Woven and braided polymer composite structures are used in many primary aerospace applications because of their superior behavior under dynamic loading conditions and light weight. Characterization of all anisotropic properties under various strain rate and temperature conditions becomes essential for analysis, design, and numerical simulations. This paper aims to present a review of critical testing methods of polymer and composite materials. In the second part, a review of numerical and analytical models for the dynamic analysis of woven and braided composites is presented. This review article cites 138 references.

References

References
1.
Field
,
J. E.
,
Walley
,
S. M.
,
Proud
,
W. G.
,
Goldrein
,
H. T.
, and
Siviour
,
C. R.
,
2004
, “
Review of Experimental Techniques for High Strain Rate Deformation and Shock Studies
,”
Int. J. Impact Eng.
,
30
, pp.
725
775
.10.1016/j.ijimpeng.2004.03.005
2.
Bakker
,
A.
,
2002
, “
Impact Induced Propagation of Phase Transformation in a Shape Memory Alloy Rod
,”
Int. J. Plast.
,
18
, pp.
1447
1479
.10.1016/S0749-6419(02)00025-6
3.
Cazamias
,
J. U.
,
2002
, “
Bar Impact Tests on Alumina (AD995)
,”
Shock Compression of Condensed Mater—2001
,
M. D.
Furnish
,
N. N.
Thadhani
, and
Y.
Horie
, eds.,
American Institute of Physics
,
Melville, NY
, pp.
787
790
.
4.
Gray
,
G. T., III
,
2000
, “
Shock Wave Testing of Ductile Materials
,”
ASM Handbook
, Vol.
8
,
H.
Kuhn
and
D.
Medlin
, eds.,
American Society of Metals
,
Materials Park, OH
, pp.
530
538
.
5.
Ravi-Chandar
,
K.
,
2005
,
Dynamic Fracture
,
Wiley
,
New York
.
6.
Sturges
,
J. L.
, and
Cole
,
B. N.
,
2001
, “
The Flying Wedge: A Method for High-Strain-Rate Tensile Testing—Part 1: Reason for Its Development and General Description
,”
Int. J. Impact Eng.
,
25
, pp.
251
264
.10.1016/S0734-743X(00)00043-9
7.
Beard
,
S. J.
, and
Chang
,
F. K.
,
2002
, “
Energy Absorption of Braided Composite Tubes
,”
Int. J. Crashworthiness
,
7
(
2
), pp.
191
206
.10.1533/cras.2002.0214
8.
Federal Aviation Administration
,
1984
, “Blade Containment and Rotor Unbalance Tests,” Report FAR 33.94.
9.
Hamouda
,
A. M. S.
, and
Hashmi
,
M. S. J.
,
1998
, “
Testing of Composite Materials at High Rates of Strain: Advances and Challenges
,”
J. Mater. Process. Technol.
,
77
, pp.
327
336
.10.1016/S0924-0136(97)00436-6
10.
Hsiao
,
H. M.
, and
Daniel
,
I. M.
,
1998
, “
Strain Rate Behavior of Composite Materials
,”
Composites Part B
,
29
, pp.
521
533
.10.1016/S1359-8368(98)00008-0
11.
Shim
,
V. P. W.
,
Lim
,
C. T.
, and
Foo
,
K. J.
,
2001
, “
Dynamic Mechanical Properties of Fabric Armor
,”
Int. J. Impact Eng.
,
25
, pp.
1
15
.10.1016/S0734-743X(00)00038-5
12.
Akil
,
Ö.
,
Yildirim
,
U.
,
Güden
,
M.
, and
Hall
,
I. W.
,
2003
, “
Effect of Strain Rate on the Compression Behavior of a Woven Fabric S2-Glass Fiber Reinforced Vinyl Ester Composite
,”
Polym. Testing
,
22
, pp.
883
887
.10.1016/S0142-9418(03)00026-6
13.
Harding
,
J. W.
,
1987
,
Materials at High Strain Rates
,
T. Z.
Blazynski
, ed.,
Elsevier Applied Science
,
New York
, pp.
133
186
.
14.
Gilat
,
A.
,
Goldberg
,
R. K.
, and
Roberts
,
G. D.
,
2002
, “
Experimental Study of Rate Dependent Behavior of Carbon/Epoxy Composite
,”
Composite Sci. Technol.
,
62
, pp.
1469
1476
.10.1016/S0266-3538(02)00100-8
15.
Teratsubo
,
M.
,
Tanaka
,
Y.
, and
Saeki
,
S.
,
2002
, “
Measurement of Stress and Strain During Tensile Testing of Gellan Gum Gels: Effect of Deformation Speed
,”
Carbohydrate Polym.
,
47
, pp.
1
5
.10.1016/S0144-8617(00)00338-6
16.
Li
,
Z. H.
, and
Lambros
,
J.
,
2001
, “
Strain Rate Effects on the Thermomechanical Behavior of Polymers
,”
Int. J. Solids Struct.
,
38
, pp.
3549
3562
.10.1016/S0020-7683(00)00223-7
17.
Arruda
,
E. M.
,
Boyce
,
M. C.
, and
Jayachandran
,
R.
,
1995
, “
Effects of Strain Rate, Temperature and Thermomechanical Coupling on the Finite Strain Deformation of Glassy Polymers
,”
Mech. Mater.
