One of the fundamental aspects in cohesive zone modeling is the definition of the traction-separation relationship across fracture surfaces, which approximates the nonlinear fracture process. Cohesive traction-separation relationships may be classified as either nonpotential-based models or potential-based models. Potential-based models are of special interest in the present review article. Several potential-based models display limitations, especially for mixed-mode problems, because of the boundary conditions associated with cohesive fracture. In addition, this paper shows that most effective displacement-based models can be formulated under a single framework. These models lead to positive stiffness under certain separation paths, contrary to general cohesive fracture phenomena wherein the increase of separation generally results in the decrease of failure resistance across the fracture surface (i.e., negative stiffness). To this end, the constitutive relationship of mixed-mode cohesive fracture should be selected with great caution.

References

References
1.
Gurtin
,
M. E.
,
1981
,
An Introduction to Continuum Mechanics
,
Academic Press
,
New York
.
2.
Needleman
,
A.
,
1992
, “
Micromechanical Modelling of Interfacial Decohesion
,”
Ultramicroscopy
,
40
(
3
), pp.
203
214
.10.1016/0304-3991(92)90117-3
3.
Park
,
K.
,
Paulino
,
G. H.
, and
Roesler
,
J. R.
,
2009
, “
A Unified Potential-Based Cohesive Model of Mixed-Mode Fracture
,”
J. Mech. Phys. Solids
,
57
(
6
), pp.
891
908
.10.1016/j.jmps.2008.10.003
4.
Needleman
,
A.
,
1987
, “
A Continuum Model for Void Nucleation by Inclusion Debonding
,”
ASME J. Appl. Mech.
,
54
(
3
), pp.
525
531
.10.1115/1.3173064
5.
Freed
,
Y.
, and
Banks-Sills
,
L.
,
2008
, “
A New Cohesive Zone Model for Mixed Mode Interface Fracture in Bimaterials
,”
Eng. Fract. Mech.
,
75
(
15
), pp.
4583
4593
.10.1016/j.engfracmech.2008.04.013
6.
Needleman
,
A.
,
1990
, “
An Analysis of Decohesion Along an Imperfect Interface
,”
Int. J. Fract.
,
42
(
1
), pp.
21
40
.10.1007/BF00018611
7.
Needleman
,
A.
,
1990
, “
An Analysis of Tensile Decohesion Along an Interface
,”
J. Mech. Phys. Solids
,
38
(
3
), pp.
289
324
.10.1016/0022-5096(90)90001-K
8.
Beltz
,
G. E.
, and
Rice
,
J. R.
,
1991
, “
Dislocation Nucleation Versus Cleavage Decohesion at Crack Tips
,”
Modeling the Deformation of Crystalline Solids Presented
,
T. C.
Lowe
,
A. D.
Rollett
,
P. S.
Follansbee
, and
G. S.
Daehn
, eds.,
The Minerals, Metals & Materials Society, Harvard University
,
Cambridge, MA
, pp.
457
480
.
9.
Xu
,
X. P.
, and
Needleman
,
A.
,
1993
, “
Void Nucleation by Inclusion Debonding in a Crystal Matrix
,”
Model. Simul. Mater. Sci. Eng.
,
1
(
2
), pp.
111
132
.10.1088/0965-0393/1/2/001
10.
Kanninen
,
M. F.
, and
Popelar
,
C. H.
,
1985
,
Advanced Fracture Mechanics
,
Oxford University Press
,
New York
.
11.
Bazant
,
Z. P.
, and
Cedolin
,
L.
,
1991
,
Stability of Structures: Elastic, Inelastic, Fracture, and Damage Theories
,
Oxford University Press
,
New York
.
12.
Anderson
,
T. L.
,
1995
,
Fracture Mechanics: Fundamentals and Applications
,
CRC Press
,
Boca Raton, FL
.
13.
Suresh
,
S.
,
1998
,
Fatigue of Materials
,
Cambridge University Press
,
New York
.
14.
Broberg
,
K. B.
,
1999
,
Cracks and Fracture
,
Academic Press
,
San Diego, CA
.
15.
Elliott
,
H. A.
,
1947
, “
An Analysis of the Conditions for Rupture Due to Griffth Cracks
,”
Proc. Phys. Soc.
,
59
(
2
), pp.
208
223
.10.1088/0959-5309/59/2/305
16.
Barenblatt
,
G. I.
,
1959
, “
The Formation of Equilibrium Cracks During Brittle Fracture: General Ideas and Hypotheses, Axially Symmetric Cracks
,”
Appl. Math. Mech.
,
23
(
3
), pp.
622
636
.10.1016/0021-8928(59)90157-1
17.
Barenblatt
,
G. I.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
, pp.
55
129
.10.1016/S0065-2156(08)70121-2
18.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.10.1016/0022-5096(60)90013-2
19.
Griffith
,
A. A.
,
1921
, “
The Phenomena of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. London
,
221
, pp.
163
198
.10.1098/rsta.1921.0006
20.
Willis
,
J. R.
,
1967
, “
A Comparison of the Fracture Criteria of Griffith and Barenblatt
,”
J. Mech. Phys. Solids
,
15
(
3
), pp.
151
162
.10.1016/0022-5096(67)90029-4
21.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(2)
, pp.
379
386
.10.1115/1.3601206
22.
Bilby
,
B. A.
,
Cottrell
,
A. H.
, and
Swinden
,
K. H.
,
1963
, “
Spread of Plastic Yield From Notch
,”
R. Soc. Proc. Ser. A
,
272
(
1350
), pp.
304
314
.10.1098/rspa.1963.0055
23.
Bilby
,
B. A.
, and
Swinden
,
K. H.
,
1965
, “
Representation of Plasticity at Notches by Linear Dislocations Arrays
,”
R. Soc. Proc. Ser. A
,
285
(
1400
), pp.
22
33
.10.1098/rspa.1965.0086
24.
Rice
,
J. R.
,
1968
, “
Mathematical Analysis in the Mechanics of Fracture
,”
Fracture: An Advanced Treatise
, Vol.
2
,
H.
Liebowitz
, ed.,
Academic Press
,
New York
, pp.
191
311
.
25.
Smith
,
E.
,
1974
, “
The Structure in the Vicinity of a Crack Tip: A General Theory Based on the Cohesive Zone Model
,”
Eng. Fract. Mech.
,
6
(
2
), pp.
213
222
.10.1016/0013-7944(74)90019-8
26.
