Instability in homogeneous and density stratified shear flows may be interpreted in terms of the interaction of two (or more) otherwise free waves in the velocity and density profiles. These waves exist on gradients of vorticity and density, and instability results when two fundamental conditions are satisfied: (I) the phase speeds of the waves are stationary with respect to each other (“phase-locking“), and (II) the relative phase of the waves is such that a mutual growth occurs. The advantage of the wave interaction approach is that it provides a physical interpretation to shear flow instability. This paper is largely intended to purvey the basics of this physical interpretation to the reader, while both reviewing and consolidating previous work on the topic. The interpretation is shown to provide a framework for understanding many classical and nonintuitive results from the stability of stratified shear flows, such as the Rayleigh and Fjørtoft theorems, and the destabilizing effect of an otherwise stable density stratification. Finally, we describe an application of the theory to a geophysical-scale flow in the Fraser River estuary.

References

References
1.
Lindzen
,
R.
,
1988
, “
Instability of Plane Parallel Shear Flow (Toward a Mechanistic Picture of How it Works)
,”
PAGEOPH
,
126
, pp.
103
121
.10.1007/BF00876917
2.
Drazin
,
P.
, and
Reid
,
W.
,
1982
,
Hydrodynamic Stability
,
Cambridge University Press
,
Cambridge, UK
.
3.
Betchov
,
R.
, and
Criminale
,
W.
,
1967
,
Stability of Parallel Flows
,
Academic Press
,
New York
.
4.
Schmid
,
P.
, and
Henningson
,
D.
,
2001
,
Stability and Transition in Shear Flows
,
Springer
,
New York
.
5.
Koppel
,
D.
,
1964
, “
On the Stability of a Thermally Stratified Fluid Under the Action of Gravity
,”
J. Math. Phys.
,
5
, pp.
963
982
.10.1063/1.1704198
6.
Smyth
,
W.
, and
Peltier
,
W.
,
1991
, “
Instability and Transition in Finite-Amplitude Kelvin-Helmholtz and Holmboe Waves
,”
J. Fluid Mech.
,
228
, pp.
387
415
.10.1017/S0022112091002756
7.
Chagelishvili
,
G. D.
,
Khujadze
,
G. R.
,
Lominadze
,
J. G.
, and
Rogava
,
A. D.
,
1997
, “
Acoustic Waves in Unbounded Shear Flows
,”
Phys. Fluids
,
9
(
7
), pp.
1955
1962
.10.1063/1.869314
8.
Alexakis
,
A.
,
Young
,
Y.
, and
Rosner
,
R.
,
2002
, “
Shear Instability of Fluid Interfaces: Stability Analysis
,”
Phys. Rev. E
,
65
, p.
026313
.10.1103/PhysRevE.65.026313
9.
Umurhan
,
O.
, and
Heifetz
,
E.
,
2007
, “
Holmboe Modes Revisited
,”
Phys. Fluids
,
19
, p.
064102
.10.1063/1.2730544
10.
Bretherton
,
F.
,
1966
, “
Baroclinic Instability and the Short Wavelength Cut-Off in Terms of Potential Vorticity
,”
Q. J. R. Meteorol. Soc.
,
92
, pp.
335
345
.10.1002/qj.49709239303
11.
Heifetz
,
E.
,
Bishop
,
C.
,
Hoskins
,
B.
, and
Methven
,
J.
,
2004
, “
The Counter-Propagating Rossby-Wave Perspective on Baroclinic Instability. I: Mathematical Basis
,”
Q. J. R. Meteorol. Soc.
,
130
, pp.
211
231
.10.1002/qj.200413059610
12.
Smyth
,
W.
, and
Peltier
,
W.
,
1990
, “
Three-Dimensional Primary Instabilities of a Stratified, Dissipative, Parallel Flow
,”
Geophys. Astrophys. Fluid Dyn.
,
52
, pp.
249
261
.10.1080/03091929008219506
13.
Gelfgat
,
A. Y.
, and
Kit
,
E.
,
2006
, “
Spatial Versus Temporal Instabilities in a Parametrically Forced Stratified Mixing Layer
,”
J. Fluid Mech.
,
552
, pp.
189
227
.10.1017/S0022112005008608
14.
Holmboe
,
J.
,
1962
, “
On the Behavior of Symmetric Waves in Stratified Shear Layers
,”
Geofys. Publ.
,
24
, pp.
67
112
.
15.
Baines
,
P.
, and
Mitsudera
,
H.
,
1994
, “
On the Mechanism of Shear Flow Instabilities
,”
J. Fluid Mech.
,
276
, pp.
327
342
.10.1017/S0022112094002582
16.
Kundu
,
P.
,
Cohen
,
I.
, and
Hu
,
H.
,
2004
,
Fluid Mechanics
,
2nd ed.
,
Elsevier
,
Amsterdam
.
17.
Caulfield
,
C.
,
1994
, “
Multiple Linear Instability of Layered Stratified Shear Flow
,”
J. Fluid Mech.
,
258
, pp.
