Research studies aiming at examination and formulation of a dynamic analog to Saint-Venant’s principle (DSVP) are critically reviewed. Article concentrates on isotropic homogeneous linear elastic response over a range of structural geometries including waveguides, with either free or constrained lateral surfaces, half space, wedges and cones. Nearly 140 DSVP related references are covered starting with early ideas by Boley. A special chapter is dedicated to available experimental work on end effects and decay rate in dynamically excited structures. Current thinking on possible versions of DSVP is classified into several categories, one of which, the dynamic equivalence, is compatible with much of known experimental data and has been tacitly applied at various engineering situations. That observation provides inspiring ground for renewed interest in both practical and theoretical aspects of DSVP.

References

References
1.
de Saint-Venant
,
A.-J.-C.B.
, 1856, Memoire sur la Flexion des Prismes,
J. de Mathematiques Pures, Appliquees
(Liouville),
Deuxieme Serie
,
Tome I.
, pp.
89
189
.
2.
Toupin
,
R. A
, 1965, “
Saint-Venant and a Matter of Principle
,”
Transactions of The New York Academy of Sciences
28
(
2
), pp.
221
232
.
3.
Horgan
,
C. O.
, and
Knowles
,
J. K.
, 1983, “
Recent Developments Concerning Saint-Venant’s Principle
,”
Adv. Appl. Mech.
23
, pp.
179
269
.
4.
Horgan
,
C. O.
, 1989, “
Recent Developments Concerning Saint-Venant’s Principle: An Update
,”
Appl. Mech. Rev.
42
, pp.
295
303
.
5.
Horgan
,
C. O.
, 1996, “
Recent Developments Concerning Saint-Venant’s Principle: A Second Update
,”
Appl. Mech. Rev.
48
, pp.
101
111
.
6.
Hoff
,
N. J.
, 1945, “
The Applicability of Saint-Venant’s Principle to Airplane Structures
,”
J. Aeronaut. Sci.
12
, pp.
455
460
.
7.
Choi
,
I.
, and
Horgan
,
C. O.
, 1977, “
Saint-Venant Principle and End Effects in Anisotropic Elasticity
,”
J. Appl. Mech. (Trans. ASME)
44
, pp.
424
30
.
8.
Choi
,
I.
, and
Horgan
,
C. O.
, 1978, “
Saint-Venant End Effects for Deformation of Sandwich Strips
,”
Int. J. Solids Struct.
14
, pp.
187
95
.
9.
Nerubailo
,
B. V.
,
Zotova
,
N. V.
,
Orlov
,
R. Kh.
, and
Sukhorukova
,
S. V.
, 2005, “
The Applicability of Saint-Venant’s Principle to Monocoque Structures
,”
J. Eng. Phys. Thermophys.
78
(
3
), pp.
586
589
.
10.
Durban
,
D.
, and
Stronge
,
W. S.
, 1988, “
Diffusion of Self-Equilibrating End Loads in Plane Strain Plasticity
,”
J. Mech. Phys. Solids
36
, pp.
459
476
.
11.
Karp
,
B.
, 2004, “
End Effects in Prestrained Plates Under Compression
,”
J. Appl. Mech.
71
, pp.
816
824
.
12.
Roseman
,
J. J.
, 1976, “
Principle of Saint-Venant in Linear and Non-Linear Plane Elasticity
,”
Arch Rational Mech Anal
26
, pp.
142
162
.
13.
Durban
,
D.
, and
Stronge
,
W. J.
, 1988, “
Diffusion of Self-Equilibrating End Loads in Elastic Solids
,”
ASME J. Appl. Mech.
55
, pp.
492
495
.
14.
Ruan
,
X.
,
Danforth
,
S. C.
,
Safari
,
A.
, and
Chou
,
T.-W.
, 2000, “
Saint-Venant End Effects in Piezoceramic Materials
,”
Int. J. Solids Struct.
37
, pp.
2625
2637
.
15.
Oleinik
,
O. A.
, and
Iosif’yan
,
G. A.
, 1976, “
An Analogue of Saint-Venant’s Principle and the Uniquiness of Solutions of Boundary Value Problems for Parabolic Equations in Unbounded Domains
,”
Russ. Math. Surveys
,
31
(
6
), pp.
153
178
.
16.
Chirita
,
S.
, and
Quintanilla
,
R.
, 1996, “
Spatial Decay Estimates of Saint-Venant Type in Generalized Thermoelasticity
,”
Int J Engng Sci
34
, pp.
299
311
.
17.
Ignaczak
,
J.
, 2002, “
Saint-Venant’s Principle for a Microperiodic Composite Thermoelastic Semispace: The Dynamical Refined Average Theory
,”
J. Therm. Stresses
25
, pp.
1065
1079
.
18.
Payne
,
L. E.
, and
Song
,
J. C.
, 1997, “
Spatial Decay Estimates for the Brinkman and Darcy Flows in a Semi-Infinite Cylinder
,”
Continuum Mech. Thermodyn
,
9
, pp.
175
190
.
19.
Horgan
,
C. O.
, and
Simmonds
,
J. G.
, 1994, “
Saint-Venant’s End Effects in Composite Structures
,”
Composites Eng.
4
, pp.
279
286
.
20.
Grandin
,
H. T.
Jr.
, 1972, “
Investigation of a Dynamic Saint-Venant Region in a Semi-Infinite Strip
,” Ph.D. thesis, Michigan State University.
21.
Binkowski
,
J. F.
, 1975, “
Analysis of a Dynamic Saint-Venant Region in a Semi-Infinite Circular Cylinder
,” Ph.D. thesis, Michigan State Univ., East Lansing.
22.
Karp
,
B.
, 1996, “
On Saint-Venant’s principle in Elastostatics and Elastodynamics
,” D. Sc. thesis, Technion, Haifa. (Full text in Hebrew, Abstract in English).
23.