,
19
, pp.
193
212
.10.1016/0167-6636(94)00034-E
18.
Spitzig
,
W. A.
, and
Richmond
,
O.
,
1979
, “
Effect of Hydrostatic Pressure on the Deformation Behavior of Polyethylene and Polycarbonate in Tension and in Compression
,”
Polym. Eng. Sci.
,
19
(
16
), pp.
1129
1139
.10.1002/pen.760191602
19.
Ward
,
I. M.
, and
Sweeney
,
J.
,
2004
,
An Introduction to the Mechanical Properties of Solid Polymers
,
2nd ed.
,
John Wiley
,
London
.
20.
Chang
,
W. J.
, and
Pan
,
J.
,
1997
, “
Effects of Yield Surface Shape and Round-Off Vertex on Crack-Tip Fields for Pressure-Sensitive Materials
,”
Int. J. Solids Struct.
,
34
, pp.
3291
3320
.10.1016/S0020-7683(96)00191-6
21.
Shen
,
X.
,
Xia
,
Z.
, and
Ellyin
,
F.
,
2004
, “
Cyclic Deformation Behavior of an Epoxy Polymer, Part I: Experimental Investigation
,”
Polym. Eng. Sci.
,
44
, pp.
2240
2246
.10.1002/pen.20251
22.
ASTM D 638
,
2004
, “Standard Test Method for Tensile Properties of Plastics.”
23.
ASTM E 2207
,
2002
, “Standard Practice for Strain-Controlled Axial-Torsional Fatigue Testing With Thin-Walled Tubular Specimens.”
24.
Littell
,
J. D.
,
Ruggeri
,
C. R.
,
Goldberg
,
R. K.
,
Roberts
,
G. D.
, and
Binienda
,
W. K.
,
2008
, “
Measurement of Epoxy Resin Tension, Compression, and Shear Stress-Strain Curves Over a Wide Range of Strain Rates Using Small Test Specimens
,”
J. Aerospace Eng.
,
21
, pp.
162
173
.10.1061/(ASCE)0893-1321(2008)21:3(162)
25.
Frantz
,
C. E.
,
Follansbee
,
P. S.
, and
Wright
,
W. T.
,
1984
, “
Experimental Techniques With the Hopkinson Pressure Bar
,”
Proceedings of the 8th International Conference on High Energy Rate Fabrication
,
San Antonio, TX
, pp.
229
236
.
26.
Chen
,
W.
,
Lu
,
F.
,
Frew
,
D. J.
, and
Forrestal
,
M. J.
,
2002
, “
Dynamic Compression Testing of Soft Materials
,”
ASME J. Appl. Mech.
,
69
, pp.
214
223
.10.1115/1.1464871
27.
Gray
,
D. T.
, III
, and
Blumenthal
,
W. R.
,
2000
, “
Split-Hopkinson Pressure Bar Testing of Soft Materials
,”
ASM Handbook
, Vol.
8
,
H.
Kuhn
and
D.
Medlin
, eds.,
American Society of Metals
,
Materials Park, OH
, pp.
462
476
.
28.
Gilat
,
A.
,
2000
, “
Torsional Kolsky Bar Testing
,”
ASM Metals Handbook
, Vol.
8
,
American Society of Metals
,
Materials Park, OH
, pp.
505
515
.
29.
Davies
,
E. D. H.
, and
Hunter
,
S. C.
,
1963
, “
Dynamic Compression Testing of Solids by the Method of the Split Hopkinson Pressure Bar (SHPB)
,”
J. Mech. Phys. Solids
,
11
, pp.
155
179
.10.1016/0022-5096(63)90050-4
30.
Casem
,
D. T.
,
Fourney
,
W.
, and
Chang
,
P.
,
2003
, “
Wave Separation in Viscoelastic Pressure Bar Using Single-Point Measurements of Strain and Velocity
,”
Polym. Testing
,
22
, pp.
155
164
.10.1016/S0142-9418(02)00064-8
31.
Gilat
,
A.
,
Goldberg
,
R. K.
, and
Roberts
,
G.
,
2005
, “
Strain Rate Sensitivity of Epoxy Resin in Tensile and Shear Loading
,” Report. No. NASA/TM-2005-213595.
32.
Bordonaro
,
C.
,
1995
, “
Rate Dependent Mechanical Behavior of High Strength Plastics: Experiment and Modeling
,” Ph.D. dissertation,
Rensselaer Polytechnic Institute
,
Troy, NY
.
33.
Liang
,
Y. M.
, and
Liechti
,
K. M.
,
1996
, “
On the Large Deformation and Localization Behavior of an Epoxy Resin Under Multiaxial Stress States
,”
Int. J. Solids Struct.
,
33
(
10
), pp.
1479
1500
.10.1016/0020-7683(95)00105-0
34.
Behzadi
,
S.
, and
Jones
,
F. R.
,
2005
, “
Yielding Behavior of Model Epoxy Matrices for Fiber Reinforced Composites: Effect of Strain Rate and Temperature
,”
J. Macromol. Sci., Part B: Physics
,
44
(6)
, pp.
993
1005
.10.1080/00222340500393881
35.
Kontou
,
E.
