Nanofluids belong to a new class of fluids with enhanced thermophysical properties and heat transfer performance. A broad spectrum of applications in science and engineering could potentially benefit from them. The potential market for nanofluids in heat transfer applications is estimated to be over 2 billion dollars per year, and likely to grow even further in the next few years. The available literature on nanofluids will be thoroughly reviewed in this article. Starting from their definition, and their scientific and engineering significance, the discussion will then turn to the literature. A review of the most noteworthy and recent experiments in thermal conductivity, viscosity, heat convection and specific heat will be mentioned, together with various speculations on the meaning of the results. A comprehensive list of empirical models available in the literature based on these speculations will be discussed next. To complete the literature review, numerical studies on nanofluids will also be discussed. The paper will close with a closer look at the various challenges of nanofluids, both in their production and their application. The vast majority of the experiments in the literature shows enhancement in the thermal conductivity, viscosity, and heat convection of nanofluids. However, the enhancements do not seem to follow classical effective medium theories, and an explanation for this anomalous behavior of nanofluids is still largely unknown.

References

References
1.
Keblinski
,
P.
,
Eastman
,
J. A.
, and
Cahill
,
D. G.
,
2005
, “
Nanofluids for Thermal Transport
,”
Mater. Today
,
8
,
pp.
36
44
.10.1016/S1369-7021(05)70936-6
2.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME International Mechanical Engineering Congress and Exposition Proceedings
,
D. A.
Siginer
and
H. P.
Wang
, eds.,
Vol.
231
,
pp.
99
105
.
3.
Saidur
,
R.
,
Leong
,
K. Y.
, and
Mohammad
,
H. A.
,
2011
, “
A Review on Applications and Challenges of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
15
(
3
),
pp.
1646
1668
.10.1016/j.rser.2010.11.035
4.
Keblinski
,
P.
,
Prasher
,
R.
, and
Eapen
,
J.
,
2008
, “
Thermal Conductance of Nanofluids: Is the Controversy Over?
J. Nanopart. Res.
,
10
(
7
),
pp.
1089
1097
.10.1007/s11051-007-9352-1
5.
Das
,
S. K.
,
Choi
,
S. U. S.
,
Yu
,
W.
, and
Pradeep
,
T.
,
2007
,
Nanofluids: Science and Technology
,
Wiley
,
New York
.
6.
Wang
,
L.
, and
Fan
,
J.
,
2010
, “
Nanofluids Research: Key Issues
,”
Nanoscale Res. Lett.
,
5
(
8
),
pp.
1241
1252
.10.1007/s11671-010-9638-6
7.
Sen
,
M.
, and
Paolucci
,
S.
,
2006
, “
The Use of Ionic Liquids in Refrigeration
,” Proceedings of the ASME International Mechanical Engineering Congress and Exposition,
Paper No. IMECE 2006–14712
,
pp.
131
134
.
8.
Nguyen
,
C. T.
,
Roy
,
G.
,
Gauthier
,
C.
, and
Galanis
,
N.
,
2007
, “
Heat Transfer Enhancement Using Al2O3-Water Nanofluid for an Electronic Liquid Cooling System
,”
Appl. Therm. Eng.
27
(
8–9
),
pp.
1501
1506
.10.1016/j.applthermaleng.2006.09.028
9.
Escher
,
W.
,
Brunschwiler
,
T.
,
Shalkevich
,
N.
,
Shalkevich
,
A.
,
Bürgi
,
T.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2011
, “
On the Cooling of Electronics With Nanofluids
,”
J. Heat Transfer
133
(
5
),
p.
051401
.10.1115/1.4003283
10.
Verma
,
A.
,
Jiang
,
W.
,
Abu Safe
,
H. H.
,
Brown
,
W. D.
, and
Malshe
,
A. P.
,
2008
, “
Tribological Behavior of Deagglomerated Active Inorganic Nanoparticles for Advanced Lubrication
,”
Tribol. Trans.
51
(
5
),
pp.
673
678
.10.1080/10402000801947691
11.
Shen
,
B.
,
Shih
,
A. J.
, and
Tung
,
S. C.
,
2008
, “
Application of Nanofluids in Minimum Quantity Lubrication Grinding
,”
Tribol. Trans.
51
(
6
),
pp.
730
737
.10.1080/10402000802071277
12.
Lee
,
J. K.
,
Koo
,
J.
,
Hong
,
H.
, and
Kang
,
Y. T.
,
2010
, “
The Effects of Nanoparticles on Absorption Heat and Mass Transfer Performance in NH3/H2O Binary Nanofluids
,”
Int. J. Refrig.
,
33
(
2
),
pp.
269
275
.10.1016/j.ijrefrig.2009.10.004
13.
Nam
,
J. S.
,
Lee
,
P.-H.
, and
Lee
,
S. W.
,
2011
, “
Experimental Characterization of Micro-Drilling Process Using Nanofluid Minimum Quantity Lubrication
,”
Int. J. Mach. Tool. Manuf.
,
51
(
7–8
),
pp.
649
652
.10.1016/j.ijmachtools.2011.04.005
14.
Wang
,
B.
,
Wang
,
X.
,
Lou
,
W.
, and
Hao
,
J.
,
2011
, “
Gold-Ionic Liquid Nanofluids With Preferably Tribological Properties and Thermal Conductivity
,”
Nanoscale Res. Lett.
,
6
(
1
),
p.
259
.10.1186/1556-276X-6-259
15.
Nagpal
,
S.
,
2008
, “
Nanofluids to be Used to Make New Types of Cameras, Microdevices, and Displays
,” avaiable at http://www.nanotech-now.com/news.cgi?story_id=28101, last accessed February 19, 2008.
16.
Srikant
,
R. R.
,
Rao
,
D. N.
,
Subrahmanyam
,
M. S.
, and
Vamsi Krishna
,
P.
,
2009
, “
Applicability of Cutting Fluids With Nanoparticle Inclusion as Coolants in Machining
,”
J. Eng. Tribol.
,
223
(
2
),
pp.
221
225
.10.1243/13506501JET463
17.
Wambsganss
,
M. W.
,
1999
, “
Thermal Management Concepts for Higher-Efficiency Heavy Vehicles
,”
Tech. Report
,
SAE Technical Paper Series
.
18.
Choi
,
C.
,
Yoo
,
H. S.
, and
Oh
,
J. M.
,
2008
, “
Preparation and Heat Transfer Properties of Nanoparticle-in-Transformer Oil Dispersions as Advanced Energy-Efficient Coolants
,”
Curr. Appl. Phys.
,
8
(
6
),
pp.
710
712
.10.1016/j.cap.2007.04.060
19.
Ollivier
,
E.
,
Bellettre
,
J.
,
Tazerout
,
M.
, and
Roy
,
G.
,
2006
, “
Detection of Knock Occurrence in a Gas SI Engine from a Heat Transfer Analysis
,”
Energy Convers. Manage.
,
47
(
7–8
),
pp.
879
893
.10.1016/j.enconman.2005.06.019
20.
Tzeng
,
S. C.
,
Lin
,
C. W.
, and
Huang
,
K. D.
,
2005
, “
Heat Transfer Enhancement of Nanofluids in Rotary Blade Coupling of Four-Wheel-Drive Vehicles
,”
Acta Mech. Solid Sinica
179
(
1–2
),
pp.
11
23
.10.1007/s00707-005-0248-9
21.
Bai
,
M.
,
Xu
,
Z.
, and
Lv
,
J.
,
2008
, “
Application of Nanofluids in Engine Cooling System
,”
Tech. Report
,
SAE Technical Paper
.
22.
Timofeeva
,
E.
,
Smith
,
D.
,
Yu
,
W.
,
Routbort
,
J. L.
, and
Singh
,
D.
,
2009
, “
Nanofluid Development for Engine Cooling Systems
,”
Tech. Report
,
Argonne National Laboratory
.
23.
Routbort
,
J. L.
,
Timofeeva
,
E.
,
Smith
,
D.
,
France
,
D.
,
Yu
,
W.
, and
Singh
,
D.
,
2009
, “
Overview of Thermal Management. Vehicle Technologies—Annual Review
,”
Tech. Report
,
Argonne National Laboratory
.
24.
Ma
,
K.-Q.
, and
Liu
,
J.
,
2007
, “
Nano Liquid-Metal Fluid as Ultimate Coolant
,”
Phys. Lett. A
,
361
(
3
),
pp.
252
256
.10.1016/j.physleta.2006.09.041
25.
Leong
,
K. Y.
,
Saidur
,
R.
,
Kazi
,
S. N.
, and
Mamun
,
A. H.
,
2010
, “
Performance Investigation of an Automotive Car Radiator Operated With Nanofluid-Based Coolants (Nanofluid as a Coolant in a Radiator)
,”
Appl. Therm. Eng.
,
30
(
17–18
),
pp.
2685
2692
.10.1016/j.applthermaleng.2010.07.019
26.
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
,
Jamnani
,
M. S.
, and
Hoseini
,
S. M.
,
2011
. “
Improving the Cooling Performance of Automobile Radiator With Al2O3 /Water Nanofluid
,”
Appl. Therm. Eng.
,
31
(
10
),
pp.
1833
1838
.10.1016/j.applthermaleng.2011.02.029
27.
Naphon
,
P.
,
Klangchart
,
S.
, and
Wongwises
,
S.
,
2009
, “
Numerical Investigation on the Heat Transfer and Flow in the Mini-Fin Heat Sink for CPU
,”
Int. Comm. Heat Mass Transfer
,
36
(
8
),
pp.
834
840
.10.1016/j.icheatmasstransfer.2009.06.010
28.
Kulkarni
,
D. P.
,
Vajjha
,
R. S.
,
Das
,
D. K.
, and
Oliva
,
D.
,
2008
, “
Application of Aluminum Oxide Nanofluids in Diesel Electric Generator as Jacket Water Coolant
,”
Appl. Therm. Eng.
,
28
(
14–15
),
pp.
1774
1781
.10.1016/j.applthermaleng.2007.11.017
29.
Kuo
,
K. K.
,
Risha
,
G. A.
,
Evans
,
B. J.
, and
Boyer
,
E.
,
2004
, “
Potential Usage of Energetic Nano-Sized Powders for Combustion and Rocket Propulsion
,”
Mater. Res. Soc. Symp. Proc.
,
800
,
pp.
3
14
.
30.
Pivkina
,
A.
,
Ulyanova
,
P.
,
Frolov
,
Y.
,
Zavyalov
,
S.
, and
Schoonman
,
J.
,
2004
, “
Nanomaterials for Heterogeneous Combustion
,”
Propellants, Explos., Pyrotech.
,
29
(
1
),
pp.
39
48
.10.1002/prep.v29:1
31.
Risha
,
G. A.
,
Boyer
,
E.
,
Evans
,
B.
,
Kuo
,
K. K.
, and
Malek
,
R.
,
2004
, “
Characterization of Nano-sized Particles for Propulsion Applications
,”
2003 MRS Fall Meeting
,
pp.
243
254
.
32.
DeLuca
,
L. T.
,
Galfetti
,
L.
,
Severini
,
F.
,
Meda
,
L.
,
Marra
,
G.
,
Vorozhtsov
,
A. B.
,
Sedoi
,
V.
,
S.
, and
Babuk
,
V. A.
,
2005
, “
Burning of Nano-Aluminized Composite Rocket Propellants
,”
Combust., Explos., Shock Waves
,
41
(
6
),
pp.
680
692
.10.1007/s10573-005-0080-5
33.
Galfetti
,
L.
,
DeLuca
,
L. T.
,
Severini
,
F.
,
Colombo
,
G.
,
Meda
,
L.
, and
Marra
,
G.
,
2007
, “
Pre and Post-Burning Analysis of Nano-Aluminized Solid Rocket Propellants
,”
Aerosp. Sci. Technol.