Foster
,
D. J.
, 2003, “
On Saint-Venant’s Principle in the Dynamics of Elastic Beams
,” Ph.D thesis, Wayne State University.
24.
Babenkova
,
E.
, 2004, “
A Dynamic Analog of the Saint-Venant Principle and Boundary Conditions for Vibrating Plates
,” Ph.D. thesis, University of Manchester.
25.
Meitzler
,
A. H.
, 1955, “
Propagation of Elastic Pulses Near the Stressed End of a Cylindrical Bar
,” Ph.D. thesis, Lehigh University.
26.
Karp
,
B.
, 2005, “
Dynamic Version of Saint-Venant’s Principle - Historical Account and Recent Results
,”
Nonlinear Analysis
63
, pp.
e931
e942
.
27.
Gurtin
,
M. E.
, 1972, “
The Linear Theory of Elasticity
,”
Mechanics of Solids II (HNBK der Phys., VIa/2)
,
S.
Flugge
, ed.,
Springer-Verlag
,
New York
.
28.
Maremonti
,
P.
, and
Russo
,
R.
, 1989, “
A Domain of Influence Theorem in Finite Elasticity
,”
Waves and stability in Continuous Media
(Series on Advances in Mathematics for Applied Sciences, Vol.
4
),
S.
Rionero
, ed.,
World Scientific
,
Singapore
, pp.
237
242
.
29.
Sigillito
,
V. G.
, 1970, “
On the Spatial Decay Solutions of Parabolic Equations
,”
ZAMP
21
, pp.
1078
1081
.
30.
Quintanilla
,
R.
, 2002, “
On the Spatial Decay for the Dynamical Problem of Thermo-Microstretch Elastic Solids
,”
Int. J. Eng.
40
, pp.
109
121
.
31.
Iovane
,
G.
Passarella
,
F.
, 2004, “
Saint-Venant’s Principle in Dynamic Porous Thermoelastic Media with Memory for Heat Flux
,”
J. Therm. Stresses
,
27
, pp.
983
999
.
32.
Ames
,
K. A.
,
Payne
,
L. E.
, and
Schaefer
,
P.W.
, 1993, “
Spatial Decay Estimates in Time-Dependent Stokes Flow
,”
SIAM J. Math. Anal.
24
(
6
), pp.
1395
1413
.
33.
Love
,
A. E. H.
, 1944,
A Treatise on the Mathematical Theory of Elasticity
,
Dover
,
New York
.
34.
Cherepanov
,
G. P.
, 1979,
Mechanics of Brittle Fracture
,
McGraw-Hill
,
New York
.
35.
Frocht
,
M. M.
, 1948,
Photoelasticity
, Vol.
II
,
Wiley
,
London
.
36.
Boley
,
B. A.
, 1955, “
Application of Saint-Venant’s Principle in Dynamical Problems
,”
ASME J. Appl. Mech
22
, pp.
204
206
.
37.
Boley
,
B. A.
, 1960, “
On a Dynamical Saint Venant Principle
,”
ASME J. Appl. Mech
,
27
, pp.
74
78
.
38.
Boley
,
B. A.
, 1958, “
Some Observations on Saint-Venant’s Principle
,”
Proceedings of the Third U. S. National Congress of Applied Mechanics
,
ASME
,
New York
, pp.
259
64
.
39.
Knowles
,
J. K.
, 1966, “
On Saint-Venant’s Principle in Linear Theory of Elasticity
,”
Arch. Ration. Mech. Anal.
21
, pp.
1
22
.
40.
Toupin
,
R. A.
, 1965, “
Saint-Venant’s Principle
,”
Arch. Ration. Mech. Anal.
1
(
8
), pp.
83
96
.
41.
Boley
,
B. A.
, 1960, “
Upper Bounds and Saint Venant’s Principle in Transient Heat Conduction
,”
Q. Appl. Math.
18
, pp.
205
207
.
42.
Walley
,
S. M.
, and
Mason
,
T. A.
, 2000,
Waves in Rods
,
Presented at a website of DYMAT 2000
.
43.
Field
,
J. E.
,
Proud
,
W. G.
,
Walley
,
S. M.
, and
Goldrein
,
H. T.
, 2001, “
Review of Experimental Techniques for High Rate Deformation and Shock Studies
,”
New Experimental Methods in Material Dynamics and Impact
,
W. K.
Nowacki
and
J. R.
Klepaczko
, eds.
Institute of Fundamental Technological Research
,
Warsaw, Poland
, pp.
109
177
.
44.
Davies
,
R. M.
, 1948, “
A Critical Study of the Hopkinson Pressure Bar
,”
Philos. Trans. R. Soc. London, Ser. A
240
, pp.
375
457
.
45.
Davies
,
R.M.
, 1956, “
Stress Waves in Solids
,”
Br. J. Appl. Phys
7
, pp.
203
209
.
46.
Miklowitz
,
J.
, 1957, “
The Propagation of Compressional Waves in a Dispersive Elastic Rod; Part I – Results from the Theory
,”
J Appl. Mech.
24
, pp.
231
239
.
47.
Miklowitz
,
J.
, and
Nisewanger
,
C. R.
, 1957, “
The Propagation of Compressional Waves in a Dispersive Elastic Rod; Part II – Experimental Results and Comparison with Theory
,”
J. Appl. Mech
24
, pp.
240
244
.
48.
Fox
,
G.
, and
Curtis
,
C. W.
, 1958, “
Elastic Strain Produced by Sudden Application of Pressure to One End of a Cylindrical Bar. II. Experimental Observations
,”
J. Acoust. Soc. Am.
30
(
6
), pp.
559
563
.
49.
Folk
,
R.
,
Fox
,
G.
,
Shook
,
C. A.
, and
Curtis
,
C. W.
, 1958, “
Elastic Strain Produced by Sudden Application of Pressure to One End of a Cylindrical Bar. I. Theory
,”
J. Acoust. Soc. Am.
,
30
(
6
), pp.
