Nonlinear problems are prevalent in structural and continuum mechanics, and there is high demand for computational tools to solve these problems. Despite efforts to develop efficient and effective algorithms, one single algorithm may not be capable of solving any and all nonlinear problems. A brief review of recent nonlinear solution techniques is first presented. Emphasis, however, is placed on the review of load, displacement, arc length, work, generalized displacement, and orthogonal residual control algorithms, which are unified into a single framework. Each of these solution schemes differs in the use of a constraint equation for the incremental-iterative procedure. The governing finite element equations and constraint equation for each solution scheme are combined into a single matrix equation, which characterizes the unified approach. This conceptual model leads naturally to an effective object-oriented implementation. Within the unified framework, the strengths and weaknesses of the various solution schemes are examined through numerical examples.

References

References
1.
Bergan
,
P. G.
,
Horrigmoe
,
G.
,
Brakeland
,
B.
, and
Soreide
,
T. H.
, 1978, “
Solution Techniques for Non-Linear Finite Element Problems
,”
Int. J. Numer. Methods Eng.
,
12
(
11
), pp.
1677
1696
.
2.
Mondkar
,
D. P.
, and
Powell
,
G. H.
, 1978, “
Evaluation of Solution Schemes for Nonlinear Structures
,”
Comput. Struct.
,
9
(
3
), pp.
223
236
.
3.
Clarke
,
M. J.
, and
Hancock
,
G. J.
, 1990, “
A Study of Incremental-Iterative Strategies for Non-Linear Analyses
,”
Int. J. Numer. Methods Eng.
,
29
(
7
), pp.
1365
1391
.
4.
Yang
,
Y.-B.
, and
Shieh
,
M.-S.
, 1990, “
Solution Method for Nonlinear Problems With Multiple Critical Points
,”
AIAA J.
,
28
(
12
), pp.
2110
2116
.
5.
Yang
,
Y.-B.
, and
Kuo
,
S.-R.
, 1994,
Theory and Analysis of Nonlinear Framed Structures
,
Prentice-Hall PTR
,
Englewood Cliffs, NJ
.
6.
Rezaiee-Pajand
,
M.
,
Tatar
,
M.
, and
Moghaddasie
,
B.
, 2009, “
Some Geometrical Bases for Incremental-Iterative Methods
,”
Int. J. Eng. Trans. B: Appl.
,
22
(
3
), pp.
245
256
.
7.
Reddy
,
J. N.
, 2004,
An Introduction to Nonlinear Finite Element Analysis
,
Oxford University Press
,
New York
.
8.
Zakharov
,
Y. V.
,
Okhotkin
,
K. G.
, and
Skorobogatov
,
A. D.
, 2004, “
Bending of Bars Under a Follower Load
,”
J. Appl. Mech. Tech.. Phys.
,
45
(
5
), pp.
756
763
.
9.
Riks
,
E.
, 1979, “
An Incremental Approach to the Solution of Snapping and Buckling Problems
,”
Int. J. Solids Struct.
,
15
(
7
), pp.
529
551
.
10.
Crisfield
,
M. A.
, 1981, “
A Fast Incremental/Iterative Solution Procedure That Handles Snap-Through
,”
Comput. Struct.
,
13
(
1–3
), pp.
55
62
.
11.
Bathe
,
K. J.
, 1996,
Finite Element Procedures
,
Prentice-Hall
,
Upper Saddle River, NJ
.
12.
Belytschko
,
T.
,
Liu
,
W.
, and
Moran
,
B.
, 2000,
Nonlinear Finite Elements for Continua and Structures
,
John Wiley & Sons, Inc.
,
West Sussex, England
.
13.
Bonet
,
J.
, 1997,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
New York
.
14.
Crisfield
,
M. A.
, 1991,
Non-Linear Finite Element Analysis of Solids and Structures. Volume 1: Essentials
,
John Wiley & Sons, Inc.
,
West Sussex, England
.
15.
Crisfield
,
M. A.
, 1997,
Non-Linear Finite Element Analysis of Solids and Structures. Volume 2: Advanced Topics
,
Wiley, John & Sons, Inc.
,
West Sussex, England
.
16.
Mang
,
H. A.
,
Hofinger
,
G.
, and
Jia
,
X.