255
285
.10.1017/S0022112094003320
18.
Heifetz
,
E.
,
Bishop
,
C. H.
, and
Alpert
,
P.
,
1999
, “
Counter-Propagating Rossby Waves in the Barotropic Rayleigh Model of Shear Instability
,”
Q. J. R. Meteorol. Soc.
,
125
, pp.
2835
2853
.10.1256/smsqj.56003
19.
Heifetz
,
E.
, and
Methven
,
J.
,
2005
, “
Relating Optimal Growth to Counterpropagating Rossby Waves in Shear Instability
,”
Phys. Fluids
,
17
, p.
064107
.10.1063/1.1937064
20.
Heifetz
,
E.
,
Reuveni
,
Y.
,
Gelfgat
,
A.
,
Kit
,
E.
, and
Methven
,
J.
,
2006
, “
Counterpropagating Rossby Wave Perspective on Kelvin Helmholtz Instability as a Limiting Case of a Rayleigh Shear Layer With Zero Width
,”
Phys. Fluids
,
18
, p.
018101
.10.1063/1.2166450
21.
Farrell
,
B.
,
1988
, “
Optimal Excitation of Perturbations in Viscous Shear Flow
,”
Phys. Fluids
,
31
, pp.
2093
2101
.10.1063/1.866609
22.
Rayleigh
,
J.
,
1880
, “
On the Stability, or Instability, of Certain Fluid Motions
,”
Proc. Lond. Math. Soc.
,
12
, pp.
57
70
.
23.
Garcia
,
R.
,
1956
, “
Barotropic Waves in Straight Parallel Flow With Curved Velocity Profile
,”
Tellus
,
8
, pp.
82
93
.10.1111/j.2153-3490.1956.tb01197.x
24.
Baines
,
P.
,
1995
,
Topographic Effects in Stratified Flows
,
Cambridge University Press
,
Cambridge, UK
.
25.
Michalke
,
A.
,
1964
, “
On the Inviscid Instability of Hyperbolic-Tangent Velocity Profile
,”
J. Fluid Mech.
,
19
, pp.
543
556
.10.1017/S0022112064000908
26.
Hazel
,
P.
,
1972
, “
Numerical Studies of the Stability of Inviscid Stratified Shear Flows
,”
J. Fluid Mech.
,
51
, pp.
39
61
.10.1017/S0022112072001065
27.
Carpenter
,
J.
,
Balmforth
,
N.
, and
Lawrence
,
G.
,
2010
, “
Identifying Unstable Modes in Stratified Shear Layers
,”
Phys. Fluids
,
22
, p.
054104
.10.1063/1.3379845
28.
Harnik
,
N.
,
Heifetz
,
E.
,
Umurhan
,
O.
, and
Lott
,
F.
,
2008
, “
A Buoyancy-Vorticity Wave Interaction Approach to Stratified Shear Flow
,”
J. Atmos. Sci.
,
65
, pp.
2615
2630
.10.1175/2007JAS2610.1
29.
Rabinovich
,
A.
,
Umurhan
,
O.
,
Harnik
,
N.
,
Lott
,
F.
, and
Heifetz
,
E.
,
2011
, “
Vorticity Inversion and Action-at-a-Distance Instability in Stably Stratified Shear Flow
,”
J. Fluid Mech.
,
670
, pp.
301
325
.10.1017/S002211201000529X
30.
Balmforth
,
N. J.
,
Roy
,
A.
, and
Caulfield
,
C. P.
,
2012
, “
Dynamics of Vorticity Defects in Stratified Shear Flow
,”
J. Fluid Mech.
,
694
, pp.
292
331
.10.1017/jfm.2011.548
31.
Craik
,
A.
,
1985
,
Wave Interactions and Fluid Flows
,
Cambridge University Press
,
Cambridge, UK
.
32.
Cairns
,
R.
,
1979
, “
The Role of Negative Energy Waves in Some Instabilities of Parallel Flows
,”
J. Fluid Mech.
,
92
, pp.
1
14
.10.1017/S0022112079000495
33.
Fjørtoft
,
R.
,
1950
, “
Application of Integral Theorems in Deriving Criteria of Stability of Laminar Flows and for the Baroclinic Circular Vortex
,”
Geofys. Publ.
,
17
, pp.
1
52
.
34.
Drazin
,
P.
,
2002
,
Introduction to Hydrodynamic Stability
,
1st ed.
,
Cambridge University Press
,
Cambridge, UK
.
35.
Howard
,
L.
, and
Maslowe
,
S.
,
1973
, “
Stability of Stratified Shear Flows
,”
Boundary-Layer Meteorol.
,
4
, pp.
511
523
.10.1007/BF02265252
36.
Redekopp
,
L.
,
2001
, “
Elements of Instability Theory for Environmental Flows
,”
Environmental Stratified Flows
,
Kluwer
,
Boston
.
37.
Harnik
,
N.
