Studies of anisotropic materials and the discovery of various novel and unexpected phenomena under shock loading has contributed significantly to our understanding of the behavior of condensed matter. The variety of experimental studies for isotropic materials displays systematic patterns, giving basic insights into the underlying physics of anisotropic shock wave modeling. There are many similarities and significant differences in the phenomena observed for isotropic and anisotropic materials under shock-wave loading. Despite this, the anisotropic constitutive equations must represent mathematical and physical generalization of the conventional constitutive equations for isotropic material and reduce to the conventional constitutive equations in the limit of isotropy. This article presents the current state of the art in the constitutive modeling of this fascinating field.

References

References
1.
Chen
,
J. K.
,
Allahdadi
,
A.
, and
Carney
,
T.
, 1997, “
High-Velocity Impact of Graphite/Epoxy Composite Laminates
,”
Compos. Sci. Technol.
,
57
, pp.
1268
1279
.
2.
Sawyer
,
J. P. G.
,
Jones
,
R.
, and
McKinlay
,
P. R.
, 1998, “
A Unified Constitutive Theory for Paper
,”
Compos. Struct.
,
42
, pp.
93
100
.
3.
Hiermaier
,
S. J.
,
Riedel
,
W.
,
Hayhurst
,
C. J.
,
Clegg
,
R. A.
, and
Wentzel
,
C. M.
, 1999, “
Advanced Material Models for Hypervelocity Impact Simulations
,”
Ernst Mach Institut: Freiburg im Breisgau, Germany, Report No. E 43/99
.
4.
Hayhurst
,
C. J.
,
Hiermaier
,
S. J.
,
Clegg
,
R. A.
,
Riedel
,
W.
, and
Lambert
,
M.
, 1999, “
Development of Material Models for Nextel and Kevlar-Epoxy for High Pressures and Strain Rates
,”
Int. J. Impact Eng.
,
23
(
1
), pp.
365
376
.
5.
Hayhurst
,
C. J.
,
Livingstone
,
I. H. G.
,
Clegg
,
R. A.
,
Destefanis
,
R.
, and
Faraud
,
M.
, 2001, “
Ballistic Limit Evaluation of Advanced Shielding Using Numerical Simulations
,”
Int. J. Impact Eng.
,
26
, pp.
309
320
.
6.
Espinosa
,
H.
,
Lu
,
H.-C.
,
Zavattieri
,
P.
, and
Dwivedi
,
S.
, 2001, “
A 3-D Finite Deformation Anisotropic Visco-Plasticity Model for Fiber Composites
,”
J. Compos. Mater.
,
35
(
5
), pp.
369
410
.
7.
Lukyanov
,
A. A.
, 2010, “
Modeling Shock Waves in Composite Materials
,”
Mech. Adv. Mater. Struct.
,
17
, pp.
304
312
.
8.
Lukyanov
,
A. A.
, 2010, “
An Equation of State of a Carbon-Fibre Epoxy Composite Under Shock Loading
,”
Eur. Phys. J. B
,
74
, pp.
35
45
.
9.
Lukyanov
,
A. A.
, 2010, “
Comment on ‘Modeling Shock Waves in Orthotropic Elastic Materials [J. Appl. Phys. 104, 044904(2008)]’
,”
J. Appl. Phys.
,
108
, p.
066102
.
10.
Pankow
,
M.
,
Waas
,
A. M.
,
Yen
,
Ch. -F.
, and
Ghiorse
,
S.
, 2011, “
Shock Loading of 3D Woven Composites: A Validated Finite Element Investigation
,”
Compos. Struct.
,
93
(
5
), pp.
1347
1362
.
11.
Segletes
,
S. B.
, 1987, “
Deviatoric Constitutive Relation for Anisotropic Materials
,” U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, Report No. BRL-TR-2825.
12.
O’Donoghue
,
P. E.
,
Anderson
,
C. E.
, Jr.