Keer
,
L. M.
,
1964
, “
Stress Distribution at the Edge of an Equilibrium Crack
,”
J. Mech. Phys. Solids
,
12
(
3
), pp.
149
163
.10.1016/0022-5096(64)90015-8
27.
Cribb
,
J. L.
, and
Tomkins
,
B.
,
1967
, “
On the Nature of the Stress at the Tip of a Perfectly Brittle Crack
,”
J. Mech. Phys. Solids
,
15
(
2
), pp.
135
140
.10.1016/0022-5096(67)90023-3
28.
Smith
,
E.
,
1975
, “
A Generalization of Elliott's Model of a Crack Tip
,”
Int. J. Fract.
,
11
(
2
), pp.
295
299
.10.1007/BF00038896
29.
Hillerborg
,
A.
,
Modeer
,
M.
, and
Petersson
,
P. E.
,
1976
, “
Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cem. Concr. Res.
,
6
(
6
), pp.
773
781
.10.1016/0008-8846(76)90007-7
30.
Boone
,
T. J.
,
Wawrzynek
,
P. A.
, and
Ingraffea
,
A. R.
,
1986
, “
Simulation of the Fracture Process in Rock With Application to Hydrofracturing
,”
Int. J. Rock Mech. Min. Sci.
,
23
(
3
), pp.
255
265
.10.1016/0148-9062(86)90971-X
31.
Elices
,
M.
,
Guinea
,
G. V.
,
Gomez
,
J.
, and
Planas
,
J.
,
2002
, “
The Cohesive Zone Model: Advantages, Limitations and Challenges
,”
Eng. Fract. Mech.
,
69
(
2
), pp.
137
163
.10.1016/S0013-7944(01)00083-2
32.
Bazant
,
Z. P.
, and
Becq-Giraudon
,
E.
,
2002
, “
Statistical Prediction of Fracture Parameters of Concrete and Implications for Choice of Testing Standard
,”
Cem. Concr. Res.
,
32
(
4
), pp.
529
556
.10.1016/S0008-8846(01)00723-2
33.
Roesler
,
J.
,
Paulino
,
G. H.
,
Park
,
K.
, and
Gaedicke
,
C.
,
2007
, “
Concrete Fracture Prediction Using Bilinear Softening
,”
Cem. Concr. Compos.
,
29
(
4
), pp.
300
312
.10.1016/j.cemconcomp.2006.12.002
34.
Petersson
,
P. E.
,
1981
, “
Crack Growth and Development of Fracture Zones in Plain Concrete and Similar Materials
,”
Tech. Report No. LUTVDG/TVBM-1006
,
Lund Institute of Technology
,
Sweden
.
35.
Wittmann
,
F. H.
,
Rokugo
,
K.
,
Bruehwiler
,
E.
,
Mihashi
,
H.
, and
Simonin
,
P.
,
1988
, “
Fracture Energy and Strain Softening of Concrete as Determined by Means of Compact Tension Specimens
,”
Mater. Struct.
,
21
(
1
), pp.
21
32
.10.1007/BF02472525
36.
Guinea
,
G. V.
,
Planas
,
J.
, and
Elices
,
M.
,
1994
, “
A General Bilinear Fit for the Softening Curve of Concrete
,”
Materiaux Constr.
,
27
(
2
), pp.
99
105
.10.1007/BF02472827
37.
Park
,
K.
,
Paulino
,
G. H.
, and
Roesler
,
J. R.
,
2008
, “
Determination of the Kink Point in the Bilinear Softening Model for Concrete
,”
Eng. Fract. Mech.
,
75
(
13
), pp.
3806
3818
.10.1016/j.engfracmech.2008.02.002
38.
Jenq
,
Y. S.
, and
Shah
,
S. P.
,
1985
, “
Two Parameter Fracture Model for Concrete
,”
JSCE J. –Eng. Mech.
,
111
(
10
), pp.
1227
1241
.10.1061/(ASCE)0733-9399(1985)111:10(1227)
39.
Bazant
,
Z. P.
, and
Kazemi
,
M. T.
,
1990
, “
Determination of Fracture Energy, Process Zone Length and Brittleness Number From Size Effect, With Application to Rock and Concrete
,”
Int. J. Fract.
,
44
(
2
), pp.
111
131
.10.1007/BF00047063
40.
Shah
,
S. P.
,
Swartz
,
S. E.
, and
Ouyang
,
C.
,
1995
,
Fracture Mechanics of Concrete: Applications of Fracture Mechanics to Concrete, Rock and Other Quasi-Brittle Materials
,
Wiley-Interscience
,
New York
.
41.
van Mier
,
J. G. M.
,
1996
,
Fracture Processes of Concrete: Assessment of Material Parameters for Fracture Models
,
CRC Press
,
Boca Raton, FL
.
42.
Bazant
,
Z. P.
, and
Planas
,
J.
,
1998
,
Fracture and Size Effect in Concrete and other Quasibrittle Materials
,
CRC Press
,
Boca Raton, FL
.
43.
Li
,
V. C.
,
Stang
,
H.
, and
Krenchel
,
H.
,
1993
, “
Micromechanics of Crack Bridging in Fibre-Reinforced Concrete
,”
Mater. Struct.
,
26
(
162
), pp.
486
494
.10.1007/BF02472808
44.
Park
,
K.
,
Paulino
,
G. H.
, and
Roesler
,
J.
,
2010
, “
Cohesive Fracture Model for Functionally Graded Fiber Reinforced Concrete
,”
Cem. Concr. Res.
,
40
(
6
), pp.
956
965
.10.1016/j.cemconres.2010.02.004
45.
Hui
,
C. Y.
,
Ruina
,
A.
,
Long
,
R.
, and
Jagota
,
A.
,
2011
, “
Cohesive Zone Models and Fracture
,”
J. Adhes.
,
87
(
1
), pp.
1
52
.10.1080/00218464.2011.538315
46.
Kramer
,
E. J.
,
1983
, “
Microscopic and Molecular Fundamentals of Crazing
,”
Crazing in Polymers (Advances in Polymer Science),
Vol.
52–53
,
H.
Kausch
, ed.,
Springer-Verlag
,
Berlin, Germany
, pp.
1
56
.
47.
Tijssens
,
M. G. A.
,
van der Giessen
,
E.
, and
Sluys
,
L. J.
,
2000
, “
Modeling of Crazing Using a Cohesive Surface Methodology
,”
Mech. Mater.
,
32
(
1
), pp.
19
35
.10.1016/S0167-6636(99)00044-7
48.
Estevez
,
R.
