The direct numerical simulation of turbulence (DNS) has become a method of outmost importance for the investigation of turbulence physics, and its relevance is constantly growing due to the increasing popularity of high-performance-computing techniques. In the present work, the DNS approach is discussed mainly with regard to turbulent shear flows of incompressible fluids with constant properties. A body of literature is reviewed, dealing with the numerical integration of the Navier-Stokes equations, results obtained from the simulations, and appropriate use of the numerical databases for a better understanding of turbulence physics. Overall, it appears that high-performance computing is the only way to advance in turbulence research through the front of the direct numerical simulation.

References

References
1.
Mahesh
,
K.
,
Costantinescu
,
G.
, and
Moin
,
P.
, 2004, “
A Numerical Method for Large-Eddy Simulation in Complex Geometries
,”
J. Comput. Phys.
,
197
, pp.
215
240
.
2.
Chen
,
J. H.
, 2011, “
Petascale Direct Numerical Simulation of Turbulent Combustion - Fundamental Insights Towards Predictive Models
,”
Proc. Combust. Inst.
,
33
, pp.
99
123
.
3.
Esmaeeli
,
A.
, and
Tryggvason
,
G.
, 1998, “
Direct Numerical Simulation of Bubbly Flows. Part 1. Low Reynolds Number Arrays
,”
J. Fluid Mech.
,
377
, pp.
313
345
.
4.
Bodony
,
D. J.
, and
Lele
,
S. K.
, 2008, “
Current Status of Jet Noise Predictions Using Large-Eddy Simulation
,”
AIAA J.
,
46
, pp.
364
380
.
5.
Moin
,
P.
, and
Mahesh
,
K.
, 1998, “
Direct Numerical Simulation: A Tool in Turbulence Research
,”
Annu. Rev. Fluid Mech.
,
30
, pp.
539
578
.
6.
Orszag
,
S. A.
, and
Patterson
,
G. S.
, 1972, “
Numerical Simulation of Three-Dimensional Homogeneous Isotropic Turbulence
,”
Phys. Rev. Lett.
,
28
, pp.
76
79
.
7.
Rogallo
,
R. S.
, 1981, “
Numerical Experiments in Homogeneous Turbulence
,” NASA Paper No. TM-81315.
8.
Rogallo
,
R. S.
, and
Moin
,
P.
, 1984, “
Numerical Simulation of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
16
, pp.
99
137
.
9.
Kerr
,
R. M.
, 1985, “
Higher-Order Derivative Correlations and the Alignment of Small-Scale Structures in Isotropic Numerical Turbulence
,”
J. Fluid Mech.
,
153
, pp.
31
58
.
10.
Jiménez
,
J.
,
Wray
,
A. A.
,
Saffman
,
P. G.
, and
Rogallo
,
R. S.
, 1993, “
The Structure of Intense Vorticity in Isotropic Turbulence
,”
J. Fluid Mech.
,
255
, pp.
65
90
.
11.
Moser
,
R. D.
, and
Moin
,
P.
, 1987, “
The Effects of Curvature in Wall-Bounded Turbulent Flows
,”
J. Fluid Mech.
,
175
, pp.
479
510
.
12.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
, 1987, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
166
.
13.
Spalart
,
P. R.
, 1988, “
Direct Simulation of a Turbulent Boundary Layer up to Reθ=1410
,”
J. Fluid Mech.
,
187
, pp.
61
98
.
14.
Gavrilakis
,
S.
, 1992, “
Numerical Simulation of Low-Reynolds-Number Turbulent Flow Through a Straight Square Duct
,”
J. Fluid Mech.
,
244
, pp.
101
129
.
15.
Huser
,
A.
, and
Biringen
,
S.
, 1993, “
Direct Numerical Simulation of Turbulent Flow in a Square Duct
,”
J. Fluid Mech.
,
257
, pp.
65
95
.
16.
Eggels
,
J. G. M.
,
Unger
,
F.
,
Weiss
,
M. H.
,
Westerweel
,
J.
,
Adrian
,
R. J.
,
Friedrich
,
R.
, and
Nieuwstadt
,
F. T. M.
, 1994, “
Fully Developed Turbulent Pipe Flow: A Comparison Between Direct Numerical Simulation and Experiment
,”
J. Fluid Mech.
,
268
, pp.
175
209
.
17.
Schumann
,
U.
, 1975, “
Linear Stability of Finite Difference Equations for Three-Dimensional Flow Problems
,”
J. Comput. Phys.
,
18
, pp.
465
470
.
18.
Lyons
,
S. L.
,
Hanratty
,
T. J.
, and
McLaughlin
,
J. B.
, 1991, “
Large-Scale Computer Simulation of Fully Developed Turbulent Channel Flow With Heath Transfer
,”
Int. J. Numer. Methods Fluids
,
13
, pp.
999
1028
.
19.
Kasagi
,
N.
,
Tomita
,
Y.
, and
Kuroda
,
A.
, 1992, “
Direct Numerical Simulation of Passive Scalar Field in a Turbulent Channel Flow
,”
ASME J. Heat Transfer
,
114
, pp.
598
606
.
20.
Antonia
,
R. A.
,
Teitel
,
M.
,
Kim
,
J.
, and
Browne
,
L. W. B.
, 1992, “
Low-Reynolds-Number Effects in a Fully Developed Turbulent Channel Flow
,”
J. Fluid Mech.
,
236
, pp.
579
605
.
21.
Rutledge
,
J.
, and
Sleicher
,
C. A.
, 1993, “
Direct Simulation of Turbulent Flow and Heat Transfer in a Channel. Part I: Smooth Walls
,”
Int. J. Numer. Methods Fluids
,
16
, pp.
1051
1078
.
22.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
, 1999, “
Direct Numerical Simulation of Turbulent Channel Flow Up to Reτ=590
,”
Phys. Fluids
,
11
, pp.
943
945
.
23.
Abe
,
H.
,
Kawamura
,
H.
, and
Matsuo
,
Y.
, 2001, “
Direct Numerical Simulation of a Fully Developed Turbulent Channel Flow With Respect to the Reynolds Number Dependence
,”
ASME J. Fluids Eng.
,
123
, pp.
382
393
.
24.
Iwamoto
,
K.
,
Suzuki
,
Y.
, and
Kasagi
,
N.
, 2002, “
Reynolds Number Effect on Wall Turbulence: Toward Effective Feedback Control
,”
Int. J. Heat Fluid Flow
,
23
, pp.
678
689
.
25.
Del Alamo
,
J. C.
, and
Jiménez
,
J.
, 2003, “
Spectra of the Very Large Anisotropic Scales in Turbulent Channels
,”
Phys. Fluids
,
15
, pp.
L41
L44
.
26.
Del Alamo
,
J. C.
,
Jiménez
,
J.
,
Zandonade
,
P.
, and
Moser
,
R. D.
, 2004, “
Scaling of the Energy Spectra of Turbulent Channels
,”
J. Fluid Mech.
,
500
, pp.
135
144
.
27.
Tanahashi
,
M.
,
Kang
,
S. J.
,
Miyamoto
,
T.
,
Shiokawa
,
S.
, and
Miyauchi
,
T.
, 2004, “
Scaling Law of the Fine Scale Eddies in Turbulent Channel Flows up to Reτ=800
,”
Int. J. Heat Fluid Flow
,
25
, pp.