,
11
(
1
),
pp.
26
32
.10.1016/j.ast.2006.08.005
34.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
,
2005
, “
Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)
,”
Phys. Rev. Lett.
,
94
(
2
),
p.
25901
.10.1103/PhysRevLett.94.025901
35.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
,
2006
, “
Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids
,”
J. Heat Transfer
,
128
(
6
),
pp.
588
595
.10.1115/1.2188509
36.
Prasher
,
R.
,
Phelan
,
P. E.
, and
Bhattacharya
,
P.
,
2006
, “
Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid)
,”
Nano Lett.
,
6
(
7
),
pp.
1529
1534
.10.1021/nl060992s
37.
Krishnamurthy
,
S.
,
Bhattacharya
,
P.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
,
2006
, “
Enhanced Mass Transport in Nanofluids
,”
Nano Lett.
,
6
(
3
),
pp.
419
423
.10.1021/nl0522532
38.
Prasher
,
R. S.
, and
Phelan
,
P. E.
,
2005
, “
Modeling of Radiative and Optical Behavior of Nanofluids Based on Multiple and Dependent Scattering Theories
,” Proceedings of the ASME Heat Transfer Division 2005,
Paper No. IMECE2005-80302
, Vol. 376,
pp.
739
743
.
39.
Tyagi
,
H.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
,
2007
, “
Predicted Efficiency of a Nanofluid-Based Direct Absorption Solar Receiver
,” Proceedings of the Energy Sustainability Conference,
Paper No. ES2007-36139
,
pp.
729
736
.
40.
Saidur
,
R.
,
Ahamed
,
J. U.
, and
Masjuki
,
H. H.
,
2010
, “
Energy, Exergy and Economic Analysis of Industrial Boilers
,”
Energy Policy
38
(
5
),
pp.
2188
2197
.10.1016/j.enpol.2009.11.087
41.
Tyagi
,
H.
,
Phelan
,
P.
, and
Prasher
,
R.
,
2009
, “
Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector
,”
J. Sol. Energy Eng.
,
131
(
4
),
p.
041004
.10.1115/1.3197562
42.
Tyagi
,
H.
,
2008
, “
Radiative and Combustion Properties of Nanoparticle-Laden Liquids
,”
Ph.D. thesis
,
Arizona State University
,
Tempe, AZ
.
43.
Natarajan
,
E.
, and
Sathish
,
R.
,
2009
, “
Role of Nanofluids in Solar Water Heater
,”
Int. J. Adv. Manuf. Technol.
,
pp.
3
7
.
44.
Mapa
,
L. B.
, and
Sana
,
M.
,
2005
, “
Heat Transfer in Mini Heat Exchanger Using Nanofluids
,”
2005 IL/IN Sectional Conference of the American Society for Engineering Education
,
Northern Illinois University
.
45.
Pantzali
,
M. N.
,
Mouza
,
A. A.
, and
Paras
,
S. V.
,
2009
, “
Investigating the Efficacy of Nanofluids as Coolants in Plate Heat Exchangers (PHE)
,”
Chem. Eng. Sci.
,
64
(
14
),
pp.
3290
3300
.10.1016/j.ces.2009.04.004
46.
Vajjha
,
R. S.
,
Das
,
D. K.
, and
Namburu
,
P. K.
,
2010
, “
Numerical Study of Fluid Dynamic and Heat Transfer Performance of Al2O3 and CuO Nanofluids in the Flat Tubes of a Radiator
,”
Int. J. Heat Fluid Flow
,
31
(
4
),
pp.
613
621
.10.1016/j.ijheatfluidflow.2010.02.016
47.
Firouzfar
,
E.
,
Soltanieh
,
M.
,
Noie
,
S. H.
, and
Saidi
,
S. H.
,
2011
, “
Energy Saving in HVAC Systems Using Nanofluid
,”
Appl. Therm. Eng.
,
31
(
8–9
),
pp.
1543
1545
.10.1016/j.applthermaleng.2011.01.029
48.
Wilson
,
C. A.
,
2006
, “
Experimental Investigation of Nanofluid Oscillating Heat Pipes
,”
Master thesis
,
University of Missouri
,
Columbia, MO
.
49.
Naphon
,
P.
,
Assadamongkol
,
P.
, and
Borirak
,
T.
,
2008
, “
Experimental Investigation of Titanium Nanofluids on the Heat Pipe Thermal Efficiency
,”
Int. Comm. Heat Mass Transfer
35
(
10
),
pp.
1316
1319
.10.1016/j.icheatmasstransfer.2008.07.010
50.
Yu
,
W.
,
France
,
D. M.
,
Choi
,
S. U. S.
, and
Routbort
,
J. L.
,
2007
, “
Review and Assessment of Nanofluid Technology for Transportation and Other Applications
,”
Tech. Rep.
,
Energy Systems Division, Argonne National Laboratory
.
51.
Sridhara
,
V.
,
Gowrishankar
,
B. S.
,
Snehalatha
,
C.
, and
Satapathy
,
L. N.
,
2009
, “
Nanofluids–A New Promising Fluid for Cooling
,”
Trans. Indian Ceramic Soc.
,
68
(
1
),
pp.
1
17
.
52.
Zhang
,
L.
,
Ding
,
Y.
,
Povey
,
M.
, and
York
,
D.
,
2008
, “
ZnO Nanofluids—A Potential Antibacterial Agent
,”
Prog. Nat. Sci.
,
18
(
8
),
pp.
939
944
.10.1016/j.pnsc.2008.01.026
53.
Hirota
,
K.
,
Sugimoto
,
M.
,
Kato
,
M.
,
Tsukagoshi
,
K.
,
Tanigawa
,
T.
, and
Sugimoto
,
H.
,
2010
, “
Preparation of Zinc Oxide Ceramics With a Sustainable Antibacterial Activity Under Dark Conditions
,”
Ceram. Int.
,
36
(
2
),
pp.
497
506
.10.1016/j.ceramint.2009.09.026
54.
Buongiorno
,
J.
, and
Hu
,
L.
,
2009
, “
Innovative Technologies: Two-Phase Heat Transfer in Water-Based Nanofluids for Nuclear Applications
,
Tech. Report
,
Massachusetts Institute of Technology
.
55.
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2008
, “
A Review on Nanofluids—Part II: Experiments and Applications
,”
Braz. J. Chem. Eng.
,
25
(
4
),
pp.
631
648
.10.1590/S0104-66322008000400002
56.
Shen
,
B.
,
2006
, “
Minimum Quantity Lubrication Grinding Using Nanofluids
,”
Ph.D. thesis
,
University of Michigan
,
Ann Arbor, MI
.
57.
Ying
,
J. Y.
, and
Sun
,
T.
,
1997
, “
Research Needs Assessment on Nanostructured Catalysts
,”
J. Electroceram.
,
1
(
3
),
pp.
219
238
.10.1023/A:1009931726749
58.
Scott
,
S. L.
,
Crudden
,
C. M.
, and
Jones
,
C. W. E.
,
2003
,
Nanostructured Catalysts
,
Springer
,
New York
.
59.
Elcock
,
D.
,
2007
, “
Potential Impacts of Nanotechnology on Energy Transmission Applications and Needs
,”
Tech. Report
,
Environmental Science Division, Argonne National Laboratory
.
60.
Mokhatab
,
S.
,
Fresky
,
M. A.
, and
Islam
,
M.
,
2006
, “
Applications of Nanotechnology in Oil and Gas E&P
,”
JPT online
,
58
(
4
), available at http://www.spe.org/spe-app/spe/jpt/2006/04/eandp_nanotechnology_applications.htm#.
61.
Davidson
,
J. L.
,
2009
, “
Nanofluid for Cooling Enhancement of Electrical Power Equipment
,”
Tech. Report
,
Department of Electrical Engineering, Vanderbilt University
.
62.
Kim
,
J.
,
Kang
,
Y. T.
, and
Choi
,
C. K.
,
2007
, “
Soret and Dufour Effects on Convective Instabilities in Binary Nanofluids for Absorption Application
,”
Int. J. Refrig.
,
30
(
2
),
pp.
323
328
.10.1016/j.ijrefrig.2006.04.005
63.
Wu
,
S.
,
Zhu
,
D.
,
Li
,
X.
,
Li
,
H.
, and
Lei
,
J.
,
2009
, “
Thermal Energy Storage Behavior of Al2O3-H2O Nanofluids
,”
Thermochim. Acta
,
483
(
1–2
),
pp.
73
77
.10.1016/j.tca.2008.11.006
64.
Jiang
,
W.
,
Ding
,
G.
, and
Peng
,
H.
,
2009
, “
Measurement and Model on Thermal Conductivities of Carbon Nanotube Nanorefrigerants
,”
Int. J. Therm. Sci.
,
48
(
6
),
pp.
1108
1115
.10.1016/j.ijthermalsci.2008.11.012
65.
Wang
,
R. X.
,
Hao
,
B.
,
Xie
,
G. Z.
, and
Li
,
H. Q.
,
2003
, “
A Refrigerating-System Using HFC134A and Mineral Lubricant Appended With N-TiO2 (R) as Working Fluids
,” in
Proceedings of the 4th International Symposium on HAVC
,
Tsinghua University Press
,
Beijing, China
,
pp.
882
892
.
66.
Wang
,
K. J.
,
Ding
,
G. L.
, and
Jiang
,
W. T.
,
2006
, “
Nano-Scale Thermal Transporting and its Use in Engineering
,” in
Proceedings of the 4th Symposium on Refrigeration and Air Conditioning
Southeast University Press
,
Nanjing, China
,
pp.
66
75
.
67.
Li
,
P.
,
Wu
,
X. M.
, and
Li
,
H.
,
2006
, “
Pool Boiling Heat Transfer Experiments of Refrigerants With Nanoparticle TiO2
,” in
Proceedings of the 12th Symposium on Engineering Thermophysics
,
Chinese Institute of Engineering Thermophysics
,
Chinese Academy of Sciences, Beijing, China
,
pp.
325
328
.
68.
Park
,
K.
, and
Jung
,
D.
,
2007
, “
Boiling Heat Transfer Enhancement With Carbon Nanotubes for Refrigerants Used in Building Air-Conditioning
,”
Energy Build.
,
39
(
9
),
pp.
1061
1064
.10.1016/j.enbuild.2006.12.001
69.
Bi
,
S.
,
Shi
,
L.
, and
Zhang
,
L.
,
2008
, “
Application of Nanoparticles in Domestic Refrigerators
,”
Appl. Therm. Eng.
,
28
(
14–15
),
pp.
1834
1843
.10.1016/j.applthermaleng.2007.11.018
70.
Peng
,
H.
,
Ding
,
G.
,
Jiang
,
W.
,
Hu
,
H.
, and
Gao
,
Y.
,
2009
, “
Measurement and Correlation of Frictional Pressure Drop of Refrigerant-Based Nanofluid Flow Boiling inside a Horizontal Smooth Tube
,”
Int. J. Refrig.
,
32
(
7
),
pp.
1756
1764
.10.1016/j.ijrefrig.2009.06.005
71.
Naphon
,
P.
,
Thongkum
,
D.
, and
Assadamongkol
,
P.
,
2009
, “
Heat Pipe Efficiency Enhancement With Refrigerant-Nanoparticles Mixtures
,”
Energy Convers. Manage.
,
50
(
3
),
pp.
772
776
.10.1016/j.enconman.2008.09.045
72.
Liu
,
D.
, and
Yang
,
C.
,
2007
, “
Effects of Nano-Particles on Pool Boiling Heat Transfer of Refrigerant 141b
,” in
ASME 5th International Conference on Nanochannels, Microchannels and Minichannels
,
pp.
789
793
.
73.