, 2011, “
On the Interdependency of Primary and Initial Secondary Equilibrium Paths in Sensitivity Analysis of Elastic Structures
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
13–16
), pp.
1558
1567
.
17.
Adomian
,
G.
, 1988, “
A Review of the Decomposition in Applied Mathematics
,”
J. Math. Anal. Appl.
,
135
(
2
), pp.
501
544
.
18.
He
,
J.-H.
, 2000, “
A Review on Some New Recently Developed Nonlinear Analytical Techniques
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
1
(
1
), pp.
51
70
.
19.
He
,
J.-H.
, 2006, “
Some Asymptotic Methods for Strongly Nonlinear Equations
,”
Int. J. Mod. Phys. B
,
20
(
10
), pp.
1141
1199
.
20.
He
,
J.-H.
, 2006, “
Addendum New Interpretation of Homotopy Perturbation Method
,”
Int. J. Mod. Phys. B
,
20
(
18
), pp.
2561
2568
.
21.
Babajee
,
D. K. R.
, and
Dauhoo
,
M. Z.
, 2006, “
An Analysis of the Properties of the Variants of Newton’s Method With Third Order Convergence
,”
Appl. Math. Comput.
,
183
(
1
), pp.
659
684
.
22.
Adomian
,
G.
, 1983,
Stochastic Systems
,
Academic Press
,
New York
.
23.
Adomian
,
G.
, and
Rach
,
R.
, 1985, “
On the Solution of Algebraic Equations by the Decomposition Method
,”
J. Math. Anal. Appl.
,
105
(
1
), pp.
141
166
.
24.
Abbaoui
,
K.
, and
Cherruault
,
Y.
, 1994, “
Convergence of Adomian’s Method Applied to Nonlinear Equations
,”
Math. Comput. Model.
,
20
(
9
), pp.
69
73
.
25.
Babolian
,
E.
, and
Biazar
,
J.
, 2002, “
Solution of Nonlinear Equations by Modified Adomian Decomposition Method
,”
Appl. Math. Comput.
132
(
1
), pp.
167
172
.
26.
Abbasbandy
,
S.
, 2003, “
Improving Newton-Raphson Method for Nonlinear Equations by Modified Adomian Decomposition Method
,”
Appl. Math. Comput.
,
145
(
2–3
), pp.
887
893
.
27.
Chun
,
C.
, 2006, “
A New Iterative Method for Solving Nonlinear Equations
,”
Appl. Math. Comput.
,
178
(2)
, pp.
415
422
.
28.
Darvishi
,
M. T.
, and
Barati
,
A.
, 2007, “
Super Cubic Iterative Methods to Solve Systems of Nonlinear Equations
,”
Appl. Math. Comput.
,
188
(
2
), pp.
1678
1685
.
29.
Darvishi
,
M. T.
, and
Barati
,
A.
, 2007, “
A Third-Order Newton-Type Method to Solve Systems of Nonlinear Equations
,”
Appl. Math. Comput.
,
187
(
2
), pp.
630
635
.
30.
Noor
,
M. A.
, and
Noor
,
K. I.
, 2006, “
Three-Step Iterative Methods for Nonlinear Equations
,”
Appl. Math. Comput.
,
183
(
1
), pp.
322
327
.
31.
He
,
J.-H.
, 1999, “
Homotopy Perturbation Technique
,”
Comput. Methods Appl. Mech. Eng.
,
178
(
3–4
), pp.
257
262
.
32.
He
,
J.-H.
, 2000, “
A Coupling Method of a Homotopy Technique and a Perturbation Technique for Non-Linear Problems
,”
Int. J. Nonlinear Mech.
,
35
(
1
), pp.
37
43
.
33.
He
,
J.-H.
, 2003, “
Homotopy Perturbation Method: A New Nonlinear Analytical Technique
,”
Appl. Math. Comput.
,
135
(
1
), pp.
73
79
.
34.
He
,
J.-H.
, 2008, “
An Elementary Introduction to Recently Developed Asymptotic Methods and Nanomechanics in Textile Engineering
,”
Int. J. Mod. Phys. B
,
22
(
21
), pp.
3487
3578
.
35.
Golbabai
,
A.
, and
Javidi
,
M.
, 2007, “
A New Family of Iterative Methods for Solving System of Nonlinear Algebric Equations
,”
Appl. Math. Comput.
,
190
(
2
), pp.
1717
1722
.
