This paper presents a review of computational uncertainties in scientific computing, as well as quantification of these uncertainties in the context of numerical simulations for thermo-fluid problems. The need for defining a measure of the numerical error that takes into account errors arising from different numerical building blocks of the simulation methods is discussed. In the above context, the effects of grid resolution, initial and boundary conditions, numerical discretization, and physical modeling constraints are presented.

References

References
1.
Roy
,
C. J.
, and
Oberkampf
,
W. L.
, 2010, “
A Complete Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing (Invited)
,”
48th AIAA Aerospace Sciences Meeting
.
2.
Knio
,
O.
, and
Le Matre
,
O.
, 2006, “
Uncertainty Propagation in CFD Using Polynomial Chaos Decomposition
,”
Fluid Dyn. Res.
38
(
9
), pp.
616
640
.
3.
Roache
,
P. J.
, 1997, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Ann. Rev. Fluid Mech.
29
, pp.
123
160
.
4.
Oberkampf
,
W. L.
, and
Blottner
,
F. G.
, 1998, “
Issues in Computational Fluid Dynamics Code Verification and Validation
,”
AIAA J.
,
36
(
5
), pp.
687
695
.
5.
Hosder
,
S.
,
Walters
,
R.
, and
Perez
,
R.
, 2006, “
A Non-Intrusive Polynomial Chaos Method for Uncertainty Propagation in CFD Simulations
,”
AIAA Pap.
891
, p.
2006
.
6.
Karniadakis
,
G.
, 1995, “
Toward a Numerical Error Bar in CFD
,”
J. Fluids Eng.
117
(
1
), pp.
7
9
.
7.
Karniadakis
,
G.
, 2002, “
Quantifying Uncertainty in CFD
,”
J. Fluids Eng.
124
(
1
), pp.
2
3
.
8.
Lin
,
G.
,
Wan
,
X.
,
Su
,
C.
, and
Karniadakis
,
G. E.
, 2007, “
Stochastic Computational Fluid Mechanics
,”
Comput. Sci. Eng.
9
(
2
), pp.
21
29
.
9.
Mao
,
S. S.
, and
Chen
,
X.
, 2007, “
Selected Nanotechnologies for Renewable Energy Applications
,”
Int. J. Energy Res.
31
(
6–7
), pp.
619
636
.
10.
Asproulis
,
N.
, and
Drikakis
,
D.
, 2009, “
Nanoscale Materials Modelling Using Neural Networks
,”
J. Comput. Theor. Nanosci.
6
(
3
), pp.
514
518
.
11.
Allen
,
M. P.
, and
Tildesley
,
D. J.
, 1987,
Computer Simulation of Liquids
,
Oxford University Press
,
Oxford
.
12.
Rapaport
,
D. C.
, 1995,
The Art of Molecular Dynamics Simulation
,
Cambridge University
,
Cambridge
.
13.
Drikakis
,
D.
, and
Kalweit
,
M.
, 2006, “
Computational Modelling of Flow and Mass Transport Processes in Nanotechnology
,”
First Handbook in Theoretical and Computational Nanotechnology
,
American Scientific Publishers
,
Valencia, CA
.
14.
Hadjiconstantinou
,
N. G.
,
Garcia
,
A. L.
,
Bazant
,
M. Z.
, and
He
,
G.
, 2003, “
Statistical Error in Particle Simulations of Hydrodynamic Phenomena
,”
J. Comput. Phys.
187
(
1
), pp.
274
297
.
15.
Asproulis
,
N.
,
Kalweit
,
M.
, and
Drikakis
,
D.
, 2012, “
A Hybrid Molecular Continuum Method Using Point Wise Coupling
,”
Adv. Eng. Software
,
46
(1)
, pp.
85
92
.
16.
Chen
,
F.
, and
Ge
,
W.
, 2010, “
Statistical Properties of Pseudo-Particle Systems
,”
Particuology
8
(
4
), pp.