Trisaksri
,
V.
, and
Wongwises
,
S.
,
2009
, “
Nucleate Pool Boiling Heat Transfer of TiO2-R141b Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
),
pp.
1582
1588
.10.1016/j.ijheatmasstransfer.2008.07.041
74.
Ding
,
G.
,
Peng
,
H.
,
Jiang
,
W.
, and
Gao
,
Y.
,
2009
, “
The Migration Characteristics of Nanoparticles in the Pool Boiling Process of Nanorefrigerant and Nanorefrigerant-oil Mixture
,”
Int. J. Refrig.
,
32
(
1
),
pp.
114
123
.10.1016/j.ijrefrig.2008.08.007
75.
Kedzierski
,
M. A.
,
2009
, “
Effect of CuO Nanoparticle Concentration on R134a/Lubricant Pool-Boiling Heat Transfer
,”
J. Heat Transfer
,
131
(
4
),
p.
043205
.10.1115/1.3072926
76.
Saidur
,
R.
,
Kazi
,
S. N.
,
Hossain
,
M. S.
,
Rahman
,
M. M.
, and
Mohammed
,
H. A.
,
2011
, “
A Review on the Performance of Nanoparticles Suspended With Refrigerants and Lubricating Oils in Refrigeration Systems
,”
Renewable Sustainable Energy Rev.
,
15
(
1
),
pp.
310
323
.10.1016/j.rser.2010.08.018
77.
Kulkarni
,
D. P.
,
Das
,
D. K.
, and
Vajjha
,
R. S.
,
2009
, “
Application of Nanofluids in Heating Buildings and Reducing Pollution
,”
Appl. Energy
,
86
(
12
),
pp.
2566
2573
.10.1016/j.apenergy.2009.03.021
78.
Shukla
,
R. K.
, and
Dhir
,
V. K.
,
2005
, “
Numerical Study of the Effective Thermal Conductivity of Nanofluids
,” in
Proc. ASME Summer Heat Transfer Conference
,
pp.
1
5
.
79.
Sarkar
,
S.
, and
Selvam
,
R. P.
,
2007
, “
Molecular Dynamic Simulation of Effective Thermal Conductivity and Study of Enhanced Thermal Transport Mechanism in Nanofluids
,”
J. Appl. Phys.
,
102
,
p.
74302
.10.1063/1.2785009
80.
Li
,
L.
,
Zhang
,
W.
,
Ma
,
H. B.
, and
Yang
,
M.
,
2008
, “
An Investigation of Molecular Layering at the Liquid-Solid Interface in Nanofluids by Molecular Dynamics Simulation
,”
Phys. Lett. A
,
372
(
25
),
pp.
4541
4544
.10.1016/j.physleta.2008.04.046
81.
Sankar
,
N.
,
Mathew
,
N.
, and
Sobhan
,
C. B.
,
2008
, “
Molecular Dynamics Modeling of Thermal Conductivity Enhancement in Metal Nanoparticle Suspensions
,”
Int. Comm. Heat Mass Transfer
,
35
(
7
),
pp.
867
872
.10.1016/j.icheatmasstransfer.2008.03.006
82.
Ghosh
,
M. M.
,
Roy
,
S.
,
Pabi
,
S. K.
, and
Ghosh
,
S.
,
2011
, “
A Molecular Dynamics-Stochastic Model for Thermal Conductivity of Nanofluids and its Experimental Validation
,”
J. Nanosci. Nanotechnol.
,
11
(
3
),
pp.
2196
2207
.10.1166/jnn.2011.3557
83.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
S. U. S.
,
1999
, “
Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
J. Thermophys. Heat Transfer
,
13
(
4
),
pp.
474
480
.10.2514/2.6486
84.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
2002
, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
,
45
(
4
),
pp.
855
863
.10.1016/S0017-9310(01)00175-2
85.
Yu
,
W.
,
Hull
,
J. H.
, and
Choi
,
S. U. S.
, “
Stable and Highly Conductive Nanofluids: Experimental and Theoretical Studies
,” Proc. 6th ASME-JSME Thermal Engineering Joint Conf.,
Paper No. TED-AJ03–384
, ASME, New York.
86.
Patel
,
H.
,
Das
,
S. K.
,
Sundararajan
,
T.
,
Sreekumaran
,
N. A.
,
George
,
B.
, and
Pradeep
,
T.
,
2003
, “
Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects
,”
Appl. Phys. Lett.
,
83
(
14
),
pp.
2931
2933
.10.1063/1.1602578
87.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
J. Heat Transfer
,
125
(
4
),
pp.
567
574
.10.1115/1.1571080
88.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2004
, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
,
6
(
6
),
pp.
577
588
.10.1007/s11051-004-3170-5
89.
Bhattacharya
,
P.
,
Saha
,
S. K.
,
Yadav
,
A.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
,
2004
, “
Brownian Dynamics Simulation to Determine the Effective Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
95
(
11
),
pp.
6492
6494
.10.1063/1.1736319
90.
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2004
, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
,
84
(
21
),
pp.
4316
4318
.10.1063/1.1756684
91.
Kumar
,
D.
,
Patel
,
H.
,
Kumar
,
V.
,
Sundararajan
,
T.
,
Pradeep
,
T.
, and
Das
,
S. K.
,
2004
, “
Model for Heat Conduction in Nanofluids
,”
Phys. Rev. Lett.
,
93
(
14
),
p.
4316
.10.1103/PhysRevLett.93.144301
92.
Patel
,
H. E.
,
Sundararajan
,
T.
,
Pradeep
,
T.
,
Dasgupta
,
A.
,
Dasgupta
,
N.
, and
Das
,
S. K.
,
2005
, “
A Micro-Convection Model for Thermal Conductivity of Nanofluids
,”
Pramana, J. Phys.
,
65
(
5
),
pp.
863
869
.10.1007/BF02704086
93.
Ren
,
Y.
,
Xie
,
H.
, and
Cai
,
A.
,
2005
, “
Effective Thermal Conductivity of Nanofluids Containing Spherical Nanoparticles
,”
J. Phys. D: Appl. Phys.
,
38
(
21
),
pp.
3958
3961
.10.1088/0022-3727/38/21/019
94.
Evans
,
W.
,
Fish
,
J.
, and
Keblinski
,
P.
,
2006
, “
Role of Brownian Motion Hydrodynamics on Nanofluid Thermal Conductivity
,”
Appl. Phys. Lett.
,
88
(
9
),
p.
93116
.10.1063/1.2179118
95.
Beck
,
M. P.
,
Sun
,
T.
, and
Teja
,
A. S.
,
2007
, “
The thermal Conductivity of Alumina Nanoparticles Dispersed in Ethylene Glycol
,”
Fluid Phase Equilib.
,
260
(
2
),
pp.
275
278
.10.1016/j.fluid.2007.07.034
96.
Shukla
,
R. K.
, and
Dhir
,
V. K.
,
2008
, “
Effect of Brownian Motion on Thermal Conductivity of Nanofluids
,”
J. Heat Transfer
,
130
(
4
),
p.
042406
.10.1115/1.2818768
97.
Nie
,
C.
,
Marlow
,
W. H.
, and
Hassan
,
Y. A.
,
2008
, “
Discussion of Proposed Mechanisms of Thermal Conductivity Enhancement in Nanofluids
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
),
pp.
1342
1348
.10.1016/j.ijheatmasstransfer.2007.11.034
98.
Godson
,
L.
,
Raja
,
B.
,
Lal
,
D. M.
, and
Wongwises
,
S.
,
2010
, “
Experimental Investigation on the Thermal Conductivity and Viscosity of Silver-Deionized Water Nanofluid
,”
Exp. Heat Transfer
,
23
(
4
),
pp.
317
332
.10.1080/08916150903564796
99.
Kondaraju
,
S.
,
Jin
,
E. K.
, and
Lee
,
J. S.
,
2010
, “
Direct Numerical Simulation of Thermal Conductivity of Nanofluids: The Effect of Temperature Two-Way Coupling and Coagulation of Particles
,”
Int. J. Heat Mass Transfer
,
53
(
5–6
),
pp.
862
869
.10.1016/j.ijheatmasstransfer.2009.11.038
100.
Yu
,
W.
, and
Choi
,
S. U. S.
,
2003
, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,”
J. Nanopart. Res.
,
5
,
pp.
167
171
.10.1023/A:1024438603801
101.
Yu
,
W.
, and
Choi
,
S. U. S.
,
2004
, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Hamilton-Crosser Model
,”
J. Nanopart. Res.
,
6
,
pp.
355
361
.10.1007/s11051-004-2601-7
102.
Xue
,
L.
,
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
2004
, “
Effect of Liquid Layering at the Liquid-Solid Interface on Thermal Transport
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
),
pp.
4277
4284
.10.1016/j.ijheatmasstransfer.2004.05.016
103.
Eastman
,
J. A.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Keblinski
,
P.
,
2004
, “
Thermal Transport in Nanofluids
,”
Annu. Rev. Mater. Res.
,
34
(
1
),
pp.
219
246
.10.1146/annurev.matsci.34.052803.090621
104.
Xie
,
H. Q.
,
Fujii
,
M.
, and
Zhang
,
X.
,
2005
, “
Effect of Interfacial Nanolayer on the Effective Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
Int. J. Heat Mass Transfer
,
48
(
14
),
pp.
2926
2932
.10.1016/j.ijheatmasstransfer.2004.10.040
105.
Evans
,
W.
,
Prasher
,
R.
,
Fish
,
J.
,
Meakin
,
P.
,
Phelan
,
P.
, and
Keblinski
,
P.
,
2008
, “
Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposites and Colloidal Nanofluids
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
),
pp.
1431
1438
.10.1016/j.ijheatmasstransfer.2007.10.017
106.
Chandrasekar
,
M.
,
Suresh
,
S.
,
Srinivasan
,
R.
, and
Bose
,
A. C.
,
2009
, “
New Analytical Models to Investigate Thermal Conductivity of Nanofluids
,”
J. Nanosci. Nanotechnol.
,
9
(
1
),
pp.
533
538
.10.1166/jnn.2009.J025
107.
Xuan
,
Y. M.
,
Li
,
Q.
, and
Hu
,
W. F.
,
2003
, “
Aggregation Structure and Thermal Conductivity of Nanofluids
,”
AIChE J.
,
49
(
4
),
pp.
1038
1043
.10.1002/aic.v49:4
108.
Wang
,
B.-X.
,
Zhou
,
L.-P.
, and
Peng
,
X.-F.
,
2003
, “
A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid With Suspension of Nanoparticles
,”
Int. J. Heat Mass Transfer
,
46
(
14
),
pp.
2665
2672
.10.1016/S0017-9310(03)00016-4
109.
Zhu
,
H.
,
Zhang
,
C.
,
Liu
,
S.
,
Tang
,
Y.
, and
Yin
,
Y.
,
2006
, “
Effects of Nanoparticle Clustering and Alignment on Thermal Conductivities of Fe3O4 Aqueous Nanofluids
,”
Appl. Phys. Lett.
,
89
(
2
),
p.
23123
.10.1063/1.2221905
110.
Prasher
,
R.
,
Phelan
,
P. E.
, and
Bhattacharya
,
P.
,
2006
, “
Effect of Aggregation on Thermal Conduction in Colloidal Nanofluids
,”
Appl. Phys. Lett.
,
89
(
14
),
p.
143119
.10.1063/1.2360229
111.
Feng
,
Y.
,
Yu
,
B.
,
Xu
,
P.
, and
Zou
,
M.
,
2007
, “
The Effective Thermal Conductivity of Nanofluids Based on the Nanolayer and the Aggregation of Nanoparticles
,”
J. Phys. D: Appl. Phys.
,
40
(
10
),
pp.
3164
3171
.10.1088/0022-3727/40/10/020
112.