,
2006
, “
Viscoplastic Deformation of an Epoxy Resin at Elevated Temperatures
,”
J. Appl. Polym. Sci.
,
101
(3)
, pp.
2027
2033
.10.1002/app.23768
36.
Buckley
,
C. P.
,
Harding
,
J.
,
Hou
,
J. P.
,
Ruiz
,
C.
, and
Trojanowski
,
A.
,
2001
, “
Deformation of Thermosetting Resins at Impact Rates of Strain—Part I: Experimental Study
,”
J. Mech. Phys. Solids
,
49
(
7
), pp.
1517
1538
.10.1016/S0022-5096(00)00085-5
37.
ASTM D 3039
,
2000
, “Standard Test Method for Tensile Properties of Polymer Matrix Composites.”
38.
ASTM D 3410
,
2003
, “Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials With Unsupported Gage Section by Shear Loading.”
39.
ASTM D 6484
,
2004
, “Standard Test Methods for Open-Hole Compressive Strength of Polymer Matrix Composite Laminates.”
40.
ASTM D 5379
,
2005
, “Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method.”
41.
ASTM D 3518
,
1994
, “Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a ±45° Laminate.”
42.
Tsotsis
,
T. K.
,
Rugg
,
K. L.
, and
Cox
,
B. N.
,
2006
, “
Towards Rapid Screening of New Composite Matrix Resins
,”
Composites Sci. Technol.
,
66
(
11–12
), pp.
1651
1670
.10.1016/j.compscitech.2005.11.014
43.
ASTM MIL-HDBK-17
,
2002
, “Composite Materials Handbook,” Vol. 17.
44.
Tomblin
,
J.
,
Abbott
,
R.
, and
Stenard
,
S.
,
2001
, “
Material Qualification Methodology for 2X2 Biaxaially Braided RTM Composite Material Systems
,” AGATE Report No. WP3.3-033048-116.
45.
Federal Aviation Administration
,
2003
, “
Material Qualification and Equivalency for Polymer Matrix Composite Material Systems: Updated Procedure
,” Report No. DOT/FAA/AR-03/19.
46.
Masters
,
J. E.
,
Foye
,
R. L.
,
Pastore
,
C. M.
, and
Gowayed
,
Y. A.
,
1993
, “
Mechanical Properties of Triaxially Braided Composites: Experimental and Analytical Results
,”
J. Composites Technol. Res.
,
15
(
2
), pp.
112
122
.10.1520/CTR10362J
47.
Masters
,
J. E.
, and
Portanova
,
M. A.
,
1996
, “
Standard Test Methods of Textile Composites
,” Report No. NASA-CR-4751.
48.
Masters
,
J. E.
,
1996
, “
Strain Gage Selection Criteria for Textile Composite Materials
,” Report No. NASA-CR-198286.
49.
Masters
,
J. E.
, and
Ifju
,
P. G.
,
1996
, “
A Phenomenological Study of Triaxially Braided Textile Composites Loaded in Tension
,”
Composites Sci. Technol.
,
56
(3)
, pp.
347
358
.10.1016/0266-3538(95)00106-9
50.
Grediac
,
M.
,
2004
, “
The Use of Full-Field Measurement Methods in Composite Material Characterization: Interest and Limitations
,”
Composites Part A: Appl. Sci. Manufact.
,
35
(7–8)
, pp.
751
761
.10.1016/j.compositesa.2004.01.019
51.
Gliesche
,
K.
,
Hübner
,
T.
, and
Orawetz
,
H.
,
2005
, “
Investigations of In-Plane Shear Properties of ±45° Carbon/Epoxy Composite Using Tensile Testing and Optical Deformation Analysis
,”
Composites Sci. Technol.
,
65
(
2
), pp.
163
171
.10.1016/j.compscitech.2004.05.004
52.
Hale
,
R. D.
,
2003
, “
An Experimental Investigation Into Strain Distribution in 2D and 3D Textile Composites
,”
Composites Sci. Technol.
,
63
(15)
, pp.
2171
2185
.10.1016/S0266-3538(03)00173-8
53.
Fergusson
,
A. D.
,
Puri
,
A.
,
Morris
,
A.
, and
Dear
,
J. P.
,
2006
, “
Flexural Testing of Composite Sandwich Structures With Digital Speckle Photogrammetry
,”
Appl. Mech. Mater.
,
8
, pp.
135
143
.10.4028/www.scientific.net/AMM.5-6.135
54.
Drzal
,
L. T.
,
Herrera-Franco
,
P.
, and
Ho
,
H.
,
2000
, “
Fiber-Matrix Interface Tests
,”
Comprehensive Composite Materials: Test Methods, Nondestructive Evaluation and Smart Materials
, Vol. 5,
L.
Carlsson
,
R. L.
Crane
and
K.
Uchino
, eds.,
Pergamon Press
,
Oxford, UK
, pp.
71
111
.
55.
Madhukar
,
M. S.
, and
Drzal
,
L. T.
,
1992
, “
Fiber-Matrix Adhesion and Its Effect on Composite Properties. III. Longitudinal Compressive Properties of Graphite/Epoxy Composites
,”
J. Composite Mater.
,
26
(
3
), pp.
310
333
.10.1177/002199839202600301
56.