332
342
.
17.
Kadau
,
K.
,
Germann
,
T.
, and
Lomdahl
,
P.
, 2004, “
Large-Scale Molecular-Dynamics Simulation of 19 Billion Particles
,”
Int. J. Mod. Phys. C
,
15
(1)
,
193
201
.
18.
Plimpton
,
S.
, 1995, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
117
, pp.
1
19
.
19.
Verlet
,
L.
, 1967, “
Computer ‘Experiments’ on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules
,”
Phys. Rev.
159
, pp.
98
103
.
20.
Sutmann
,
G.
, 2002, “
Classical Molecular Dynamics
,”
Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms (Lecture Notes)
,
John von Neumann Institute for Computing
,
Juelich
, Vol.
10
, pp.
211
254
.
21.
Cailliez
,
F.
, and
Pernot
,
P.
, 2011, “
Statistical Approaches to Forcefield Calibration and Prediction Uncertainty in Molecular Simulation
,”
J. Chem Phys.
134
(
5
), p.
054124
.
22.
Fincham
,
D.
, 1986, “
Choice of Timestep in Molecular Dynamics Simulation
,”
Comput. Phys. Comput.
40
(
2–3
), pp.
263
269
.
23.
Han
,
G.
,
Deng
,
Y.
,
Glimm
,
J.
, and
Martyna
,
G.
, 2007, “
Error and Timing Analysis of Multiple Time-Step Integration Methods for Molecular Dynamics
,”
Comput. Phys. Comput.
176
(
4
), pp.
271
291
.
24.
Izaguirre
,
J. A.
,
Reich
,
S.
, and
Skeel
,
R. D.
, 1999, “
Longer Time Steps for Molecular Dynamics
,”
J. Chem. Phys.
110
(
20
), pp.
9853
9864
.
25.
Hadjiconstantinou
,
N. G.
, 1999, “
Hybrid Atomistic-Continuum Formulations and the Moving Contact-Line Problem
,”
J. Comput. Phys.
154
(
2
), pp.
245
265
.
26.
Huang
,
C.
,
Li
,
C.
, Choi, P. Y. K.,
Nandakumar
,
K.
, and
Kostiuk
,
L. W.
, 2010, “
Effect of Cut-Off Distance Used in Molecular Dynamics Simulations on Fluid Properties
,”
Mol. Simul.
36
(
11
), pp.
856
864
.
27.
Davoodi
,
A. A.
, and
Feyzi
,
F.
, 2009, “
A New Approach for Long Range Corrections in Molecular Dynamics Simulation with Application to Calculation of Argon Properties
,”
J. Mol. Liq.
150
(
1–3
), pp.
33
38
.
28.
Jain
,
S. C.
, and
Nanda
,
V. S.
, 1971, “
Equation of State and Other Associated Properties of Liquid Argon and Liquid Methane
,”
J. Phys. C
4
(
18
), pp.
3045
3056
.
29.
Meier
,
K.
,
Laesecke
,
A.
, and
Kabelac
,
S.
, 2005, “
Transport Coefficients of the Lennard-Jones Model Fluid. III. Bulk Viscosity
,”
J. Chem. Phys.
122
(
1
), pp.
1
9
.
30.
Kalweit
,
M.
, 2008, “
Molecular Modelling for Mesoand Nanoscale Dynamics
,” Ph.D. thesis, University of Cranfield, Bedfordshire, UK.
31.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
, 2008, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME Trans. J. Fluids Eng.
130
(
7
), pp.
0780011
0780014
.
32.
Hosder
,
S.
,
Walters
,
R.
, and
Balch
,
M.
, 2010, “
Point-Collocation Nonintrusive Polynomial Chaos Method for Stochastic Computational Fluid Dynamics
,”
AIAA Pap.
48
, pp.
2721
2730
.
33.
Najm
,
H. N.
, 2009, “
Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics
,”
Ann. Rev. Fluid Mech.