,
Friesenhahn
,
G. J.
, and
Parr
,
C. H.
, 1992, “
A Constitutive Formulation for Anisotropic Materials Suitable for Wave Propagation Computer Programs
,”
J. Compos. Mater.
,
26
(
13
), pp.
1860
1884
.
13.
Anderson
,
C. E.
,
Cox
,
P. A.
,
Johnson
,
G. R.
, and
Maudlin
,
P. J.
, 1994, “
A Constitutive Formulation for Anisotropic Materials Suitable for Wave Propagation Computer Program-II
,”
Comput. Mech.
,
15
, pp.
201
223
.
14.
Lukyanov
,
A. A.
, 2008, “
Constitutive Behaviour of Anisotropic Materials Under Shock Loading
,”
Int. J. Plast.
,
24
, pp.
140
167
.
15.
Lukyanov
,
A. A.
, 2008, “
An Equation of State for Anisotropic Solids Under Shock loading
,”
Eur. Phys. J. B
,
64
(
2
), pp.
159
164
.
16.
Lukyanov
,
A. A.
, 2009, “
Anisotropic Materials Behavior Modeling Under Shock Loading
,”
J. Appl. Mech.
,
76
, p.
061012
.
17.
Winey
,
J. M.
, and
Gupta
,
Y. M.
, 2004, “
Nonlinear Anisotropic Description for Shocked Single Crystals: Thermoelastic Response and Pure Mode Wave Propagation
,”
J. Appl. Phys.
96
(
4
), pp.
1993
1999
.
18.
Winey
,
J. M.
, and
Gupta
,
Y. M.
, 2006, “
Nonlinear Anisotropic Description for the Thermomechanical Response of Shocked Single Crystals: Inelastic Deformation
,”
J. Appl. Phys.
,
99
, p.
023510
.
19.
Winey
,
J. M.
, and
Gupta
,
Y. M.
, 2010, “
Anisotropic Material Model and Wave Propagation Simulations for Shocked Pentaerythritol Tetranitrate Single Crystals
,”
J. Appl. Phys.
,
107
, p.
103505
.
20.
Johnson
,
J. N.
,
Jones
,
O. E.
, and
Michaels
,
T. E.
, 1970, “
Dislocation Dynamics Dislocation Dynamics and Single-Crystal Constitutive Relations: Shock-Wave Propagation and Precursor Decay
,”
J. Appl. Phys.
,
41
(
6
), pp.
2330
2335
.
21.
Johnson
,
J. N.
, 1971, “
Shock Propagation Produced by Planar Impact in Linearly Elastic Anisotropic Media
,”
J. Appl. Phys.
,
42
, pp.
5522
5530
.
22.
Johnson
,
J. N.
, 1972, “
Calculation of Plane-Wave Propagation in Anisotropic Elastic-Plastic Solids
,”
J. Appl. Phys.
,
43
, pp.
2074
2082
.
23.
Meyers
,
M. A.
, 1994,
Dynamic Behavior of Materials
,
Wiley
,
New York
.
24.
Steinberg
,
D. J.
, 1991, “
Equation of State and Strength Properties of Selected Materials
,” Lawrence Livermore National Laboratory, Livermore, CA, Report No. UCRL-MA-106439.
25.
Kerley
,
G. I.
, 2006, “
The Linear Us−up Relation in Shock-Wave Physics
,” A Kerley Technical Services Research Report No. KTS06-1.
26.
Segletes
,
S. B.
, 1991, “
Thermodynamic Stability of the Mie-Grüneisen Equation of State, and its Relevance to Hydrocode Computations
,”
J. Appl. Phys.
,
70
(
5
), pp.
2489
2499
.
27.
Segletes
,
S. B.
, 1994, “
Further Examinations of Thermodynamic Stability of the Mie-Grüneisen Equation of State
,”
J. Appl. Phys.
,
76
(
8
), pp.
4560
4566
.
28.