331
340
.
28.
Iwamoto
,
K.
Kasagi
,
N.
, and
Suzuki
,
Y.
, 2005, “
Direct Numerical Simulation of Turbulent Channel Flow at Reτ=2320
,”
Proc. 6th Int. Symp. on Smart Control of Turbulence
,
Tokyo
, pp.
1
7
.
29.
Hoyas
,
S.
, and
Jiménez
,
J.
, 2006, “
Scaling of the Velocity Fluctuations in Turbulent Channels up to Reτ=2003
,”
Phys. Fluids
,
18
, pp.
011702
-1–011702-
4
.
30.
Hu
,
Z. W.
,
Morfey
,
C. L.
, and
Sandham
,
N. D.
, 2006, “
Wall Pressure and Shear Stress Spectra From Direct Simulations of Channel Flow
,”
AIAA J.
,
44
, pp.
1541
1549
.
31.
Alfonsi
,
G.
, and
Primavera
,
L.
, 2007, “
Direct Numerical Simulation of Turbulent Channel Flow With Mixed Spectral-Finite Difference Technique
,”
J. Flow Visualization Image Process.
,
14
, pp.
225
243
.
32.
Kim
,
J.
, and
Moin
,
P.
, 1985, “
Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
59
, pp.
308
323
.
33.
Alfonsi
,
G.
,
Passoni
,
G.
,
Pancaldo
,
L.
, and
Zampaglione
,
D.
, 1998, “
A Spectral-Finite Difference Solution of the Navier-Stokes Equations in Three Dimensions
,”
Int. J. Numer. Methods Fluids
,
28
, pp.
129
142
.
34.
Rempfer
,
D.
, 2006, “
On Boundary Conditions for Incompressible Navier-Stokes Problems
,”
Appl. Mech. Rev.
,
59
, pp.
107
125
.
35.
Dean
,
R. B.
, 1978, “
Reynolds-Number Dependence of Skin Friction and Other Bulk Flow Variables in Two-Dimensional Rectangular Duct Flow
,”
ASME J. Fluids Eng.
,
100
, pp.
215
223
.
36.
Robinson
,
S. K.
, 1991, “
Coherent Motions in the Turbulent Boundary Layer
,”
Annu. Rev. Fluid Mech.
,
23
, pp.
601
639
.
37.
Panton
,
R. L.
, 2001, “
Overview of the Self-Sustaining Mechanisms of Wall Turbulence
,”
Prog. Aerosp. Sci.
,
37
, pp.
341
383
.
38.
Grötzbach
,
G.
, 1983, “
Spatial Resolution Requirements for Direct Numerical Simulation of Rayleigh-Benard Convection
,”
J. Comput. Phys.
,
49
, pp.
241
264
.
39.
Bakewell
,
H. P.
, and
Lumley
,
J. L.
, 1967, “
Viscous Sublayer and Adjacent Wall Region in Turbulent Pipe Flow
,”
Phys. Fluids
,
10
, pp.
1880
1889
.
40.
Fishpool
,
G. M.
,
Lardeau
,
S.
, and
Leschziner
,
M. A.
, 2009, “
Persistent Non-Homogeneous Features in Periodic Channel-Flow Simulations
,”
Flow, Turbul. Combust.
,
83
, pp.
323
342
.
41.
Jiménez
,
J.
, and
Moin
,
P.
, 1991, “
The Minimal Flow Unit in Near-Wall Turbulence
,”
J. Fluid Mech.
,
225
, pp.
213
240
.
42.
Friedrich
,
R.
,
Hüttl
,
T. J.
,
Manhart
,
M.
, and
Wagner
,
C.
, 2001, “
Direct Numerical Simulation of Incompressible Turbulent Flows
,”
Comput. Fluids
,
30
, pp.
555
579
.
43.
Mochizuki
,
S.
, and
Nieuwstadt
,
F. T. M.
, 1996, “
Reynolds-Number-Dependence of the Maximum of the Streamwise Velocity Fluctuations in Wall Turbulence
,”
Exp. Fluids
,
21
, pp.
218
226
.
44.
Xu
,
C.
,
Zhang
,
Z.
,
den Toonder
,
J. M. J.
, and
Nieuwstadt
,
F. T. M.
, 1996, “
Origin of High Kurtosis Level in the Viscous Sublayer. Direct Numerical Simulation and Experiment
,”
Phys. Fluids
,
8
, pp.
1938
1944
.
45.
Brooke
,
J. W.
, and
Hanratty
,
T. J.
, 1993, “
Origin of Turbulence-Producing Eddies in a Channel Flow
,”
Phys. Fluids A
,
5
, pp.
1011
1022
.
46.
Mansour
,
N. N.
,
Kim
,
J.
, and
Moin
,
P.
, 1988, “
Reynolds-Stress and Dissipation-Rate Budgets in a Turbulent Channel Flow
,”
J. Fluid Mech.
,
194
, pp.
15
44
.
47.
Jiménez
,
J.
, 2004, “
Turbulent Flows Over Rough Walls
,”
Annu. Rev. Fluid Mech.
,
36
, pp.
173
196
.
48.
Leonardi
,
S.
,
Orlandi
,
P.
,
Smalley
,
R. J.
,
Djenidi
,
L.
, and
Antonia
,
R. A.
, 2003, “
Direct Numerical Simulations of Turbulent Channel Flow With Transverse Square Bars on one Wall
,”
J. Fluid Mech.
,
491
, pp.
229
238
.
49.
Orlandi
,
P.
,
Leonardi
,
S.
, and
Antonia
,
R. A.
, 2006, “
Turbulent Channel Flow with Either Transverse or Longitudinal Roughness Elements on one Wall
,”
J. Fluid Mech.
,
561
, pp.
279
305
.
50.
Leonardi
,
S.
,
Orlandi
,
P.
, and
Antonia
,
R. A.
, 2007, “
Properties of d- and k-Type of Roughness in a Turbulent Channel Flow
,”
Phys. Fluids
,
19
, pp.
125101
-1–125101-
6
.
51.
Burattini
,
P.
,
Leonardi
,
S.
,
Orlandi
,
P.
, and
Antonia
,
R. A.
, 2008, “
Comparison Between Experiments and Direct Numerical Simulations in a Channel Flow with Roughness on One Wall
,”
J. Fluid Mech.
,
600
, pp.
403
426
.
52.
Orlandi
,
P.
, and
Leonardi
,
S.
, 2008, “
Direct Numerical Simulation of Three-Dimensional Turbulent Rough Channels: Parameterization and Flow Physics
,”
J. Fluid Mech.
,
606
, pp.
399
415
.
53.
Leonardi
,
S.
,
Orlandi
,
P.
,
Djenidi
,
L.
, and
Antonia
,
R. A.
, 2004, “
Structure of Turbulent Channel Flow With Square Bars on One Wall
,”
Int. J. Heat Fluid Flow
,
25
, pp.
384
392
.
54.
Krogstad
,
P. A.
,
Andersson
,
H. I.
,
Bakken
,
O. M.
, and
Ashrafian
,
A.
, 2005, “
An Experimental and Numerical Study of Channel Flow With Rough Walls
,”
J. Fluid Mech.
,
530
, pp.
327
352
.
55.