Karthikeyan
,
N. R.
,
Philip
,
J.
, and
Raj
,
B.
,
2008
, “
Effect of Clustering on the Thermal Conductivity of Nanofluids
,”
Mater. Chem. Phys.
,
109
(
1
),
pp.
50
55
.10.1016/j.matchemphys.2007.10.029
113.
Xu
,
J.
,
Yu
,
B.-M.
, and
Yun
,
M.-J.
,
2006
, “
Effect of Clusters on Thermal Conductivity in Nanofluids
,”
Chin. Phys. Lett.
,
23
(
10
),
pp.
2819
2822
.10.1088/0256-307X/23/10/053
114.
Li
,
Y.-H.
,
Qu
,
W.
, and
Feng
,
J.-C.
,
2008
, “
Temperature Dependence of Thermal Conductivity of Nanofluids
,”
Chin. Phys. Lett.
,
25
(
9
),
pp.
3319
3322
.10.1088/0256-307X/25/9/060
115.
Philip
,
J.
,
Shima
,
P. D.
, and
Raj
,
B.
,
2008
, “
Evidence for Enhanced Thermal Conduction Through Percolating Structures in Nanofluids
,”
Nanotechnology
,
19
(
30
),
p.
305706
.10.1088/0957-4484/19/30/305706
116.
Domingues
,
G.
,
Volz
,
S.
,
Joulain
,
K.
, and
Greffet
,
J.-J.
,
2005
, “
Heat Transfer Between Two Nanoparticles Through Near Field Interaction
,”
Phys. Rev. Lett.
,
94
(
8
),
p.
85901
.10.1103/PhysRevLett.94.085901
117.
Ben-Abdallah
,
P.
,
2006
, “
Heat Transfer Through Near-Field Interactions in Nanofluids
,”
Appl. Phys. Lett.
,
89
(
11
),
p.
113117
.10.1063/1.2349857
118.
Prevenslik
,
T.
,
2009
, “
Nanofluids by Quantum Mechanics
,” in
ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer, Vol.
1
,
pp.
387
387
.10.1115/MNHMT2009-18014
119.
Chandrasekar
,
M.
, and
Suresh
,
S.
,
2009
, “
A Review on the Mechanisms of Heat Transport in Nanofluids
,”
Heat Transfer Eng.
,
30
(
14
),
pp.
1136
1150
.10.1080/01457630902972744
120.
Brown
,
R.
,
1828
, “
A Brief Account of Microscopical Observations Made in the Months of June, July and August, 1827, on the Particles Contained in the Pollen of Plants; and on the General Existence of Active Molecules in Organic and Inorganic Bodies
,”
Philos. Mag.
,
4
,
pp.
161
173
.
121.
Einstein
,
A.
,
1906
, “
The Theory of the Brownian Motion
,”
Ann. Phys.
19
(
2
),
pp.
371
381
.10.1002/andp.v324:2
122.
Kubo
,
R.
,
Toda
,
M.
, and
Hashitsume
,
N.
,
2003
,
Statistical Physics II: Nonequilibrium Statistical Mechanics
,
3rd ed.
,
Springer Verlag
,
New York
.
123.
Einstein
,
A.
,
1906
, “
A New Determination of the Molecular Dimensions
,”
Ann. Phys.
19
(
2
),
pp.
289
306
.10.1002/andp.v324:2
124.
Bastea
,
S.
,
2005
, “
Comment on ‘Model for Heat Conduction in Nanofluids,
Phys. Rev. Lett.
,
95
(
1
),
p.
19401
.10.1103/PhysRevLett.95.019401
125.
Sergis
,
A.
, and
Hardalupas
,
Y.
,
2011
, “
Anomalous Heat Transfer Modes of Nanofluids: A Review Based on Statistical Analysis
,”
Nanoscale Res. Lett.
,
6
(
1
),
p.
391
.10.1186/1556-276X-6-391
126.
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2007
, “
Effects of Various Parameters on Nanofluid Thermal Conductivity
,”
J. Heat Transfer
,
129
(
5
),
p.
617
.10.1115/1.2712475
127.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2005
, “
Laminar Nanofluid Flow in Microheat-Sinks
,”
Int. J. Heat Mass Transfer
,
48
(
13
),
pp.
2652
2661
.10.1016/j.ijheatmasstransfer.2005.01.029
128.
Keblinski
,
P.
, and
Cahill
,
D. G.
,
2005
, “
Comment on ‘Model for Heat Conduction in Nanofluids,’
Phys. Rev. Lett.
,
95
(
20
),
p.
209401
.10.1103/PhysRevLett.95.209401
129.
Xue
,
Q.
,
2003
, “
Model for Effective Thermal Conductivity of Nanofluids
,”
Phys. Lett. A
,
307
(
5–6
),
pp.
313
317
.10.1016/S0375-9601(02)01728-0
130.
Kapitza
,
P. L.
,
1941
, “
The Study of Heat Transfer in Helium II
,”
J. Phys. (USSR)
,
4
(
1–6
),
pp.
181
210
.
131.
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1989
, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
,
61
(
3
),
pp.
605
668
.10.1103/RevModPhys.61.605
132.
Nakayama
,
T.
,
1985
, “
New Channels of Energy Transfer Across a Solid Liquid He Interface
,”
J. Phys. Condens. Matter
,
18
(
22
),
pp.
667
671
.10.1088/0022-3719/18/22/002
133.
Puliti
,
G.
,
Paolucci
,
S.
, and
Sen
,
M.
,
2011
, “
Thermodynamic Properties of Gold-Water Nanolayer Mixtures Using Molecular Dynamics
,”
J. Nanopart. Res.
,
13
(
9
),
pp.
4277
4293
.10.1007/s11051-011-0373-4
134.
Lee
,
D.
,
2007
, “
Thermophysical Properties of Interfacial Layer in Nanofluids
,”
Langmuir
,
23
(
11
),
pp.
6011
6018
.10.1021/la063094k
135.
Tillman
,
P.
, and
Hill
,
J.
,
2007
, “
Determination of Nanolayer Thickness for a Nanofluid
,”
Int. Comm. Heat Mass Transfer
,
34
(
4
),
pp.
399
407
.10.1016/j.icheatmasstransfer.2007.01.011
136.
Yoo
,
D.-H.
,
Hong
,
K. S.
,
Hong
,
T. E.
,
Eastman
,
J. A.
, and
Yang
,
H.-S.
,
2007
, “
Thermal Conductivity of Al2O3/Water Nanofluids
,”
J. Korean Phys. Soc.
,
51
(
12
),
pp.
S84
S87
.10.3938/jkps.51.84
137.
Hong
,
K. S.
,
Hong
,
T.-K.
, and
Yang
,
H.-S.
,
2006
, “
Thermal Conductivity of Fe Nanofluids Depending on the Cluster Size of Nanoparticles
,”
Appl. Phys. Lett.
,
88
(
3
),
p.
31901
.10.1063/1.2166199
138.
McLachlan
,
D. S.
,
Blaszkiewicz
,
M.
, and
Newnham
,
R. E.
,
1990
, “
Electrical Resistivity of Composites
,”
J. Am. Ceram. Soc.
,
73
(
8
),
pp.
2187
2203
.10.1111/j.1151-2916.1990.tb07576.x
139.
Shih
,
W.-H.
,
Shih
,
W. Y.
,
Kim
,
S.-I.
,
Liu
,
J.
, and
Aksay
,
I. A.
,
1990
, “
Scaling Behavior of the Elastic Properties of Colloidal Gels
,”
Phys. Rev. A
,
42
(
8
),
pp.
4772
4779
.10.1103/PhysRevA.42.4772
140.
Gharagozloo
,
P. E.
, and
Goodson
,
K. E.
,
2010
, “
Aggregate Fractal Dimensions and Thermal Conduction in Nanofluids
,”
J. Appl. Phys.
,
108
(
7
),
p.
074309
.10.1063/1.3481423
141.
Özerinç
,
S.
,
Kakaç
,
S.
, and
Yazcolu
,
A. G.
,
2009
, “
Enhanced Thermal Conductivity of Nanofluids: A State-of-the-Art Review
,”
Microfluid. Nanofluid.
,
8
(
2
),
pp.
145
170
.
142.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
,
1993
, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersions of γ-Al2O3, SiO2, and TiO2 Ultra-Fine Particles)
,”
Jpn. J. Thermophys. Prop.
,
7
(
4
),
pp.
227
233
.
143.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
J. Heat Transfer
,
121
(
2
),
pp.
280
289
.10.1115/1.2825978
144.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
),
pp.
151
170
.10.1080/08916159808946559
145.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
,
2001
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
,
78
(
6
),
pp.
718
720
.10.1063/1.1341218
146.
Timofeeva
,
E. V.
,
Gavrilov
,
A. N.
,
McCloskey
,
J. M.
,
Tolmachev
,
Y. V.
,
Sprunt
,
S.
,
Lopatina
,
L. M.
, and
Selinger
,
J. V.
,
2007
, “
Thermal Conductivity and Particle Agglomeration in Alumina Nanofluids: Experiment and Theory
,”
Phys. Rev. E
,
76
(
6
),
p.
061203
.10.1103/PhysRevE.76.061203
147.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2008
, “
Investigations of Thermal Conductivity and Viscosity of Nanofluids
,”
Int. J. Therm. Sci.
,
47
(
5
),
pp.
560
568
.10.1016/j.ijthermalsci.2007.05.004
148.
Tavman
,
I.
,
Turgut
,
A.
,
Chirtoc
,
M.
,
Hadjov
,
K.
,
Fudym
,
O.
, and
Tavman
,
S.
,
2010
, “
Experimental Study on Thermal Conductivity and Viscosity of Water-Based Nanofluids
,”
Heat Transfer Res.
,
41
(
3
),
pp.
339
351
.10.1615/HeatTransRes.v41.i3.100
149.
Mintsa
,
H.
,
Roy
,
G.
,
Nguyen
,
C.
, and
Doucet
,
D.
,
2009
, “
New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids
,”
Int. J. Therm. Sci.
,
48
(
2
),
pp.
363
371
.10.1016/j.ijthermalsci.2008.03.009
150.
Kwak
,
K.
, and
Kim
,
C.
,
2005
, “
Viscosity and Thermal Conductivity of Copper Oxide Nanofluid Dispersed in Ethylene Glycol
,”
Korea-Aust. Rheol. J.
,
17
(
2
),
pp.
35
40
.
151.
Kang
,
H. U.
,
Kim
,
S. H.
, and
Oh
,
J. M.
,
2006
, “
Estimation of Thermal Conductivity of Nanofluid Using Experimental Effective Particle Volume
,”
Exp. Heat Transfer
,
19
(
3
),
pp.
181
191
.10.1080/08916150600619281
152.
Hwang
,
Y. J.
,
Ahn
,
Y. C.
,
Shin
,
H. S.
,
Lee
,
C. G.
,
Kim
,
G. T.
,
Park
,
H. S.
, and
Lee
,
J. K.
,
2006
, “
Investigation on Characteristics of Thermal Conductivity Enhancement of Nanofluids
,”
Curr. Appl. Phys.
,
6
(
6
),
pp.
1068
1071
.10.1016/j.cap.2005.07.021
153.
Duangthongsuk
,
W.
, and
Wongwises
,
S.
,
2009
, “
Measurement of Temperature-Dependent Thermal Conductivity and Viscosity of TiO2-Water Nanofluids
,”
Exp. Therm. Fluid Sci.
,
33
(
4
),
pp.
706
714
.10.1016/j.expthermflusci.2009.01.005
154.
Hong
,
T.-K.
,
Yang
,
H.-S.
, and
Choi
,
C. J.
,
2005
, “
Study of the Enhanced Thermal Conductivity of Fe Nanofluids
,”
J. Appl. Phys.
,
97
(
6
),
p.