Segletes
,
S. B.
, 1995, “
The Effect of Thermodynamic Constraints Upon the Mie-Grüneisen Equation of State
,”
Constitutive Laws: Experiments and Numerical Implementation
,
A. M.
Rajendran
, and
R. C.
Batra
, eds.,
CIMNE
,
Barcelona
, pp.
46
51
.
29.
Segletes
,
S. B.
, and
Walters
,
W. P.
, 1998, “
On Theories of the Grüneisen Parameter
,”
J. Phys. Chem. Solids
,
59
(
3
), pp.
425
433
.
30.
Segletes
,
S. B.
, 1999, “
Vibrational Stiffness of an Atomic Lattice
,”
Shock Compression of Condensed Matter
,
M. D.
Furnish
,
L. C.
Chhabildas
, and
R. S.
Hixson
, eds.,
AIP
,
New York
, pp.
161
164
.
31.
Segletes
,
S. B.
, 2002, “
Classical Methods for Frequency-Based Equations of State
,”
Recent Res. Dev. Phys. Chem. Solids
,
1
, pp.
1
26
.
32.
Dugdale
,
J. S.
, and
MacDonald
,
D. K. C.
, 1953, “
The Thermal Expansion of Solids
,”
Phys. Rev.
,
89
(
4
), pp.
832
834
.
33.
Benson
,
D. J.
, 1992, “
Computational Methods in Lagrangian and Eulerian Hydrocodes
,”
Comput. Methods Appl. Mech. Eng.
,
99
, pp.
235
394
.
34.
Miller
,
G. H.
, and
Colella
,
P.
, 2001, “
A High-Order Eulerian Godunov Method for Elastic-Plastic Flow in Solids
,”
J. Comp. Phys.
,
167
, pp.
131
176
.
35.
Barton
,
P. T.
,
Drikakis
,
D.
, and
Romenski
,
E.
, 2010, “
An Eulerian Finite-Volume Scheme for Large Elastoplastic Deformations in Solids
,”
Int. J. Num. Methods Eng.
,
81
, pp.
453
484
.
36.
Dorovskii
,
V. N.
,
Iskol’dskii
,
A. M.
, and
Romenskii
,
E. I.
, 1984, “
Dynamics of Impulsive Metal Heating by a Current and Electrical Explosion of Conductors
,”
J. Appl. Mech. Tech. Phys.
,
24
, pp.
454
467
.
37.
Schreyer
,
H. L.
, and
Maudlin
,
P. J.
, 2010, “
Thermodynamically Consistent Relations Involving Plasticity, Internal Energy and Thermal Effects
,”
Philos. Trans. R. Soc. London Ser. A
,
363
, pp.
2517
2541
.
38.
Godunov
,
S. K.
, and
Romenskii
,
E. I.
, 1972, “
Nonstationary Equations of Nonlinear Elasticity Theory in Eulerian Coordinates
,”
J. Appl. Mech. Tech. Phys.
,
13
, pp.
868
884
.
39.
Kondaurov
,
V. I.
, 1982, “
Equations of Elastoviscoplastic Medium With Finite Deformations
,”
J. Appl. Mech. Tech. Phys.
,
23
, pp.
584
591
.
40.
Plohr
,
B. J.
, and , and
Sharp
D. H.
, 1992, “
A Conservative Formulation for Plasticity
,”
Adv. Appl. Math.
,
13
, pp.
462
493
.
41.
Godunov
,
S. K.
, and
Romenski
,
E. I.
, 2003,
Elements of Continuum Mechanics and Conservation Laws
,
Kluwer Academic
,
Dordrecht
.
42.
Whitney
,
J. M.
, and
Pagano
,
N. J.
, 1970, “
Shear Deformation in Heterogeneous Anisotropic Plates
,”
J. Appl. Mech.
,
37
, pp.
1031
1036
.
43.
Mortimer
,
R. W.
,
Chou
,
P. C.
, and
Rodini
,
B. T.
, 1976, “
In-Plane and Shear-Bending Impact of Laminated Composite Plates
,”
J. Appl. Mech.
,
43
(
2
), pp.