36.
Jorabchi
,
K.
, and
Suresh
,
K.
, 2011, “
A Robust Continuation Method to Pass Limit-Point Instability
Finite Elem. Anal. Design
,
47
(
11
), pp.
1253
1261
.
37.
Liao
,
S.-J.
, and
Cheung
,
K. F.
, 2003, “
Homotopy Analysis of Nonlinear Progressive Waves in Deep Water
,”
J. Eng. Math.
,
45
(
2
), pp.
105
116
.
38.
He
,
J.-H.
, 2005, “
Application of Homotopy Perturbation Method to Nonlinear Wave Equations
,”
Chaos, Solitons Fractals
,
26
(
3
), pp.
695
700
.
39.
Sadighi
,
A.
, and
Ganji
,
D. D.
, 2007, “
Solution of the Generalized Nonlinear Boussinesq Equation Using Homotopy Perturbation and Variational Iteration Methods
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
8
(
3
), pp.
435
443
.
40.
Abbasbandy
,
S.
, 2006, “
The Application of Homotopy Analysis Method to Nonlinear Equations Arising in Heat Transfer
,”
Phys. Lett. A
,
360
(
1
), pp.
109
113
.
41.
Ganji
,
D. D.
, and
Sadighi
,
A.
, 2007, “
Application of Homotopy-Perturbation and Variational Iteration Methods to Nonlinear Heat Transfer and Porous Media Equations
,”
J. Comput. Appl. Math.
,
207
(
1
), pp.
24
34
.
42.
Domairry
,
G.
, and
Nadim
,
N.
, 2008, “
Assessment of Homotopy Analysis Method and Homotopy Perturbation Method in Non-Linear Heat Transfer Equation
,”
Int. Commun. Heat Mass Transfer
,
35
(
1
), pp.
93
102
.
43.
Ghorbani
,
A.
, and
Saberi-Nadjafi
,
J.
, 2007, “
He’s Homotopy Perturbation Method for Calculating Adomian Polynomials
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
8
(
2
), pp.
229
232
.
44.
Ozis
,
T.
, and
Yildirim
,
A.
, 2008, “
Comparison Between Adomian’s Method and He’s Homotopy Perturbation Method
,”
Comput. Math. Appl.
,
56
(
5
), pp.
1216
1224
.
45.
Ghorbani
,
A.
, 2009, “
Beyond Adomian Polynomials: He Polynomials
,”
Chaos, Solitons Fractals
,
39
(
3
), pp.
1486
1492
.
46.
Kou
,
J.
,
Li
,
Y.
, and
Wang
,
X.
, 2006, “
A Modification of Newton Method With Third-Order Convergence
,”
Appl. Math. Comput.
,
181
(
2
), pp.
1106
1111
.
47.
Weerakoon
,
S.
, and
Fernando
,
T. G. I.
, 2000, “
A Variant of Newton’s Method With Accelerated Third-Order Convergence
,”
Appl. Math. Lett.
,
13
(
8
), pp.
87
93
.
48.
Frontini
,
M.
, and
Sormani
,
E.
, 2003, “
Some Variant of Newton’s Method With Third-Order Convergence
,”
Appl. Math. Comput.
,
140
(
2–3
), pp.
419
426
.
49.
Cardoso
,
E. L.
, and
Fonseca
,
J. S. O.
, 2007, “
The GDC Method as an Orthogonal Arc-Length Method
,”
Commun. Numer. Methods Eng.
,
23
(
4
), pp.
263
271
.
50.
Homeier
,
H. H. H.
, 2005, “
On Newton-Type Methods With Cubic Convergence
,”
J. Comput. Appl. Math.
,
176
(
2
), pp.
425
432
.
51.
Jisheng
,
K.
,
Yitian
,
L.
, and
Xiuhua
,
W.
, 2006, “
A Uniparametric Chebyshev-Type Method Free From Second Derivatives
,”
Appl. Math. Comput.
,
179
(
1
), pp.
296
300
.
52.
Babajee
,
D. K. R.
,
Dauhoo
,
M. Z.
,
Darvishi
,
M. T.
,
Karami
,
A.
, and
Barati
,
A.
, 2010, “
Analysis of Two Chebyshev-Like Third Order Methods Free From Second Derivatives for Solving Systems of Nonlinear Equations
,”
J. Comput. Appl. Math.
,
233
(
8
), pp.