,
Tijssens
,
M. G. A.
, and
der Giessen
,
E. V.
,
2000
, “
Modeling of the Competition Between Shear Yielding and Crazing in Glassy Polymers
,”
J. Mech. Phys. Solids
,
48
(
12
), pp.
2585
2617
.10.1016/S0022-5096(00)00016-8
49.
Allen
,
D. H.
, and
Searcy
,
C. R.
,
2001
, “
Micromechanical Model for a Viscoelastic Cohesive Zone
,”
Int. J. Fract.
,
107
(
2
), pp.
159
176
.10.1023/A:1007693116116
50.
Hui
,
C. Y.
,
Ruina
,
A.
,
Creton
,
C.
, and
Kramer
,
E. J.
,
1992
, “
Micromechanics of Crack Growth Into a Craze in a Polymer Glass
,”
Macromolecules
,
25
(
15
), pp.
3948
3955
.10.1021/ma00041a018
51.
Hui
,
C. Y.
, and
Kramer
,
E. J.
,
1995
, “
Molecular Weight Dependence of the Fracture Toughness of Glassy Polymers Arising From Crack Propagation Through a Craze
,”
Polym. Eng. Sci.
,
35
(
5
), pp.
419
425
.10.1002/pen.760350507
52.
Hong
,
S.
,
Chew
,
H. B.
, and
Kim
,
K.-S.
,
2009
, “
Cohesive-Zone Laws for Void Growth – I. Experimental Field Projection of Crack-Tip Crazing in Glassy Polymers
,”
J. Mech. Phys. Solids
,
57
(
8
), pp.
1357
1373
.10.1016/j.jmps.2009.04.003
53.
Bolander
,
J. E.
, and
Sukumar
,
N.
,
2005
, “
Irregular Lattice Model for Quasistatic Crack Propagation
,”
Phys. Rev. B
,
71
(
9
), p.
094106
.10.1103/PhysRevB.71.094106
54.
Li
,
S.
, and
Ghosh
,
S.
,
2006
, “
Extended Voronoi Cell Finite Element Model for Multiple Cohesive Crack Propagation in Brittle Materials
,”
Int. J. Numer. Methods Eng.
,
65
(
7
), pp.
1028
1067
.10.1002/nme.1472
55.
Bishop
,
J. E.
,
2009
, “
Simulating the Pervasive Fracture of Materials and Structures Using Randomly Close Packed Voronoi Tessellations
,”
Comput. Mech.
,
44
(
4
), pp.
455
471
.10.1007/s00466-009-0383-6
56.
Walter
,
M. E.
,
Ravichandran
,
G.
, and
Ortiz
,
M.
,
1997
, “
Computational Modeling of Damage Evolution in Unidirectional Fiber Reinforced Ceramic Matrix Composites
,”
Comput. Mech.
,
20
(
1–2
), pp.
192
198
.10.1007/s004660050239
57.
Carpinteri
,
A.
,
Paggi
,
M.
, and
Zavarise
,
G.
,
2005
, “
Snap-Back Instability in Micro-Structured Composites and its Connection With Superplasticity
,”
Strength, Fract. Complexity
,
3
(
2–4
), pp.
61
72
.
58.
Needleman
,
A.
,
Borders
,
T. L.
,
Brinson
,
L.
,
Flores
,
V. M.
, and
Schadler
,
L. S.
,
2010
, “
Effect of an Interphase Region on Debonding of a CNT Reinforced Polymer Composite
,”
Compos. Sci. Technol.
,
70
(
15
), pp.
2207
2215
.10.1016/j.compscitech.2010.09.002
59.
Ngo
,
D.
,
Park
,
K.
,
Paulino
,
G. H.
, and
Huang
,
Y.
,
2010
, “
On the Constitutive Relation of Materials With Microstructure Using a Potential-Based Cohesive Model for Interface Interaction
,”
Eng. Fract. Mech.
,
77
(
7
), pp.
1153
1174
.10.1016/j.engfracmech.2010.01.007
60.
Paulino
,
G. H.
,
Jin
,
Z. H.
, and
Dodds
,
R. H.
,
2003
, “
Failure of Functionally Graded Materials
,”
Comprehensive Structural Integrity
, Vol.
2
,
B.
Karihaloo
and
W. G.
Knauss
, eds.,
Elsevier
,
The Netherlands
, pp.
607
644
.
61.
Erdogan
,
F.
, and
Sih
,
G. C.
,
1963
, “
On the Crack Extension in Plates Under Plane Loading and Transverse Shear
,”
ASME J. Basic Eng.
,
85
(4)
, pp.
519
525
.10.1115/1.3656897
62.
Pindera
,
M.-J.
, and
Paulino
,
G. H.
,
2008
, “
Honoring Professor Erdogan's Seminal Contributions to Mixed Boundary-Value Problems of Inhomogeneous and Functionally Graded Materials
,”
ASME J. Appl. Mech.
,
75
(
5
), p.
050301
.10.1115/1.2936920
63.
Erdogan
,
F.
, and
Ozturk
,
M.
,
2008
, “
On the Singularities in Fracture and Contact Mechanics
,”
ASME J. Appl. Mech.
,
75
(
5
), p.
051111
.10.1115/1.2936241
64.
Dag
,
S.
, and
Ilhan
,
K. A.
,
2008
, “
Mixed-Mode Fracture Analysis of Orthotropic Functionally Graded Material Coatings Using Analytical and Computational Methods
,”
ASME J. Appl. Mech.
,
75
(
5
), p.
051104
.10.1115/1.2932098
65.
Tvergaard
,
V.
,
2002
, “
Theoretical Investigation of the Effect of Plasticity on Crack Growth Along a Functionally Graded Region Between Dissimilar Elastic-Plastic Solids
,”
Eng. Fract. Mech.
,
69
(
14–16
), pp.
1635
1645
.10.1016/S0013-7944(02)00051-6
66.
Wang
,
Z.
, and
Nakamura
,
T.
,
2004
, “
Simulations of Crack Propagation in Elastic-Plastic Graded Materials
,”
Mech. Mater.
,
36
(
7
), pp.
601
622
.10.1016/S0167-6636(03)00079-6
67.
Jin
,
Z.-H.
,
Paulino
,
G. H.
, and
Dodds
,
R. H.
, Jr.
,
2003
, “
Cohesive Fracture Modeling of Elastic-Plastic Crack Growth in Functionally Graded Materials
,”
Eng. Fract. Mech.
,
70
(
14
), pp.
1885
1912
.10.1016/S0013-7944(03)00130-9
68.
Rangaraj
,
S.