275
280
.
44.
Wallace
,
D. C.
, 1972,
Thermodynamics of Crystals
,
Wiley
,
New York
.
45.
Lomakin
,
V. A.
, 1960, “
About a Nonlinear Elasticity and Plasticity Theory of Anisotropic Media
,”
Proc. Acad. Sci. USSR, Dep. Tech. Sci.
,
4
, pp.
60
64
(in Russian).
46.
Taylor
,
P. A.
, 1995, “
CTH Reference Manual: The Transverse Isotropic (TI) Model
,” Sandia Laboratories, Albuquerque, NM, Report No. SAND95-2750.
47.
Hayhurst
,
C. J.
, 2003, “
Multi-Physics Analysis of Hypervelocity impact: Successes and Challenges
,”
Presentation to FENet, NAFEMS, Noordwjik
.
48.
Lukyanov
,
A. A.
, 2006, “
Thermodynamically Consistent Anisotropic Plasticity Model
,”
Proceedings of the International Pipeline Conference
.
49.
Dandekar
,
D. P.
,
Hall
,
C. A.
,
Chhabildas
,
L. C.
, and , and
Reinhart
W. D.
, 2003, “
Shock Response of a Glass Fiber-Reinforced Polymer Composite
,”
Compos. Struct.
,
61
, pp.
51
59
.
50.
Zhuk
,
A. Z.
,
Kanel
,
G. I.
, and
Lash
,
A. A.
, 1994, “
Glass-Epoxy Composite Behaviour Under Shock Loading
,”
J. Phys. IV
,
4
(
C8
), pp.
403
407
.
51.
Zaretsky
,
E.
,
deBotton
,
G.
, and
Perl
,
M.
, 2004, “
The Response of a Glass Fibres Reinforced Epoxy Composite to an Impact Loading
,”
Int. J. Solids Struct.
,
41
, pp.
569
584
.
52.
Carter
,
W. J.
, and
Marsh
,
S. P.
, 1995, “
Hugoniot Equation of State of Polymers
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-13006-MS.
53.
Eden
,
G.
,
Carden
,
M. H.
,
Collver
,
A. M.
, and
Smith
,
C. P. M.
, 1990, “
Shock Wave Propagation in a 3-D Quartz Phenolic Composite
,”
Shock Compression of Condensed Matter
,
S.
Schmidt
,
J.
Johnson
, and
L.
Davison
, eds.,
Elsevier Science Publishers B.V.
,
Amsterdam
.
54.
Bordzilovsky
,
S. A.
,
Karakhanov
,
S. M.
, and
Merzhievsky
,
L. A.
, 1998, “
Shock Response of a Unidirectional Composite at Various Orientations of Fibers
,”
Shock Compression of Condensed Matter
,
S. C.
Schmidt
,
D. P.
Dandekar
,
J. W.
Forbes
, eds.,
AIP Press
,
Melville, NY
, pp.
545
548
.
55.
Hereil
,
P.-L.
,
Allix
,
O.
, and
Gratton
,
M.
, 1997, “
Shock Behaviour of 3D Carbon-Carbon Composite
,”
J. Phys. IV
,
7
, pp.
529
534
.
56.
Millett
,
J. C. F.
,
Bourne
,
N. K.
,
Meziere
,
Y. J. E.
,
Vignjevic
,
R.
, and
Lukyanov
,
A. A.
, 2007, “
The Effect of Orientation on the Shock Response of a Carbon Fibre-Epoxy Composite
,”
Compos. Sci. Technol.
,
67
(
15-16
), pp.
3253
3260
.
57.
Bethe
,
H. A.
, 1942, “
The Theory of Shock Waves for Arbitrary Equation of State
,” Office of Scientific Research and Development, OSRD Report. No. 545, Serial No. 237.
58.
Hill
,
R.