552
58
.
50.
Gorham
,
R. A.
, and
Ripperger
,
E. A.
, 1959, “
A Comparison of Surface Strains to Average Strains in Longitudinal Elastic Wave Propagation
,”
Proc. 4th Midwestern Conference on Solid Mechanics
,
Austin
,
Texas
, pp.
382
395
.
51.
Cunningham
,
D. M.
, and
Goldsmith
,
W.
, 1959, “
Short-Time Impulse Produced by Longitudinal Impact
,”
Proc. Soc. Exp. Stress Anal.
XVI
(
2
), pp.
153
162
.
52.
Baker
,
W. E.
, and
Dove
,
R. C.
, 1962, “
Measurement of Internal Strains in a Bar Subjected to Longitudinal Impact
,”
Exp. Mech.
2
, pp.
307
311
.
53.
Barton
,
C. S.
,
Volterra
,
E. G.
, 1959, “
On the Elastic Impact of Short Cylindrical Rods on Long Cylindrical Rods
,”
Proc. 4th Midwestern Conference on Solid Mechanics
,
Austin
,
Texas
, pp.
318
330
.
54.
Clausing
,
D. P.
, 1959, “
Impact of Cylinders of Different Areas
,”
Proc. 4th Midwestern Conference on Solid Mechanics
,
Austin
,
Texas
, pp.
349
357
.
55.
Dally
,
J. E.
,
Rilet
,
W. F.
, and
Durelli
,
A. J.
, 1959, “
A Photoelastic Approach to Transient Stress Problems Employing Low-Modulus Materials
,”
ASME J. Appl. Mech.
26
, pp.
613
620
.
56.
Flynn
,
P. D.
, and
Frocht
,
M. M.
, 1961, “
On Saint-Venant’s Principle Under Dynamic Conditions
,”
Exp. Mech.
1
, pp.
16
20
.
57.
Borg
,
S. F.
, 1961, “
On Saint-Venant’s Principle Under Dynamic Conditions; Discussion
,”
Exp. Mech.
1
(
9
), pp.
119
120
.
58.
Theocaris
,
P. S.
, 1959, “
The Stress Distribution in a Semi-Infinite Strip Subjected to a Concentrated Load
,”
ASME J. Appl. Mech.
26
, pp.
401
406
.
59.
Meyer
,
M. L.
, 1964, “
On Spherical Near Fields and Far Fields in Elastic and Visco-Elastic Solids
,”
J. Mech. Phys. Solids
12
, pp.
77
111
.
60.
Flynn
,
P. D.
Feder
,
J. C.
Gilbert
,
J. T.
Roll
,
A. A.
, 1962, “
Stress Waves Due to Explosive and Mechanical Loading of Low Modulus Photoelastic Materials
,” Frankford Arsenal Report No. A 62-4.
61.
Kawata
,
K.
, and
Hashimoto
,
S.
, 1967, “
On Some Differences Between Dynamic- and Static-Stress Distributions
,”
Exp. Mech.
7
, pp.
91
96
.
62.
Kroll
,
R. J.
, and
Tatro
,
C. A.
, 1964, “
Stress-Wave Propagation in Axiallysymmetric Test Specimen
,”
Exp. Mech.
4
(
5
), pp.
129
134
.
63.
Bell
,
J. F.
, 1960, “
The Initial Development of an Elastic Strain Pulse Propagating in a Semi-Infinite Bar
,” Johns Hopkins University, New Jersey, pp.
1
31
. November 1960.
64.
Hettche
,
L. R.
, and
Au
,
T.
, 1967, “
Edge Impact of an Elastic-Plastic Semi-Infinite Plate
,”
Exp. Mech.
7
, pp.
302
308
.
65.
Bertholf
,
L. D.
, and
Karnes
,
C. H.
, 1969, “
Axisymmetric Elastic-Plastic Wave Propagation in 6061-T6 Aluminum Bars of Finite Length
,”
ASME J. Appl. Mech.
36
, pp.
533
541
.
66.
Bertholf
,
L. D.
, 1967, “
Numerical Solution for Two-Dimensional Elastic Wave Propagation in Finite Bars
,”
ASME J. Appl. Mech.
34
, pp.
725
734
.
67.
Follansbee
,
P. S.
, 1985, “
The Hopkinson Bar
,”
Mechanical Testing
, Vol.
8
,
ASM Handbook, American Society for Metals
,
Metals Park, OH
, pp.
198
203
.
68.
Habberstad
,
J. L.
,
Hoge
,
K. G.
, and
Foster
,
J. E.
, 1972, “
An Experimental and Numerical Study of Elastic Strain Waves on the Center Line of a 6061-T6 Aluminum Bar
,”
ASME J. Appl. Mech.
39
, pp.
367
371
.
69.
Zemanek
,
J.
, Jr.
, 1971, “
Beam Behavior Within the Nearfield of a Vibrating
,”
J. Acoust. Soc. Am.
,
49
, pp.
181
191
.
70.
Zemanek
,
J.
, Jr.
, 1972, “
An Experimental and Theoretical Investigation of Elastic Wave Propagation in a Cylinder
,”
J. Acoust. Soc. Am.
51
, pp.
265
283
.
71.
Bell
,
J. F.
, 1973, “
The Experimental Foundations of Solid Mechanics
,”
Mechanics of Solids (HNBK der Phys., VIa/1)
,
S.
Flugge
, ed.,
Springer-Verlag
,
New York
.
72.
Miles
,
A.W.
, 1976, “
Shock-Front Loading Method for Studies in Dynamic Photoelasticity
,”
Exp. Mech.
11
, pp.
349
355
.
73.
Kawata
,
K.
,
Hashimoto
,
S.
,
Masuda
,
Y.
,
Hayasi
,
R.
, 2007, “
High-Speed Photoelastic Analysis of Axially-Impacted Finite Column
,”
Exp. Mech.