,
41
(1)
,
35
52
.
34.
Oberkampf
,
W. L.
,
DeLand
,
S. M.
,
Rutherford
,
B. M.
,
Diegert
,
K. V.
, and
Alvin
,
K. F.
, 2002, “
Error and Uncertainty in Modeling and Simulation
,”
Reliab. Eng. Syst. Saf.
75
(
3
), pp.
333
357
.
35.
Godfrey
,
A.
, and
Cliff
,
E.
, 2001, “
Sensitivity Equations for Turbulent Flows
,”
Proceedings of the 39th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Pap.
1060
, pp.
2001/1
2001/15
.
36.
Richardson
,
L. F.
, 1911, “
The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, With an Application to the Stresses in a Masonry Dam
,”
Philos. Trans. R. Soc. London, Ser. A
210
(
459–470
), pp.
307
357
.
37.
Celik
,
I.
, and
Karatekin
,
O.
, 1997, “
Numerical Experiments on Application of Richardson Extrapolation with Nonuniform Grids
,”
ASME Trans. J. Fluids. Eng.
119
(
3
), pp.
584
589
.
38.
DeVolder
,
B.
,
Glimm
,
J.
,
Grove
,
J. W.
,
Kang
,
Y.
,
Lee
,
Y.
,
Pao
,
K.
,
Sharp
,
D. H.
, and
Ye
,
K.
, 2002, “
Uncertainty Quantification for Multiscale Simulations
,”
ASME Trans. J. Fluids Eng.
124
(
1
), pp.
29
41
.
39.
Marti
,
K. H.
, and
Reiher
,
M.
, 2010, “
Dmrg Control Using an Automated Richardson-Type Error Protocol
,”
Mol. Phys.
108
(
3–4
), pp.
501
512
.
40.
Hefny
,
M. M.
, and
Ooka
,
R.
, 2009, “
CFD Analysis of Pollutant Dispersion Around Buildings: Effect of Cell Geometry
,”
Building Environ.
44
(
8
), pp.
1699
1706
.
41.
Farago
,
I.
,
Havasi
,
A.
, and
Zlatev
,
Z.
, 2009, “
Richardson-Extrapolated Sequential Splitting and its Application
,”
J. Comput. Appl. Math
226
(
2
), pp.
218
227
.
42.
Roache
,
P. J.
, 1994, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
Trans. ASME J Fluid Eng.
116
(
3
), pp.
405
413
.
43.
Roache
,
P. J.
, 2009, “
Perspective: Validation – What does it Mean?
ASME Trans. J. Fluids Eng.
131
(
3
), pp.
0345031
0345034
.
44.
Xing
,
T.
, and
Stern
,
F.
, 2010, “
Factors of Safety for Richardson Extrapolation
,”
J. Fluids Eng.
132
(
6
), p.
061403
.
45.
Freitas
,
C. J.
, 2002, “
The Issue of Numerical Uncertainty
,”
Appl. Mech. Modell.
26
(
2
), pp.
237
248
.
46.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
, 2003, “
Towards the Prediction of Noise from Jet Engines
,”
Int. J. Heat Fluid Flow
24
(
4
), pp.
551
561
.
47.
Grinstein
,
F.
,
Margolin
,
L.
, and
Rider
,
W.
, 2007,
Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics
,
Cambridge University
,
Cambridge, England
.
48.
Drikakis
,
D.
, 2003, “
Advances in Turbulent Flow Computations Using High-Resolution Methods
,”
Progress Aerosp. Sci.
39
(
6–7
), pp.
405
424
.
49.
Morse
,
A. P.
, 1980, “
Axisymmetric Turbulent Shear Flows With and Without Swirling
,” Ph.D. thesis, University of London, London.
50.
Drikakis
,
D.
, and
Rider
,
W.
, 2005,
High-Resolution Methods for Incompressible and Low-Speed Flows
,
Springer
,
New York
.
51.