Flores
,
O.
, and
Jiménez
,
J.
, 2006, “
Effect of Wall-Boundary Disturbances on Turbulent Channel Flows
,”
J. Fluid Mech.
,
566
, pp.
357
376
.
56.
Flores
,
O.
,
Jiménez
,
J.
, and
Del Alamo
,
J. C.
, 2007, “
Vorticity Organization in the Outer Layer of Turbulent Channels With Disturbed Walls
,”
J. Fluid Mech.
,
591
, pp.
145
154
.
57.
Bhaganagar
,
K.
,
Coleman
,
G.
, and
Kim
,
J.
, 2007, “
Effect of Roughness on Pressure Fluctuations in a Turbulent Channel Flow
,”
Phys. Fluids
,
19
, p.
028103
.
58.
Leonardi
,
S.
, and
Castro
,
I. P.
, 2010, “
Channel Flow Over Large Cube Roughness: A Direct Numerical Simulation Study
,”
J. Fluid Mech.
,
651
, pp.
519
539
.
59.
Khujadze
,
G.
, and
Oberlack
,
M.
, 2004, “
DNS and Scaling Laws From New Symmetry Groups of zpg Turbulent Boundary Layer Flow
,”
Theor. Comput. Fluid Dyn.
,
18
, pp.
391
441
.
60.
Lund
,
T. S.
,
Wu
,
X.
, and
Squires
,
K. D.
, 1998, “
Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations
,”
J. Comput. Phys.
,
140
, pp.
223
258
.
61.
Wu
,
X.
,
Jacobs
,
R.
,
Hunt
,
J. C. R.
, and
Durbin
,
P. A.
, 1999, “
Simulation of Boundary Layer Transition Induced by Periodically Passing Wakes
,”
J. Fluid Mech.
,
398
, pp.
109
153
.
62.
Jacobs
,
R. G.
, and
Durbin
,
P. A.
, 2001, “
Simulation of Bypass Transition
,”
J. Fluid Mech.
,
428
, pp.
185
212
.
63.
Brandt
,
L.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
, 2004, “
Transition in Boundary Layers Subject to Free-Stream Turbulence
,”
J. Fluid Mech.
,
517
, pp.
167
198
.
64.
Zaki
,
T. A.
, and
Durbin
,
P. A.
, 2005, “
Mode Interaction and the Bypass Route to Transition
,”
J. Fluid Mech.
,
531
, pp.
85
111
.
65.
Ovchinnikov
,
V.
,
Piomelli
,
U.
, and
Choudhari
,
M. M.
, 2006, “
Numerical Simulations of Boundary-Layer Transition Induced by a Cylinder Wake
,”
J. Fluid Mech.
547
, pp.
413
441
.
66.
Wu
,
X.
, and
Moin
,
P.
, 2009, “
Direct Numerical Simulation of Turbulence in a Nominally Zero-Pressure Gradient Flat-Plate Boundary Layer
,”
J. Fluid Mech.
,
630
, pp.
5
41
.
67.
Marusic
,
I.
, 2009, “
Unravelling Turbulence Near Walls
,”
J. Fluid Mech.
,
630
, pp.
1
4
.
68.
Coceal
,
O.
,
Dobre
,
A.
,
Thomas
,
T. G.
, and
Belcher
,
S. E.
, 2007, “
Structure of Turbulent Flow Over Regular Arrays of Cubical Roughness
,”
J. Fluid Mech.
,
589
, pp.
375
-
409
.
69.
Lee
,
J. H.
Sung
,
H. J.
and
Krogstad
,
P. A.
, 2011, “
Direct Numerical Simulation of the Turbulent Boundary Layer Over a Cube-Roughened Wall
,”
J. Fluid Mech.
,
669
, pp.
397
431
.
70.
Bushnell
,
D. M.
, and
McGinley
,
C. B.
, 1989, “
Turbulence Control in Wall Flows
,”
Annu. Rev. Fluid Mech.
,
21
, pp.
1
20
.
71.
Lumley
,
J. L.
, and
Blossey
,
P.
, 1998, “
Control of Turbulence
,”
Annu. Rev. Fluid Mech.
,
30
, pp.
311
327
.
72.
Alfonsi
,
G.
, 2008, “
Passive Techniques for Control of Turbulence in Wall-Bounded Flows
,”
J. Flow. Visualization Image Process.
,
15
, pp.
217
234
.
73.
Walsh
,
M. J.
, and
Weinstein
,
L. M.
, 1978, “
Drag and Heat Transfer on Surfaces With Small Longitudinal Fins
,” AIAA Paper No. 78-1161.
74.
Walsh
,
M. J.
, 1983, “Riblets as a Viscous Drag Reduction Technique,”
AIAA J.
,
21
, pp.
485
486
.
75.
Gallagher
,
J. A.
, and
Thomas
,
A. S. W.
, 1984, “
Turbulent Boundary Layer Characteristics Over Streamwise Grooves
,” AIAA Paper No. 84-2185.
76.
Bacher
,
E. V.
, and
Smith
,
C. R.
, 1985, “
A Combined Visualization-Anemometry Study of the Turbulent Drag Reducing Mechanisms of Triangular Micro-Groove Surface Modifications
,” AIAA Paper No. 85-0548.
77.
Wallace
,
J. M.
, and
Balint
,
J. L.
, 1987, “
Viscous Drag Reduction Using Streamwise Aligned Riblets: Survey and New Results
,”
Turbulence Management and Relaminarization
,
H. W.
Liepmann
and
R.
Narasimha
, eds.,
Springer
,
New York
, pp.
133
147
.
78.
Bechert
,
D. W.
, and
Bartenwerfer
,
M.
, 1989, “
The Viscous Flow on Surfaces With Longitudinal Ribs
,”
J. Fluid Mech.
,
206
, pp.
105
129
.
79.
Choi
,
K. S.
, 1989, “
Near-Wall Structure of a Turbulent Boundary Layer With Riblets
,”
J. Fluid Mech.
,
208
, pp.
417
458
.
80.
Choi
,
H.
,
Moin
,
P.
, and
Kim
,
J.
, 1991, “
On the Effect of Riblets in Fully Developed Laminar Channel Flows
,”
Phys. Fluids A
,
3
, pp.
1892
1896
.
81.
Choi
,
H.
,
Moin
,
P.
, and
Kim
,
J.
, 1993, “
Direct Numerical Simulation of Turbulent Flow Over Riblets
,”
J. Fluid Mech.
,
255
, pp.
503
539
.
82.
Chu
,
D. C.
, and
Karniadakis
,
G. E.
, 1993, “
A Direct Numerical Simulation of Laminar and Turbulent Flow Over Riblet-Mounted Surfaces
,”
J. Fluid Mech.
,
250
, pp.
1
42
.
83.
Goldstein
,
D.
,
Handler
,
R.
, and
Sirovich
,
L.
, 1995, “
Direct Numerical Simulation of Turbulent Flow Over a Modelled Riblet Covered Surface
,”
J. Fluid Mech.
,
302
, pp.
333
376
.
84.
Karniadakis
,
G. E.
, and
Choi
,
K. S.
, 2003, “
Mechanisms of Transverse Motions in Turbulent Wall Flows
,”
Annu. Rev. Fluid Mech.
,
35
, pp.
45
62
.