47
, pp.
465
471
.
74.
Karp
,
B.
, 2008, “
Generation of Symmetric Lamb Waves by Non-Uniform Excitations
,”
J. Sound Vib.
,
312
(
1-2
), pp.
195
209
.
75.
Karp
,
B.
,
Dorogoy
,
A.
, and
Wang
,
Z.
, 2009, “
Non-Uniform Impact Excitation of a Cylindrical Bar
,”
Journal of Sound and Vibration
323
, pp.
757
771
.
76.
Ma
,
G. W.
,
He
,
L.
,
Karp
,
B.
, and
Li
,
Q. M.
,
Investigation of Dynamic Saint-Venant’s Principle in a Cylindrical Waveguide Part I: Experimental and numerical approaches
, Int. J. Impact Eng., submitted.
77.
Ratassepp
,
M.
,
Klauson
,
A.
,
Chati
,
F.
,
Leon
,
F.
, and
Maze
,
G.
, 2008, “
Edge Resonance in Semi-Infinite Thick Pipe: Numerical Predictions and Measurements
,”
J Acoust Soc Am
124
, pp.
875
885
.
78.
Miklowitz
,
J.
, 1978, The Theory of Elastic Waves and Waveguides, North-Holland, Amsterdam.
79.
Hertelendy
,
P.
, 1968, “
An Approximate Theory Governing Symmetric Motions of Elastic Rods of Rectangular or Square Cross Section
,”
ASME J. Appl. Mech.
35
, pp.
333
341
.
80.
DeVault
,
G. P.
, and
Curtis
,
C. W.
, 1962, “
Elastic Cylinder With Free Lateral Surface and Mixed Time-Dependent End Conditions
,”
J Acoust Soc Am
,
34
(
4
), pp.
421
432
.
81.
McCoy
,
J. J.
, 1964, “
Propagation of Torsional Waves in a Circular Elastic Rod
,”
ZAMP
15
, pp.
456
465
.
82.
Novozhilov
,
V. V.
, and
Slepian
,
L. I.
, 1965, “
On Saint-Venant’s Principle in the Dynamics of Beams
,”
PMM
29
, pp.
261
281
.
83.
Torvik
,
P. J.
, 1967, “
Reflection of Wave Trains in Semi-Infinite Plates
,”
J Acoust. Soc. Am.
41
, pp.
346
53
.
84.
Diligent
,
O.
,
Lowe
,
M. J. S.
,
Le Clezio
,
E.
,
Castaings
,
M.
, and
Hosten
,
B.
, 2003, “
Prediction and Measurement of Nonpropagating Lamb Modes at the Free End of a Plate when the Fundamental Antisymmetric Mode A0 is Incident
,”
J Acoust. Soc. Am.
113
, pp.
3032
3042
.
85.
Jones
,
O. E.
, and
Norwood
,
F. R.
, 1967, “
Axially Symmetric Cross-Sectional Strain and Stress Distributions in Suddenly Loaded Cylindrical Elastic Bars
,”
ASME J. Appl. Mech.
,
34
, pp.
718
724
.
86.
Kennedy
,
L. W.
, and
Jones
,
O.E.
, 1969, “
Longitudinal Wave Propagation in a Circular Bar Loaded Suddenly by a Radially Distributed End Stress
,”
ASME J. Appl. Mech.
36
, pp.
470
478
.
87.
Karal
,
F.
, and
Alterman
,
Z.
, 1971, “
Far-Field Dependence on the End Conditions in a Semi-Infinite Elastic Rod of Circular Cross-Section
,”
J Sound Vib.
17
, pp.
5
11
.
88.
Yeung Wey Kong
,
Y.C.T.
,
Parsons
,
B.
, and
Cole
,
B. N.
, 1974, “
The Dispersive Behaviour of a Hopkinson Pressure Bar in Material Property Test
,”
Mechanical Properties at High Rates of Strain, Proceedings of the Conference on Mechanical Properties of Metals at High Rates of Strain
, Oxford, April 2–4,
The Institute of Physics
,
London
, pp.
33
47
89.
Grandin
,
H. T.
, and
Little
,
R. W.
, 1974, “
Dynamic Saint-Venant’s Region in a Semi-Infinite Elastic Strip
,”
J Elast.
4
, pp.
131
46
.
90.
Ignaczak
,
J.
, 1974, “
A Dynamic Version of Saint-Venant’s Principle in the Linear Theory of Elasticity
,”
Bull. Acad. Pol. Sci., Ser. Sci., Math., Astron. Phys.
22
(
6
), pp.
483
489
.
91.
Sinclair
,
G. B.
, and
Miklowitz
,
J.
, 1975, “
Two Nonmixed Symmetric End-Loadings of an Elastic Waveguide
,”
Int J Solids Struct.
11
, pp.
275
294
.
92.
Orazov
,
M.B.
, 1983, “
The Saint-Venant Principle for Equations of Steady-State Vibrations in an Elastic Semi-Cylinder
,”
Akademiia Nauk Turkmenskoi SSR
,
Izvestiia, Seriia Fiziko-Tekhnicheskikh
,
Khimicheskikh i Geologicheskikh Nauk
,
5
, pp.
3
8
. (In Russian).
93.
Kim
,
Y. Y.
, and
Steele
,
C. R.
, 1989, “
End Effects and Time-Harmonic Longitudinal Wave Propagation in Semi-Infinite Solid Cylinder
,”
ASME Trans. J. Appl. Mech.
56
, pp.
334
346
.
94.
Gomilko
,
A. M.
,
Gorodetskaya
,
N. S.
, and
Meleshko
,
V.V.
, 1995, “
A Dynamic Saint-Venant Principle for an Elastic Semi-Infinite Strip
,”
J. Math. Sci. (N.Y.)
,
74
(
4
), pp.
1150
1153
.
95.
Karunasena
,
W.