Toro
,
E. F.
, 1997,
Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction
,
Springer-Verlag
,
New York
.
52.
Godunov
,
S.
, 1959, “
A Finite-Difference Method for the Computation of Discontinuous Solutions of the Equations of Fluid Dynamics
,”
Math. USSR Sb.
47
, pp.
271
295
.
53.
Eberle
,
A.
, “
Characteristic Flux Averaging Approach to the Solution of Euler’s Equations,”
Computational Fluid Dynamics
(VKI Lecture Series)
MBB Hubschrauber u. Flugzeuge
,
Munich
.
54.
Bagabir
,
A.
, and
Drikakis
,
D.
, 2004, “
Numerical Experiments Using High-Resolution Schemes for Unsteady, Inviscid, Compressible Flows
,”
Comput. Methods Appl. Mech. Eng.
193
(
42–44
), pp.
4675
4705
.
55.
Van Leer
,
B.
, 1977, “
Towards the Ultimate Conservative Difference Scheme. IV. A New Approach to Numerical Convection
,”
J. Comput. Phys.
23
(
3
), pp.
276
299
.
56.
Kim
,
K.
, and
Kim
,
C.
, 2005, “
Accurate, Efficient and Monotonic Numerical Methods for Multi-Dimensional Compressible Flows Part II: Multi-Dimensional Limiting Process
,”
J. Comput. Phys.
208
, pp.
570
615
.
57.
Thornber
,
B.
,
Mosedale
,
A.
,
Drikakis
,
D.
,
Youngs
,
D.
, and
Williams
,
R. J. R.
, 2008, “
An Improved Reconstruction Method for Compressible Flows With Low Mach Number Features
,”
J. Comput. Phys.
227
(
10
), pp.
4873
4894
.
58.
Jiang
,
G.-S.
, and
Shu
,
C.-W.
, 1996, “
Efficient Implementation of Weighted ENO Schemes
,”
J. Comput. Phys.
,
126
, pp.
202
228
.
59.
Drikakis
,
D.
, and
Inok
,
F.
, 2010, “
Computational Uncertainty in Turbulent Flow Simulations: Towards a Numerical Error Bar
,”
Proceedings of V European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2010
,
J. C. F.
Pereira
and
A.
Sequeira
, eds, Lisbon, Portugal, 14–17 June.
60.
Choi
,
K.
,
Grandhi
,
R.
, and
Canfield
,
R.
, 2006,
Reliability-Based Structural Design
,
Springer-Verlag
,
London
.
61.
Le Maitre
,
O. P.
,
Knio
,
O. M.
,
Najm
,
H. N.
, and
Ghanem
,
R. G.
, 2004. “
Uncertainty Propagation Using Wiener-Haar Expansions
,”
J. Comput. Phys.
197
(
1
), pp.
28
57
.
62.
Le Maitre
,
O. P.
,
Knio
,
O. M.
,
Najm
,
H. N.
, and
Ghanem
,
R. G.
, 2001, “
A Stochastic Projection Method for Fluid Flow. I. Basic Formulation
,”
J. Comput. Phys.
173
(
2
), pp.
481
511
.
63.
Le Maitre
,
O. P.
,
Reagan
,
M. T.
,
Najm
,
H. N.
,
Ghanem
,
R. G.
, and
Knio
,
O. M.
, 2002. “
A Stochastic Projection Method for Fluid Flow. II. Random Process
,”
J. Comput. Phys.
181
(
1
), pp.
9
44
.
64.
Karniadakis
,
G.
, and
Glimm
,
J.
, 2006, “
Uncertainty Quantification in Simulation Science
,”
J. Comput. Phys.
217
, pp.
1
4
.
65.
Alekseev
,
A.
,
Navon
,
I.
, and
Zelentsov
,
M.
, 2010, “
The Estimation of Functional Uncertainty Using Polynomial Chaos and Adjoint Equations
,”
Int. J. Numer. Methods Fluids
24
, pp.