Madhukar
,
M. S.
, and
Drzal
,
L. T.
,
1991
, “
Fiber-Matrix Adhesion and Its Effect on Composite Properties: II. Longitudinal and Transverse Tensile and Flexure Behavior of Graphite/Epoxy Composites
,”
J. Composite Mater.
,
25
(8)
, pp.
958
991
.10.1177/002199839102500802
57.
Haselbach
,
W.
, and
Lauke
,
B.
,
2003
, “
Acoustic Emission of Debonding Between Fibre and Matrix to Evaluate Local Adhesion
,”
Composites Sci. Technol.
,
63
(15)
, pp.
2155
2162
10.1016/S0266-3538(03)00193-3.
58.
Todoroki
,
A.
, and
Tanaka
,
Y.
,
2002
, “
Delamination Identification of Cross-Ply Graphite/Epoxy Composite Beams Using Electric Resistance Change Method
,”
Composites Sci. Technol.
,
62
(5)
, pp.
629
639
.10.1016/S0266-3538(02)00013-1
59.
Hoecker
,
F.
,
Friedrich
,
K.
,
Blumberg
,
H.
, and
Karger-Kocsis
,
J.
,
1995
, “
Effects of Fiber/Matrix Adhesion on Off-Axial Mechanical Response in Carbon-Fiber/Epoxy-Resin Composites
,”
Composites Sci. Technol.
,
54
(
3
), pp.
317
327
.10.1016/0266-3538(95)00058-5
60.
Warrior
,
N. A.
, and
Fernie
,
R.
,
2004
, “
High Strain Rate Tensile and Compressive Testing of Braided Composite Materials
,”
Appl. Mech. Mater.
,
1–2
, pp.
217
224
.10.4028/www.scientific.net/AMM.1-2.217
61.
Quek
,
S. C.
,
Waas
,
A.
,
Shahwan
,
K. W.
, and
Agaram
,
V.
,
2004
, “
Compressive Response and Failure of Braided Textile Composites: Part 1—Experiments
,”
Int. J. Non-Linear Mech.
,
39
(4)
, pp.
635
648
.10.1016/S0020-7462(03)00018-0
62.
Kurath
,
P.
, and
Karayaka
,
M.
,
1994
, “
Deformation and Failure Behaviour of Woven Composite Laminates
,”
ASME J. Eng. Mater. Technol.
,
116
, pp.
222
232
.10.1115/1.2904277
63.
Littell
,
J. D.
,
Binienda
,
W. K.
,
Arnold
,
W. A.
,
Roberts
,
G. D.
, and
Goldberg
,
R. K.
,
2009
, “
Effect of Microscopic Damage Events on Static and Ballistic Impact Strength of Tri-Axial Braided Composites
,”
Composites Part A
,
40
, pp.
1846
1862
.10.1016/j.compositesa.2009.08.001
64.
Flanagan
,
M. P.
,
Zikry
,
M. A.
,
Wall
,
J. W.
, and
El-Shiekh
,
A.
,
1999
, “
An Experimental Investigation of High Velocity Impact and Penetration Failure Modes in Textile Composites
,”
J. Composite Mater.
,
33
(
12
), pp.
1080
1103
.10.1177/002199839903301202
65.
Beard
,
S.
, and
Chang
,
F. K.
,
2002
, “
Design of Braided Composites for Energy Absorption
,”
J. Thermoplastic Composites Mater.
,
15
, pp.
3
12
.10.1106/089270502022858
66.
Janapala
,
N. R.
,
Wu
,
Z.
,
Chang
,
F. K.
, and
Goldberg
,
R. K.
,
2008
, “
Lateral Crashing of Tri-Axially Braided Composite Tubes
,”
Proceedings of Earth and Space 2008 Conference
,
ASCE
.10.1061/40988(323)79
67.
Flesher
,
N. D.
,
2006
, “
Crash Energy Absorption of Braided Composite Tubes
,” Ph.D. thesis,
Department of Mechanical Engineering, Stanford University
,
Stanford, CA
.
68.
Challita
,
A.
, and
Barber
,
J. P.
,
1979
, “
The Scaling of Bird Impact Loads
,”
University of Dayton Research Institute
.
69.
Wilbeck
,
J. S.
,
1977
, “
Impact Behavior of Low Strength Projectiles
,” Ph.D. dissertation,
Texas A&M University, College Station, TX
.
70.
Pereira
,
J. M.
, and
Revilock
,
D. M.
,
2008
, “
Pressure Measured in Ballistic Impact Testing of Simulated Birds
,” Report No. NASA/TM-2008-215054. Available at http://naca.larc.nasa.gov/search.jsp?R=20090022025&qs=Ns%3DNASA-Center%7C0%26N%3D4294911125
71.
Cheeseman
,
B. A.
, and
Bogetti
,
T. A.
,
2003
, “
Ballistic Impact Into Fabric and Compliant Composite Laminates
,”
Composite Struct.
,
61
, pp.
161
173
.10.1016/S0263-8223(03)00029-1
72.
Naik
,
N. K.
, and
Shrirao
,
P.
,
2004
, “
Composite Structures Under Ballistic Impact
,”
Composite Struct.
,
66
, pp.
579
590
.10.1016/j.compstruct.2004.05.006
73.
Roberts
,
G. D.
,
Pereira
,
J. M.
,
Revilock
,
D. M.
,
Binienda
,
W. K.
,
Xie
,
M.