064311
.10.1063/1.1861145
155.
Chopkar
,
M.
,
Das
,
P. K.
, and
Manna
,
I.
,
2007
, “
Nanofluid of ZrO2 in Water and Ethylene Glycol
,”
Philos. Mag.
,
87
(
29
),
pp.
4433
4444
.10.1080/14786430701532772
156.
Xuan
,
Y. M.
, and
Li
,
Q.
,
2000
, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
,
21
(
1
),
pp.
58
64
.10.1016/S0142-727X(99)00067-3
157.
Jana
,
S.
,
Salehi-Khojin
,
A.
, and
Zhong
,
W.-H.
,
2007
, “
Enhancement of Fluid Thermal Conductivity by the Addition of Single and Hybrid Nano-Additives
,”
Thermochim. Acta
,
462
(
1–2
),
pp.
45
55
.10.1016/j.tca.2007.06.009
158.
Garg
,
J.
,
Poudel
,
B.
,
Chiesa
,
M.
,
Gordon
,
J. B.
,
Ma
,
J. J.
,
Wang
,
J. B.
,
Ren
,
Z. F.
,
Kang
,
Y. T.
,
Ohtani
,
H.
,
Nanda
,
J.
,
McKinley
,
G. H.
, and
Chen
,
G.
,
2008
, “
Enhanced Thermal Conductivity and Viscosity of Copper Nanoparticles in Ethylene Glycol Nanofluid
,”
J. Appl. Phys.
,
103
(
7
),
p.
74301
.10.1063/1.2902483
159.
Li
,
X. F.
,
Zhu
,
D. S.
,
Wang
,
X. J.
,
Wang
,
N.
,
Gao
,
J. W.
, and
Li
,
H.
,
2008
, “
Thermal Conductivity Enhancement Dependent pH and Chemical Surfactant for Cu-H2O Nanofluids
,”
Thermochim. Acta
,
469
(
1–2
),
pp.
98
103
.10.1016/j.tca.2008.01.008
160.
Eapen
,
J.
,
Li
,
J.
, and
Yip
,
S.
,
2004
, “
Modeling Transport Mechanism in Nanofluids. Nano-to-Micro Transport Processes
,
Tech. Report MIT. 2.57 Project Report
.
161.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
,
2001
, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
,
79
(
14
),
pp.
2252
2254
.10.1063/1.1408272
162.
Yang
,
Y.
,
2006
, “
Carbon Nanofluids for Lubricant Application
,”
Ph.D. thesis
,
University of Kentucky
,
Lexington, KY
.
163.
Assael
,
M. J.
,
Chen
,
C.-F.
,
Metaxa
,
I.
, and
Wakeham
,
W. A.
,
2004
, “
Thermal Conductivity of Suspensions of Carbon Nanotubes in Water
,”
Int. J. Thermophys.
,
25
(
4
),
pp.
971
985
.10.1023/B:IJOT.0000038494.22494.04
164.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Experimental Determination of Thermal Conductivity of Three Nanofluids and Development of New Correlations
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
),
pp.
4675
4682
.10.1016/j.ijheatmasstransfer.2009.06.027
165.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
, and
Liu
,
Y.
,
2002
, “
Thermal Conductivity of Suspensions Containing Nanosized SiC Particles
,”
Int. J. Thermophys.
,
23
(
2
),
pp.
571
580
.10.1023/A:1015121805842
166.
Nieto de Castro
,
C. A.
,
Lourenco
,
M. J. V.
,
Ribeiro
,
A. P. C.
,
Langa
,
E.
,
Vieira
,
S. I. C.
,
Goodrich
,
P.
, and
Hardacre
,
C.
,
2010
, “
Thermal Properties of Ionic Liquids and IoNanofluids of Imidazolium and Pyrrolidinium Liquids
,”
J. Chem. Eng. Data
,
55
(
2
),
pp.
653
661
.10.1021/je900648p
167.
Putnam
,
S. A.
,
Cahill
,
D. G.
,
Braun
,
P. V.
,
Ge
,
Z.
, and
Shimmin
,
R. G.
,
2006
, “
Thermal Conductivity of Nanoparticle Suspensions
,”
J. Appl. Phys.
,
99
(
8
),
p.
084308
.10.1063/1.2189933
168.
Zhang
,
X.
,
Gu
,
H.
, and
Fujii
,
M.
,
2006
, “
Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids
,”
Int. J. Thermophys.
27
(
2
),
pp.
569
580
.10.1007/s10765-006-0054-1
169.
Zhang
,
X.
,
Gu
,
H.
, and
Fujii
,
M.
,
2007
, “
Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids Containing Spherical and Cylindrical Nanoparticles
,”
Exp. Therm. Fluid Sci.
,
31
(
6
),
pp.
593
599
.10.1016/j.expthermflusci.2006.06.009
170.
Xie
,
H.
,
Lee
,
H.
,
Youn
,
W.
, and
Choi
,
M.
,
2003
, “
Nanofluids Containing Multiwalled Carbon Nanotubes and Their Enhanced Thermal Conductivities
,”
J. Appl. Phys.
,
94
(
8
),
p.
4967
.10.1063/1.1613374
171.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
,
Liu
,
Y.
,
Ai
,
F.
, and
Wu
,
Q.
,
2002
, “
Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles
,”
J. Appl. Phys.
,
91
(
7
),
p.
4568
.10.1063/1.1454184
172.
Venerus
,
D. C.
,
Kabadi
,
M. S.
,
Lee
,
S.
, and
Perez-Luna
,
V.
,
2006
, “
Study of Thermal Transport in Nanoparticle Suspensions Using Forced Rayleigh Scattering
,”
J. Appl. Phys.
,
100
(
9
),
p.
094310
.10.1063/1.2360378
173.
Ceylan
,
A.
,
Jastrzembski
,
K.
, and
Shah
,
S. I.
,
2006
, “
Enhanced Solubility Ag-Cu Nanoparticles and Their Thermal Transport Properties
,”
Metall. Mater. Trans. A
,
37
(
7
),
pp.
2033
2038
.10.1007/BF02586123
174.
Shaikh
,
S.
,
Lafdi
,
K.
, and
Ponnappan
,
R.
,
2007
, “
Thermal Conductivity Improvement in Carbon Nanoparticle Doped PAO Oil: An Experimental Study
,”
J. Appl. Phys.
,
101
(
6
),
p.
064302
.10.1063/1.2710337
175.
Cai
,
W.
,
Sen
,
M.
, and
Paolucci
,
S.
,
2007
, “
Dynamic Modeling of an Absorption Refrigeration System Using Ionic Liquids
,”
ASME International Mechanical Engineering Congress and Exposition Proceedings
,
pp.
227
236
.
176.
Brennecke
,
J. F.
, and
Gurkan
,
B. E.
,
2010
, “
Ionic Liquids for CO2 Capture and Emission Reduction
,”
J. Phys. Chem. Lett.
,
1
(
24
),
pp.
3459
3464
.10.1021/jz1014828
177.
Oh
,
W. C.
,
Wang
,
Y. L.
,
Lee
,
S. C.
,
Hong
,
D. S.
,
Kim
,
D. H.
, and
Chen
,
M. L.
,
2011
, “
Investigation of Thermal Conductivity of NaHCO(3) Modified Activated Carbon Nanofluids
,”
Asian J. Chem.
,
23
(
8
),
pp.
3401
3404
.
178.
Yoo
,
D.
,
Hong
,
K.
, and
Yang
,
H.
,
2007
, “
Study of Thermal Conductivity of Nanofluids for the Application of Heat Transfer Fluids
,”
Thermochim. Acta
,
455
(
1–2
),
pp.
66
69
.10.1016/j.tca.2006.12.006
179.
Yang
,
B.
, and
Han
,
Z. H.
,
2006
, “
Temperature-Dependent Thermal Conductivity of Nanorod-Based Nanofluids
,”
Appl. Phys. Lett.
,
89
(
8
),
p.
083111
.10.1063/1.2338424
180.
Manna
,
I.
,
Chopkar
,
M.
, and
Das
,
P. K.
,
2005
, “
Nanofluid—A New Concept in Heat Transfer and Thermal Management
,”
Trans. Indian Inst. Met.
,
58
(
6
),
pp.
1045
1055
.
181.
Chopkar
,
M.
,
Kumar
,
S.
,
Bhandari
,
D. R.
,
Das
,
P. K.
, and
Manna
,
I.
,
2007
, “
Development and Characterization of Al2Cu and Ag2Al Nanoparticle Dispersed Water and Ethylene Glycol Based Nanofluid
,”
Mater. Sci. Eng. B
,
139
(
2–3
),
pp.
141
148
.10.1016/j.mseb.2007.01.048
182.
Turanov
,
A. N.
, and
Tolmachev
,
Y. V.
,
2009
, “
Heat- and Mass-Transport in Aqueous Silica Nanofluids
,”
Heat Mass Transfer
,
45
(
12
),
pp.
1583
1588
.10.1007/s00231-009-0533-6
183.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L.-W.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
, Di
Paola
,
R.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J.-H.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Van Vaerenbergh
,
S.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W. H.
,
Zhao
,
X.-Z.
, and
Zhou
,
S.-Q.
,
2009
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
106
(
9
),
p.
94312
.10.1063/1.3245330
184.
Shalkevich
,
N.
,
Escher
,
W.
,
Bürgi
,
T.
,
Michel
,
B.
,
Si-Ahmed
,
L.
, and
Poulikakos
,
D.
,
2010
, “
On the Thermal Conductivity of Gold Nanoparticle Colloids
,”
Langmuir
,
26
(
2
),
pp.
663
670
.10.1021/la9022757
185.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2006
, “
Determination of the Effective Thermal Diffusivity of Nanofluids by the Double Hot-Wire Technique
,”
J. Phys. D: Appl. Phys.
,
39
(
24
),
pp.
5316
5322
.10.1088/0022-3727/39/24/033
186.
Liu
,
M.-S.
,
Lin
,
M. C.-C.
,
Tsai
,
C. Y.
, and
Wang
,
C.-C.
,
2006
, “
Enhancement of Thermal Conductivity With Cu for Nanofluids Using Chemical Reduction Method
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
),
pp.
3028
3033
.10.1016/j.ijheatmasstransfer.2006.02.012
187.
Liu
,
M.-S.
,
Lin
,
M. C.-C.
,
Huang
,
I.-T.
, and
Wang
,
C.-C.
,
2006
, “
Enhancement of Thermal Conductivity With CuO for Nanofluids
,”
Chem. Eng. Technol.
,
29
(
1
),
pp.
72
77
.10.1002/ceat.v29:1
188.
Beck
,
M. P.
,
Yuan
,
Y. H.
,
Warrier
,
P.
, and
Teja
,
A. S.
,
2009
, “
The Effect of Particle Size on the Thermal Conductivity of Alumina Nanofluids
,”
J. Nanopart. Res.
,
11
(
5
),
pp.
1129
1136
.10.1007/s11051-008-9500-2
189.
Wang
,
Z.
,
2009
, “
Thermal Wave in Thermal Properties Measurements and Flow Diagnostics: With Applications of Nanofluids Thermal Conductivity and Wall Shear Stress Measurements
,”
Ph.D. thesis
,
Oregon State University
,
Corvallis, OR
.
190.
Healy
,
J. J.
,
DeGroot
,
J. J.
, and
Kestin
,
J.
,
1976
, “
The Theory of the Transient Hot-Wire Method for Measuring Thermal Conductivity
,”
Physica B+C
,
82
(
2
),
pp.
392
408
.10.1016/0378-4363(76)90203-5
191.