85.
Ho
,
C. M.
, and
Tai
,
Y. C.
, 1998, “
Micro-Electro-Mechanical-Systems (MEMS) and Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
, pp.
579
612
.
86.
Bewley
,
T. R.
, 2001, “
Flow Control: New Challenges for a New Renaissance
,”
Prog. Aerosp. Sci.
,
37
, pp.
21
58
.
87.
Collins
,
S. S.
,
Joslin
,
R. D.
,
Seifert
,
A.
, and
Theofilis
,
V.
, 2004, “
Issues in Active Flow Control: Theory, Control, Simulation and Experiment
,”
Prog. Aerosp. Sci.
,
40
, pp.
237
289
.
88.
Kasagi
,
N.
,
Suzuki
,
Y.
, and
Fukagata
,
K.
, 2009, “
Microelectromechanical Systems-Based Feedback Control of Turbulence for Skin Friction Reduction
,”
Annu. Rev. Fluid Mech.
,
41
, pp.
231
251
.
89.
Choi
,
H.
,
Moin
,
P.
, and
Kim
,
J.
, 1994, “
Active Turbulence Control for Drag Reduction in Wall-Bounded Flows
,”
J. Fluid Mech.
,
262
, pp.
75
110
.
90.
Carlson
,
H. A.
, and
Lumley
,
J. L.
, 1996, “
Active Control in the Turbulent Wall Layer of a Minimal Flow Unit
,”
J. Fluid Mech.
,
329
, pp.
341
371
.
91.
Du
,
Y.
,
Symeonidis
,
V.
, and
Karniadakis
,
G. E.
, 2002, “
Drag Reduction in Wall-Bounded Turbulence Via a Transverse Travelling Wave
,”
J. Fluid Mech.
,
457
, pp.
1
34
.
92.
Lee
,
C.
,
Kim
,
J.
, and
Choi
,
H.
, 1998, “
Suboptimal Control of Turbulent Channel Flow for Drag Reduction
,”
J. Fluid Mech.
,
358
, pp.
245
258
.
93.
Koumoutsakos
,
P.
, 1999, “
Vorticity Flux Control for a Turbulent Channel Flow
,”
Phys. Fluids
,
11
, pp.
248
250
.
94.
Endo
,
T.
,
Kasagi
,
N.
, and
Suzuki
,
Y.
, 2000, “
Feedback Control of Wall Turbulence With Wall Deformation
,”
Int. J. Heat Fluid Flow
,
21
, pp.
568
575
.
95.
Lee
,
K. H.
,
Cortelezzi
,
L.
,
Kim
,
J.
, and
Speyer
,
J.
, 2001, “
Application of Reduced-Order Controller to Turbulent Flows for Drag Reduction
,”
Phys. Fluids
,
13
, pp.
1321
1330
.
96.
Fukagata
,
K.
, and
Kasagi
,
N.
, 2004, “
Suboptimal Control for Drag Reduction Via Suppression of Near-Wall Reynolds Shear Stress
,”
Int. J. Heat Fluid Flow
,
25
, pp.
341
350
.
97.
Kim
,
J.
, and
Bewley
,
T. R.
, 2007, “
A Linear Systems Approach to Flow Control
,”
Annu. Rev. Fluid Mech.
,
39
, pp.
383
417
.
98.
Coutanceau
,
M.
, and
Defaye
,
J. R.
, 1991, “
Circular Cylinder Wake Configurations: A Flow Visualization Survey
,”
Appl. Mech. Rev
,
44
, pp.
255
305
.
99.
Williamson
,
C. H. K.
, 1996, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Rev. Fluid Mech.
,
28
, pp.
477
539
.
100.
Williamson
,
C. H. K.
, and
Govardhan
,
R.
, 2004, “
Vortex-Induced Vibrations
,”
Annu. Rev. Fluid Mech.
,
36
, pp.
413
455
.
101.
Sarpkaya
,
T.
, 2004, “
A Critical Review of the Intrinsic Nature of Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
19
, pp.
389
447
.
102.
Dennis
,
S. C. R.
, and
Chang
,
G. Z.
, 1970, “
Numerical Solutions for Steady Flow Past a Circular Cylinder at Reynolds Number up to 100
,”
J. Fluid Mech.
,
42
, pp.
471
489
.
103.
Collins
,
W. M.
, and
Dennis
,
S. C. R.
, 1973, “
Flow Past an Impulsively Started Circular Cylinder
,”
J. Fluid Mech.
,
60
, pp.
105
127
.
104.
Badr
,
H. M.
, and
Dennis
,
S. C. R.
, 1985, “
Time-Dependent Viscous Flow Past an Impulsively Started Rotating and Translating Circular Cylinder
,”
J. Fluid Mech.
,
158
, pp.
447
488
.
105.
Phuoc Loc
,
T.
, 1980, “
Numerical Analysis of Unsteady Secondary Vortices Generated by an Impulsively Started Circular Cylinder
,”
J. Fluid Mech.
,
100
, pp.
111
128
.
106.
Phuoc Loc
,
T.
, and
Bouard
,
R.
, 1985, “
Numerical Solution of the Early Stage of the Unsteady Viscous Flow Around a Circular Cylinder: A Comparison With Experimental Visualizations and Measurements
,”
J. Fluid Mech.
,
160
, pp.
93
117
.
107.
Braza
,
M.
,
Chassaing
,
P.
, and
Ha Minh
,
H.
, 1986, “
Numerical Study and Physical Analysis of the Pressure and Velocity Fields in the Near Wake of a Circular Cylinder
,”
J. Fluid Mech.
,
165
, pp.
79
130
.
108.
Braza
,
M.
,
Chassaing
,
P.
, and
Ha Minh
,
H.
, 1990, “
Prediction of Large-Scale Transition Features in the Wake of a Circular Cylinder
,”
Phys. Fluids A
,
2
, pp.
1461
1471
.
109.
Alfonsi
,
G.
, and
Giorgini
,
A.
, 1991, “
Nonlinear Perturbation of the Vortex Shedding From a Circular Cylinder
,”
J. Fluid Mech.
,
222
, pp.
267
291
.
110.
Alfonsi
,
G.
, and
Giorgini
,
A.
, 2002, “
Temporal Evolution of High-Order Vortices in the Nonsymmetric Wake Past a Circular Cylinder
,”
Fluid Dyn. Res.
,
31
, pp.
13
39
.
111.
Alfonsi
,
G.
, 2005, “
Unsteady Development of Vortical Structures in the Symmetric Near Wake of a Cylinder
,”
J. Flow Visualization Image Process
,
12
, pp.
45
72
.
112.
Batcho
,
P.
, and
Karniadakis
,
G. E.
, 1991, “
Chaotic Transport in Two- and Three Dimensional Flow Past a Cylinder
,”
Phys. Fluids A
,
3
, pp.
1051
1062
.
113.
Mittal
,
R.
, and
Balachandar
,
S.
, 1995, “
Effect of Three-Dimensionality on the Lift and Drag of Nominally Two-Dimensional Cylinder
,”
Phys. Fluids
,
7
, pp.
1841
1865
.
114.
Henderson
,
R. D.
, 1997, “
Nonlinear Dynamics and Pattern Formation in Turbulent Wake Transition
,”
J. Fluid Mech.
,
352
, pp.