1097
0363
.
66.
Debusschere
,
B.
Najm
,
H.
Pébay
,
P.
Knio
,
O.
Ghanem
,
R.
and
Maître
,
O.
, 2005, “
Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes
,”
SIAM J. Sci. Comput. (USA)
26
(
2
), pp.
698
719
.
67.
Najm
,
H.
, 2009, “
Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics
,”
Ann. Rev. Fluid Mech.
41
, pp.
35
52
.
68.
Lucor
,
D.
,
Su
,
C.
, and
Karniadakis
,
G.
, 2004, “
Generalized Polynomial Chaos and Random Oscillators
,”
Int. J. Numer. Methods Eng.
60
(
3
), pp.
571
596
.
69.
Xiu
,
D.
, and
Karniadakis
,
G.
, 2003, “
Modeling Uncertainty in Flow Simulations via Generalized Polynomial Chaos
,”
J. Comput. Phys.
187
(
1
), pp.
137
167
.
70.
Mathelin
,
L.
,
Hussaini
,
M.
, and
Zang
,
T.
, 2005, “
Stochastic Approaches to Uncertainty Quantification in CFD Simulations
,”
Numer. Algorithms
38
(
1
), pp.
209
236
.
71.
Smith
,
R.
, 1984, “
Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed Over Bounded Regions
,”
Oper. Res.
32
(
6
), pp.
1296
1308
.
72.
Kuczera
,
G.
, and
Parent
,
E.
, 1998, “
Monte Carlo Assessment of Parameter Uncertainty in Conceptual Catchment Models: The Metropolis Algorithm
,”
J. Hydrol.
211
(
1–4
), pp.
69
85
.
73.
Greenland
,
S.
, 2001, “
Sensitivity Analysis, Monte Carlo Risk Analysis, and Bayesian Uncertainty Assessment
,”
Risk Anal.
21
(
4
), pp.
579
583
.
74.
Yang
,
J.
, 2011, “
Convergence and Uncertainty Analyses in Monte-Carlo Based Sensitivity Analysis
,”
Environ. Modell. Software
26
(
4
), pp.
444
457
.
75.
Deng
,
J.
,
Anton
,
C.
, and
Wong
,
Y. S.
, 2011, “
Uncertainty Investigations in Nonlinear Aeroelastic Systems
,”
J. Comput. Appl. Mech.
235
(
13
), pp.
3910
3920
.
76.
Blatman
,
G.
, and
Sudret
,
B.
, 2011, “
Adaptive Sparse Polynomial Chaos Expansion Based on Least Angle Regression
,”
J. Comput. Phys.
230
(
6
), pp.
2345
2367
.
77.
Ghiocel
,
D. M.
, and
Ghanem
,
R. G.
, 2002, “
Stochastic Finite-Element Analysis of Seismic Soil-Structure Interaction
,”
J. Eng. Mech.
128
(
1
), pp.
66
77
.
78.
Choi
,
S.
,
Grandhi
,
R. V.
,
Canfield
,
R. A.
, and
Pettit
,
C. L.
, 2004, “
Polynomial chaos Expansion with Latin Hypercube Sampling for Estimating Response Variability
,”
AIAA J.
42
(
6
), pp.
1191
1198
.
79.
Sudret
,
B.
, 2008, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Safety
93
(
7
), pp.
964
979
.
80.
Ghanem
,
R.
, and
Spanos
,
P.
, 1991,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
Berlin
.
81.
Cinnella
,
P.
, and
Hercus
,
S. J.
, 2010, “
Robust Optimization of Dense Gas Flows Under Uncertain Operating Conditions
,”
Comput. Fluids
39
(
10
), pp.
1893
1908
.
82.
Parussini
,
L.
,
Pediroda
,
V.
, and
Poloni
,
C.
, 2010, “
Prediction of Geometric Uncertainty Effects on Fluid Dynamics by Polynomial Chaos and Fictitious Domain Method
,”
Comput. Fluids
39
(
1
), pp.