Putnam
,
S. A.
, and
Cahill
,
D. G.
,
2004
, “
Micron-Scale Apparatus for Measurements of Thermodiffusion in Liquids
,”
Rev. Sci. Instrum.
,
75
(
7
),
pp.
2368
2372
.10.1063/1.1765761
192.
Cahill
,
D. G.
,
1990
, “
Thermal Conductivity Measurement from 30 to 750 K: The 3ω Method
,”
Rev. Sci. Instrum.
,
61
(
2
),
pp.
802
808
.10.1063/1.1141498
193.
Borca-Tasciuc
,
T.
,
Kumar
,
A. R.
, and
Chen
,
G.
,
2001
, “
Data Reduction in 3ω Method for Thin-Film Thermal Conductivity Determination
,”
Rev. Sci. Instrum.
,
72
(
4
),
pp.
2139
2147
.10.1063/1.1353189
194.
Borca-Tasciuc
,
D.-A.
, and
Chen
,
G.
,
2005
, “
Anisotropic Thermal Properties of Nanochanneled Alumina Templates
,”
J. Appl. Phys.
,
97
(
8
),
p.
084303
.10.1063/1.1881793
195.
Wang
,
Z. L.
,
Tang
,
D. W.
,
Liu
,
S.
,
Zheng
,
X. H.
, and
Araki
,
N.
,
2007
, “
Thermal-Conductivity and Thermal-Diffusivity Measurements of Nanofluids by 3ω Method and Mechanism Analysis of Heat Transport
,”
Int. J. Thermophys.
,
28
(
4
),
pp.
1255
1268
.10.1007/s10765-007-0254-3
196.
Batchelor
,
G. K.
,
1977
, “
The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles
,”
J. Fluid Mech.
,
83
(
1
),
pp.
97
117
.10.1017/S0022112077001062
197.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
,
2003
, “
Pool Boiling Characteristics of Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
46
(
5
),
pp.
851
862
.10.1016/S0017-9310(02)00348-4
198.
Ding
,
Y.
,
Alias
,
H.
,
Wen
,
D.
, and
Williams
,
R.
,
2006
, “
Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)
,”
Int. J. Heat Mass Transfer
,
49
(
1–2
),
pp.
240
250
.10.1016/j.ijheatmasstransfer.2005.07.009
199.
Prasher
,
R.
,
Song
,
D.
,
Wang
,
J.
, and
Phelan
,
P.
,
2006
, “
Measurements of Nanofluid Viscosity and its Implications for Thermal Applications
,”
Appl. Phys. Lett.
,
89
(
13
),
p.
133108
.10.1063/1.2356113
200.
Tseng
,
W.
, and
Lin
,
K.
,
2003
, “
Rheology and Colloidal Structure of Aqueous TiO2 Nanoparticle Suspensions
,”
Mater. Sci. Eng. A
,
355
(
1–2
),
pp.
186
192
.10.1016/S0921-5093(03)00063-7
201.
Studart
,
A. R.
,
Amstad
,
E.
,
Antoni
,
M.
, and
Gauckler
,
L. J.
,
2006
, “
Rheology of Concentrated Suspensions Containing Weakly Attractive Alumina Nanoparticles
,“
J. Am. Ceram. Soc.
,
89
(
8
),
pp.
2418
2425
.10.1111/j.1551-2916.2006.01087.x
202.
He
,
Y.
,
Jin
,
Y.
,
Chen
,
H.
,
Ding
,
Y.
,
Cang
,
D.
, and
Lu
,
H.
,
2007
, “
Heat Transfer and Flow Behaviour of Aqueous Suspensions of TiO2 Nanoparticles (nanofluids) Flowing Upward Through a Vertical Pipe
,”
Int. J. Heat Mass Transfer
,
50
(
11–12
),
pp.
2272
2281
.10.1016/j.ijheatmasstransfer.2006.10.024
203.
Chen
,
H.
,
Ding
,
Y.
, and
Tan
,
C.
,
2007
, “
Rheological Behaviour of Nanofluids
,”
New J. Phys.
,
9
(
10
),
pp.
367
367
.10.1088/1367-2630/9/10/367
204.
Krieger
,
I. M.
,
1959
, “
A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres
,”
J. Rheol.
,
3
(
1
),
pp.
137
152
.10.1122/1.548848
205.
Einstein
,
A.
,
1911
, “
Correction of My Work: A New Determination of the Molecular Dimensions,
Ann. Phys.
34
(
3
),
pp.
591
592
.10.1002/andp.v339:3
206.
Kole
,
M.
, and
Dey
,
T. K.
,
2010
, “
Viscosity of Alumina Nanoparticles Dispersed in Car Engine Coolant
,”
Exp. Therm. Fluid Sci.
,
34
(
6
),
pp.
677
683
.10.1016/j.expthermflusci.2009.12.009
207.
Namburu
,
P. K.
,
Kulkarni
,
D. P.
,
Misra
,
D.
, and
Das
,
D. K.
,
2007
, “
Viscosity of Copper Oxide Nanoparticles Dispersed in Ethylene Glycol and Water Mixture
,”
Exp. Therm. Fluid Sci.
,
32
(
2
),
pp.
397
402
.10.1016/j.expthermflusci.2007.05.001
208.
Masoumi
,
N.
,
Sohrabi
,
N.
, and
Behzadmehr
,
A.
,
2009
, “
A New Model for Calculating the Effective Viscosity of Nanofluids
,”
J. Phys. D: Appl. Phys.
,
42
(
5
),
p.
055501
.10.1088/0022-3727/42/5/055501
209.
Kole
,
M.
, and
Dey
,
T. K.
,
2011
, “
Effect of Aggregation on the Viscosity of Copper Oxide-Gear Oil Nanofluids
,”
Int. J. Therm. Sci.
,
50
(
9
),
pp.
1741
1747
.10.1016/j.ijthermalsci.2011.03.027
210.
Andrade
,
E. N. D.
,
1934
, “
A Theory of the Viscosity of Liquids—Part I
,”
Philos. Mag.
,
17
(
112
),
pp.
497
511
.
211.
Chen
,
H.
,
Ding
,
Y.
,
He
,
Y.
, and
Tan
,
C.
,
2007
, “
Rheological Behaviour of Ethylene Glycol Based Titania Nanofluids
,”
Chem. Phys. Lett.
,
444
(
4–6
),
pp.
333
337
.10.1016/j.cplett.2007.07.046
212.
Abu-Nada
,
E.
,
Masoud
,
Z.
,
Oztop
,
H. F.
, and
Campo
,
A.
,
2010
, “
Effect of Nanofluid Variable Properties on Natural Convection in Enclosures
,”
Int. J. Therm. Sci.
,
49
(
3
),
pp.
479
491
.10.1016/j.ijthermalsci.2009.09.002
213.
Xuan
,
Y.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
J. Heat Transfer
,
125
(
1
),
p.
151
.10.1115/1.1532008
214.
Dittus
,
W.
, and
Boelter
,
L. M. K.
,
1930
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Univ. Calif. Publ. Eng.
,
2
(
13
),
pp.
443
461
.10.1016/0735-1933(85)90003-X
215.
Wen
,
D.
, and
Ding
,
Y.
,
2004
, “
Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
,
47
(
24
),
pp.
5181
5188
.10.1016/j.ijheatmasstransfer.2004.07.012
216.
Yang
,
Y.
,
Zhang
,
Z.
,
Grulke
,
E.
,
Anderson
,
W.
, and
Wu
,
G.
,
2005
, “
Heat Transfer Properties of Nanoparticle-in-Fluid Dispersions (Nanofluids) in Laminar Flow
,”
Int. J. Heat Mass Transfer
,
48
(
6
),
pp.
1107
1116
.10.1016/j.ijheatmasstransfer.2004.09.038
217.
Kabelac
,
S.
, and
Kuhnke
,
J. F.
,
2006
, “
Heat Transfer Mechanisms in Nanofluids
,”
Int. Heat Transf. Conf. - Keynote Papers
,
Begell House Inc
,
Redding, CT
.
218.
Heris
,
S. Z.
,
Etemad
,
S.
, and
Nasresfahany
,
M.
,
2006
, “
Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer
,”
Int. Comm. Heat Mass Transfer.
,
33
(
4
),
pp.
529
535
.10.1016/j.icheatmasstransfer.2006.01.005
219.
Arefmanesh
,
A.
, and
Mahmoodi
,
M.
,
2011
, “
Effects of Uncertainties of Viscosity Models for Al2O3-Water Nanofluid on Mixed Convection Numerical Simulations
,”
Int. J. Therm. Sci.
,
50
(
9
),
pp.
1706
1719
.10.1016/j.ijthermalsci.2011.04.007
220.
Gherasim
,
I.
,
Roy
,
G.
,
Nguyen
,
C. T.
, and
Vo-Ngoc
,
D.
,
2011
, “
Heat Transfer Enhancement and Pumping Power in Confined Radial Flows Using Nanoparticle Suspensions (Nanofluids)
,”
Int. J. Therm. Sci.
,
50
(
3
),
pp.
369
377
.10.1016/j.ijthermalsci.2010.04.008
221.
Daungthongsuk
,
W.
, and
Wongwises
,
S.
,
2007
, “
A Critical Review of Convective Heat Transfer of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
11
(
5
),
pp.
797
817
.10.1016/j.rser.2005.06.005
222.
Kakaç
,
S.
, and
Pramuanjaroenkij
,
A.
,
2009
, “
Review of Convective Heat Transfer Enhancement With Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
),
pp.
3187
3196
.10.1016/j.ijheatmasstransfer.2009.02.006
223.
Corcione
,
M.
,
2011
, “
Rayleigh-Bénard Convection Heat Transfer in Nanoparticle Suspensions
,”
Int. J. Heat Fluid Flow
,
32
(
1
),
pp.
65
77
.10.1016/j.ijheatfluidflow.2010.08.004
224.
Putra
,
N.
,
Roetzel
,
W.
, and
Das
,
S. K.
,
2003
, “
Natural Convection of Nano-Fluids
,”
Heat Mass Transfer
,
39
(
8–9
),
pp.
775
784
.10.1007/s00231-002-0382-z
225.
Wen
,
D.
, and
Ding
,
Y.
,
2005
, “
Formulation of Nanofluids for Natural Convective Heat Transfer Applications
,”
Int. J. Heat Fluid Flow
,
26
(
6
),
pp.
855
864
.10.1016/j.ijheatfluidflow.2005.10.005
226.
Abu-Nada
,
E.
,
Masoud
,
Z.
, and
Hijazi
,
A.
,
2008
, “
Natural Convection Heat Transfer Enhancement in Horizontal Concentric Annuli Using Nanofluids
,”
Int. Comm. Heat Mass Transfer
,
35
(
5
),
pp.
657
665
.10.1016/j.icheatmasstransfer.2007.11.004
227.
Abu-Nada
,
E.
,
2009
, “
Effects of Variable Viscosity and Thermal Conductivity of Al2O3-Water Nanofluid on Heat Transfer Enhancement in Natural Convection
,”
Int. J. Heat Fluid Flow
,
30
(
4
),
pp.
679
690
.10.1016/j.ijheatfluidflow.2009.02.003
228.
Cianfrini
,
M.
,
Corcione
,
M.
, and
Quintino
,
A.
,
2011
, “
Natural Convection Heat Transfer of Nanofluids in Annular Spaces Between Horizontal Concentric Cylinders
,”
Appl. Therm. Eng.
,
31
(
17–18
),
pp.
4055
4063
.10.1016/j.applthermaleng.2011.08.010
229.
Ghasemi
,
B.
,
Aminossadati
,
S. M.
, and
Raisi
,
A.
,
2011
, “
Magnetic Field Effect on Natural Convection in a Nanofluid-Filled Square Enclosure
,”
Int. J. Therm. Sci.
,
50
(
9
),
pp.