65
112
.
115.
Ma
,
X.
,
Karamanos
,
G. S.
, and
Karniadakis
,
G. E.
, 2000, “
Dynamics and Low-Dimensionality of a Turbulent Near Wake
,”
J. Fluid Mech.
,
410
, pp.
29
65
.
116.
Mittal
,
S.
, and
Tezduyar
,
T. E.
, 1992, “
A Finite Element Study of Incompressible Flows Past Oscillating Cylinders and Airfoils
,”
Int. J. Numer. Methods Fluids
,
15
, pp.
1073
1118
.
117.
Mittal
,
S.
, and
Kumar
,
V.
, 1999, “
Finite Element Study of Vortex-Induced Cross-Flow and In-Line Oscillations of a Circular Cylinder at Low Reynolds Numbers
,”
Int. J. Numer. Methods Fluids
,
31
, pp.
1087
1120
.
118.
Mittal
,
S.
, and
Kumar
,
V.
2001, “
Flow-Induced Vibrations of a Light Circular Cylinder at Reynolds Numbers 103 to 104
,”
J. Sound Vib.
,
245
, pp.
923
946
.
119.
Dong
,
S.
, and
Karniadakis
,
G. E.
, 2005, “
DNS of Flow Past a Stationary and Oscillating Cylinder at Re=1000
,”
J. Fluids Struct.
,
20
, pp.
519
531
.
120.
Bearman
,
P. W.
, 2009, “
Understanding and Predicting Vortex-Induced Vibrations
,”
J. Fluid Mech.
634
, pp.
1
4
.
121.
Griffin
,
O. M.
,
Vandiver
,
J. K.
,
Skop
,
R. A.
, and
Meggit
,
D. J.
, 1982, “
The Strumming Vibrations of Marine Cables
,”
Ocean Sci. Eng.
,
7
, pp.
461
498
.
122.
Vandiver
,
J. K.
, 1991, “
Dimensionless Parameters Important to the Prediction of Vortex-Induced Vibrations of Long, Flexible Cylinders in Ocean Currents
,” MIT Sea Grant Rep. No. MITSG 91-93.
123.
Newman
,
D. J.
, and
Karniadakis
,
G. E.
, 1997, “
A Direct Numerical Simulation Study of Flow Past a Freely Vibrating Cable
,”
J. Fluid Mech.
,
344
, pp.
95
136
.
124.
Warburton
,
T. C.
, and
Karniadakis
,
G. E.
, 1996, “
The Wake of Oscillating Cylinder Close to a Free-Surface
,”
Bull. Am. Phys. Soc.
,
41
, p.
1732
.
125.
Henderson
,
R. D.
, and
Karniadakis
,
G. E.
, 1995, “
Unstructured Spectral Element Methods for Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
122
, pp.
191
217
.
126.
Karniadakis
,
G. E.
, and
Triantafyllou
,
G. S.
, 1992, “
Three-Dimensional Dynamics and Transition to Turbulence in the Wake of Bluff Objects
,”
J. Fluid Mech.
,
238
, pp.
1
30
.
127.
Karniadakis
,
G. E.
,
Israeli
,
M.
, and
Orszag
,
S. A.
, 1991, “
High-Order Splitting Methods for Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
97
, pp.
414
443
.
128.
Evangelinos
,
C.
, and
Karniadakis
,
G. E.
, 1999, “
Dynamics and Flow Structures in the Turbulent Wake of Rigid and Flexible Cylinders Subject to Vortex-Induced Vibrations
,”
J. Fluid Mech.
,
400
, pp.
91
124
.
129.
Evangelinos
,
C.
,
Lucor
,
D.
,
Su
,
C. H.
, and
Karniadakis
,
G. E.
, 2002, “
Flow-Induced Vibrations of Non-Linear Cables. Part 1: Models and Algorithms
,”
Int. J. Numer. Methods Eng.
,
55
, pp.
535
556
.
130.
Lucor
,
D.
,
Evangelinos
,
C.
,
Imas
,
L.
, and
Karniadakis
,
G. E.
, 2002, “
Flow-Induced Vibrations of Non-Linear Cables. Part 2: Simulations
,”
Int. J. Numer. Methods Eng.
,
55
, pp.
557
571
.
131.
Papaioannou
,
G. V.
,
Yue
,
D. K. P.
,
Triantafyllou
,
M. S.
, and
Karniadakis
,
G. E.
, 2006,
”Three-Dimensionality Effects in Flow Around Two Tandem Cylinders,”
J. Fluid Mech.
,
558
, pp.
387
413
.
132.
Papaioannou
,
G. V.
,
Yue
,
D. K. P.
,
Triantafyllou
,
M. S.
, and
Karniadakis
,
G. E.
, 2008, “
On the Effect of Spacing on the Vortex-Induced Vibrations of Two Tandem Cylinders
,”
J. Fluids Struct.
,
24
, pp.
833
854
.
133.
Alfonsi
,
G.
, and
Primavera
,
L.
, 2007, “
A Parallel Computational Code for the Proper Orthogonal Decomposition of Turbulent Flows
,”
J. Flow Visualization Image Process
,
14
, pp.
267
286
.
134.
Kline
,
S. J.
,
Reynolds
,
W. C.
,
Schraub
,
F. A.
, and
Rundstadler
,
P. W.
, 1967, “
The Structure of Turbulent Boundary Layers
,”
J. Fluid Mech.
,
30
, pp.
741
773
.
135.
Antonia
,
R. A.
, 1981, “
Conditional Sampling in Turbulence Measurement
,”
Annu. Rev. Fluid Mech.
,
13
, pp.
131
156
.
136.
Willmarth
,
W. W.
, and
Lu
,
S.S.
, 1972, “
Structure of the Reynolds Stress Near the Wall
,”
J. Fluid Mech.
,
55
, pp.
65
92
.
137.
Blackwelder
,
R. F.
, and
Kaplan
,
R. E.
, 1976, “
On the Wall Structure of the Turbulent Boundary Layer
,”
J. Fluid Mech.
,
76
, pp.
89
112
.
138.
Johansson
,
A. V.
,
Alfredsson
,
P. H.
, and
Kim
,
J.
, 1991, “
Evolution and Dynamics of Shear-Layer Structures in Near-Wall Turbulence
,”
J. Fluid Mech.
,
224
, pp.
579
599
.
139.
Theodorsen
,
T.
, 1952, “
Mechanism of Turbulence
,”
Proc. 2nd Midwestern Fluid Mechanics Conf.
,
Columbus
,
Ohio
, pp.
1
18
.
140.
Head
,
M. R.
, and
Bandyopadhyay
,
P.
, 1981, “
New Aspects of Turbulent Boundary-Layer Structure
,”
J. Fluid Mech.
,
107
, pp.
297
338
.
141.
Smith
,
C. R.
,
Walker
,
J. D. A.
,
Haidari
,
A. H.
, and
Soburn
,
U.
, 1991, “
On the Dynamics of Near-Wall Turbulence
,”
Phil. Trans. R. Soc. London
,
336
, pp.
131
175
.
142.
Willmarth
,
W. W.
, and
Tu
,
B. J.
, 1967, “
Structure of Turbulence in the Boundary Layer Near the Wall
,”
Phys. Fluids
,
10
, pp.
S134
S137
.