137
151
.
83.
Duvigneau
,
R.
, and
Pelletier
,
D.
, 2006, “
A Sensitivity Equation Method for Fast Evaluation of Nearby Flows and Uncertainty Analysis for Shape Parameters
,”
Int. J. Comput. Fluid Dyn.
20
(
7
), pp.
497
512
.
84.
Turgeon
,
E.
,
Pelletier
,
D.
, and
Borggaard
,
J.
, 2000, “
A Continuous Sensitivity Equation Approach to Optimal Design in Mixed Convection
,”
Numer. Heat Transfer, Part A
38
(
8
), pp.
869
885
.
85.
Turgeon
,
E.
,
Pelletier
,
D.
, and
Borggaard
,
J.
, 2001, “
Sensitivity and Uncertainty Analysis for Variable Property Flows
,”
39th AIAA Aerospace Sciences Meeting
.
86.
Al-Wali
,
K. I.
, and
Samson
,
P. J.
, 1996, “
Preliminary Sensitivity Analysis of Urban Airshed Model Simulations to Temporal and Spatial Availability of Boundary Layer Wind Measurements
,”
Atmos. Environ.
30
(
12
), pp.
2027
2042
.
87.
Van Der Perk
,
M.
, 1997, “
Effect of Model Structure on the Accuracy and Uncertainty of Results from Water Quality Models
,”
Hydrol. Processes
11
(
3
), pp.
227
239
.
88.
Duvigneau
,
R.
, and
Pelletier
,
D.
, 2005, “
Evaluation of Nearby Flows by a Shape Sensitivity Equation Method
,”
43rd AIAA Aerospace Sciences Meeting
.
89.
Colin
,
E.
,
Etienne
,
S.
,
Pelletier
,
D.
, and
Borggaard
,
J.
, 2005, “
Application of a Sensitivity Equation Method to Turbulent Flows with Heat Transfer
,”
Int. J. Therm. Sci.
44
(
11
), pp.
1024
1038
.
90.
Hristova
,
H.
,
Etienne
,
S.
,
Pelletier
,
D.
, and
Borggaard
,
J.
, 2006, “
A Continuous Sensitivity Equation Method for Time-Dependent Incompressible Laminar Flows
,”
Int. J. Numer. Methods Fluids
50
(
7
), pp.
817
844
.
91.
Mahieu
,
J.
,
Etienne
,
S.
,
Pelletier
,
D.
, and
Borggaardi
,
J.
, 2005, “
A Second-Order Sensitivity Equation Method for Laminar Flow
,”
Int. J. Comput. Fluid Dyn.
19
(
2
), pp.
143
157
.
92.
Van Belleghem
,
M.
,
Steeman
,
H.
,
Steeman
,
M.
,
Janssens
,
A.
, and
De Paepe
,
M.
, 2010, “
Sensitivity Analysis of CFD Coupled Non-Isothermal Heat and Moisture Modelling
,”
Build. Environ.
45
(
11
), pp.
2485
2496
.
93.
Borggaard
,
J.
, and
Burns
,
J.
, 1997, “
A PDE Sensitivity Equation Method for Optimal Aerodynamic Design
,”
J. Comput. Phys.
136
(
2
), pp.
366
384
.
94.
Bischof
,
C.
,
Corliss
,
G.
,
Green
,
L.
,
Griewank
,
A.
,
Haigler
,
K.
, and
Newman
,
P.
, 1992, “
Automatic Differentiation of Advanced CFD Codes for Multidisciplinary Design
,”
Comput. Sci. Eng
.
3
(
6
), pp.
625
637
.
95.
Borggaard
,
J.
, and
Verma
,
A.
, 2000, “
On Efficient Solutions to the Continuous Sensitivity Equation Using Automatic Differentiation
,”
SIAM J. Sci. Comput.
22
(
1
), pp.
39
62
.
You do not currently have access to this content.