2002
2012
.
53.
King
,
R.
, 1973, “
A Family of Fourth Order Methods for Nonlinear Equations
,”
SIAM J. Numer. Anal.
,
10
(5)
, pp.
876
879
.
54.
Sharma
,
J. R.
, and
Guha
,
R. K.
, 2007, “
A Family of Modified Ostrowski Methods With Accelerated Sixth Order Convergence
,”
Appl. Math. Comput.
,
190
(
1
), pp.
111
115
.
55.
Bi
,
W.
,
Wu
,
Q.
, and
Ren
,
H.
, 2009, “
A New Family of Eighth-Order Iterative Methods for Solving Nonlinear Equations
,”
Appl. Math. Comput.
,
214
(
1
), pp.
236
245
.
56.
Wriggers
,
P.
, and
Simo
,
J. C.
, 1990, “
A General Procedure for the Direct Computation of Turning and Bifurcation Points
,”
Int. J. Numer. Methods Eng.
,
30
(
1
), pp.
155
176
.
57.
Planinc
,
I.
, and
Saje
,
M.
, 1999, “
A Quadratically Convergent Algorithm for the Computation of Stability Points: The Application of the Determinant of the Tangent Stiffness Matrix
,”
Comput. Methods Appl. Mech. Eng.
,
169
(
1–2
), pp.
89
105
.
58.
Fujii
,
F.
, and
Okazawa
,
S.
, 1997, “
Pinpointing Bifurcation Points and Branch-Switching
,”
J. Eng. Mech.
,
123
(
3
), pp.
179
189
.
59.
Fujii
,
F.
, and
Ramm
,
E.
, 1997, “
Computational Bifurcation Theory: Path-Tracing, Pinpointing and Path-Switching
,”
Eng. Struct.
,
19
(
5
), pp.
385
392
.
60.
Balay
,
S.
,
Gropp
,
W. D.
,
McInnes
,
L. C.
, and
Smith
,
B. F.
, 1997, “
Efficient Management of Parallelism in Object Oriented Numerical Software Libraries
,”
Modern Software Tools in Scientific Computing
,
E.
Arge
,
A. M.
Bruaset
, and
H. P.
Langtangen
, eds.,
Birkhäuser Press
,
New York
, pp.
163
202
.
61.
Balay
,
S.
,
Brown
,
J.
,
Buschelman
,
K.
,
Eijkhout
,
V.
,
Gropp
,
W. D.
,
Kaushik
,
D.
,
Knepley
,
M. G.
,
McInnes
,
L. C.
,
Smith
,
B. F.
, and
Zhang
,
H.
, 2011, “
PETSc Users Manual
,” Revision 3.2, Argonne National Laboratory, Tech. Report No. ANL-95/11.
62.
Balay
,
S.
,
Brown
,
J.
,
Buschelman
,
K.
,
Gropp
,
W. D.
,
Kaushik
,
D.
,
Knepley
,
M. G.
,
McInnes
,
L. C.
,
Smith
,
B. F.
, and
Zhang
,
H.
, 2011, “
PETSc Web Page
,” http://www.mcs.anl.gov/petsc/
63.
Kirk
,
B. S.
,
Peterson
,
J. W.
,
Stogner
,
R. H.
, and
Carey
,
G. F.
, 2006, “
libMesh: A C++ Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations
,”
Eng. Comput.
,
22
(
3–4
), pp.
237
254
.
64.
Salinger
,
A. G.
,
Bou-Rabee
,
N. M.
,
Pawlowski
,
R. P.
,
Wilkes
,
E. D.
,
Burroughs
,
E. A.
,
Lehoucq
,
R. B.
, and
Romero
,
L. A.
, 2002, “
LOCA 1.0 Library of Continuation Algorithms: Theory and Implementation Manual
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND2002-0396.
65.
Batoz
,
J.-L.
, and
Dhatt
,
G.
, 1979, “
Incremental Displacement Algorithms for Nonlinear Problems
,”
Int. J. Numer. Methods Eng.
,
14
(
8
), pp.
1262
1267
.
66.
Lages
,
E. N.
,
Paulino
,
G. H.
,
Menezes
,
I. F. M.
, and
Silva
,
R. R.
, 1999, “
Nonlinear Finite Element Analysis using an Object-Oriented Philosophy- Application to Beam Elements and to the Cosserat Continuum
,”
Eng. Comput.