, and
Braley
,
M.
,
2003
, “
Ballistic Impact of Composite Plates and Half-Rings With Soft Projectiles
,”
44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference
,
Norfolk, VA
,
7–10 April
.
74.
Ruggeri
,
C.
,
2009
, “
High Strain Rate Data Acquisition of 2D Braided Composite Substructures
,” M.S. thesis,
The University of Akron
,
Akron, OH
.
75.
Daniel
,
I. M.
,
Hsiao
,
H. M.
, and
Cordes
,
R. D.
,
1995
, “
Dynamic Response of Carbon/Epoxy Composites
,”
High Strain Rate Effects on Polymer, Metal and Ceramic Matrix Composites and Other Advanced Materials
, AD-Vol.
48
,
Y. D. S.
Rajapakse
and
J. R.
Vinson
, eds.,
ASME
, pp.
167
177
.
76.
Daniel
,
I. M.
,
Hamilton
,
W. G.
, and
LaBedz
,
R. H.
,
1982
, “
Strain Rate Characterization of Unidirectional Graphite/Epoxy Composite
,”
Composite Materials: Testing and Design (6th Conference, ASTM STP 787)
,
I. M.
Daniel
, ed.,
American Society of Testing and Materials
, pp.
393
413
.
77.
Al-Salehi
,
F. A. R.
,
Al-Hassani
,
S. T. S.
, and
Hinton
,
M. J.
,
1989
, “
An Experimental Investigation Into the Strength of Angle Ply GRP Tubes Under High Rates of Loading
,”
J. Composite Mater.
,
23
, pp.
288
305
.10.1177/002199838902300306
78.
Wineman
,
A. S.
, and
Rajagopal
,
K. R.
,
2000
,
Mechanical Response of Polymers
,
Cambridge University Press
,
New York
.
79.
Cessna
,
L. C.
, Jr.
, and
Sternstein
,
S. S.
,
1967
, “
Viscoelasticity and Plasticity Considerations in the Fracture of Glasslike High Polymers
,”
Fundamental Phenomena in the Material Sciences, Vol. 4, Fracture of Metals, Polymers and Glasses
,
L. J.
Broutman
,
J. J.
Duga
, and
J. J.
Gilman
, eds.,
Plenum
,
New York
, p.
45
.
80.
Li
,
F. Z.
, and
Pan
,
J.
,
1990
, “
Plane-Stress Crack-Tip Fields for Pressure-Sensitive Dilatant Materials
,”
ASME J. Appl. Mech.
,
57
, pp.
40
49
.10.1115/1.2888321
81.
Khan
,
A. S.
, and
Huang
,
S.
,
1995
,
Continuum Theory of Plasticity
,
John Wiley
,
New York
.
82.
Hsu
,
S.-Y.
,
Vogler
,
T. J.
, and
Kyriakides
,
S.
,
1999
, “
Inelastic Behavior of an AS4/PEEK Composite Under Combined Transverse Compression and Shear—Part II: Modeling
,”
Int. J. Plasticity
,
15
, pp.
807
836
.10.1016/S0749-6419(99)00012-1
83.
Kolling
,
S.
,
Haufe
,
A.
,
Feucht
,
M.
, and
Du Bois
,
P. A.
,
2005
, “
SAMP-1: A Semi-Analytical Model for the Simulation of Polymers
,”
4th LS-DYNA Forum
, Conference Proceedings,
Germany
, pp.
A-II-27/52
.
84.
Kolling
,
S.
,
Haufe
,
A.
,
Feucht
,
M.
, and
Du Bois
,
P. A.
,
2006
, “
A Constitutive Formulation for Polymers Subject to High Strain Rates
,”
Proc. 9th Int. LS-DYNA Users Conference
, Vol.
15
,
Livermore Softward Technology Company, Livermore, CA
, pp.
55
74
.
85.
Du Bois
,
P. A.
,
Kolling
,
S.
,
Koesters
,
M.
, and
Frank
,
T.
,
2006
, “
Material Behavior of Polymers Under Impact Loading
,”
Int. J. Impact Eng.
,
32
, pp.
725
740
.10.1016/j.ijimpeng.2005.02.007
86.
Shaban
,
A.
,
Mahnken
,
R.
,
Wilke
,
L.
,
Potente
,
H.
, and
Ridder
,
H.
,
2007
, “
Simulation of Rate Dependent Plasticity for Polymers With Asymmetric Effects
,”
Int. J. Solids Struct.
,
44
, pp.
6148
6162
.10.1016/j.ijsolstr.2007.02.017
87.
Krempl
,
E.
,
McMahon
,
J. J.
, and
Yao
,
D.
,
1986
, “
Viscoplasticity Based on Overstress With a Differential Growth Law for the Equilibrium Stress
,”
Mech. Mater.
,
5
, p.
35
.10.1016/0167-6636(86)90014-1
88.
Stouffer
,
D. C.
, and
Dame
,
L. T.
,
1996
,
Inelastic Deformation of Metals. Models, Mechanical Properties and Metallurgy
,
John Wiley
,
New York
.
89.
Krempl
,
E.
, and
Ho
,
K.
