Swanson
,
L. A.
, and
Toy
,
N.
,
2009
, “
The Hydrodynamic Ram Pressure Generated by Spherical Projectiles
,”
Int. J. Impact Eng.
,
36
(
6
), pp.
821
829
.10.1016/j.ijimpeng.2008.12.009
436.
McMillen
,
J. H.
, and
Harvey
,
E. N.
,
1946
, “
A Spark Shadowgraphic Study of Body Waves in Water
,”
J. Appl. Phys.
,
17
(
7
), pp.
541
555
.10.1063/1.1707751
437.
Shi
,
H.
, and
Kume
,
M.
,
2004
, “
Underwater Acoustics and Cavitating Flow of Water Entry
,”
Acta Mech. Sin.
,
20
(
4
), pp.
374
382
.10.1007/BF02489375
438.
Shi
,
H. H.
, and
Kume
,
M.
,
2001
, “
An Experimental Research on the Flow Field of Water Entry by Pressure Measurements
,”
Phys. Fluids
,
13
(
1
), pp.
347
349
.10.1063/1.1329907
439.
Lecysyn
,
N.
,
Dandrieux
,
A.
,
Heymes
,
F.
,
Aprin
,
L.
,
Slangen
,
P.
,
Munier
,
L.
,
Le Gallic
,
C.
, and
Dusserre
,
G.
,
2009
, “
Ballistic Impact on an Industrial Tank: Study and Modeling of Consequences
,”
J. Hazard. Mater.
,
172
(
2–3
), pp.
587
594
.10.1016/j.jhazmat.2009.07.086
440.
Lecysyn
,
N.
,
Dandrieux
,
A.
,
Heymes
,
F.
,
Slangen
,
P.
,
Munier
,
L.
,
Lapebie
,
E.
,
Le Gallic
,
C.
, and
Dusserre
,
G.
,
2008
, “
Preliminary Study of Ballistic Impact on an Industrial Tank: Projectile Velocity Decay
,”
J. Loss Prev. Process Ind.
,
21
(
6
), pp.
627
634
.10.1016/j.jlp.2008.06.006
441.
Lecysyn
,
N.
,
Bony-Dandrieux
,
A.
,
Aprin
,
L.
,
Heymes
,
F.
,
Slangen
,
P.
,
Dusserre
,
G.
,
Munier
,
L.
, and
Le Gallic
,
C.
,
2010
, “
Experimental Study of Hydraulic Ram Effects on a Liquid Storage Tank: Analysis of Overpressure and Cavitation Induced by a High-Speed Projectile
,”
J. Hazard. Mater.
,
178
(
1–3
), pp.
635
643
.10.1016/j.jhazmat.2010.01.132
442.
Varas
,
D.
,
Zaera
,
R.
, and
López-Puente
,
J.
,
2009
, “
Numerical Modelling of the Hydrodynamic Ram Phenomenon
,”
Int. J. Impact Eng.
,
36
(
3
), pp.
363
374
.10.1016/j.ijimpeng.2008.07.020
443.
Varas
,
D.
,
López-Puente
,
J.
, and
Zaera
,
R.
,
2009
, “
Experimental Analysis of Fluid Filled Aluminium Tubes Subjected to High Velocity Impact
,”
Int. J. Impact Eng.
,
36
, pp.
81
91
.10.1016/j.ijimpeng.2008.04.006
444.
May
,
A.
, and
Hoover
,
W. R.
,
1963
, “
A Study of the Water-Entry Cavity
,” Technical Report No. AD0611406.
445.
Shi
,
H. H.
, and
Takami
,
T.
,
2001
, “
Hydrodynamic Behavior of an Underwater Moving Body After Water Entry
,”
Acta Mech. Sin.
,
17
(l), pp.
35
44
.10.1007/BF02487768
446.
Shi
,
H. H.
, and
Takami
,
T.
,
2001
, “
Some Progress in the Study of the Water Entry Phenomenon
,”
Exp. Fluids
,
30
, pp.
475
477
.10.1007/s003480000213
447.
Lee
,
M.
,
2000
, “
Water-Entry Induced Cavity Pressure
,”
KSME Int. J.
,
14
(
5
), pp.
562
568
.10.1007/BF03185659
448.
Lee
,
M.
,
2004
, “
Interactions Between a Spherical Elastic Shell and Acoustic Waves From a Water-Entry Moving Source
,”
J. Acoust. Soc. Am.
,
115
(
5
), pp.
2083
2090
.10.1121/1.1701900
449.
Petitpas
,
F.