143.
Offen
,
G. R.
, and
Kline
,
S. J.
, 1975, “
A Proposed Model of the Bursting Process in Turbulent Boundary Layers
,”
J. Fluid Mech.
,
70
, pp.
209
228
.
144.
Praturi
,
A. K.
, and
Brodkey
,
R. S.
, 1978, “
A Stereoscopic Visual Study of Coherent Structures in Turbulent Shear Flow
,”
J. Fluid. Mech.
,
89
, pp.
251
272
.
145.
Thomas
,
A. S. W.
, and
Bull
,
M. K.
, 1983, “
On the Role of Wall-Pressure Fluctuations in Deterministic Motions in the Turbulent Boundary Layer
,”
J. Fluid Mech.
,
128
, pp.
283
322
.
146.
Perry
,
A. E.
, and
Chong
,
M. S.
, 1982, “
On the Mechanism of Wall Turbulence
,”
J. Fluid Mech.
,
119
, pp.
173
217
.
147.
Townsend
,
A. A.
, 1976,
The Structure of Turbulent Shear Flow
,
2nd ed.
,
Cambridge University Press
,
Cambridge
.
148.
Acarlar
,
M. S.
, and
Smith
,
C. R.
, 1987, “
A Study of Hairpin Vortices in a Laminar Boundary Layer, Part 2. Hairpin Vortices Generated by Fluid Injection
,”
J. Fluid Mech.
175
, pp.
43
83
.
149.
Alfonsi
,
G.
, 2006, “
Coherent Structures of Turbulence: Methods of Education and Results
,”
Appl. Mech. Rev.
,
59
, pp.
307
323
.
150.
Adrian
,
R. J.
, 2007, “
Hairpin Vortex Organization in Wall Turbulence
,”
Phys. Fluids
,
19
, p.
041301
.
151.
Adrian
,
R. J.
,
Meinhart
,
C. D.
, and
Tomkins
,
C. D.
, 2000, “
Vortex Organization in the Outer Region of the Turbulent Boundary Layer
,”
J. Fluid Mech.
422
, pp.
1
54
.
152.
Perry
,
A. E.
, and
Chong
,
M. S.
, 1987, “
A Description of Eddying Motions and Flow Patterns Using Critical-Point Concepts
,”
Annu. Rev. Fluid Mech.
,
19
, pp.
125
155
.
153.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
, 1988, “
Eddies, Streams and Convergence Zones in Turbulent Flows
,”
Proc. 1988 Summer Program
,
Center for Turbulence Research, NASA Ames/Stanford University
, pp.
193
208
.
154.
Jeong
,
J.
, and
Hussain
,
F.
, 1995, “
On the Definition of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.
155.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T. M.
, 1999, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid Mech.
,
387
, pp.
353
396
.
156.
Alfonsi
,
G.
, and
Primavera
,
L.
, 2008, “
On Identification of Vortical Structures in Turbulent Shear Flow
,”
J. Flow Visualization Image Process.
,
15
, pp.
201
216
.
157.
Wu
,
X.
, and
Moin
,
P.
, 2009, “
Forest of Hairpins in a Low-Reynolds-Number Zero-Pressure-Gradient Flat-Plate Boundary Layer
,”
Phys. Fluids
,
21
, p.
091106
.
158.
Schoppa
,
W.
, and
Hussain
,
F.
, 2002, “
Coherent Structure Generation in Near-Wall Turbulence
,”
J. Fluid Mech.
,
453
, pp.
57
–-
108
.
159.
Chakraborty
,
P.
,
Balachandar
,
S.
, and
Adrian
,
R. J.
, 2005, “
On the Relationships Between Local Vortex Identification Schemes
,”
J. Fluid Mech.
,
535
, pp.
189
214
.
160.
Alfonsi
,
G.
, and
Primavera
,
L.
, 2009, “
Determination of the Threshold Value of the Quantity Chosen for Vortex Representation in Turbulent Flow
,”
J. Flow Visualization Image Process
,
16
, pp.
41
49
.
161.
Alfonsi
,
G.
, and
Primavera
,
L.
, 2009, “
Temporal Evolution of Vortical Structures in the Wall Region of Turbulent Channel Flow
,”
Flow, Turbul. Combust.
,
83
, pp.
61
79
.
162.
Liang
,
Y. C.
,
Lee
,
H. P.
,
Lim
,
S. P.
,
Lin
,
W. Z.
,
Lee
,
K. H.
, and
Wu
,
C. G.
, 2002, “
Proper Orthogonal Decompsition and its Applications - Part I: Theory
,”
J. Sound Vib.
,
252
, pp.
527
544
.
163.
Lumley
,
J. L.
, 1971,
Stochastic Tools in Turbulence
,
Academic
,
New York
.
164.
Sirovich
,
L.
, 1987, “
Turbulence and the Dynamics of Coherent Structures. Part I: Coherent Structures. Part II: Symmetries and Transformations. Part III: Dynamics and Scaling
,”
Q. Appl. Math.
,
45
, pp.
561
590
.
165.
Alfonsi
,
G.
,
Restano
,
C.
, and
Primavera
,
L.
, 2003, “
Coherent Structures of the Flow Around a Surface-Mounted Cubic Obstacle in Turbulent Channel Flow
,”
J. Wind Eng. Ind. Aerodyn.
,
91
, pp.
495
511
.
166.
Moin
,
P.
, and
Moser
,
R. D.
, 1989, “
Characteristic-Eddy Decomposition of Turbulence in a Channel
,”
J. Fluid Mech.
,
200
, pp.
471
509
.
167.
Sirovich
,
L.
,
Ball
,
K. S.
, and
Keefe
,
L. R.
, 1990, “
Plane Waves and Structures in Turbulent Channel Flow
,”
Phys. Fluids A
,
2
, pp.
2217
2226
.
168.
Ball
,
K. S.
,
Sirovich
,
L.
, and
Keefe
,
L. R.
, 1991, “
Dynamical Eigenfunction Decomposition of Turbulent Channel Flow
,”
Int. J. Numer. Methods Fluids
,
12
, pp.
585
604
.
169.
Sirovich
,
L.
,
Ball
,
K. S.
, and
Handler
,
R. A.
, 1991, “
Propagating Structures in Wall-Bounded Turbulent Flows
,”
Theor. Comput. Fluid Dyn.
,
2
, pp.
307
317
.
170.
Handler
,
R. A.
,
Levich
,
E.
, and
Sirovich
,
L.
, 1993, “
Drag Reduction in Turbulent Channel Flow by Phase Randomizaton
,”
Phys. Fluids A
,
5
, pp.
686
694
.
171.
Webber
,
G. A.
,
Handler
,
R. A.
, and
Sirovich
,
L.
, 1997, “
The Karhunen-Loéve Decomposition of Minimal Channel Flow
,”
Phys. Fluids
,
9
, pp.
1054
1066
.
172.
Alfonsi
,
G.
, and
Primavera
,
L.
, 2007, “
The Structure of Turbulent Boundary Layers in the Wall Region of Plane Channel Flow
,”
Proc. R. Soc. London, Ser. A
,
463
, pp.
593
612
.
173.
Fischer
,
P. F.
, and
Patera
,
A. T.
, 1994, “
Parallel Simulation of Viscous Incompressible Flows
,”
Ann. Rev. Fluid Mech.