,
Liew
,
K. M.
, and
Kitipornchai
,
S.
, 1995, “
Reflection of Plate Waves at the Fixed Edge of a Composite Plate
,”
J. Acoust. Soc. Am.
98
, pp.
644
651
.
96.
Cherukuri
,
H. P.
, and
Shawki
,
T. G.
, 1996, “
A Finite-Difference Scheme for Elastic Wave Propagation in a Circular Disk
,”
J. Acoust. Soc. Am.
100
(
4
), pp.
2139
2155
.
97.
Chirita
,
S.
, and
Quintanilla
,
R.
, 1996, “
On Saint-Venant’s Principle in Linear Elastodynamics
,”
J Elasticity
42
, pp.
201
215
.
98.
Iesan
,
D.
, and
Scalia
,
A.
, 1997, “
On Saint-Venant’s Principle for Microstretch Elastic Bodies
,”
Int. J. Eng.
35
(
14
), pp.
1277
1290
.
99.
Borrelli
,
A.
, and
Patria
,
M. C.
, 2000, “
Spatial Decay Estimates in Dynamical Problems for a Semi-Infinite Piezoelectric Beam
,”
IMA J. Appl. Math
64
, pp.
73
93
.
100.
Knops
,
R. J.
, and
Payne
,
L. E.
, 2005, “
Alternative Spatial Growth and Decay for Constrained Motion in an Elastic Cylinder
,”
Math. Mech. Solids
10
, pp.
281
310
.
101.
Karp
,
B.
, and
Durban
,
D.
, 1997, “
Towards a Dynamic Version of Saint-Venant’s Principle
,”
Modern Practice in Stress and Vibration Analysis
,
3rd ed.
,
M. D.
,
Gilchrist
,
CRC Press/Balkema
,
Leiden, The Netherlands
.
102.
Tyas
,
A.
, and
Watson
,
A. J.
, 2000, “
A Study of the Effect of Spatial Variation of Load in the Pressure Bar
,”
Meas. Sci. Technol.
11
, pp.
1539
1551
.
103.
Meng
,
H.
, and
Li
,
Q. M.
, 2001, “
Modification of SHPB Set-up Based on Wave Separation Technique and Dynamic Saint-Venant’s Principle
,
Proceedings of the SPIE
, Second International Conference on Experimental Mechanics,” Vol.
4317
, pp.
85
93
.
104.
Meng
,
H.
, and
Li
,
Q.M.
, 2003, “
An SHPB Set-Up With Reduced Time-Shift and Pressure Bar Length
,”
Int. J. Impact Eng.
28
, pp.
677
696
.
105.
Berdichevsky
,
V.
, and
Foster
,
D. J.
, 2003, “
On Saint-Venant’s Principle in the Dynamics of Elastic Beams
,”
Int J Solids Struct.
40
, pp.
3293
3310
.
106.
Babenkova
,
E.
, and
Kaplunov
,
J.
, 2005, “
Radiation Conditions for a Semi-Infinite Elastic Strip
,”
Proc. R. Soc. London, Ser. A
461
, pp.
1163
1179
.
107.
Foster
,
D. J.
, and
Berdichevsky
,
V.
, 2000, “
Probabilistic Characterization of Dynamical Saint-Venant Effects
,”
8th ASCE Specialty Conferebceon on Probabilistic Mechanics and Structural Reliability
, PMC 2000-134.
108.
Foster
,
D. J.
, and
Berdichevsky
,
V.
, 2004, “
On Saint-Venant’s Principle in the Two-Dimensional Flexural Vibrations of Elastic Beams
,”
Int J Solids Struct.
41
, pp.
2551
2562
.
109.
Babenkova
,
E.
and
Kaplunov
,
J.
, 2004, “
Low-Frequency Decay Conditions for a Semi-Infinite Elastic Strip
,”
Proc. R. Soc. London, Ser. A
460
, pp.
2153
2169
.
110.
Babenkova
,
E.
, and
Kaplunov
,
J.
, 2003, “
The Two-Term Interior Asymptotic Expansion in The Case of Low-Frequency Longitudinal Vibrations of an Elongated Elastic Rectangle
,”
IUTAM Symposium on Asymptotics, Singularities and Homogenisation in Problems of Mechanics
, (Solid Mechanics and Its Applications, Vol.
113
),
A. B.
Movchan
, ed.,
Kluwer, New York
, pp.
137
145
.
111.
Babenkova
,
E.
,
Kaplunov
,
J.
, and
Ustinov
,
Y. A.
, 2005, “
Saint-Venant’s Principle in the Case of the Low-Frequency Oscillations of a Half-Strip
,”
J. Appl. Math. Mech.
69
, pp.
405
416
.
112.
Abramson
,
H. N.
,
Plass
,
H. J.
, and
Ripperger
,
E. A.
, 1958, “
Stress Waves in Rods and Beams
,”
Adv. Appl. Mech.
5
, pp.
111
194
.
113.
Karp
,
B.
, and
Durban
,
D.
, 2005, “
Evanescent and Propagating Waves in Prestretched Hyperelastic Plates
,”
Int J Solids Struct.
42
, pp.
1613
1647
.
114.
Karp
,
B.
, 2011, “
Study of Dynamic End Effects in an Elastic Strip with Sliding Boundary Conditions
,”
Int J Solids Struct.
48
, pp.
126
136
.
115.
Mindlin
,
R. D.
, 1960, “
Waves and Vibrations in Isotropic, Elastic Plates
,”
Structural Mechanics
,
J. N.
Goodier
and
N. J.
Hoff
, eds.,
Pergamon
,
New York
.
116.
Knops
,
R. J.
, 1989, “
Spatial Decay Estimates in the Vibrating Anisotropic Elastic Beam
,”
Waves and Stability in Continuous Media
, (Series on Advances in Mathematics for Applied Sciences, Vol.
4
),
S.
Rionero
, ed.,
World Scientific
,
Singapore
, pp.