, and
Kokini
,
K.
,
2004
, “
A Study of Thermal Fracture in Functionally Graded Thermal Barrier Coatings Using a Cohesive Zone Model
,”
ASME J. Eng. Mater. Technol.
,
126
(
1
), pp.
103
115
.10.1115/1.1631028
69.
Zhang
,
Z.
, and
Paulino
,
G. H.
,
2005
, “
Cohesive Zone Modeling of Dynamic Failure in Homogeneous and Functionally Graded Materials
,”
Int. J. Plast.
,
21
(
6
), pp.
1195
1254
.10.1016/j.ijplas.2004.06.009
70.
Kandula
,
S. S. V.
,
Abanto-Bueno
,
J.
,
Geubelle
,
P. H.
, and
Lambros
,
J.
,
2005
, “
Cohesive Modeling of Dynamic Fracture in Functionally Graded Materials
,”
Int. J. Fract.
,
132
(
3
), pp.
275
296
.10.1007/s10704-005-1207-0
71.
Jin
,
Z.-H.
,
Paulino
,
G. H.
, and
Dodds
,
R. H.
,
2002
, “
Finite Element Investigation of Quasi-Static Crack Growth in Functionally Graded Materials Using a Novel Cohesive Zone Fracture Model
,”
ASME J. Appl. Mech.
,
69
(
3
), pp.
370
379
.10.1115/1.1467092
72.
Shim
,
D.-J.
,
Paulino
,
G. H.
, and
Dodds
,
R. H.
, Jr.
,
2006
, “
J Resistance Behavior in Functionally Graded Materials Using Cohesive Zone and Modified Boundary Layer Models
,”
Int. J. Fract.
,
139
(
1
), pp.
91
117
.10.1007/s10704-006-0024-4
73.
Brocks
,
W.
, and
Cornec
,
A.
,
2003
, “
Guest Editorial: Cohesive Models
,”
Eng. Fract. Mech.
,
70
(
14
), pp.
1741
1742
.10.1016/S0013-7944(03)00121-8
74.
de Andres
,
A.
,
Perez
,
J. L.
, and
Ortiz
,
M.
,
1999
, “
Elastoplastic Finite Element Analysis of Three Dimensional Fatigue Crack Growth in Aluminum Shafts Subjected to Axial Loading
,”
Int. J. Solids Struct.
,
36
(
15
), pp.
2231
2258
.10.1016/S0020-7683(98)00059-6
75.
Deshpande
,
V. S.
,
Needleman
,
A.
, and
Van der Giessen
,
E.
,
2001
, “
A Discrete Dislocation Analysis of Near-Threshold Fatigue Crack Growth
,”
Acta Mater.
,
49
(
16
), pp.
3189
3203
.10.1016/S1359-6454(01)00220-8
76.
Roe
,
K. L.
, and
Siegmund
,
T.
,
2003
, “
An Irreversible Cohesive Zone Model for Interface Fatigue Crack Growth Simulation
,”
Eng. Fract. Mech.
,
70
(
2
), pp.
209
232
.10.1016/S0013-7944(02)00034-6
77.
Maiti
,
S.
, and
Geubelle
,
P. H.
,
2005
, “
A Cohesive Model for Fatigue Failure of Polymers
,”
Eng. Fract. Mech.
,
72
(
5
), pp.
691
708
.10.1016/j.engfracmech.2004.06.005
78.
Ural
,
A.
,
Krishnan
,
V. R.
, and
Papoulia
,
K. D.
,
2009
, “
A Cohesive Zone Model for Fatigue Crack Growth Allowing for Crack Retardation
,”
Int. J. Solids Struct.
,
46
(
11–12
), pp.
2453
2462
.10.1016/j.ijsolstr.2009.01.031
79.
Ingraffea
,
A. R.
,
Gerstle
,
W. H.
,
Gergely
,
P.
, and
Saouma
,
V.
,
1984
, “
Fracture Mechanics of Bond in Reinforced Concrete
,”
J. Struct. Eng.
,
110
(
4
), pp.
871
890
.10.1061/(ASCE)0733-9445(1984)110:4(871)
80.
Prasad
,
M. V. K. V.
, and
Krishnamoorthy
,
C. S.
,
2002
, “
Computational Model for Discrete Crack Growth in Plain and Reinforced Concrete
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
25–26
), pp.
2699
2725
.10.1016/S0045-7825(02)00210-4
81.
Koeberl
,
B.
, and
Willam
,
K.
,
2008
, “
Question of Tension Softening Versus Tension Stiffening in Plain and Reinforced Concrete
,”
ASCE J. Eng. Mech.
,
134
(
9
), pp.
804
808
.10.1061/(ASCE)0733-9399(2008)134:9(804)
82.
Yang
,
Q. D.
, and
Thouless
,
M. D.
,
2001
, “
Mixed-Mode Fracture Analyses of Plastically-Deforming Adhesive Joints
,”
Int. J. Fract.
,
110
(
2
), pp.
175
187
.10.1023/A:1010869706996
83.
Xu
,
C.
,
Siegmund
,
T.
, and
Ramani
,
K.
,
2003
, “
Rate-Dependent Crack Growth in Adhesives: I. Modeling Approach
,”
Int. J. Adhes. Adhes.
,
23
(
1
), pp.
9
13
.10.1016/S0143-7496(02)00062-3
84.
Alfano
,
M.
,
Furgiuele
,
F.
,
Leonardi
,
A.
,
Maletta
,
C.
, and
Paulino
,
G. H.
,
2009
, “
Mode I Fracture of Adhesive Joints Using Tailored Cohesive Zone Models
,”
Int. J. Fract.
,
157
(
1–2
), pp.
193
204
.10.1007/s10704-008-9293-4
85.
Khoramishad
,
H.
,
Crocombe
,
A. D.
,
Katnam
,
K. B.
, and
Ashcroft
,
I. A.
,
2010
, “
Predicting Fatigue Damage in Adhesively Bonded Joints Using a Cohesive Zone Model
,”
Int. J. Fatigue
,
32
(
7
), pp.
1146
1158
.10.1016/j.ijfatigue.2009.12.013
86.
Miller
,
O.
,
Freund
,
L. B.
, and
Needleman
,
A.
,
1999
, “
Energy Dissipation in Dynamic Fracture of Brittle Materials
,”
Model. Simul. Mater. Sci. Eng.
,
7
(
4
), pp.
573
586
.10.1088/0965-0393/7/4/307
87.
Zhang
,
Z.