,
2000
, “
An Overstress Model for Solid Polymer Deformation Behavior Applied to Nylon 66
,”
Time Dependent and Nonlinear Effects in Polymers and Composites
(ASTM STP 1357),
R. A.
Schapery
and
C. T.
Sun
, eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
118
137
.
90.
Colak
,
O. U.
,
2005
, “
Modeling Deformation Behavior of Polymers With Viscoplasticity Theory Based on Overstress
,”
Int. J. Plasticity
,
21
, pp.
145
160
.10.1016/j.ijplas.2004.04.004
91.
Goldberg
,
R. K.
,
Roberts
,
G. D.
, and
Gilat
,
A.
,
2003
, “
Incorporation of Mean Stress Effects into the Micromechanical Analysis of the High Strain Rate Response of Polymer Matrix Composites
,”
Composites Part B: Eng.
,
34
, pp.
151
165
.10.1016/S1359-8368(02)00081-1
92.
Goldberg
,
R. K.
,
Roberts
,
G. D.
, and
Gilat
,
A.
,
2005
, “
Implementation of an Associative Flow Rule Including Hydrostatic Stress Effects Into the High Strain Rate Deformation Analysis of Polymer Matrix Composites
,”
J. Aerosp. Eng.
,
18
, pp.
18
27
.10.1061/(ASCE)0893-1321(2005)18:1(18)
93.
Goldberg
,
R. K.
,
Roberts
,
G. D.
,
Littell
,
J. D.
, and
Binienda
,
W. K.
,
2008
, “
Approximation of Nonlinear Unloading Effects in the Strain Rate Dependent Deformation Analysis of Polymer Matrix Materials Utilizing a State Variable Approach
,”
J. Aerosp. Eng.
,
21
, pp.
119
131
.10.1061/(ASCE)0893-1321(2008)21:3(119)
94.
Bodner
,
S. R.
,
2002
,
Unified Plasticity for Engineering Applications
,
Kluwer Academic/Plenum
,
New York
.
95.
Zheng
,
X.
, and
Binienda
,
W. K.
,
2008
, “
Rate-Dependent Shell Element Composite Material Model Implementation in LS-DYNA
,”
J. Aerosp. Eng.
,
21
, pp.
140
151
.10.1061/(ASCE)0893-1321(2008)21:3(140)
96.
Salas
,
P. A.
,
Benson
,
D. J.
,
Venkataraman
,
S.
, and
Loikkanen
,
M. J.
,
2009
, “
Numerical Implementation of Polymer Viscoelastic Equations for High Strain-Rate Composite Models
,”
J. Aerosp. Eng.
,
22
, pp.
304
309
.10.1061/(ASCE)0893-1321(2009)22:3(304)
97.
Gerlach
,
R.
,
Siviour
,
C. R.
,
Petrinic
,
N.
, and
Wiegand
,
J.
,
2008
, “
Experimental Characterization and Constitutive Modeling of RTM-6 Resin Under Impact Loading
,”
Polymer
,
49
, pp.
2728
2737
.10.1016/j.polymer.2008.04.018
98.
Boyce
,
M. C.
,
Parks
,
D. M.
, and
Argon
,
A. S.
,
1988
, “
Large Inelastic Deformation of Glassy Polymers—Part I: Rate Dependent Constitutive Model
,”
Mech. Mater.
,
7
, pp.
15
33
.10.1016/0167-6636(88)90003-8
99.
Hasan
,
O. A.
, and
Boyce
,
M. C.
,
1995
, “
A Constitutive Model for the Nonlinear Viscoelastic Viscoplastic Behavior of Glassy Polymers
,”
Polym. Eng. Sci.
,
35
, pp.
331
344
.10.1002/pen.760350407
100.
Chowdhury
,
K. A.
,
Benzerga
,
A. A.
, and
Talreja
,
R.
,
2008
, “
A Computational Framework for Analyzing the Dynamic Response of Glassy Polymers
,”
Comput. Methods Appl. Mech. Eng.
,
197
, pp.
4485
4502
.10.1016/j.cma.2008.07.008
101.
Chowdhury
,
K. A.
,
Benzerga
,
A. A.
, and
Talreja
,
R.
,
2008
, “
An Analysis of Impact-Induced Deformation and Fracture Modes in Amorphous Glassy Polymers
,”
Eng. Fracture Mech.
,
75
, pp.
3328
3342
.10.1016/j.engfracmech.2007.08.007
102.
Chowdhury
,
K. A.
,
Talreja
,
R.
, and
Benzerga
,
A. A.
,
2008
, “
Effects of Manufacturing-Induced Voids on Local Failure in Polymer-Based Composites
,”
ASME J. Eng. Mater. Technol.
,
130
, p.
021010
.10.1115/1.2841529
103.
Benzerga
,
A. A.
,
Poulain
,
X.
,
Chowdhury
,
K. A.
, and
Talreja
,
R.
,
2009
, “
Computational Methodology for Modeling Fracture in Fiber-Reinforced Polymer Composites
,”
J. Aerosp. Eng.
,
22
, pp.
296
303
.10.1061/(ASCE)0893-1321(2009)22:3(296)
104.
Liu
,
K. C.
,
Hiche
,
C.
, and
Chattopadhyay
,
A.
,
2009
, “
Low Speed Projectile Impact Damage Prediction and Propagation in Woven Composites
,”
50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, Materials Conference and 17th AIAA/ASME/AHS Adaptive Structures Conference
,
Palm Springs, CA
,
4–7 May
.