192
203
.
117.
Flavin
,
J. N.
,
Knops
,
R. J.
, and
Payne
,
L. E.
1990, “
Energy Bounds in Dynamical Problems for a Semi-Infinite Elastic Beam
,”
Elasticity: Mathematical Methods and Applications. The Ian N. Sneddon 70th Birthday Volume
.
G.
Eason
and
R. W.
Ogden
, eds.,
Ellis
,
Horwood, New York
, pp.
101
112
.
118.
Borrelli
,
A.
, and
Patria
,
M. C.
, 1995, “
Energy Bounds for Mixture of Two Linear Elastic Solids Occupying a Semi-Infinite Cylinder
,”
Acta Mech.
109
, pp.
191
206
.
119.
Borrelli
,
A.
, and
Patria
,
M. C.
, 1996, “
Energy Bounds in Dynamical Problems for a Semi-Infinite Magnetoelastic Beam
,”
ZAMP
47
, pp.
880
893
.
120.
Aron
,
M.
, and
Chirita
,
S.
, 1997, “
Decay and Continuous Dependence Estimates for Harmonic Vibrations of Micropolar Elastic Cylinder
,”
Arch Mech.
49
, pp.
665
675
.
121.
Quintanilla
,
R.
, 1999, “
On the Spatial Behavior in Thermoelasticity Without Energy Dissipation
,”
J Therm. Stresses
22
, pp.
213
224
.
122.
Yilmaz
,
Y.
, 2007, “
Spatial Estimates for a System of Coupled Parabolic–Hyperbolic Equations Under Nonlinear Boundary Condition
,”
J. Franklin Inst.
344
, pp.
489
494
.
123.
Chirita
,
S.
, and
Ciarletta
,
M.
, 2008, “
Spatial Evolution of Harmonic Vibrations in Linear Elasticity
,”
J. Mech. Mater. Struct.
3
(
9
), pp.
1675
1693
.
124.
Tibullo
,
V.
, and
Vaccaro
,
M.
, 2008, “
Spatial Behaviour for Constrained Motion of a Cylinder Made of a Strongly Elliptic Anisotropic Material
,”
J. Mech. Mater. Struct.
3
(
5
), pp.
983
993
.
125.
Nappa
,
L.
, 1998, “
Spatial Decay Estimates for the Evolution Equations of Linear Thermoelasticity Without Energy Dissipation
,”
J Therm Stresses
21
, pp.
581
592
.
126.
Chirita
,
S.
, and
Nappa
,
L.
, 1999, “
Effects of Saint-Venant Type and Uniqueness and Continuous Dependence Results for Incremental Elastodynamics
,”
Int. J. Non-Linear Mech.
34
, pp.
159
167
.
127.
Chirita
,
S.
, and
Ciarletta
,
M.
, 1999, “
Time-Weighted Surface Power Function Method for the Study of Spatial Behaviour in Dynamics of Continua
,”
Eur. J. Mech. A/Solids
18
, pp.
915
933
.
128.
Gales
,
C.
, 2002, “
On the Spatial Behavior in the Theory of Swelling Porous Elastic Soils
,”
Int. J. Solids Struct.
39
, pp.
4151
4165
.
129.
Scalia
,
A.
, 2001, “
Spatial and Temporal Behavior in Elastic Materials with Voids
,”
Acta Mech.
151
, pp.
47
60
.
130.
Ciarletta
,
M.
,
Iovane
,
G.
, and
Passarella
,
F.
, 2002, “
On the Spatial and Temporal Behavior in Dynamics of Porous Elastic Mixtures
,”
Ukr. Math. J.
54
(
4
), pp.
647
670
.
131.
Ciarletta
,
M.
, 2002, “
On the Spatial Behaviour of the Transient and Steady-State Solutions in Thin Plates with Transverse Shear Deformation
,”
Int. J. Eng. Sci.
40
, pp.
485
498
.
132.
Chirita
,
S.
, and
Ciarletta
,
M.
, 2003, “
Some Further Growth and Decay Results in Linear Thermoelastodynamics
,”
J. Therm. Stresses
26
, pp.
889
903
.
133.
Achenbach
,
J. D.
, 1973,
Wave Propagation in Elastic Solids
,
North-Holland
,
Amsterdam
.
134.
Graff
,
K. F.
, 1975,
Wave Motion in Elastic Solids
,
Clarendon
,
Oxford
.
135.
Karp
,
B.
, and
Durban
,
D.
, 2002, “
Influence of Boundary Conditions on Decay Rates in a Prestrained Plate
,”
ASME J. Appl. Mech.
69
, pp.
515
520
.
136.
Wijeyewickrema
,
A. C.
,
Ushida
,
Y.
, and
Kayestha
,
P.
, 2008, “
Wave Propagation in a Prestressed Compressible Elastic Layer with Constrained Boundaries
,”
J. Mech. Mater. Struct.
3
(
10
), pp.
1963
1976
.
137.
von-Mises
,
R.
, 1945, “
On Saint-Venant’s Principle
,”
Bull. Am. Math. Soc.
51
, pp.
555
.
138.
Steinberg
,
E.
, 1954, “
On Saint-Venant’s Principle
,”
Q. Appl. Math.
XI
(
4
), pp.
393
402
.
139.
Horvay
,
G.
, 1957, “
Saint-Venant’s Principle: A Biharmonic Eigenvalue Problem
,”
ASME J. Appl. Mech.
24
, pp.
381
386
.
140.
Markenscoff
,
X.
, 1994, “
Some Remarks on the Wedge Paradox and Saint-Venant’s Principle
,”
ASME J. Appl. Mech.
,
61
, pp.
519
523
.
141.
Stephen
,
N. G.
, 2008, “
On State-Space Elastostatics Within a Plane Stress Sectorial Domain – The Wedge and the Curved Beam
,”
Int. J. Solids Struct.