,
15
(
1
), pp.
73
89
.
67.
Riks
,
E.
, 1972, “
The Application of Newton’s Method to the Problem of Elastic Stability
,”
ASME J. Appl. Mech.
,
39
(4)
, pp.
1060
1066
.
68.
Powell
,
G.
, and
Simons
,
J.
, 1981, “
Improved Iteration Strategy for Nonlinear Structures
,”
Int. J. Numer. Methods Eng.
,
17
(
10
), pp.
1455
1467
.
69.
Padovan
,
J.
, and
Tovichakchaikul
,
S.
, 1982, “
Self-Adaptive Predictor-Corrector Algorithms for Static Nonlinear Structural Analysis
,”
Comput. Struct.
,
15
(
4
), pp.
365
377
.
70.
Caballero
,
A.
,
Willam
,
K. J.
, and
Carol
,
I.
, 2008, “
Consistent Tangent Formulation for 3D Interface Modeling of Cracking/Fracture in Quasi-Brittle Materials
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
33–40
), pp.
2804
2822
.
71.
Fujii
,
F.
,
Choong
,
K. K.
, and
Gong
,
S.-X.
, 1992, “
Variable Displacement Control to Overcome Turning Points of Nonlinear Elastic Frames
,”
Comput. Struct.
,
44
(
1–2
), pp.
133
136
.
72.
Simons
,
J.
, and
Bergan
,
P. G.
, 1984, “
Hyperplane Displacement Control Methods in Nonlinear Analysis
,”
Innovative Methods for Nonlinear Problems
,
W. K.
Liu
,
T.
Belytschko
, and
K. C.
Park
, eds.,
Pineridge Press
,
Swansea, UK
, pp.
345
364
.
73.
Ramm
,
E.
, 1981, “
Strategies for Tracing Nonlinear Responses Near Limit Points
,”
Nonlinear Finite Element Analysis in Structural Mechanics
,
Spring-Verlag
,
New York
, p.
68
.
74.
Bellini
,
P. X.
, and
Chuyla
,
A.
, 1987, “
An Improved Automatic Incremental Algorithm for the Efficient Solution of Nonlinear Finite Element Equations
,”
Comput. Struct.
,
26
(
1–2
), pp.
99
110
.
75.
Park
,
K. C.
, 1982, “
A Family of Solution Algorithms for Nonlinear Structural Analysis Based on Relaxation Equations
,”
Int. J. Numer. Methods Eng.
,
18
(
9
), pp.
1337
1347
.
76.
Wempner
,
G. A.
, 1971, “
Discrete Approximations Related to Nonlinear Theories of Solids
,”
Int. J. Solids Struct.
,
7
(11)
, pp.
1581
1599
.
77.
Forde
,
B. W. R.
, and
Stiemer
,
S. F.
, 1987, “
Improved Arc Length Orthogonality Methods for Nonlinear Finite Element Analysis
,”
Comput. Struct.
,
27
(
5
), pp.
625
630
.
78.
Crisfield
,
M. A.
, 1983, “
An Arc-Length Method Including Line Searches and Accelerations
,”
Int. J. Numer. Methods Eng.
,
19
(
9
), pp.
1269
1289
.
79.
Lam
,
W. F.
, and
Morley
,
C. T.
, 1992, “
Arc-Length Method for Passing Limit Points in Structural Calculation
,”
J. Struct. Eng.
,
118
(
1
), pp.
169
185
.
80.
Ritto-Correa
,
M.
, and
Camotim
,
D.
, 2008, “
On the Arc-Length and Other Quadratic Control Methods: Established, Less Known and New Implementation Procedures
,”
Comput. Struct.
,
86
(
11–12
), pp.
1353
1368
.
81.
Carrera
,
E.
, 1994, “
A Study on Arc-Length-Type Methods and Their Operation Failures Illustrated by a Simple Model
,”
Comput. Struct.
,
50
(
2
), pp.
217
229
.
82.
Feng
,
Y. T.
,
Peric
,
D.
, and
Owen
,
D. R. J.
, 1996, “
A New Criterion for Determination of Initial Loading Parameter in Arc-Length Methods
,”
Comput. Struct.
,
58
(
3
), pp.
479
485
.
83.
Yang
,
Y.-B.