105.
Paley
,
M.
, and
Aboudi
,
J.
,
1992
, “
Micromechanical Analysis of Composites by the Generalized Cells Model
,”
Mech. Mater.
,
14
, pp.
127
139
.10.1016/0167-6636(92)90010-B
106.
Pindera
,
M. J.
, and
Bednarcyk
,
B. A.
,
1990
, “
An Efficient Implementation of the Generalized Method of Cells for Unidirectional, Multiphased Composites With Complex Microstructures
,”
Composites Part B: Eng.
,
30
, pp.
87
105
.10.1016/S1359-8368(98)00040-7
107.
Flesher
,
N. D.
, and
Chang
,
F. K.
,
2004
, “
Modeling and Response of Braided Composites With Stress Concentrations
,”
11th US-Japan Conference on Composite Materials
,
Yonezawa, Japan
,
September 9–11
.
108.
Janapala
,
N. R.
,
Wu
,
Z.
,
Chang
,
F. K.
, and
Goldberg
,
R. K.
,
2008
, “
Lateral Crashing of Tri-Axially Braided Composite Tubes
,”
Earth & Space Conference 2008, 11th International Conference on Engineering, Science, Construction, and Operations in Challenging Environments, ASCE Technical Activities Committee, Aerospace Division
,
Long Beach, CA
,
March 3–5
.
109.
Aminjikarai
,
S. B.
, and
Tabiei
,
A.
,
2007
, “
A Strain-Rate Dependent E-D Micromechanical Model for Finite Element Simulations of Plain Weave Composite Structures
,”
Composite Struct.
,
81
, pp.
407
418
.10.1016/j.compstruct.2006.09.004
110.
Tanov
,
R.
, and
Tabiei
,
A.
,
2001
, “
Computationally Efficient Micromechanical Models for Woven Fabric Composite Elastic Moduli
,”
ASME J. Appl. Mech.
,
68
, pp.
553
560
.10.1115/1.1357516
111.
Goldberg
,
R. K.
, and
Stouffer
,
D. C.
,
2002
, “
Strain Rate Dependent Analysis of a Polymer Matrix Composite Utilizing a Micromechanics Approach
,”
J. Composite Mater.
,
36
, pp.
773
793
.10.1177/0021998302036007613
112.
Ivanov
,
I.
, and
Tabiei
,
A.
,
2001
, “
Three-Dimensional Computational Micro-Mechanical Model for Woven Fabric Composites
,”
Composite Struct.
,
54
, pp.
489
496
.10.1016/S0263-8223(01)00121-0
113.
Tabiei
,
A.
, and
Ivanov
,
I.
,
2004
, “
Material and Geometrically Non-Linear Composite Micro-Mechanical Model With Failure for Finite Element Simulations
,”
Int. J. Non-Linear Mech.
,
39
, pp.
175
188
.10.1016/S0020-7462(02)00067-7
114.
Tabiei
,
A.
, and
Ivanov
,
I.
,
2007
, “
Micro-Mechanical Model With Strain-Rate Dependency and Damage for Impact Simulation of Woven Fabric Composites
,”
Mech. Adv. Materi. Struct.
,
14
, pp.
365
377
.10.1080/15376490601084624
115.
Sun
,
B.
,
Liu
,
Y.
, and
Gu
,
B.
,
2009
, “
A Unit Cell Approach of Finite Element Calculation of Ballistic Impact Damage of 3-D Orthogonal Woven Composite
,”
Composites Part B
,
40
, pp.
552
560
.10.1016/j.compositesb.2009.01.012
116.
Bahei-El-Din
,
Y. A.
,
Rajendran
,
A. M.
, and
Zikry
,
M. A.
,
2004
, “
A Micromechanical Model for Damage Progression in Woven Composite Systems
,”
Int. J. Solids Struct.
,
41
, pp.
2307
2330
.10.1016/j.ijsolstr.2003.12.006
117.
Bahei-El-Din
,
Y. A.
, and
Zikry
,
M. A.
,
2003
, “
Impact-Induced Deformation Fields in 2D and 3D Woven Composites
,”
Composites Sci. Technol.
,
63
, pp.
923
942
.10.1016/S0266-3538(03)00021-6
118.
Hur
,
H.-K.
,
Johnson
,
E. R.
, and
Kapania
,
R. K.
,
2006
, “
Degraded Strength Prediction of Micro-Cracked Plain Woven Textile Composites
,”
AIAA 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Newport, RI
,
May 1–4
.
119.
Hur
,
H.-K.
, and
Kapania
,
R. K.
,
2007
, “
Impact of Plain Woven Textile-Ceramic Plates Using Macro/Meso Modeling
,”
48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Honolulu, HI
,
April 23–26
.
120.
Hur
,
H.-K.
,
Park
,
J.
, and
Kapania
,
R. K.
,
2008
, “
The Ballistic Impact Model of Plain Woven Textile Structures Using Different Meso-scaled Yarns
,”
49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Schaumburg, IL
,
April 7–10
.
121.
Wei
,
J.
,
Liu
,
K. C.
, and
Chattopadhyay
,
A.