,
Paulino
,
G. H.
, and
Celes
,
W.
,
2007
, “
Extrinsic Cohesive Modelling of Dynamic Fracture and Microbranching Instability in Brittle Materials
,”
Int. J. Numer. Methods Eng.
,
72
(
8
), pp.
893
923
.10.1002/nme.2030
88.
Rabczuk
,
T.
,
Song
,
J.-H.
, and
Belytschko
,
T.
,
2009
, “
Simulations of Instability in Dynamic Fracture by the Cracking Particles Method
,”
Eng. Fract. Mech.
,
76
(
6
), pp.
730
741
.10.1016/j.engfracmech.2008.06.002
89.
Pandolfi
,
A.
,
Krysl
,
P.
, and
Ortiz
,
M.
,
1999
, “
Finite Element Simulation of Ring Expansion and Fragmentation: The Capturing of Length and Time Scales Through Cohesive Models of Fracture
,”
Int. J. Fract.
,
95
(
1–4
), pp.
279
297
.10.1023/A:1018672922734
90.
Zhou
,
F.
,
Molinari
,
J.-F.
, and
Ramesh
,
K. T.
,
2005
, “
A Cohesive Model Based Fragmentation Analysis: Effects of Strain Rate and Initial Defects Distribution
,”
Int. J. Solids Struct.
,
42
(
18–19
), pp.
5181
5207
.10.1016/j.ijsolstr.2005.02.009
91.
Molinari
,
J. F.
,
Gazonas
,
G.
,
Raghupathy
,
R.
,
Rusinek
,
A.
, and
Zhou
,
F.
,
2007
, “
The Cohesive Element Approach to Dynamic Fragmentation: The Question of Energy Convergence
,”
Int. J. Numer. Methods Eng.
,
69
(
3
), pp.
484
503
.10.1002/nme.1777
92.
Reeder
,
J. R.
, and
Crews
,
J. H.
, Jr.
,
1990
, “
Mixed-Mode Bending Method for Delamination Testing
,”
AIAA J.
,
28
(
7
), pp.
1270
1276
.10.2514/3.25204
93.
Benzeggagh
,
M. L.
, and
Kenane
,
M.
,
1996
, “
Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites With Mixed-Mode Bending Apparatus
,”
Compos. Sci. Technol.
,
56
(
4
), pp.
439
449
.10.1016/0266-3538(96)00005-X
94.
Banks-Sills
,
L.
,
Travitzky
,
N.
,
Ashkenazi
,
D.
, and
Eliasi
,
R.
,
1999
, “
A Methodology for Measuring Interface Fracture Properties of Composite Materials
,”
Int. J. Fract.
,
99
(
3
), pp.
143
160
.10.1023/A:1018642200610
95.
Zhu
,
Y.
,
Liechti
,
K. M.
, and
Ravi-Chandar
,
K.
,
2009
, “
Direct Extraction of Rate-Dependent Traction Separation Laws for Polyurea/Steel Interfaces
,”
Int. J. Solids Struct.
,
46
(
1
), pp.
31
51
.10.1016/j.ijsolstr.2008.08.019
96.
Xu
,
X. P.
, and
Needleman
,
A.
,
1994
, “
Numerical Simulations of Fast Crack Growth in Brittle Solids
,”
J. Mech. Phys. Solids
,
42
(
9
), pp.
1397
1434
.10.1016/0022-5096(94)90003-5
97.
Camacho
,
G. T.
, and
Ortiz
,
M.
,
1996
, “
Computational Modelling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
,
33
(
20–22
), pp.
2899
2938
.10.1016/0020-7683(95)00255-3
98.
Ortiz
,
M.
, and
Pandolfi
,
A.
,
1999
, “
Finite-Deformation Irreversible Cohesive Elements for Three Dimensional Crack-Propagation Analysis
,”
Int. J. Numer. Methods Eng.
,
44
(
9
), pp.
1267
1282
.10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
99.
Celes
,
W.
,
Paulino
,
G. H.
, and
Espinha
,
R.
,
2005
, “
A Compact Adjacency-Based Topological Data Structure for Finite Element Mesh Representation
,”
Int. J. Numer. Methods Eng.
,
64
(
11
), pp.
1529
1556
.10.1002/nme.1440
100.
Celes
,
W.
,
Paulino
,
G. H.
, and
Espinha
,
R.
,
2005
, “
Efficient Handling of Implicit Entities in Reduced Mesh Representations
,”
J. Comput. Info. Sci. Eng.
,
5
(
4
), pp.
348
359
.10.1115/1.2052830
101.
Mota
,
A.
,
Knap
,
J.
, and
Ortiz
,
M.
,
2008
, “
Fracture and Fragmentation of Simplicial Finite Element Meshes Using Graphs
,”
Int. J. Numer. Methods Eng.
,
73
(
11
), pp.
1547
1570
.10.1002/nme.2135
102.
Espinha
,
R.
,
Celes
,
W.
,
Rodriguez
,
N.
, and
Paulino
,
G. H.
,
2009
, “
ParTopS: Compact Topological Framework for Parallel Fragmentation Simulations
,”
Eng. Comput.
,
25
(
4
), pp.
345
365
.10.1007/s00366-009-0129-2
103.
Wells
,
G. N.
, and
Sluys
,
L. J.
,
2001
, “
A New Method for Modelling Cohesive Cracks Using Finite Elements
,”
Int. J. Numer. Methods Eng.
,
50
(
12
), pp.
2667
2682
.10.1002/nme.143
104.
Moes
,
N.
, and
Belytschko
,
T.
,
2002
, “
Extended Finite Element Method for Cohesive Crack Growth
,”
Eng. Fract. Mech.
,
69
(
7
), pp.
813
833
.10.1016/S0013-7944(01)00128-X
105.
Remmers
,
J. J. C.
,
de Borst
,
R.
, and
Needleman
,
A.
,
2008
, “
The Simulation of Dynamic Crack Propagation Using the Cohesive Segments Method
,”
J. Mech. Phys. Solids
,
56
(
1
), pp.
70
92
.10.1016/j.jmps.2007.08.003
106.
Song
,
J.-H.
, and
Belytschko
,
T.
,
2009
, “
Cracking Node Method for Dynamic Fracture With Finite Elements
,”
Int. J. Numer. Methods Eng.
,
77
(
3
), pp.
360
385
.10.1002/nme.2415
107.
Paulino
,
G. H.
,
Park
,
K.
,
Celes
,
W.
, and
Espinha
,
R.