,
26
, pp.
483
527
.
174.
Cremonesi
,
P.
,
Rosti
,
E.
,
Serazzi
,
G.
, and
Smirni
,
E.
, 1999, “
Performance Evaluation of Parallel Systems
,”
Parallel Comput.
,
25
, pp.
1677
1698
.
175.
Dongarra
,
J. J.
,
Hey
,
T.
, and
Strohmaier
,
E.
, 1996, “
Selected Results From the Parkbench Benchmark
,”
Proceedings of the 2nd International Euro-Par ’96 Conference (Lecture Notes in Computer Science
, Vol. 1124),
Springer
,
New York
, p.
251
.
176.
Alfonsi
,
G.
, and
Muttoni
,
L.
, 2004, “
Performance Evaluation of a Windows NT Based PC Cluster for High Performance Computing
,”
J. Syst. Archit.
,
50
, pp.
345
359
.
177.
Ghosal
,
D.
,
Serazzi
,
G.
, and
Tripathi
,
S. T.
, 1991, “
Processor Workingset and its Use in Scheduling Multiprocessor Systems
,”
IEEE Trans. Software Eng.
,
17
, pp.
443
453
.
178.
Rosti
,
E.
,
Serazzi
,
G.
,
Smirni
,
E.
, and
Squillante
,
M. S.
, 1998, “
The Impact of I/O on Program Behavior and Parallel Scheduling
,”
Proc. 1998 ACM SIGMETRICS Conf.
,
Madison
,
Wisconsin
, pp.
57
65
.
179.
Dulong
,
C.
, 1998, “
The IA-64 Architecture at Work
,”
IEEE Trans. Comput.
,
31
, pp.
24
32
.
180.
Lamport
,
L.
, 1979, “
How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs
,”
IEEE Trans. Comput.
,
28
, pp.
690
691
.
181.
Hagersten
,
E.
,
Landin
,
A.
, and
Haridi
,
S.
, 1992, “
DDM: A Cache-Only Memory Architecture
,”
IEEE Trans. Comput.
,
25
, pp.
45
54
.
182.
Dally
,
W. J.
, and
Seitz
,
C. L.
, 1986, “
The Torus Routing Chip
,”
J. Parallel Distrib. Comput.
,
1
, pp.
187
196
.
183.
Adve
,
V. S.
, and
Vernon
,
M. K.
, 1994, “
Performance Analysis of Mesh Interconnection Networks With Deterministic Routing
,”
IEEE Trans. Parallel Distrib. Syst.
,
5
, pp.
225
246
.
184.
Wilkes
,
J.
,
Golding
,
R.
,
Staelin
,
C.
, and
Sullivan
,
T.
, 1996, “
The HP AutoRAID Hierarchical Storage System
,”
ACM Trans. Comput. Syst.
,
14
, pp.
108
136
.
185.
Oliker
,
L.
,
Canning
,
A.
,
Carter
,
J.
,
Shalf
,
J.
, and
Ethier
,
S.
, 2008, “
Scientific Application Performance on Leading Scalar and Vector Supercomputing Platforms
,”
Int. J. High Perform. Comput. Appl.
,
22
, pp.
5
20
.
186.
Russel
,
R. M.
, 1978, “
The Cray-1 Computer System
,”
ACM Commun.
,
21
, pp.
63
72
.
187.
Oyanagi
,
Y.
, 1999, “
Development of Supercomputers in Japan: Hardware and Software
,”
Parallel Comput.
,
25
, pp.
1545
1567
.
188.
Espasa
,
R.
,
Valero
,
M.
, and
Smith
,
J. E.
, 1998, “
Vector Architectures: Past, Present and Future
,”
Proc. ICS 98
,
Melbourne
,
Australia
, pp.
425
432
.
189.
Passoni
,
G.
,
Alfonsi
,
G.
, and
Galbiati
,
M.
, 2002, “
Analysis of Hybrid Algorithms for the Navier-Stokes Equations With Respect to Hydrodynamic Stability Theory
,”
Int. J. Numer. Methods Fluids
,
38
, pp.
1069
1089
.
190.
Passoni
,
G.
,
Alfonsi
,
G.
,
Tula
,
G.
, and
Cardu
,
U.
, 1999, “
A Wavenumber Parallel Computational Code for the Numerical Integration of the Navier-Stokes Equations
,”
Parallel Comput.
,
25
, pp.
593
611
.
191.
Passoni
,
G.
,
Cremonesi
,
P.
, and
Alfonsi
,
G.
, 2001, “
Analysis and Implementation of a Parallelization Strategy on a Navier-Stokes Solver for Shear Flow Simulations
,”
Parallel Comput.
,
27
, pp.
1665
1685
.
192.
Jespersen
,
D. C.
, and
Levit
,
C.
, 1989, “
A Computational Fluid Dynamics Algorithm on a Massively Parallel Computer
,”
Int. J. Supercomput. Appl.
,
3
, pp.
9
27
.
193.
Fischer
,
P. F.
,
Ho
,
L. W.
,
Karniadakis
,
G. E.
,
Rønquist
,
E. M.
, and
Patera
,
A. T.
, 1988, “
Recent Advances in Parallel Spectral Element Simulation of Unsteady Incompressible Flows
,”
Comput. Struct.
,
30
, pp.
217
231
.
194.
Pelz
,
R. B.
, 1991, “
The Parallel Fourier Pseudo-Spectral Method
,”
J. Comput. Phys.
,
92
, pp.
296
312
.
195.
Jackson
,
E.
,
She
,
Z. S.
, and
Orszag
,
S. A.
, 1991, “
A Case Study in Parallel Computing: I. Homogeneous Turbulence on a Hypercube
,”
J. Sci. Comput.
,
6
, pp.
27
45
.
196.
Chen
,
S.
, and
Shan
,
X.
, 1992 “
High-Resolution Turbulent Simulations Using the Connection Machine-2
,”
Comput. Phys.
,
6
, pp.
643
646
.
197.
Johan
,
Z.
,
Hughes
,
T. J. R.
,
Mathur
,
K. K.
, and
Johnsson
,
S. L.
, 1992, “
A Data Parallel Finite Element Method for Computational Fluid Dynamics on the Connection Machine System
,”
Comput. Methods Appl. Mech. Eng.
,
99
, pp.
113
-
134
.
198.
Naik
,
N. H.
,
Naik
,
V. K.
, and
Nicoules
,
M.
, 1993, “
Parallelization of a Class of Implicit Finite Difference Schemes in Computational Fluid Dynamics
,”
Int. J. High Speed Comput.
,
5
, pp.
1
50
.
199.
Fatoohi
,
R. A.
, 1994, “
Adapting a Navier-Stokes Solver for Three Parallel Machines
,”
J. Supercomput.
,
8
, pp.
91
115
.
200.
Basu
,
A. J.
, 1994, “
A Parallel Algorithm for Spectral Solution of the Three-Dimensional Navier-Stokes Equations
,”
Parallel Comput.
,
20
, pp.
1191
1204
.
201.
Briscolini
,
M.
, 1995, “
A Parallel Implementation of a 3-D Pseudospectral Based Code on the IBM 9076 Scalable POWER Parallel System
,”
Parallel Comput.
,
21
, pp.
1849
1862
.