, and
McGuire
,
W.
, 1985, “
A Work Control Method for Geometrically Nonlinear Analysis
,”
Proceedings of the 1985 International Conference on Numerical Methods in Engineering: Theory and Applications
,
J.
Middleton
and
G. N.
Pande
, eds., pp.
913
921
.
84.
Al-Rasby
,
S. N.
, 1991, “
Solution Techniques in Nonlinear Structural Analysis
,”
Comput. Struct.
,
40
(
4
), pp.
985
993
.
85.
Carol
,
I.
,
López
,
C. M.
, and
Roa
,
O.
, 2001, “
Micromechanical Analysis of Quasi-Brittle Materials Using Fracture-Based Interface Elements
,”
Int. J. Numer. Methods Eng.
,
52
(
1–2
), pp.
193
215
.
86.
Gao
,
Y. F.
, and
Bower
,
A. F.
, 2004, “
A Simple Technique for Avoiding Convergence Problems in Finite Element Simulations of Crack Nucleation and Growth on Cohesive Interfaces
,”
Model. Simul. Mater. Sci. Eng.
,
12
(
3
), pp.
453
463
.
87.
Ngo
,
D.
,
Park
,
K.
,
Paulino
,
G. H.
, and
Huang
,
Y.
, 2010, “
On the Constitutive Relation of Materials With Microstructure Using a Potential-Based Cohesive Model for Interface Interaction
,”
Eng. Fract. Mech.
,
77
(
7
), pp.
1153
1174
.
88.
Yang
,
Z.
, and
Chen
,
J.
, 2004, “
Fully Automatic Modelling of Cohesive Discrete Crack Propagation in Concrete Beams Using Local Arc-Length Methods
,”
Int. J. Solids Struct.
,
41
(
3–4
), pp.
801
826
.
89.
Gu
,
H.
, and
Chattopadhyay
,
A.
, 1996, “
Delamination Buckling and Postbuckling of Composite Cylindrical Shells
,”
AIAA J.
,
34
(
6
), pp.
1279
1286
.
90.
Alfano
,
G.
, and
Crisfield
,
M. A.
, 2001, “
Finite Element Interface Models for the Delamination Analysis of Laminated Composites: Mechanical and Computational Issues
,”
Int. J. Numer. Methods Eng.
,
50
(
7
), pp.
1701
1736
.
91.
Mallardo
,
V.
, and
Allesandri
,
C.
, 2004, “
Arc-Length Procedures With BEM in Physically Nonlinear Problems
,”
Eng. Anal. Boundary Elem
,
28
(
6
), pp.
547
559
.
92.
Mukherjee
,
S.
, and
Chandra
,
A.
, 1984, “
Boundary Element Formulations for Large Strain-Large Deformation Problems of Plasticity and Viscoplasticity
,”
Developments in Boundary Element Methods-3
,
P. K.
Banerjee
and
S.
Mukherjee
, eds.
Elsevier
,
Barking, Essex, UK
, Chap. 2, pp.
27
58
.
93.
Chandra
,
A.
, and
Mukherjee
,
S.
, 1983, “
Applications of the Boundary Element Method to Large Strain Large Deformation Problems of Viscoplasticity
,”
J. Strain Anal. Eng. Design
,
18
(
4
), pp.
261
270
.
94.
Chandra
,
A.
, and
Mukherjee
,
S.
, 1984, “
Boundary Element Formulations for Large Strain-Large Deformation Problems of Viscoplasticity
,”
Int. J. Solids Struct.
,
20
(
1
), pp.
41
53
.
95.
Paulino
,
G. H.
, and
Liu
,
Y.
, 2001, “
Implicit Consistent and Continuum Tangent Operators in Elastoplastic Boundary Element Formulations
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
15–17
), pp.
2157
2179
.
96.
Bathe
,
K. J.
, and
Dvorkin
,
E. N.
, 1983, “
On the Automatic Solution of Nonlinear Finite Element Equations
,”
Comput. Struct.
,
17
(
5–6
), pp.
871
879
.
97.
Lin
,
T. W.
,
Yang
,
Y.-B.
, and
Shiau
,
H. T.
, 1993, “
A Work Weighted State Vector Control Method for Geometrically Nonlinear Analysis
,”
Comput. Struct.
,
46
(
4
), pp.
689
694
.
98.