,
2010
, “
Adaptive Dynamic Cohesive Fracture Simulation Using Edge-Swap and Nodal Perturbation Operators
,”
Int. J. Numer. Methods Eng.
,
84
(
11
), pp.
1303
1343
.10.1002/nme.2943
108.
Simo
,
J. C.
,
Oliver
,
J.
, and
Armero
,
F.
,
1993
, “
An Analysis of Strong Discontinuities Induced by Strain Softening in Rate-Independent Inelastic Solids
,”
Comput. Mech.
,
12
(
5
), pp.
277
296
.10.1007/BF00372173
109.
Oliver
,
J.
,
Huespe
,
A. E.
,
Pulido
,
M. D. G.
, and
Chaves
,
E.
,
2002
, “
From Continuum Mechanics to Fracture Mechanics: The Strong Discontinuity Approach
,”
Eng. Fract. Mech.
,
69
(
2
), pp.
113
136
.10.1016/S0013-7944(01)00060-1
110.
Linder
,
C.
, and
Armero
,
F.
,
2007
, “
Finite Elements With Embedded Strong Discontinuities for the Modeling of Failure in Solids
,”
Int. J. Numer. Methods Eng.
,
72
(
12
), pp.
1391
1433
.10.1002/nme.2042
111.
Carol
,
I.
,
Prat
,
P. C.
, and
Lopez
,
C. M.
,
1997
, “
Normal/Shear Cracking Model: Application to Discrete Crack Analysis
,”
ASCE J. Eng. Mech.
,
123
(
8
), pp.
765
773
.10.1061/(ASCE)0733-9399(1997)123:8(765)
112.
Willam
,
K.
,
Rhee
,
I.
, and
Shing
,
B.
,
2004
, “
Interface Damage Model for Thermomechanical Degradation of Heterogeneous Materials
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
30–32
), pp.
3327
3350
.10.1016/j.cma.2003.09.020
113.
Caballero
,
A.
,
Willam
,
K. J.
, and
Carol
,
I.
,
2008
, “
Consistent Tangent Formulation for 3D Interface Modeling of Cracking/Fracture in Quasi-Brittle Materials
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
33–40
), pp.
2804
2822
.10.1016/j.cma.2008.01.011
114.
Segura
,
J. M.
, and
Carol
,
I.
,
2010
, “
Numerical Modelling of Pressurized Fracture Evolution in Concrete Using Zero-Thickness Interface Elements
,”
Eng. Fract. Mech.
,
77
(
9
), pp.
1386
1399
.10.1016/j.engfracmech.2010.03.014
115.
Gao
,
H.
, and
Klein
,
P.
,
1998
, “
Numerical Simulation of Crack Growth in an Isotropic Solid With Randomized Internal Cohesive Bonds
,”
J. Meh. Phys. Solids
,
46
(
2
), pp.
187
218
.10.1016/S0022-5096(97)00047-1
116.
Gao
,
H.
, and
Ji
,
B.
,
2003
, “
Modeling Fracture in Nanomaterials via a Virtual Internal Bond Method
,”
Eng. Fract. Mech.
,
70
(
14
), pp.
1777
1791
.10.1016/S0013-7944(03)00124-3
117.
Park
,
K.
,
Paulino
,
G. H.
, and
Roesler
,
J. R.
,
2008
, “
Virtual Internal Pair-Bond (VIPB) Model for Quasi-Brittle Materials
,”
ASCE J. Eng. Mech.
,
134
(
10
), pp.
856
866
.10.1061/(ASCE)0733-9399(2008)134:10(856)
118.
Bazant
,
Z. P.
,
1984
, “
Microplane Model for Strain-Controlled Inelastic Behavior
,”
Mechanics of Engineering Materials
,
C. S.
Desai
and
R. H.
Gallagher
, eds.,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
45
59
.
119.
Bazant
,
Z. P.
, and
Oh
,
B. H.
,
1985
, “
Microplane Model for Progressive Fracture of Concrete and Rock
,”
ASCE J. Eng. Mech.
,
111
(
4
), pp.
559
582
.10.1061/(ASCE)0733-9399(1985)111:4(559)
120.
Bazant
,
Z. P.
, and
Caner
,
F. C.
,
2005
, “
Microplane Model M5 With Kinematic and Static Constraints for Concrete Fracture and Anelasticity I: Theory
,”
ASCE J. Eng. Mech.
,
131
(
1
), pp.
31
40
.10.1061/(ASCE)0733-9399(2005)131:1(31)
121.
Silling
,
S. A.
,
2000
, “
Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces
,”
J. Mech. Phys. Solids
,
48
(
1
), pp.
175
209
.10.1016/S0022-5096(99)00029-0
122.
Macek
,
R. W.
, and
Silling
,
S. A.
,
2007
, “
Peridynamics via Finite Element Analysis
,”
Finite Elem. Anal. Des.
,
43
(
15
), pp.
1169
1178
.10.1016/j.finel.2007.08.012
123.
Kilic
,
B.
,
Agwai
,
A.
, and
Madenci
,
E.
,
2009
, “
Peridynamic Theory for Progressive Damage Prediction in Center-Cracked Composite Laminates
,”
Compos. Struct.
,
90
(
2
), pp.
141
151
.10.1016/j.compstruct.2009.02.015
124.
Sorensen
,
B. F.
, and
Jacobsen
,
T. K.
,
2003
, “
Determination of Cohesive Laws by the J Integral Approach
,”
Eng. Fract. Mech.
,
70
(
14
), pp.
1841
1858
.10.1016/S0013-7944(03)00127-9
125.
Slowik
,
V.
,
Villmann
,
B.
,
Bretschneider
,
N.
, and
Villmann
,
T.
,
2006
, “
Computational Aspects of Inverse Analyses for Determining Softening Curves of Concrete
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
52
), pp.
7223
7236
.10.1016/j.cma.2005.04.021
126.
de Oliveira e Sousa
,
J. L. A.
, and
Gettu
,
R.
,
2006
, “
Determining the Tensile Stress-Crack Opening Curve of Concrete by Inverse Analysis
,”
ASCE J. Eng. Mech.
,
132
(
2
), pp.
141
148
.10.1061/(ASCE)0733-9399(2006)132:2(141)
127.
Kwon
,
S. H.
,
Zhao
,
Z.
, and
Shah
,
S. P.
,
2008
, “
Effect of Specimen Size on Fracture Energy and Softening Curve of Concrete: Part II. Inverse Analysis and Softening Curve
,”
Cem. Concr. Res.
,
38
(
8–9
), pp.