,
Massoni
,
J.
,
Saurel
,
R.
,
Lapebie
,
E.
, and
Munier
,
L.
,
2009
, “
Diffuse Interface Model for High Speed Cavitating Underwater Systems
,”
Int. J. Multiphase Flow
,
35
(
8
), pp.
747
759
.10.1016/j.ijmultiphaseflow.2009.03.011
450.
Rand
,
R.
,
Pratap
,
R.
,
Ramani
,
D.
,
Cipolla
,
J.
, and
Kirschner
,
I.
,
1997
, “
Impact Dynamics of a Supercavitating Underwater Projectile
,”
Proceedings of ASME Design Engineering Technical Conferences (DETC'97)
,
Sacramento, CA
,
Sept. 14–17
.
451.
Varas
,
D.
,
Lopez-Puente
,
J.
, and
Zaera
,
R.
,
2012
, “
Numerical Analysis of the Hydrodynamic Ram Phenomenon in Aircraft Fuel Tanks
,”
AIAA J.
,
50
(
7
), pp.
1621
1630
.10.2514/1.J051613
452.
Varas
,
D.
,
Zaera
,
R.
, and
Lopez-Puente
,
J.
,
2011
, “
Numerical Modelling of Partially Filled Aircraft Fuel Tanks Submitted to Hydrodynamic Ram
,”
Aerosp. Sci. Technol.
,
16
(
1
), pp.
19
28
.10.1016/j.ast.2011.02.003
453.
Varas
,
D.
,
Lopez-Puente
,
J.
, and
Zaera
,
R.
,
2009
, “
Experimental and Numerical Study of High Velocity Impacts on Carbon/Epoxy Laminates
,”
DYMAT 2009: 9th Int. Conference on the Mechanical and Physical Behaviour of Materials Under Dynamic Loading
, Vol.
2
, pp.
1799
1805
.
454.
Sauer
,
M.
,
2011
, “
Simulation of High Velocity Impact in Fluid-Filled Containers Using Finite Elements With Adaptive Coupling to Smoothed Particle Hydrodynamics
,”
Int. J. Impact Eng.
,
38
(
6
), pp.
511
520
.10.1016/j.ijimpeng.2010.10.023
455.
McCallum
,
S. C.
, and
Townsend
,
D. D.
,
2005
, “
Simulation of Hydrodynamic Ram and Liquid Aeration
,”
5th European LS-DYNA Users Conference
,
Birmingham, UK
.
456.
Vignjevic
,
R.
,
De Vuyst
,
T.
,
Campbell
,
J.
, and
Bourne
,
N.
,
2002
, “
Modelling of Impact on a Fuel Tank Using Smoothed Particle Hydrodynamics
,”
5th Dynamics and Control of Systems and Structures in Space Conference (DCSSS)
,
Kings College, Cambridge, UK
.
457.
Abe
,
A.
,
Katayama
,
M.
,
Saito
,
T.
, and
Takayama
,
K.
,
2004
, “
Numerical Simulation on Supercavitation and Yawing of a Supersonic Projectile Traveling in Water
,”
Symposium on Interdisciplinary Shock Wave Research
,
Sendai, Japan
,
Mar. 22–24
.
458.
Anderson
,
C. E.
, Jr.
,
Sharron
,
T. R.
,
Walker
,
J. D.
, and
Freitas
,
C. J.
,
1999
, “
Simulation and Analysis of a 23-mm HEI Projectile Hydrodynamic Ram Experiment
,”
Int. J. Impact Eng.
,
22
(
9–10
), pp.
981
997
.10.1016/S0734-743X(99)00046-9
459.
Varas
,
D.
,
Zaera
,
R.
, and
Lopez-Puente
,
J.
,
2011
, “
Experimental Study of CFRP Fluid-Filled Tubes Subjected to High-Velocity Impact
,”
Compos. Struct.
,
93
(
10
), pp.
2598
2609
.10.1016/j.compstruct.2011.04.025
460.
Disimile
,
P. J.
,
Davis
,
J.
, and
Toy
,
N.
,
2011
, “
Mitigation of Shock Waves Within a Liquid Filled Tank
,”
Int. J. Impact Eng.
,
38
(
2–3
), pp.
61
72
.10.1016/j.ijimpeng.2010.10.006
461.
Lin
,
G. J.
,
Balachandran
,
B.
, and
Abed
,
E. H.
,
2008
, “
Dynamics and Control of Supercavitating Vehicles
,”
ASME J. Dyn. Sys., Meas., Control
,
130
(
2
), p.