1748
1756
.10.1016/j.ijthermalsci.2011.04.010
230.
Hamad
,
M. A. A.
,
2011
, “
Analytical Solution of Natural Convection Flow of a Nanofluid Over a Linearly Stretching Sheet in the Presence of Magnetic Field
,”
Int. Comm. Heat Mass Transf.
,
38
(
4
),
pp.
487
492
.10.1016/j.icheatmasstransfer.2010.12.042
231.
Moghaddami
,
M.
,
Mohammadzade
,
A.
, and
Esfehani
,
S. A. V.
,
2011
, “
Second Law Analysis of Nanofluid Flow
,”
Energy Convers. Manage.
,
52
(
2
),
pp.
1397
1405
.10.1016/j.enconman.2010.10.002
232.
Yacob
,
N. A.
,
Ishak
,
A.
, and
Pop
,
I.
,
2011
, “
Falkner-Skan Problem for a Static or Moving Wedge in Nanofluids
,”
Int. J. Therm. Sci.
,
50
(
2
),
pp.
133
139
.10.1016/j.ijthermalsci.2010.10.008
233.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2011
, “
The Cheng-Minkowycz Problem for the Double-Diffusive Natural Convective Boundary Layer Flow in a Porous Medium Saturated by a Nanofluid
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
),
pp.
374
378
.10.1016/j.ijheatmasstransfer.2010.09.034
234.
Godson
,
L.
,
Raja
,
B.
,
Mohan Lal
,
D.
, and
Wongwises
,
S.
,
2010
, “
Enhancement of Heat Transfer Using Nanofluids—An Overview
,”
Renewable Sustainable Energy Rev.
,
14
(
2
),
pp.
629
641
.10.1016/j.rser.2009.10.004
235.
Namburu
,
P. K.
,
Das
,
D. K.
,
Tanguturi
,
K. M.
, and
Vajjha
,
R. S.
,
2009
, “
Numerical Study of Turbulent Flow and Heat Transfer Characteristics of Nanofluids Considering Variable Properties
,”
Int. J. Therm. Sci.
,
48
(
2
),
pp.
290
302
.10.1016/j.ijthermalsci.2008.01.001
236.
Bergman
,
T.
,
2009
, “
Effect of Reduced Specific Heats of Nanofluids on Single Phase, Laminar Internal Forced Convection
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
),
pp.
1240
1244
.10.1016/j.ijheatmasstransfer.2008.08.019
237.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Specific Heat Measurement of Three Nanofluids and Development of New Correlations
,”
J. Heat Transf.
,
131
(
7
),
p.
071601
.10.1115/1.3090813
238.
Nelson
,
I. C.
,
Banerjee
,
D.
, and
Ponnappan
,
R.
,
2009
, “
Flow Loop Experiments Using Polyalphaolefin Nanofluids
,”
J. Thermophys. Heat Transfer
,
23
(
4
),
pp.
752
761
.10.2514/1.31033
239.
Shin
,
D.
, and
Banerjee
,
D.
,
2011
, “
Enhancement of Specific Heat Capacity of High-Temperature Silica-Nanofluids Synthesized in Alkali Chloride Salt Eutectics for Solar Thermal-Energy Storage Applications
,”
Int. J. Heat Mass Transfer
,
54
(
5–6
),
pp.
1064
1070
.10.1016/j.ijheatmasstransfer.2010.11.017
240.
Zhou
,
S.-Q.
, and
Ni
,
R.
,
2008
, “
Measurement of the Specific Heat Capacity of Water-Based Al2O3 Nanofluid
,”
Appl. Phys. Lett.
,
92
(
9
),
p.
093123
.10.1063/1.2890431
241.
Shin
,
D.
, and
Banerjee
,
D.
,
2011
, “
Enhanced Specific Heat of Silica Nanofluid
,”
J. Heat Transfer
,
133
(
2
),
p.
024501
.10.1115/1.4002600
242.
Eapen
,
J.
,
Rusconi
,
R.
,
Piazza
,
R.
, and
Yip
,
S.
,
2010
, “
The Classical Nature of Thermal Conduction in Nanofluids
,”
J. Heat Transfer
,
132
(
10
),
p.
102402
.10.1115/1.4001304
243.
Maxwell
,
J. C.
,
1881
,
A Treatise on Electricity and Magnetism
,
2nd ed.
,
Clarendon Press
,
Oxford, UK
,
Vol.
1
.
244.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heteregenous Two Component Systems
,”
Indian Eng. Chem. Fund.
,
1
(
3
),
pp.
187
191
.10.1021/i160003a005
245.
Maxwell-Garnett
,
J. C.
,
1904
, “
Colours in Metal Glasses, in Metallic Films and in Metallic Solutions
,”
Philos. Trans. R. Soc. London, Ser. A
,
203
,
pp.
385
420
.10.1098/rsta.1904.0024
246.
Nan
,
C.-W.
,
Birringer
,
R.
,
Clarke
,
D. R.
, and
Gleiter
,
H.
,
1997
, “
Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance
,”
J. Appl. Phys.
,
81
(
10
),
pp.
6692
6699
.10.1063/1.365209
247.
Russel
,
W. B.
,
Saville
,
D. A.
, and
Schowalter
,
W. R.
,
1989
,
Colloidal Dispersions
,
Cambridge University Press
,
New York
.
248.
Duangthongsuk
,
W.
, and
Wongwises
,
S.
,
2008
, “
Effect of Thermophysical Properties Models on the Predicting of the Convective Heat Transfer Coefficient for Low Concentration Nanofluid
,”
Int. Comm. Heat Mass Transfer
,
35
(
10
),
pp.
1320
1326
.10.1016/j.icheatmasstransfer.2008.07.015
249.
Chen
,
H.
, and
Ding
,
Y.
,
2009
,
Advances in transport phenomena. Heat Transfer and Rheological Behaviour of Nanofluids - A Review
,
Springer
,
New York
,
Vol.
1
.
250.
Bruggeman
,
D. A. G.
,
1935
, “
Calculation of Various Physics Constants in Heterogenous Substances I Dielectricity Constants and Conductivity of Mixed Bodies from Isotropic Substances
,”
Ann. Phys.
,
24
(
7
),
pp.
636
664
.10.1002/andp.v416:7
251.
Jeffrey
,
D. J.
,
1973
, “
Conduction Through a Random Suspension of Spheres
,”
Proc. R. Soc. London Ser. A
,
335
(
1602
),
pp.
355
367
.10.1098/rspa.1973.0130
252.
Davis
,
R. H.
,
1986
, “
The Effective Thermal Conductivity of a Composite Material With Spherical Inclusions
,”
Int. J. Thermophys.
,
7
(
3
),
pp.
609
620
.10.1007/BF00502394
253.
Lu
,
S.-Y.
, and
Lin
,
H.-C.
,
1996
, “
Effective Conductivity of Composites Containing Aligned Spheroidal Inclusions of Finite Conductivity
,”
J. Appl. Phys.
,
79
(
9
),
p.
6761
.10.1063/1.361498
254.
Xue
,
Q.
, and
Xu
,
W.-M.
,
2005
, “
A Model of Thermal Conductivity of Nanofluids With Interfacial Shells
,”
Mater. Chem. Phys.
,
90
(
2–3
),
pp.
298
301
.10.1016/j.matchemphys.2004.05.029
255.
Chon
,
C. H.
,
Kihm
,
K. D.
,
Lee
,
S. P.
, and
Choi
,
S. U. S.
,
2005
, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement
,”
Appl. Phys. Lett.
,
87
(
15
),
p.
153107
.10.1063/1.2093936
256.
Mehta
,
S.
,
Chauhan
,
K. P.
, and
Kanagaraj
,
S.
,
2010
, “
Modeling of Thermal Conductivity of Nanofluids by Modifying Maxwell's Equation Using Cell Model Approach
,”
J. Nanopart. Res.
,
13
(
7
),
pp.
2791
2798
.10.1007/s11051-010-0167-0
257.
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2008
, “
A Review of Nanofluids - Part I: Theoretical and Numerical Investigations
,”
Braz. J. Chem. Eng.
,
25
(
4
),
pp.
613
630
.10.1590/S0104-66322008000400001
258.
Brenner
,
H.
,
1974
, “
Transport Mechanics in Systems of Orientable Particles. IV. Convective Transport
,”
J. Colloid Interface Sci.
,
47
(
1
),
pp.
199
264
.10.1016/0021-9797(74)90093-9
259.
Maiga
,
S.
,
2004
, “
Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube
,”
Superlattice. Microstruct.
,
35
(
3–6
),
pp.
543
557
.10.1016/j.spmi.2003.09.012
260.
Kulkarni
,
D. P.
,
Das
,
D. K.
, and
Chukwu
,
G. A.
,
2006
, “
Temperature Dependent Rheological Property of Copper Oxide Nanoparticles Suspension (Nanofluid)
,”
J. Nanosci. Nanotechnol.
,
6
(
4
),
pp.
1150
1154
.10.1166/jnn.2006.187
261.
Simha
,
R.
,
1940
, “
The Influence of Brownian Movement on the Viscosity of Solutions
,”
J. Phys. Chem.
,
44
(
1
),
pp.
25
34
.10.1021/j150397a004
262.
Simha
,
R.
,
1952
, “
A Treatment of the Viscosity of Concentrated Suspensions
,”
J. Appl. Phys.
,
23
(
9
),
p.
1020
.10.1063/1.1702338
263.
Eilers
,
v. H.
,
1941
, “
Die Viskocitat von Emulsionen Hochviskoser Stoffe als Funktion der Konzentration
,”
Kolloid-Z.
,
97
,
pp.
313
321
.10.1007/BF01503023
264.
de Bruijn
,
H.
,
1942
, “
The Viscosity of Suspensions of Spherical Particles. (The Fundamental η-c and φ Relations)
,”
Recl. Trav. Chim. Pays-Bas
,
61
(
12
),
pp.
863
874
.10.1002/recl.19420611205
265.
Kuhn
,
W.
, and
Kuhn
,
H.
,
1945
, “
Abhangigkeit der Viskositat vom Stromungsgefalle bei Hochverdunnten Suspensionen und Losungen
,”
Helvetica Chimica Acta
,
28
(
1
),
pp.
97
127
.10.1002/hlca.19450280111
266.
Vand
,
V.
,
1948
, “
Viscosity of Solutions and Suspensions. I. Theory
,”
J. Phys. Colloid Chem.
,
52
(
2
),
pp.
277
299
.10.1021/j150458a001
267.
Robinson
,
J. V.
,
1949
, “
The Viscosity of Suspensions of Spheres
,”
J. Phys. Colloid Chem.
,
53
(
7
),
pp.
1042
1056
.10.1021/j150472a007
268.
Saitô
,
N.
,
1950
, “
Concentration Dependence of the Viscosity of High Polymer Solutions. I
,”
J. Phys. Soc. Jpn.
,
5
(
1
),
pp.
4
8
.10.1143/JPSJ.5.4
269.
Mooney
,
M.
,
1951
, “
The Viscosity of a Concentrated Suspension of Spherical Particles
,”
J. Colloid. Sci.
,
6
(
2
),
pp.
162
170
.10.1016/0095-8522(51)90036-0
270.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
(
4
),
p.
571
.10.1063/1.1700493
271.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. Math., Physic. Eng. Sci.
,
241
(
1226
),
pp.
376
396
.10.1098/rspa.1957.0133
272.
Frankel
,
N.
, and
Acrivos
,
A.
,
1967
, “
On the Viscosity of a Concentrated Suspension of Solid Spheres
,”
Chem. Eng. Sci.
,
22
(
6
),
pp.
847
853
.10.1016/0009-2509(67)80149-0
273.
Krieger
,
I. M.
,
1972
, “
Rheology of Monodisperse Lattices
,”
Adv. Colloid Interface Sci.