1061
1069
.10.1016/j.cemconres.2008.03.014
128.
Abanto-Bueno
,
J.
, and
Lambros
,
J.
,
2005
, “
Experimental Determination of Cohesive Failure Properties of a Photodegradable Copolymer
,”
Exp. Mech.
,
45
(
2
), pp.
144
152
.10.1007/BF02428187
129.
Tan
,
H.
,
Liu
,
C.
,
Huang
,
Y.
, and
Geubelle
,
P. H.
,
2005
, “
The Cohesive Law for the Particle/Matrix Interfaces in High Explosives
,”
J. Mech. Phys. Solids
,
53
(
8
), pp.
1892
1917
.10.1016/j.jmps.2005.01.009
130.
Shen
,
B.
, and
Paulino
,
G. H.
,
2011
, “
Direct Extraction of Cohesive Fracture Properties From Digital Image Correlation: A Hybrid Inverse Technique
,”
Exp. Mech.
,
51
(
2
), pp.
143
163
.10.1007/s11340-010-9342-6
131.
Kulkarni
,
M. G.
,
Geubelle
,
P. H.
, and
Matou
,
K.
,
2009
, “
Multi-Scale Modeling of Heterogeneous Adhesives: Effect of Particle Decohesion
,”
Mech. Mater.
,
41
(
5
), pp.
573
583
.10.1016/j.mechmat.2008.10.012
132.
Scheider
,
I.
,
2009
, “
Derivation of Separation Laws for Cohesive Models in the Course of Ductile Fracture
,”
Eng. Fract. Mech.
,
76
(
10
), pp.
1450
1459
.10.1016/j.engfracmech.2008.12.006
133.
Kulkarni
,
M. G.
,
Matous
,
K.
, and
Geubelle
,
P. H.
,
2010
, “
Coupled Multi-Scale Cohesive Modeling of Failure in Heterogeneous Adhesives
,”
Int. J. Numer. Methods Eng.
,
84
(
8
), pp.
916
946
.10.1002/nme.2923
134.
Zeng
,
X.
, and
Li
,
S.
,
2010
, “
A Multiscale Cohesive Zone Model and Simulations of Fractures
,”
Comput. Methods Appl. Mech.
,
199
(
9–12
), pp.
547
556
.10.1016/j.cma.2009.10.008
135.
Tvergaard
,
V.
,
1990
, “
Effect of Fibre Debonding in a Whisker-Reinforced Metal
,”
Mater. Sci. Eng.
,
A125
(
2
), pp.
203
213
.10.1016/0921-5093(90)90170-8
136.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1993
, “
The Influence of Plasticity on Mixed Mode Interface Toughness
,”
J. Mech. Phys. Solids
,
41
(
6
), pp.
1119
1135
.10.1016/0022-5096(93)90057-M
137.
Scheider
,
I.
, and
Brocks
,
W.
,
2003
, “
Simulation of Cup-Cone Fracture Using the Cohesive Model
,”
Eng. Fract. Mech.
,
70
(
14
), pp.
1943
1961
.10.1016/S0013-7944(03)00133-4
138.
Geubelle
,
P. H.
, and
Baylor
,
J. S.
,
1998
, “
Impact-Induced Delamination of Composites: A 2D Simulation
,”
Compos. Part B: Eng.
,
29
(
5
), pp.
589
602
.10.1016/S1359-8368(98)00013-4
139.
Espinosa
,
H. D.
, and
Zavattieri
,
P. D.
,
2003
, “
A Grain Level Model for the Study of Failure Initiation and Evolution in Polycrystalline Brittle Materials. Part I: Theory and Numerical Implementation
,”
Mech. Mater.
,
35
(
3–6
), pp.
333
364
.10.1016/S0167-6636(02)00285-5
140.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1992
, “
The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
,
40
(
6
), pp.
1377
1397
.10.1016/0022-5096(92)90020-3
141.
Wei
,
Y.
, and
Hutchinson
,
J. W.
,
1997
, “
Steady-State Crack Growth and Work of Fracture for Solids Characterized by Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
45
(
8
), pp.
1253
1273
.10.1016/S0022-5096(97)00018-5
142.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
2008
, “
Mode III Effects on Interface Delamination
,”
J. Mech. Phys. Solids
,
56
(
1
), pp.
215
229
.10.1016/j.jmps.2007.04.013
143.
Rose
,
J. H.
,
Ferrante
,
J.
, and
Smith
,
J. R.
,
1981
, “
Universal Binding Energy Curves for Metals and Bimetallic Interfaces
,”
Phys. Rev. Lett.
,
47
(
9
), pp.
675
678
.10.1103/PhysRevLett.47.675
144.
Song
,
S. H.
,
Paulino
,
G. H.
, and
Buttlar
,
W. G.
,
2006
, “
Simulation of Crack Propagation in Asphalt Concrete Using an Intrinsic Cohesive Zone Model
,”
ASCE J. Eng. Mech.
,
132
(
11
), pp.
1215
1223
.10.1061/(ASCE)0733-9399(2006)132:11(1215)
145.
Song
,
S. H.
,
Paulino
,
G. H.
, and
Buttlar
,
W. G.
,
2006
, “
A Bilinear Cohesive Zone Model Tailored for Fracture of Asphalt Concrete Considering Viscoelastic Bulk Material
,”
Eng. Fract. Mech.
,
73
(
18
), pp.
2829
2848
.10.1016/j.engfracmech.2006.04.030
146.
Aragao
,
F. T. S.
,
Kim
,
Y.-R.
,
Lee
,
J.
, and
Allen
,
D. H.
,
2011
, “
Micromechanical Model for Heterogeneous Asphalt Concrete Mixtures Subjected to Fracture Failure
,”
ASCE J. Mater. Civil Eng.
,
23
(
1
), pp.
30
38
.10.1061/(ASCE)MT.1943-5533.0608024
147.
Foulk
,
J. W.
,
Allen
,
D. H.
, and
Helms
,
K. L. E.
,
2000
, “
Formulation of a Three-Dimensional Cohesive Zone Model for Application to a Finite Element Algorithm
,”
Comput. Methods Appl. Mech. Eng.
,
183
(
1
), pp.
51
66
.10.1016/S0045-7825(99)00211-X
148.
Nutt
,
S. R.
, and
Needleman
,
A.
,
1987
, “
Void Nucleation at Fiber Ends in Al-SiC Composites
,”
Scr. Metal.
,
21
(
5
), pp.
705
710
.10.1016/0036-9748(87)90389-9
149.