, 1950,
Mathematical Theory of Plasticity
,
Clarendon Press
,
Oxford
.
59.
Tsai
,
S. W.
, and
Hahn
,
H. T.
, 1980, “
Introduction to Composite Materials
,”
Technomic Publishing Co.
,
Lancaster, PA
.
60.
De Vuyst
,
T.
,
Vignjevic
,
R.
,
Bourne
,
N. K.
, and
Campbell
,
J.
, 2000, “
Modelling of Spall in an Anisotropic Aluminium Alloy
,”
Space Debris
,
2
(
4
), pp.
225
232
.
61.
Spitzig
,
W. A.
, and
Richmond
,
O.
, 1984, “
The Effect of Pressure on the Flow Stress of Metals
,”
Acta Metall.
,
32
, pp.
457
463
.
62.
Taylor
,
G. I.
, 1934, “
The Mechanism of Plastic Deformation of Crystals
,”
Proc. R. Soc. London, Ser. A
,
145
, pp.
362
404
.
63.
Orowan
,
E.
, 1940, “
Problems of Plastic Gliding
,”
Proc. Phys. Soc.
,
52
, pp.
8
22
.
64.
Gilman
,
J. J.
, 1969,
Micromechanics of Flow in Solids
,
McGraw-Hill
,
New York
.
65.
Sedgwick
,
R. T.
,
Waddell
,
J. L.
,
Hageman
,
L. J.
,
Gurtman
,
G. A.
, and
Baker
,
M.
, 1976, “
Influence of ABM Material Properties on Erosion Resulting From Particle Impact
,” Ballistic Research Laboratories, Aberdeen Proving Ground, MD, Contract Report No. BRL-CR-322.
66.
Johnson
,
G. R.
,
Vavrick
,
D. J.
, and
Colby
,
D. D.
, 1980, “
Further Development of EPIC-3 for Anisotropy, Sliding Surfaces, Plotting, and Material Models
,” Report No. ARBRL-CR-00429, (AD B048305L).
67.
Segletes
,
S. B.
, 1989, “
Jet Rotation Resulting From Anisotropy of Shaped-Charge Liners
,”
Proceedings of the International Ballistic Symposium
, Brussels, Belgium.
68.
Segletes
,
S. B.
, 1990, “
Mechanisms Inducing Jet Rotation in Shear-Formed Shaped-Charge Liners
,” U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, Report No. BRL-TR-3090.
69.
Zak
,
A. R.
, and
Pillasch
,
D. W.
, 1980, “
Finite Element Analysis of a Dynamically Loaded Flat Laminated Plate
,” U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, Contract Report No. BRL-CR-00433.
70.
Swegle
,
J. W.
, and
Hicks
,
D. L.
, 1979, “
An Anisotropic Constitutive Equation for Use in Finite Difference Wave Propagation Calculations
,” Sandia Laboratories, Albuquerque, NM, Report No. SAND-79-0382.
71.
Zak
,
A. R.
, 1984, “
Finite Element Model for Nonaxisymmetric Structure With Rate-Dependent Yield Conditions
,” U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, Contract Report No. ARBRL-CR-00524.
72.
Hallquist
,
J. O.
, and , and
Whirley
R. G.
, 1989, “
DYNA3D User Manual, Nonlinear Dynamic Analysis in Three Dimensions
,” Lawrence Livermore National Laboratory. Report No. UCID-19592. Rev. 5. CA.USA.
73.
Maker
,
B. N.
,
Ferencz
,
R. M.
, and
Hallquist
,
J. O.
, 1991, “
NIKE3D: A Nonlinear, Implicit, Three- Dimensional Finite Element Code for Solid and Structural Mechanics - User’s Manual
,” University of California, Lawrence Livermore National Laboratory, Report No. UCRL-MA-105268.
74.
Hallquist
,
J. O.
, 1998, “
LS-DYNA Theoretical Manual
,”
Livermore Software Technology Corporation
,
Lawrence, CA
.
You do not currently have access to this content.