,
3
(
2
),
pp.
111
136
.10.1016/0001-8686(72)80001-0
274.
Kitano
,
T.
,
Kataoka
,
T.
, and
Shirota
,
T.
,
1981
, “
An Empirical Equation of the Relative Viscosity of Polymer Melts Filled With Various Inorganic Fillers
,”
Rheol. Acta
,
20
(
2
),
pp.
207
209
.10.1007/BF01513064
275.
Lundgren
,
T. S.
,
1972
, “
Slow Flow Through Stationary Random Beds and Suspensions of Spheres
,”
J. Fluid Mech.
,
51
(
2
),
p.
273
.10.1017/S002211207200120X
276.
Graham
,
A. L.
,
1981
, “
On the Viscosity of Suspensions of Solid Spheres
,”
Appl. Sci. Res.
,
37
(
3–4
),
pp.
275
286
.10.1007/BF00951252
277.
Phan-Thien
,
N.
, and
Graham
,
A. L.
,
1991
, “
A New Constitutive Model for Fibre Suspensions: Flow Past a Sphere
,”
Rheol. Acta
,
30
(
1
),
pp.
44
57
.10.1007/BF00366793
278.
Liu
,
S.
, and
Masliyah
,
J. H.
, “
Suspensions: Fundamentals and Applications in the Petroleum Industry
,”
Advances in Chemistry
(
American Chemical Society
,
Washington, DC
,
1996
),
Vol.
251
.
279.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
),
pp.
359
368
.
280.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
J. Heat Transfer.
,
128
(
3
),
pp.
240
250
.10.1115/1.2150834
281.
Polidori
,
G.
,
Fohanno
,
S.
, and
Nguyen
,
C.
,
2007
, “
A Note on Heat Transfer Modelling of Newtonian nNanofluids in Laminar Free Convection
,”
Int. J. Therm. Sci.
,
46
(
8
),
pp.
739
744
.10.1016/j.ijthermalsci.2006.11.009
282.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transf.
,
43
(
19
),
pp.
3701
3707
.10.1016/S0017-9310(99)00369-5
283.
Rudyak
,
V. Y.
,
Belkin
,
A. A.
, and
Tomilina
,
E. A.
,
2010
, “
On the Thermal Conductivity of Nanofluids
,”
Tech. Phys. Lett.
,
36
(
7
),
pp.
660
662
.10.1134/S1063785010070229
284.
Wang
,
T.
,
Wang
,
X.
,
Luo
,
Z.
,
Ni
,
M.
, and
Cen
,
K.
,
2011
, “
Mechanisms of Viscosity Increase for Nanocolloidal Dispersions
,”
J. Nanosci. Nanotechnol.
,
11
(
4
),
pp.
3141
3150
.10.1166/jnn.2011.3613
285.
Kang
,
H.
,
Zhang
,
Y.
, and
Yang
,
M.
,
2011
, “
Molecular Dynamics Simulation of Thermal Conductivity of Cu-Ar Nanofluid Using EAM Potential for Cu-Cu Interactions
,”
Appl. Phys. A.
,
103
(
4
),
pp.
1001
1008
.10.1007/s00339-011-6379-z
286.
Allen
,
M. P.
, and
Tildesley
,
D. J.
,
1997
,
Computer Simulation of Liquids
,
Oxford University Press
,
Oxford
.
287.
Egorova
,
A. V.
,
Brodskaya
,
E. N.
, and
Laaksonen
,
A.
,
2006
, “
Molecular Dynamics Simulations of Solid-Liquid Phase Transition in Small Water Aggregates
,”
Comput. Mater. Sci.
,
36
(
1–2
),
pp.
166
170
.10.1016/j.commatsci.2004.11.015
288.
Koga
,
K.
,
2002
, “
Solvation Forces and Liquid-Solid Phase Equilibria for Water Confined Between Hydrophobic Surfaces
,”
J. Chem. Phys.
,
116
(
24
),
pp.
10882
10889
.10.1063/1.1480855
289.
Kumar
,
P.
,
Buldyrev
,
S. V.
,
Starr
,
F. W.
,
Giovambattista
,
N.
, and
Stanley
,
H. E.
,
2005
, “
Thermodynamics, Structure, and Dynamics of Water Confined Between Hydrophobic Plates
,”
Phys. Rev. E
,
72
(
5
),
p.
51503
.10.1103/PhysRevE.72.051503
290.
Stanley
,
H. E.
,
1999
, “
Liquid Water: A Very Complex Fluid
,”
Pramana, J. Phys.
,
53
(
1
),
pp.
53
83
.10.1007/s12043-999-0140-6
291.
Xu
,
S. Y.
,
Scherer
,
G. W.
,
Mahadevan
,
T. S.
, and
Garofalini
,
S. H.
,
2009
, “
Thermal Expansion of Confined Water
,”
Langmuir
,
25
(
9
),
pp.
5076
5083
.10.1021/la804061p
292.
Bonnaud
,
P. A.
,
Coasne
,
B.
, and
Pellenq
,
R. J.-M.
,
2010
, “
Molecular Simulation of Water Confined in Nanoporous Silica
,”
J. Phys. Condens. Mater
,
22
(
28
),
p.
284110
.10.1088/0953-8984/22/28/284110
293.
Demontis
,
P.
,
Gulín-González
,
J.
,
Masia
,
M.
, and
Suffritti
,
G. B.
,
2010
, “
The Behaviour of Water Confined in Zeolites: Molecular Dynamics Simulations Versus Experiment
,”
J. Phys. Condens. Mater
,
22
(
28
),
p.
284106
.10.1088/0953-8984/22/28/284106
294.
Soler
,
J. M.
,
Fabricius
,
G.
, and
Artacho
,
E.
,
2001
, “
Surface Layering and Local Structure in Liquid Surfaces
,”
Surf. Sci.
,
482–485
(
2
),
pp.
1314
1318
.10.1016/S0039-6028(01)00862-7
295.
Mittal
,
J.
, and
Hummer
,
G.
,
2010
, “
Interfacial Thermodynamics of Confined Water Near Molecularly Rough Surfaces
,”
Faraday Discuss.
,
146
,
p.
341
.10.1039/b925913a
296.
Daw
,
M. S.
, and
Baskes
,
M. I.
,
1984
, “
Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals
,”
Phys. Rev. B
,
29
(
12
),
pp.
6443
6453
.10.1103/PhysRevB.29.6443
297.
Kimura
,
Y.
,
Qi
,
Y.
,
Çağin
,
T.
and
Goddard
,
W. A.
,
1998
, “
The Quantum Sutton-Chen Many-Body Potential for Properties of Fcc Metals
,”
(Unpublished)
.
298.
Qi
,
Y.
,
Çağin
,
T.
,
Kimura
,
Y.
, and
Goddard
,
W. A.
,
1999
, “
Molecular-Dynamics Simulations of Glass Formation and Crystallization in Binary Liquid Metals: Cu-Ag and Cu-Ni
,”
Phys. Rev. B
,
59
(
5
),
pp.
3527
3533
.10.1103/PhysRevB.59.3527
299.
Meineke
,
M. A.
,
Vardeman
,
C. F.
,
Lin
,
T.
,
Fennell
,
C. J.
, and
Gezelter
,
J. D.
,
2005
, “
OOPSE: An Object-Oriented Parallel Simulation Engine for Molecular Dynamics
,”
J. Comput. Chem.
,
26
(
3
),
pp.
252
271
.10.1002/jcc.v26:3
300.
Berendsen
,
H. J. C.
,
Grigera
,
J. R.
, and
Straatsma
,
T. P.
,
1987
, “
The Missing Term in Effective Pair Potentials
,”
J. Phys. Chem.
,
91
(
24
),
pp.
6269
6271
.10.1021/j100308a038
301.
Kusalik
,
P. G.
, and
Svishchev
,
I. M.
,
1994
, “
The Spatial Structure in Liquid Water
,”
Science
,
265
(
5176
),
pp.
1219
1221
.10.1126/science.265.5176.1219
302.
Alejandre
,
J.
,
Tildesley
,
D. J.
, and
Chapela
,
G. A.
,
1995
, “
Molecular Dynamics Simulation of the Orthobaric Densities and Surface Tension of Water
,”
J. Chem. Phys.
,
102
(
11
),
pp.
4574
4583
.10.1063/1.469505
303.
Spohr
,
E.
,
1989
, “
Computer Simulation of the Water/Platinum Interface
,”
J. Phys. Chem.
,
93
(
16
),
pp.
6171
6180
.10.1021/j100353a043
304.
Dou
,
Y.
,
Zhigilei
,
L. V.
,
Winograd
,
N.
, and
Garrison
,
B. J.
,
2001
, “
Explosive Boiling of Water Films Adjacent to Heated Surfaces: A Microscopic Description
,”
J. Phys. Chem. A
,
105
(
12
),
pp.
2748
2755
.10.1021/jp003913o
305.
Lee
,
J.
, and
Mudawar
,
I.
,
2007
, “
Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
50
(
3–4
),
pp.
452
463
.10.1016/j.ijheatmasstransfer.2006.08.001
306.
Hosokawa
,
M.
,
Nogi
,
K.
,
Naito
,
M.
, and
Yokoyama
,
T.
,
2007
,
Nanoparticle Technology Handbook
,
Elsevier, Amsterdam
,
The Netherlands
.
307.
Wen
,
D.
,
Lin
,
G.
,
Vafaei
,
S.
, and
Zhang
,
K.
,
2009
, “
Review of Nanofluids for Heat Transfer Applications
,”
Particuology
,
7
(
2
),
pp.
141
150
.10.1016/j.partic.2009.01.007
308.
Kondaraju
,
S.
,
Jin
,
E. K.
, and
Lee
,
J. S.
,
2011
, “
Effect of the Multi-Sized Nanoparticle Distribution on the Thermal Conductivity of Nanofluids
,”
Microfluid. Nanofluid.
,
10
(
1
),
pp.
133
144
.10.1007/s10404-010-0653-9
309.
Chakraborty
,
S.
,
Saha
,
S. K.
,
Pandey
,
J. C.
, and
Das
,
S.
,
2011
, “
Experimental Characterization of Concentration of Nanofluid by Ultrasonic Technique
,”
Powder Technol.
,
210
(
3
),
pp.
304
307
.10.1016/j.powtec.2011.03.035
310.
Lee
,
J. H.
,
2009
, “
Convection Performance of Nanofluids for Electronics Cooling
,”
Ph.D. thesis
,
Stanford University
,
Palo Alto, CA
.
311.
Lee
,
J.-H.
,
Hwang
,
K. S.
,
Jang
,
S. P.
,
Lee
,
B. H.
,
Kim
,
J. H.
,
Choi
,
S. U. S.
, and
Choi
,
C. J.
,
2008
, “
Effective Viscosities and Thermal Conductivities of Aqueous Nanofluids Containing Low Volume Concentrations of Al2O3 Nanoparticles
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
),
pp.
2651
2656
.10.1016/j.ijheatmasstransfer.2007.10.026
312.
Vasu
,
V.
,
Rama Krishna
,
K.
, and
Kumar
,
A.
,
2009
, “
Heat Transfer With Nanofluids for Electronic Cooling
,”
Int. J. Mater. Prod. Technol.
,
34
(
1/2
),
p.
158
.10.1504/IJMPT.2009.022410
313.
Routbort
,
J. L.
,
Singh
,
D.
,
Timofeeva
,
E. V.
,
Yu
,
W.
, and
France
,
D. M.
,
2011
, “
Pumping Power of Nanofluids in a Flowing System
,”
J. Nanopart. Res.
,
13
(
3
),
pp.
931
937
.10.1007/s11051-010-0197-7
You do not currently have access to this content.