McHugh
,
P. E.
,
Varias
,
A. G.
,
Asaro
,
R. J.
, and
Shih
,
C. F.
,
1989
, “
Computational Modeling of Microstructures
,”
FGCS, Future Gener. Comput. Syst.
,
5
(
2–3
), pp.
295
318
.10.1016/0167-739X(89)90049-6
150.
Shabrov
,
M. N.
, and
Needleman
,
A.
,
2002
, “
An Analysis of Inclusion Morphology Effects on Void Nucleation
,”
Model. Simul. Mater. Sci. Eng.
,
10
(
2
), pp.
163
183
.10.1088/0965-0393/10/2/305
151.
Rice
,
J. R.
, and
Wang
,
J. S.
,
1989
, “
Embrittlement of Interfaces by Solute Segregation
,”
Mater. Sci. Eng.
,
A107
(
1–2
), pp.
23
40
.10.1016/0921-5093(89)90372-9
152.
Rice
,
J. R.
,
1992
, “
Dislocation Nucleation From a Crack Tip: An Analysis Based on the Peierls Concept
,”
J. Mech. Phys. Solids
,
40
(
2
), pp.
239
271
.10.1016/S0022-5096(05)80012-2
153.
Beltz
,
G. E.
, and
Rice
,
J. R.
,
1992
, “
Dislocation Nucleation at Metal-Ceramic Interfaces
,”
Acta Metall. Mater.
,
40
(
Suppl. 1
), pp.
S321
S331
.10.1016/0956-7151(92)90291-L
154.
Peierls
,
R.
,
1940
, “
The Size of a Dislocation
,”
Proc. Phys. Soc.
,
52
(
1
), pp.
34
37
.10.1088/0959-5309/52/1/305
155.
Sun
,
Y.
,
Beltz
,
G. E.
, and
Rice
,
J. R.
,
1993
, “
Estimates From Atomic Models of Tension-Shear Coupling in Dislocation Nucleation From a Crack Tip
,”
Mater. Sci. Eng.
,
A170
(
1–2
), pp.
67
85
.10.1016/0921-5093(93)90370-T
156.
Falk
,
M. L.
,
Needleman
,
A.
, and
Rice
,
J. R.
,
2001
, “
A Critical Evaluation of Cohesive Zone Models of Dynamic Fracture
,”
J. Phys. IV France
,
11
, pp.
43
50
.10.1051/jp4:2001506
157.
Finot
,
M.
,
Shen
,
Y. L.
,
Needleman
,
A.
, and
Suresh
,
S.
,
1994
, “
Micromechanical Modeling of Reinforcement Fracture in Particle-Reinforced Metal-Matrix Composites
,”
Metall. Mater. Trans., A
,
25A
(
11
), pp.
2403
2420
.10.1007/BF02648860
158.
Needleman
,
A.
,
1997
, “
Numerical Modeling of Crack Growth Under Dynamic Loading Conditions
,”
Comput. Mech.
,
19
(
6
), pp.
463
469
.10.1007/s004660050194
159.
Needleman
,
A.
, and
Rosakis
,
A. J.
,
1999
, “
Effect of Bond Strength and Loading Rate on the Conditions Governing the Attainment of Intersonic Crack Growth Along Interfaces
,”
J. Mech. Phys. Solids
,
47
(
12
), pp.
2411
2449
.10.1016/S0022-5096(99)00012-5
160.
Zhai
,
J.
, and
Zhou
,
M.
,
2000
, “
Finite Element Analysis of Micromechanical Failure Modes in a Heterogeneous Ceramic Material System
,”
Int. J. Fract.
,
101
(
1
), pp.
161
180
.10.1023/A:1007545105723
161.
van den Bosch
,
M. J.
,
Schreurs
,
P. J. G.
, and
Geers
,
M. G. D.
,
2006
, “
An Improved Description of the Exponential Xu and Needleman Cohesive Zone Law for Mixed-Mode Decohesion
,”
Eng. Fract. Mech.
,
73
(
9
), pp.
1220
1234
.10.1016/j.engfracmech.2005.12.006
162.
Klein
,
P. A.
,
Foulk
,
J. W.
,
Chen
,
E. P.
,
Wimmer
,
S. A.
, and
Gao
,
H. J.
,
2001
, “
Physics-Based Modeling of Brittle Fracture: Cohesive Formulations and the Application of Meshfree Methods
,”
Theor. Appl. Fract. Mech.
,
37
(
1–3
), pp.
99
166
.10.1016/S0167-8442(01)00091-X
163.
Volokh
,
K. Y.
,
2004
, “
Comparison Between Cohesive Zone Models
,”
Commun. Numer. Methods Eng.
,
20
(
11
), pp.
845
856
.10.1002/cnm.717
164.
Alfano
,
G.
,
2006
, “
On the Influence of the Shape of the Interface Law on the Application of Cohesive-Zone Models
,”
Compos. Sci. Technol.
,
66
(
6
), pp.
723
730
.10.1016/j.compscitech.2004.12.024
165.
Song
,
S. H.
,
Paulino
,
G. H.
, and
Buttlar
,
W. G.
,
2006
, “
Influence of the Cohesive Zone Model Shape Parameter on Asphalt Concrete Fracture Behavior
,” Multiscale and Functionally Graded Material 2006 (M&FGM 2006),
G. H.
Paulino
,
M.-J.
Pindera
,
R. H.
Dodds
, Jr.,
F. A.
Rochinha
,
E.
Dave
, and
L.
Chen
, eds.,
AIP
Conference Proceedings
,
Maryland
, pp.
730
735
.10.1063/1.2896872
166.
Park
,
K.
,
Paulino
,
G. H.
,
Celes
,
W.
, and
Espinha
,
R.
,
2012
, “
Adaptive Mesh Refinement and Coarsening for Cohesive Zone Modeling of Dynamic Fracture
,”
Int. J. Numer. Methods Eng.
,
92
(
1
), pp.
1
35
.10.1002/nme.3163
167.
Park
,
K.
, and
Paulino
,
G. H.
,
2012
, “
Computational Implementation of the PPR Potential-Based Cohesive Model in ABAQUS: Educational Perspective
,”
Eng. Fract. Mech.
,
93
, pp.
239
262
.10.1016/j.engfracmech.2012.02.007
168.
Park
,
K.
,
2009
, “
Potential-Based Fracture Mechanics Using Cohesive Zone and Virtual Internal Bond Modeling
,”
Ph.D. thesis
,
University of Illinois at Urbana-Champaign
,
Urbana, IL
.
You do not currently have access to this content.