45
(
20
), pp.
5437
5463
.
142.
Miyao
,
S.
,
Tsuchida
,
E.
,
Matsumoto
,
H.
, and
Nakahara
,
I.
, 1975, “
A Semi-Infinite Body Subjected to an Impulsive Torque on a Hemispherical Pit of a Free Surface
,”
Bull. JSME
,
18
(
123
), pp.
959
964
.
143.
Kim
,
J. S.
, and
Soedel
,
W.
, 1988, “
On the Response of Three-Dimensional Elastic Bodies to Disturbed Dynamic Pressures, Part I: Half-Space
,
J. Sound Vib.
126
, pp.
279
295
.
144.
Awrejcewicz
,
J.
, and
Pyryev
,
Y.
, 2003, “
The Saint-Venant’s Principle and an Impact Load Acting on an Elastic Half-Space
,”
J Sound Vib.
264
, pp.
245
251
.
145.
Wang
,
C.
, and
Kim
,
J.
, 1997, “
The Dynamic Analysis of a Thin Beam Impacting Against a Stop of General Three-Dimensional Geometry
,”
J Sound Vib.
203
, pp.
237
249
.
146.
Ziv
,
M.
, 2002, “
Source Signature and Elastic Waves in Half-Space Under a Sustainable Line-Concentrated Impulsive Normal Force
,”
Int. J. Numer. Analyt. Meth. Geomech.
26
, pp.
373
406
.
147.
Ziv
,
M.
, 2003, “
Source Signature and Elastic Waves in Half-Space Under a Momentary Shear Line Impulse
,”
Int. J. Numer. Analyt. Meth. Geomech.
27
, pp.
233
258
.
148.
Budaev
,
B. V.
,
Morozov
,
N. F.
, and
Narbut
,
M. A.
, 1996, “
Saint Venant’s Principle in Statical and Dynamical Problems for an Elastic Wedge and a Cone
,”
Mathematische Nachrichten
,
177
, pp.
31
39
.
149.
Budaev
,
B. V.
,
Morozov
,
N. F.
, and
Narbut
,
M.A.
, 1994, “
Torsion of a Circular Cone with Static and Dynamic Loading
,”
J. Appl. Math. Mech.
58
(
6
), pp.
1097
1100
.
150.
Morozov
,
N. F.
, and
Narbut
,
M. A.
, 1995, “
Antiplane Deformation of an Elastic Wedge Under Action Concentrated Near the Corner Point
,”
J. Appl. Math. Mech.
59
(
2
), pp.
307
309
.
151.
Bhattacharyya
,
S. K.
, and
Vendhan
,
C. P.
, 1991, “
Wave Propagation in Semi-Infinite Plane Anisotropic Thin Circular Shells
,”
J Sound Vib.
149
, pp.
71
82
.
152.
Dong
,
S. B.
, and
Huang
,
K. H.
, 1985, “
Edge Vibrations in Laminated Composite Plates
,”
ASME J. Appl. Mech.
52
, pp.
433
438
.
153.
Dong
,
S. B.
, and
Goetschel
,
D. B.
, 1982, “
Edge Effects in Laminated Composite Plates
,”
ASME J. Appl. Mech.
49
, pp.
129
135
.
154.
Huang
,
K. H.
, and
Dong
,
S. B.
, 1984, “
Propagating Waves and Edge Vibrations in Anisotropic Composite Cylinders
,”
J. Sound Vib.
,
96
, pp.
363
379
.
155.
Kaul
,
R. K.
, and
McCoy
,
J. J.
, 1964, “
Propagation of Axisymmetric Waves in a Circular Semiinfinite Elastic Rod
,”
J. Acoust. Soc. Am.
26
(
4
), pp.
653
660
.
156.
Gales
,
C.
, 2003, “
Spatial Decay Estimates for Solutions Describing Harmonic Vibrations in the Theory of Swelling Porous Elastic Soils
,”
Acta Mech.
161
, pp.
151
163
.
157.
Duva
,
J. M.
, and
Simmonds
,
J. G.
, 1991, “
The Usefulness of Elementary Theory of the Linear Vibrations of Layered, Orthotropic Elastic Beams and Corrections Due to Two-Dimensional End Effects
,”
ASME J. Appl. Mech.
58
, pp.
175
180
.
158.
Duva
,
J. M.
, and
Simmonds
,
J. G.
, 1992, “
The Influence of Two-Dimensional End Effects on the Natural Frequencies of Cantilevered Beams Weak in Shear
,”
ASME J. Appl. Mech.
59
, pp.
230
232
.
159.
Chen
,
W. Q.
,
Lv
,
C. F.
, and
Bian
,
Z. G.
, 2003, “
Elasticity Solution for Free Vibration of Laminated Beams
,”
Compos. Struct.
62
, pp.
75
82
.
160.
Kathnelson
,
A. N.
, 1997, “
An Asymptotic Edge Effect in Thin Rectangular Vibrating Plates
,”
J. Sound Vib.
207
(
2
), pp.
271
275
.
161.
Flavin
,
J. N.
, and
Knops
,
R. J.
, 1987, “
Some Spatial Decay Estimates in Continuum Dynamics
,”
J. Elasticity
17
, pp.
249
64
.
162.
Chirita
,
S.
, 1995, “
On the Spatial Decay Estimates in Certain Time-Dependent Problems of Continuum Mechanics
,”
Arch Mech.
47
, pp.
755
771
.
163.
D’Apice
,
C
, 2005, “
Convexity Considerations and Spatial Behavior for the Harmonic Vibrations in Thermoelastic Plates
,”
J. Math. Anal. Appl.
312
(
1
), pp.
44
60
.
164.
Karp
,
B.
,
Rittel
,
D.
, and
Durban
,
D.
, 2008, “
Health Monitoring of Joints Using Dynamic End Effects
,”
J. Sound Vib.
,
312
(
1-2
), pp.
257
272
.