202.
Floros
,
N.
, and
Reeve
,
J. S.
, 1995, “
Evaluation of a Spectral-Element CFD Code on Parallel Architectures
,”
Parallel Comput.
,
21
, pp.
1137
1150
.
203.
Prestin
,
M.
, and
Shtilman
,
L.
, 1995, “
A Parallel Navier-Stokes Solver: The Meiko Implementation
,”
J. Supercomput.
,
9
, pp.
347
364
.
204.
Crawford
,
C. H.
,
Evangelinos
,
C.
,
Newman
,
D.
, and
Karniadakis
,
G. E.
, 1996, “
Parallel Benchmarks of Turbulence in Complex Geometries
,”
Comput. Fluids
,
25
, pp.
677
698
.
205.
Garg
,
R. P.
,
Ferziger
,
J. H.
, and
Monismith
,
S. G.
, 1997, “
Hybrid Spectral Finite Difference Simulations of Stratified Turbulent Flows on Distributed Memory Architectures
,”
Int. J. Numer. Methods Fluids
,
24
, pp.
1129
1158
.
206.
Wasfy
,
T.
,
West
,
A. C.
, and
Modi
,
V.
, 1998, “
Parallel Finite Element Computation of Unsteady Incompressible Flows
,”
Int. J. Numer. Methods Fluids
,
26
, pp.
17
37
.
207.
Garbey
,
M.
, and
Vassilevski
,
Y. V.
, 2001, “
A Parallel Solver for Unsteady Incompressible 3D Navier-Stokes Equations
,”
Parallel Comput.
,
27
, pp.
363
389
.
208.
Gropp
,
W. D.
,
Kaushik
,
D. K.
,
Keyes
,
D. E.
, and
Smith
,
B. F.
, 2001, “
High-Performance Parallel Implicit CFD
,”
Parallel Comput.
,
27
, pp.
337
362
.
209.
Kumar
,
B. V. R.
,
Yamaguchi
,
T.
,
Liu
,
H.
, and
Himeno
,
R.
, 2001, “
A Parallel 3D Unsteady Incompressible Flow Solver on VPP700
,”
Parallel Comput.
,
27
, pp.
1687
1713
.
210.
Hoeflinger
,
J.
,
Alavilli
,
P.
,
Jackson
,
T.
, and
Kuhn
,
B.
, 2001, “
Producing Scalable Performance With OpenMP: Experiments with Two CFD Applications
,”
Parallel Comput.
,
27
, pp.
391
413
.
211.
Dong
,
S.
, and
Karniadakis
,
G. E.
, 2004, “
Dual-Level Parallelism for High-Order CFD Methods
,”
Parallel Comput.
,
30
, pp.
1
20
.
212.
Itakura
,
K.
,
Uno
,
A.
,
Yokokawa
,
M.
,
Ishihara
,
T.
, and
Kaneda
,
Y.
, 2004, “
Scalability of Hybrid Programming for a CFD Code on the Earth Simulator
,”
Parallel Comput.
,
30
, pp.
1329
1343
.
213.
Habata
,
S.
,
Umezawa
,
K.
,
Yokokawa
,
M.
, and
Kitawaki
,
S.
, 2004, “
Hardware System of the Earth Simulator
,”
Parallel Comput.
,
30
, pp.
1287
1313
.
214.
Yanagawa
,
T.
, and
Suehiro
,
K.
, 2004, “
Software System of the Earth Simulator
,”
Parallel Comput.
,
30
, pp.
1315
1327
.
215.
Xu
,
J.
, 2007, “
Benchmarks on Tera-Scalable Models for DNS of Turbulent Channel Flow
,”
Parallel Comput.
,
33
, pp.
780
794
.
216.
Behara
,
S.
, and
Mittal
,
S.
, 2009, “
Parallel Finite Element Computation of Incompressible Flows
,”
Parallel Comput.
,
35
, pp.
195
212
.
217.
Grinberg
,
L.
,
Pekurovsky
,
D.
,
Sherwin
,
S. J.
, and
Karniadakis
,
G. E.
, 2009, “
Parallel Performance of the Coarse Space Linear Vertex Solver and Low Energy Basis Preconditioner for Spectral/hp Elements
,”
Parallel Comput.
,
35
, pp.
284
304
.
218.
Agrawal
,
G.
,
Sussman
,
A.
, and
Saltz
,
J.
, 1995, “
An Integrated Runtime and Compile-Time Approach for Parallelizing Structured and Block Structured Applications
,”
IEEE Trans. Parallel Distrib. Syst.
,
67
, pp.
747
754
.
219.
Yeung
,
P. K.
,
Donzis
,
D. A.
,
Sreenivasan
,
K. R.
,
Sawford
,
B. L.
, and
Pope
,
S. B.
, 2010, “
Turbulence Computations on a 40963 Periodic Domain: Passive Scalars at High Schmidt Number and Lagrangian Statistics Conditioned on Local Flow Structure
,” http://meetings.aps.org/link/BAPS.2010.DFD.RB.2http://meetings.aps.org/link/BAPS.2010.DFD.RB.2
220.
Feng
,
W.
, and
Manocha
,
D.
, 2007, “
High-Performance Computing Using Accelerators
,”
Parallel Comput.
,
33
, pp.
645
647
.
221.
Jiménez
,
J.
, 2003, “
Computing High-Reynolds-Number Turbulence: Will Simulations Ever Replace Experiments?
J. Turbul.
,
4
, pp.
1
14
.
222.
Jiménez
,
J.
,
Del Alamo
,
J. C.
, and
Flores
,
O.
, 2004, “
The Large-Scale Dynamics of Near-Wall Turbulence
,”
J. Fluid Mech.
,
505
, pp.
179
199
.
223.
Del Alamo
,
J. C.
,
Jiménez
,
J.
,
Zandonade
,
P.
, and
Moser
,
R. D.
, 2006, “
Self-Similar Vortex Clusters in the Turbulent Logarithmic Region
,”
J. Fluid Mech.
,
561
, pp.
329
358
.
224.
Jiménez
,
J.
, and
Hoyas
,
S.
, 2008, “
Turbulent Fluctuations Above the Buffer Layer of Wall-Bounded Flows
,”
J. Fluid Mech.
,
611
, pp.
215
236
.
225.
Hoyas
,
S.
, and
Jiménez
,
J.
, 2008, “
Reynolds Number Effects on the Reynolds-Stress Budgets in Turbulent Channels
,”
Phys. Fluids
,
20
, pp.
101511
-1–101511-
8
.
226.
Jiménez
,
J.
, and
Moser
,
R.D.
, 2007, “
What Are We Learning from Simulating Wall Turbulence?
Phil. Trans. R. Soc. London, Ser. A
,
365
, pp.
715
732
.
227.
Faulk
,
S.
,
Gustafson
,
J.
,
Johnson
,
P.
,
Porter
,
A.
,
Tichy
,
W.
, and
Votta
,
L.
, 2004, “
Measuring High Performance Computing Productivity
,”
Int. J. High Perform. Comput. Appl.
,
18
, pp.
459
473
.
228.
Gustafson
,
J.
, 2004, “
Purpose-Based Benchmarks
,”
Int. J. High Perform. Comput. Appl.
,
18
, pp.
475
487
.
You do not currently have access to this content.