, and
Heifetz
,
E.
,
2007
, “
Relating Overreflection and Wave Geometry to the Counterpropagating Rossby Wave Perspective: Toward a Deeper Understanding of Shear Instability
,”
J. Atmos. Sci.
,
64
, pp.
2238
2261
.10.1175/JAS3944.1
38.
Taylor
,
G.
,
1931
, “
Effect of Variation in Density on the Stability of Superposed Streams of Fluid
,”
Proc. R. Soc. Lond. A
,
132
, pp.
499
523
.10.1098/rspa.1931.0115
39.
Caulfield
,
C.
,
Peltier
,
W.
,
Yoshida
,
S.
, and
Ohtani
,
M.
,
1995
, “
An Experimental Investigation of the Instability of a Shear Flow With Multilayered Density Stratification
,”
Phys. Fluids
,
7
, pp.
3028
3041
.10.1063/1.868679
40.
Kelvin
,
W.
,
1871
, “
Hydrokinetic Solutions and Observations
,”
Philos. Mag.
,
42
, pp.
362
377
.
41.
Helmholtz
,
H.
,
1868
, “
On Discontinuous Movements of Fluids
,”
Philos. Mag.
,
36
, pp.
337
346
.
42.
Lawrence
,
G.
,
Browand
,
F.
, and
Redekopp
,
L.
,
1991
, “
The Stability of a Sheared Density Interface
,”
Phys. Fluids
,
3
(
10
), pp.
2360
2370
.10.1063/1.858175
43.
Alexakis
,
A.
,
2005
, “
On Holmboe's Instability for Smooth Shear and Density Profiles
,”
Phys. Fluids
,
17
, p.
084103
.10.1063/1.2001567
44.
Haigh
,
S.
, and
Lawrence
,
G.
,
1999
, “
Symmetric and Nonsymmetric Holmboe Instabilities in an Inviscid Flow
,”
Phys. Fluids
,
11
(
6
), pp.
1459
1468
.10.1063/1.870009
45.
Tedford
,
E.
,
Carpenter
,
J.
,
Pawlowicz
,
R.
,
Pieters
,
R.
, and
Lawrence
,
G.
,
2009
, “
Observation and Analysis of Shear Instability in the Fraser River Estuary
,”
J. Geophys. Res.
,
114
, p.
C11006
.10.1029/2009JC005313
46.
Smyth
,
W.
,
Klaassen
,
G.
, and
Peltier
,
W.
,
1988
, “
Finite Amplitude Holmboe Waves
,”
Geophys. Astrophys. Fluid Dyn.
,
43
, pp.
181
222
.10.1080/03091928808213625
47.
Zhu
,
D.
, and
Lawrence
,
G.
,
2001
, “
Holmboe's Instability in Exchange Flows
,”
J. Fluid Mech.
,
429
, pp.
391
409
.10.1017/S002211200000286X
48.
Tedford
,
E.
,
Pieters
,
R.
, and
Lawrence
,
G.
,
2009
, “
Symmetric Holmboe Instabilities in a Laboratory Exchange Flow
,”
J. Fluid Mech.
,
636
, pp.
137
153
.10.1017/S0022112009007733
49.
Miles
,
J.
,
1961
, “
On the Stability of Heterogeneous Shear Flows
,”
J. Fluid Mech.
,
10
, pp.
496
508
.10.1017/S0022112061000305
50.
Howard
,
L.
,
1961
, “
Note on a Paper of John W. Miles
,”
J. Fluid Mech.
,
10
, pp.
509
512
.10.1017/S0022112061000317
51.
Thorpe
,
S.
,
1973
, “
Experiments on Instability and Turbulence in a Stratified Shear Flow
,”
J. Fluid Mech.
,
61
, pp.
731
751
.10.1017/S0022112073000911
52.
Caulfield
,
C.
, and
Peltier
,
W.
,
2000
, “
The Anatomy of the Mixing Transition in Homogenous and Stratified Free Shear Layers
,”
J. Fluid Mech.
,
413
, pp.
1
47
.10.1017/S0022112000008284
53.
Smyth
,
W.
, and
Winters
,
K.
,
2003
, “
Turbulence and Mixing in Holmboe Waves
,”
J. Phys. Oceanogr.
,
33
, pp.
694
711
.10.1175/1520-0485(2003)33<694:TAMIHW>2.0.CO;2
54.
Smyth
,
W.
,
Carpenter
,
J.
, and
Lawrence
,
G.
,
2007
, “
Mixing in Symmetric Holmboe Waves
,”
J. Phys. Oceanogr.
,
37
, pp.
1566
1583
.10.1175/JPO3037.1
55.
Carpenter
,
J.
,
Lawrence
,
G.
, and
Smyth
,
W.
,
2007
, “
Evolution and Mixing of Asymmetric Holmboe Instabilities
,”
J. Fluid Mech.
,
582
, pp.
103
132
.10.1017/S0022112007005988
You do not currently have access to this content.