Chen
,
H.
, and
Blandford
,
G. E.
, 1993, “
Work-Increment-Control Method for Non-Linear Analysis
,”
Int. J. Numer. Methods Eng.
,
36
(
6
), pp.
909
930
.
99.
Kouhia
,
R.
, 2008, “
Stabilized Forms of Orthogonal Residual and Constant Incremental Work Control Path Following Methods
,”
Comput. Methods Appl. Mech. Eng.
,
197
(13–16)
, pp.
1389
1396
.
100.
Yang
,
Y.-B.
,
Lin
,
T. J.
,
Leu
,
L. J.
, and
Huang
,
C.
, 2008, “
Inelastic Postbuckling Response of Steel Trusses Under Thermal Loadings
,”
J. Constr. Steel Res.
,
64
(
12
), pp.
1394
1407
.
101.
Thai
,
H.-T.
, and
Kim
,
S.-E.
, 2009, “
Large Deflection Inelastic Analysis of Space Trusses Using Generalized Displacement Control Method
,”
J. Constr. Steel Res.
,
65
(
10–11
), pp.
1987
1994
.
102.
Liew
,
J. Y. R.
,
Punniyakotty
,
N. M.
, and
Shanmugam
,
N. E.
, 1997, “
Advanced Analysis and Design of Spatial Structures
,”
J. Constr. Steel Res.
,
42
(
1
), pp.
21
48
.
103.
Lakshmi
,
B.
, and
Shanmugam
,
N. E.
, 2002, “
Nonlinear Analysis of In-Filled Steel-Concrete Composite Columns
,”
J. Struct. Eng.
,
128
(
7
), pp.
922
933
.
104.
Li
,
C.
, and
Chou
,
T.-W.
, 2003, “
Multiscale Modeling of Carbon Nanotube Reinforced Polymer Composites
,”
J. Nanosci. Nanotechnol.
,
3
(
5
), pp.
423
430
.
105.
Li
,
C.
, and
Chou
,
T.-W.
, 2003, “
Elastic Moduli of Multi-Walled Carbon Nanotubes and the Effect of van der Waals Forces
,”
Compos. Sci. Technol.
,
63
(
11
), pp.
1517
1524
.
106.
Krenk
,
S.
, 1995, “
An Orthogonal Residual Procedure for Non-Linear Finite Element Equations
,”
Int. J. Numer. Methods Eng.
,
38
(
5
), pp.
823
839
.
107.
Asferg
,
J. L.
,
Poulsen
,
P. N.
, and
Nielsen
,
L. O.
, 2007, “
A Consistent Partly Cracked XFEM Element for Cohesive Crack Growth
,”
Int. J. Numer. Methods Eng.
,
72
(
4
), pp.
464
485
.
108.
Mougaard
,
J. F.
,
Poulsen
,
P. N.
, and
Nielsen
,
L. O.
, 2007, “
An Enhanced Cohesive Crack Element for XFEM Using a Double Enriched Displacement Field
,”
Proceedings of the 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures
, pp.
139
146
.
109.
Krenk
,
S.
, and
Hededal
,
O.
, 1995, “
A Dual Orthogonality Procedure for Non-Linear Finite Element Equations
,”
Comput. Methods Appl. Mech. Eng.
,
123
(
1–4
), pp.
95
107
.
110.
Poulsen
,
P. N.
, and
Damkilde
,
L.
, 1996, “
A Flat Triangular Shell Element With Loof Nodes
,”
Int. J. Numer. Methods Eng.
,
39
(
22
), pp.
3867
3887
.
111.
Renard
,
Y.
, and
Pommier
,
J.
, 2011, “
Getfem++ Web Page
,” http://download.gna.org/getfem/html/homepage/
112.
Schenk
,
O.
, and
Gartner
,
K.
, 2004, “
Solving Unsymmetric Sparse Systems of Linear Equations With PARDISO
,”
J. Future Gener. Comput. Syst.
,
20
(
3
), pp.
475
487
.
113.
Schenk
,
O.
, and
Gartner
,
K.
, 2006, “
On Fast Factorization Pivoting Methods for Symmetric Indefinite Systems
,”
Electron. Trans. Numer. Anal.
,
23
, pp.
158
179
.
114.
Davis
,
T. A.
, 2004, “
A Column Pre-Ordering Strategy for the Unsymmetric-Pattern Multifrontal Method
,”
ACM Trans. Math. Softw.