165.
Evans
,
D. V.
, and
Porter
,
R.
, 2008, “
Flexural Waves on a Pinned Semi-Infinite Thin Elastic Plate
,”
Wave Motion
45
, pp.
745
757
.
166.
Murray
,
J. D.
, 1970, “
Perturbation Effects on the Decay of Discontinuous Solutions of Nonlinear First Order Wave Equations
,
SIAM J. Appl. Math.
19
(
2
), pp.
273
298
.
167.
Rauch
,
J.
, 1976, “
Qualitative Behavior of Dissipative Wave Equations on Bounded Domains
,”
Arch. Ration. Mech. Anal.
62
, pp.
77
85
.
168.
Munoz Rivera
,
J. E.
,
Lapa
,
E. C.
, and
Barreto
,
R.
, 1996, “
Decay Rates for Viscoelastic Plates with Memory
,”
J. Elasticity
44
, pp.
61
87
.
169.
Chirita
,
S.
, 1997, “
On Saint-Venant’s Principle in Dynamic Linear Viscoelasticity
,”
Q. Appl. Math.
,
LV
, pp.
139
149
.
170.
Ciarletta
,
M.
, and
Chirita
,
S.
, 1999, “
Thermodynamic Restrictions, Free Energies and Saint-Venant’s Principle in the Linear Theory of Viscoelastic Materials with Voids
,”
Int. J. Solids Struct.
36
, pp.
1949
1964
.
171.
De Cicco
,
S.
, and
Nappa
,
L.
, 1999, “
On Saint-Venant’s Principle for Micropolar Viscoelastic Bodies
,”
Int. J. Comput. Eng. Sci.
37
, pp.
883
893
.
172.
Benvenuto
,
E.
, 1997, “
Engineering, Mathematics and Natural Philosophy in the Work of Barre de Saint Venant
,” Plenary Lecture in
3rd EUROMECH Solid Mechanics Conference
,
KTH, Royal Institute of Technology
,
Stockholm, Sweden
, August 18–22.
173.
Pope
,
P. H.
, and
Field
,
J. E.
, 1984, “
Determination of Strain in a Dynamic Compression Test
,”
J. Phys. E: J. Sci. Instrum.
17
, pp.
817
820
.
174.
Gray
, III,
G.T.
, 2000, “
Classic Split-Hopkinson Pressure Bar Testing
,”
Mechanical Testing, ASM Handbook
,
American Society for Metals
,
Metals Park, OH
, pp.
462
476
.
175.
Rosenhouse
,
G.
, 2002, “
Physical Aspects in Active Noise and Vibration Control
,”
Theoretical and Computational Acoustics
,
E.-C.
Shang
,
L.
Qihu
, and
T. F.
Gao
, eds.,
World Scientific
,
Singapore
.
176.
Kuznetsov
,
G. N.
, and
Stepanov
,
A. N.
, 2007, “
The Field of an Equivalent Multipole Composite Radiator in a Waveguide
,”
Acoust. Phys
53
(
3
), pp.
326
334
.
177.
Hornikx
,
M.
, and
Forssen
,
J.
, 2009, “
Noise Abatement Schemes for Shielded Canyons
,”
Appl. Acoust.
70
, pp.
267
283
.
178.
Kundu
,
T.
,
Mathur
,
R. P.
, and
Desai
,
C. S.
, 1991, “
Three Dimensional Soil-Structure Interaction Analysis: Deformable Structures in Multilayered Soil Mass
,”
Eng. Comput.
8
, pp.
153
180
.
179.
Evans
,
D.V.
, 1992, “
Trapped Acoustic Modes
,”
IMA J. Appl. Math.
49
, pp.
45
60
.
180.
Kaplunov
,
J. D.
, and
Sorokin
,
S. V.
, 1995, “
A Simple Example of a Trapped Mode in an Unbounded Waveguide
,”
J. Acoust. Soc. Am.
97
(
6
), pp.
3898
3899
.
181.
Aslanyan
,
A.
,
Parnovski
,
L.
, and
Vassiliev
,
D.
, 2000, “
Complex Resonances in Acoustic Waveguides
,”
Q. Appl. Math.
53
(
3
), pp.
429
447
.
182.
McIver
,
M.
,
Linton
,
C. M.
, and
Zhang
,
J.
, 2002, “
The Branch Structure of Embedded Trapped Modes in Two-Dimensional Waveguides
,”
Q. Appl. Math.
55
(
2
), pp.
313
326
.
183.
Chamberlain
,
P. G.
, 2004, “
The Effect of Evanescent Wave Modes on Scattering and Near-Trapping
,”
IMA J. Appl. Math.
69
, pp.
205
218
.
184.
Waldman
,
S. D.
, and
Lee
,
J.
, 2002, “
Boundary Conditions During Bi-Axial Testing of Planar Connective Tissues. Part 1: Dynamic behavior
,”
J. Mater. Sci.: Mater. Med.
13
, pp.
933
938
.
185.
Sasso
,
M.
,
Newaz
,
G.
, and
Amodio
,
D.
, 2008, “
Material Characterization at High Strain Rate by Hopkinson Bar Tests and Finite Element Optimization
,”
J. Mater. Sci. Eng.
487
, pp.
289
300
.
186.
Gilat
,
A.
,
Schmidt
,
T. E.
, and
Walker
,
A. L.
, 2009, “
Full Field Strain Measurement in Compression and Tensile Split Hopkinson Bar Experiments
,”
Experimental Mechanics
49
, pp.
291
306
. 2009.
187.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
, 1972,
Theory of Elasticity
,
3rd ed.
,
McGraw Hill
,
New York
.
188.
Karp
,
B.
, 2009, “
Dynamic Equivalence, Self-Equilibrated Excitation and Saint-Venant’s Principle for an Elastic Strip
,”
Int. J. Solids Struct.
46
,
3068
3077
.
You do not currently have access to this content.