,
2008
, “
3D Simulation of High Velocity Ballistic Impact on Plain Weave Composites With Embedded FBG Sensors
,”
49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Schaumburg, IL
,
April 7–10
.
122.
Zhu
,
L.
,
Chattopadhyay
,
A.
, and
Goldberg
,
R. K.
,
2006
, “
A 3D Micromechanics Model for Strain Rate Dependent Inelastic Polymer Matrix Composites
,”
47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Newport, RI
,
May 1–4
.
123.
Cheng
,
J.
, and
Binienda
,
W. K.
,
2008
, “
Simplified Braiding Through Integration Points Model for Triaxially Braided Composites
,”
J. Aerosp. Eng.
,
21
, pp.
152
161
.10.1061/(ASCE)0893-1321(2008)21:3(152)
124.
Roberts
,
G. D.
,
Goldberg
,
R. K.
,
Biniendak
,
W. K.
,
Arnold
,
W. A.
,
Littell
,
J. D.
, and
Kohlman
,
L. W.
,
2009
, “
Characterization of Triaxial Braided Composite Material Properties for Impact Simulation
,” Report No. NASA/TM-2009-215660.
125.
Livermore Software Technology Corporation
,
2007
,
LS-DYNA Keyword Manual v. 971
,
Livermore, CA
.
126.
Matzenmiller
,
A.
,
Lubliner
,
J.
, and
Taylor
,
R. L.
,
1995
, “
A Constitutive Model for Anisotropic Damage in Fiber-Composites
,”
Mech. Mater.
,
20
, pp.
125
152
.10.1016/0167-6636(94)00053-0
127.
Hashin
,
Z.
,
1980
, “
Failure Criteria for Unidirectional Fiber Composites
,”
ASME J. Appl. Mech.
,
47
, pp.
329
334
.10.1115/1.3153664
128.
Schweizerhof
,
K.
,
Weimar
,
K.
,
Munz
,
T.
, and
Rottner
,
T.
,
1998
, “
Crashworthiness Analysis With Enhanced Composite Material Models in LS-DYNA-Merits and Limits
,”
LS-DYNA World Conference
,
Detroit, MI
.
129.
Williams
,
K. V.
,
Vaziri
,
R.
, and
Poursartip
,
A.
,
2003
, “
A Physically Based Continuum Damage Mechanics Model for Thin Laminated Composite Structures
,”
Int. J. Solids Struct.
,
40
, pp.
2267
2300
.10.1016/S0020-7683(03)00016-7
130.
Xiao
,
X.
,
McGregor
,
C.
,
Vaziri
,
R.
, and
Poursartip
,
A.
,
2009
, “
Progress in Braided Composite Tube Crush Simulation
,”
Int. J. Impact Eng.
,
36
, pp.
711
719
.10.1016/j.ijimpeng.2008.09.006
131.
Pickett
,
A. K.
, and
Fouinneteau
,
M. R. C.
,
2006
, “
Material Characterization and Calibration of a Meso-Mechanical Damage Model for Braid Reinforced Composites
,”
Composites Part A
,
37
, pp.
268
377
.10.1016/j.compositesa.2005.03.034
132.
Fouinneteau
,
M. R. C.
, and
Pickett
,
A. K.
,
2007
, “
Shear Mechanism Modeling of Heavy Tow Braided Composites Using a Meso-Mechanical Damage Model
,”
Composites Part A
,
38
, pp.
2294
2306
.10.1016/j.compositesa.2006.12.006
133.
Iannucci
,
L.
,
2006
, “
Progressive Failure Modeling of Woven Carbon Composite Under Impact
,”
Int. J. Impact Eng.
,
32
, pp.
1013
1043
.10.1016/j.ijimpeng.2004.08.006
134.
Iannucci
,
L.
, and
Willows
,
M. L.
,
2007
, “
An Energy Based Damage Mechanics Approach to Modeling Impact Onto Woven Composite Materials: Part II. Experimental and Numerical Results
,”
Composites Part A
,
38
, pp.
540
554
.10.1016/j.compositesa.2006.02.023
135.
Schwer
,
L. E.
, and
Whirley
,
R. G.
,
1999
, “
Impact of a 3D Woven Textile Composite Thin Panel: Damage and Failure Modeling
,”
Mech. Composite Mater. Struct.
,
6
, pp.
9
30
.10.1080/107594199305638
136.
Naik
,
N. K.
,
Shrirao
,
P.
, and
Reddy
,
B. C. K.
,
2006
, “
Ballistic Impact Behavior of Woven Fabric Composites: Formulation
,”
Int. J. Impact Eng.
,
32
, pp.
1521
1552
.10.1016/j.ijimpeng.2005.01.004
137.
Jenq
,
S. T.
,
Jing
,
H.-S.
, and
Chung
,
C.
,
1994
, “
Predicting the Ballistic Limit for Plain Woven Glass/Epoxy Composite Laminate
,”
Int. J. Impact Eng.
,
15
, pp.
451
464
.10.1016/0734-743X(94)80028-8
138.
Jenq
,
S. T.
, and
Mo
,
J. J.
,
1996
, “
Ballistic Impact Response for Two-Step Braided Three-Dimensional Textile Composites
,”
AIAA J.
,
34
(2)
, pp.
375
384
.10.2514/3.13074
You do not currently have access to this content.