The objective of this review is to provide an overview and a classification of the key literature on models of non-Fickian case II type diffusion. Several extensive review articles concerning non-Fickian diffusion exist in the literature; our objective is not to reproduce these worthy contributions. Rather, we focus on a limited number of, seemingly disparate, notable models and attempt to unify them using the language of thermodynamics and continuum mechanics. This attempted unification of selected models arising from various modeling communities serves to elucidate the key strengths and potential weaknesses of the models.

References

References
1.
Fick
,
A.
, 1855, “
Über Diffusion
,”
Ann. Phys. Chem.
,
94
,
58
86
.
2.
Alfrey
,
T.
,
Gurnee
,
E. F.
, and
Lloyd
,
W. G.
, 1966, “
Diffusion in Glassy Polymers
,”
J. Polym. Sci. C
,
12
,
249
261
.
3.
De Kee
,
D.
,
Liu
,
Q.
, and
Hinestroza
,
J.
, 2005, “
Viscoelastic (Non-Fickian) Diffusion
,”
Can. J. Chem. Eng.
,
83
,
913
929
.
4.
Vesely
,
D.
, 2008, “
Diffusion of Liquids in Polymers
,”
Int. Mater. Rev.
,
53
(
5
),
299
315
.
5.
Collins
,
R.
, 1998, “
Mathematical Modelling of Controlled Release From Implanted Drug-Impregnated Monoliths
,”
PSTT
1
(
6
),
269
276
.
6.
Govindjee
,
S.
, and
Simo
,
J. C.
, 1993, “
Coupled Stress-Diffusion: Case I
.”
Int. J. Mech. Phys. Solids
,
41
(
5
),
pp.
863–
887
.
7.
Astarita
G.
, and
Sarti
,
G. C.
, 1978, “
A Class of Mathematical Models for Sorption of Swelling Solvents in Glassy Polymers
,”
Polym. Eng. Sci.
,
18
(
5
),
388
395
.
8.
Thomas
,
N. L.
, and
Windle
,
A. H.
, 1980, “
A Deformation Model for Case II Diffusion
,”
Polymer
,
21
(
6
),
613
619
.
9.
Thomas
,
N. L.
, and
Windle
,
A. H.
, 1981, “
Diffusion Mechanics of the System PMMA-methanol
,”
Polymer
,
22
(
5
),
627
639
.
10.
Thomas
N. L.
, and
Windle
,
A. H.
, 1982, “
A Theory of Case II Diffusion
,”
Polymer
,
23
(
4
),
529
542
.
11.
Cohen
,
D. S.
, 1984, “
Theoretical Models for Diffusion in Glassy Polymers
,”
J. Polym. Sci.: Polym. Phys. Ed.
,
2
(
22
),
1001
1009
.
12.
Durning
,
C. J.
, 1985, “
Differential Sorption in Viscoelastic Fluids
,”
J. Polym. Sci.: Polym. Phys. Ed.
,
23
,
1831
1855
.
13.
Hui
,
C.-Y.
, and
Wu
,
K.-C.
, 1987, “
Case-II Diffusion in Polymers, I. Transient Swelling
,”
J. Appl. Phys.
,
61
(
11
),
5129
5136
.
14.
Hui
,
C.-Y.
, and
Wu
,
K.-C.
, 1987, “
Case-II Diffusion in Polymers, II. Steady-State Front Motion
,”
J. Appl. Phys.
,
61
(
11
),
5137
5149
.
15.
Cohen
,
D. S.
, and
White
,
A. B.
, 1989, “
Sharp Fronts due to Diffusion and Stress at the Glass Transition in Polymers
,”
J. Polym. Sci., Part B: Polym. Phys.
,
27
,
1731
1747
.
16.
Jou
,
D.
,
Camacho
,
J.
, and
Grmela
,
M.
, 1991, “
On the Nonequilibrium Thermodynamics of Non-Fickian Diffusion
,”
Macromolecules
,
24
,
3597
3602
.
17.
Kalospiros
,
N. S.
,
Ocone
,
R.
,
Astarita
,
G.
, and
Meldon
,
J. H.
, 1991, “
Analysis of Anomalous Diffusion and Relaxation in Solid Polymers
,”
Ind. Eng. Chem. Res.
,
30
,
851
864
.
18.
Wu
,
J. C.
, and
Peppas
,
N. A.
, 1993, “
Modeling of Penetrant Diffusion in Glassy Polymers With an Integral Sorption Deborah Number
,”
J. Polym. Sci., Part B: Polym. Phys.
,
31
,
1503
1518
.
19.
Rossi
,
G.
,
Pincus
,
P. A.
, and de
Gennes
,
P. G.
, 1995, “
A Phenomenological Description of Case-II Diffusion in Polymeric Materials
,”
Europhys. Lett.
,
32
(
5
),
391
.
20.
Friedman
,
A.
, and
Rossi
,
G.
, 1997, “
Phenomenological Continuum Equations to Describe Case II Diffusion in Polymeric Materials
,”
Macromolecules
,
30
153
154
.