021003
.10.1115/1.2837307
462.
Ahn
,
S. S.
,
2007
, “
An Integrated Approach to the Design of Supercavitating Underwater Vehicles
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
463.
Choi
,
J. H.
,
Penmetsa
,
R. C.
, and
Grandhi
,
R. V.
,
2005
, “
Shape Optimization of the Cavitator for a Supercavitating Torpedo
,”
Struct. Multidiscip. Optim.
,
29
(
2
), pp.
159
167
.10.1007/s00158-004-0466-0
464.
Logvinovich
,
G. V.
,
1972
, “
Hydrodynamics of Free-Boundary Flow
,” U.S. Department of Commerce Technical Report No. NASA-TT-F-658.
465.
Nguyen
,
V.
, and
Balachandran
,
B.
,
2011
, “
Supercavitating Vehicles With Noncylindrical, Nonsymmetric Cavities: Dynamics and Instabilities
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
4
), p.
041001
.10.1115/1.4003408
466.
Lin
,
G.
,
Balachandran
,
B.
, and
Abed
,
E. H.
,
2007
,
Nonlinear Dynamics and Bifurcations of a Supercavitating Vehicle
,”
IEEE J. Ocean. Eng.
,
32
(
4
), pp.
753
761
.10.1109/JOE.2007.908960
467.
Cameron
,
P. J. K.
,
Rogers
,
P. H.
,
Doane
,
J. W.
, and
Gifford
,
D. H.
,
2011
, “
An Experiment for the Study of Free-Flying Supercavitating Projectiles
,”
ASME J. Fluids Eng.
,
133
(2), p.
021303
.10.1115/1.4003560
468.
Bottasso
,
C. L.
,
Scorcelletti
,
F.
,
Ruzzene
,
M.
, and
Ahn
,
S. S.
,
2009
, “
Trajectory Optimization for DDE Models of Supercavitating Underwater Vehicles
,”
ASME J. Dyn. Sys., Meas., Control
,
131
(
1
), p.
011009
.10.1115/1.3023117
469.
Klomfass
,
A.
, and
Salk
,
M.
,
2009
, “
Numerical Analysis of the Supercavitating Flow About Blunt Bodies
,”
Predictive Modeling of Dynamic Processes
,
S.
Hiermaier
, ed.,
Springer
,
New York
, pp.
271
279
.
470.
Kulkarni
,
S. S.
, and
Pratap
,
R.
,
2000
, “
Studies on the Dynamics of a Supercavitating Projectile
,”
Appl. Math. Model.
,
24
(
2
), pp.
113
129
.10.1016/S0307-904X(99)00028-1
471.
Hrubes
,
J. D.
,
2001
, “
High-Speed Imaging of Supercavitating Underwater Projectile
,”
Exp. Fluids
,
30
(
1
), pp.
57
64
.10.1007/s003480000135
472.
Ruzzene
,
M.
,
2004
, “
Non-Axisymmetric Buckling of Stiffened Supercavitating Shells: Static and Dynamic Analysis
,”
Comput. Struct.
,
82
(
2
), pp.
257
269
.10.1016/j.compstruc.2003.09.003
473.
Ruzzene
,
M.
,
2004
, “
Dynamic Buckling of Periodically Stiffened Shells: Application to Supercavitating Vehicles
,”
Int. J. Solids Struct.
,
41
(
3–4
), pp.
1039
1059
.10.1016/j.ijsolstr.2003.10.008
474.
Ahn
,
S. S.
, and
Ruzzene
,
M.
,
2006
, “
Optimal Design of Cylindrical Shells for Enhanced Buckling Stability: Application to Supercavitating Underwater Vehicles
,”
Finite Elem. Anal. Design
,
42
(
11
), pp.
967
976
.10.1016/j.finel.2006.01.015
475.
Choi
,
J.-Y.
, and
Ruzzene
,
M.
,
2006
, “
Stability Analysis of Supercavitating Underwater Vehicles With Adaptive Cavitator
,”
Int. J. Mech. Sci.
,
48
(
12
), pp.
1360
1370
.10.1016/j.ijmecsci.2006.06.016
476.
Alyanak
,
E.
,
Grandhi
,
R.
,
Venkayya
,
V.
, and
Penmetsa
,
R.
,
2005
, “
Structural Response and Optimization of a Supercavitating Torpedo
,”
Finite Elem. Anal. Design
,
41
(
6
), pp.
563
582
.10.1016/j.finel.2004.10.005
You do not currently have access to this content.