,
30
(
2
), pp.
165
195
.
115.
Mello
,
L. A. M.
,
De Sturler
,
E.
,
Paulino
,
G. H.
, and
Silva
,
E. C. N.
, 2010, “
Recycling Krylov Subspaces for Efficient Large-Scale Electrical Impedance Tomography
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
49–52
), pp.
3101
3110
.
116.
Parks
,
M. L.
,
De Sturler
,
E.
,
Mackey
,
G.
,
Johnson
,
D. D.
, and
Maiti
,
S.
, 2006, “
Recycling Krylov Subspaces for Sequences of Linear Systems
,”
SIAM J. Sci. Comput.
,
28
(
5
), pp.
1651
1674
.
117.
Pai
,
F.
, 2007,
Highly Flexible Structures: Modeling, Computation, and Experimentation
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
118.
Doyle
,
J. F.
, 2010,
Nonlinear Analysis of Thin-Walled Structures: Statics, Dynamics, and Stability
,
Springer-Verlag
,
New York
.
119.
Palazaotto
,
A. N.
, and
Dennis
,
S. T.
, 1992,
Nonlinear Analysis of Shell Structures
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
120.
Stanciulescu
,
I.
, 2009, private communication.
121.
Bergan
,
P. G.
, 1980, “
Solution Algorithms for Nonlinear Structural Problems
,”
Comput. Struct.
,
12
(
4
), pp.
497
509
.
122.
Bazant
,
Z. P.
, and
Cedolin
,
L.
, 1991,
Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories
,
Oxford University Press
,
New York
.
123.
Leon
,
S.
, 2010, “
A Unified Library of Nonlinear Solutions Schemes: An Excursion Into Nonlinear Computational Mechanics
,” M.S. thesis, University of Illinois at Urbana-Champaign.
124.
Simo
,
J.
, and
Hughes
,
T. J. R.
, 1998,
Computational Inelasticity
, Vol.
7
.,
Springer-Verlag
,
New York
.
125.
Yang
,
Y.-B.
, and
Leu
,
L.-J.
, 1991, “
Constitutive Laws and Force Recovery Procedures in Nonlinear Analysis of Trusses
,”
Comput. Methods Appl. Mech. Eng.
,
92
(
1
), pp.
121
131
.
126.
Yang
,
Y.-B.
,
Leu
,
L.-J.
, and
Yang
,
J. P.
, 2007, “
Key Considerations in Tracing the Postbuckling Response of Structures With Multi Winding Loops
,”
Mech. Adv. Mater. Struct.
,
14
(
3
), pp.
175
189
.
127.
Lee
,
S. L.
,
Manuel
,
F. S.
, and
Rossow
,
E. C.
, 1968, “
Large Deflections and Stability of Elastic Frames
,”
ASCE Proc. J. Eng. Mech. Div.
,
94
(2)
, pp.
521
548
.
128.
Schweizerhof
,
K. H.
, and
Wriggers
,
P.
, 1986, “
Consistent Linearization for Path Following Methods in Nonlinear FE Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
59
(
3
), pp.
261
279
.
129.
Parente
,
E.
, and
Vaz
,
L. E.
, 2001, “
Improvement of Semi-Analytical Design Sensitivities of Non-Linear Structures Using Equilibrium Relations
,”
Int. J. Numer. Methods Eng.
,
50
(
9
), pp.
2127
2142
.
130.
Celes
,
W.
,
Paulino
,
G. H.
, and
Espinha
,
R.
, 2005, “
A Compact Adjacency-Based Topological Data Structure for Finite Element Mesh Representation
,”
Int. J. Numer. Methods Eng.
,
64
(
11
), pp.
1529
1556
.
131.
Heath
,
M. T.
, 2002,
Scientific Computing: An Introductory Survey
,
McGraw-Hill
,
New York
.
132.
Wang
,
S.
,
De Sturler
,
E.
, and
Paulino
,
G. H.
, 2007, “
Large-Scale Topology Optimization Using Preconditioned Krylov Subspace Methods With Recycling
,”
Int. J. Numer. Methods Eng.
,
69
(
12
), pp.
2441
2468
.
133.
van der Vorst
,
H. A.
, 2003,
Iterative Krylov Methods for Large Linear Systems
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.