21.
El Afif
,
A.
, 2000, “
Diffusion de la matirière dans les Polymeres
,” Ph.D. thesis, Ecole Polytechnique de Montréal, Montreal, Quebec, Canada.
22.
Qian
,
T.
, and
Taylor
,
P. L.
, 2000, “
From the Thomas–Windle Model to a Phenomenological Description of Case-II Diffusion in Polymers
,”
Polymer
,
41
(
19
),
7159
7163
.
23.
El Afif
,
A.
, and
Grmela
,
M.
, 2002, “
Non-Fickian Mass Transport in Polymers
,”
J. Rheol.
,
46
(
3
),
591
628
.
24.
Vijalapura
,
P. K.
, and
Govindjee
,
S.
, 2003, “
Numerical Simulation of Coupled-Stress Case II Diffusion in One Dimension
,”
J. Polym. Sci., Part B: Polym. Phys.
,
41
,
2091
2108
.
25.
Vijalapura
,
P. K.
, and
Govindjee
,
S.
, 2005, “
An Adaptive Hybrid Time-Stepping Scheme for Highly Non-linear Strongly Coupled Problems
,”
Int. J. Numer. Methods Eng.
,
64
,
819
848
.
26.
Riviére
,
B.
, and
Shaw
,
S.
, 2006, “
Discontinuous Galerkin Finite Element Approximation of Nonlinear Non-Fickian Diffusion in Viscoelastic Polymers
,”
SIAM (Soc. Ind. Appl. Math) J. Numer. Anal.
,
44
(
6
),
2650
2670
.
27.
Aifantis
,
E. C.
, 1980, “
On the Problem of Diffusion in Solids
,”
Acta Mech.
,
37
265
296
.
28.
Grmela
,
M.
, and Ö
ttinger
,
H. C.
, 1997, “
Dynamics and Thermodynamics of Complex Fluids. I. Development of a General Formalism
,”
Phys. Rev. E
,
56
(
6
)
6620
6632
.
29.
Öttinger
,
H. C.
, and
Grmela
,
M.
, 1997, “
Dynamics and Thermodynamics of Complex Fluids. II. Illustrations of a General Formalism
,”
Phys. Rev. E
,
56
(
6
),
6633
6655
.
30.
Vijalapura
,
P. K.
,
Strain
,
J.
, and
Govindjee
,
S.
, 2005, “
Fractional Step Methods for Index-1 Differential-Algebraic Equations
,”
J. Comput. Phys.
203
,
305
320
.
31.
Ö
ttinger
,
H. C.
, 2005,
Beyond Equilibrium Thermodynamics
,
Wiley
,
New York
.
32.
Grmela
,
M.
, 2004, “
Geometry of Mesoscopic Dynamics and Thermodynamics
,”
J. Non-Newtonian Fluid Mech.
,
120
,
137
147
.
33.
Hütter
,
M.
, and
Tervoort
,
T. A.
, 2009, “
Coarse Graining in Elasto-Viscoplasticity: Bridging the Gap From Microscopic Fluctuations to Dissipation
,”
Adv. Appl. Mech.
,
42
,
253
317
.
34.
Hütter
,
M.
, and
Tervoort
,
T. A.
, 2008, “
Continuum Damage Mechanics: Combining Thermodynamics With a Thoughtful Characterization of the Microstructure
,”
Acta Mech.
,
201
(
1–4
),
297
312
.
35.
Truesdell
,
C.
, and
Noll
,
W.
, 2007,
The Non-Linear Field Theories of Mechanics
,
3rd ed.
,
Springer
,
New York
.
36.
Gurtin
,
M. E.
, 1981,
An Introduction to Continuum Mechanics
,
Academic Press
,
Orlando, FL
.
37.
Ogden
,
R. W.
, 1982,
Nonlinear Elastic Deformations
,
Ellis Horwood
,
West Susex, UK
.
38.
Ciarlet
,
P. G.
, 1988,
Mathematical Elasticity, Volume I: Three-Dimensional Elasticity
,
North-Holland Publishing Company
,
Amsterdam
.
39.
Crank
,
J.
, 1970,
The Mathematics of Diffusion
,
Oxford University Press, Oxford
,
UK
.
40.
Crank
,
J.
, 1953, “
A Theoretical Investigation of the Influence of Molecular Relaxation and Internal Stress on Diffusion in Polymers
,”
J. Polym. Sci.
,
6
(
2
),
1831
1855
.
41.
Maxwell
,
J. C.
, 1867, “
On the Dynamical Theory of Gases
,”
Philos. Trans. R. Soc. London
,
157
,
49
88
.
42.
Peshkov
,
V.
, 1944, “
Second Sound in Helium I
,”
J. Phys. (USSR)
,
8
,
381
.
43.
Peshkov
,
V.
, 1946,
International Conference on Fundamental Particles and Low Temperatures Report
, Cambridge, UK.
44.
Pellam
,
J. R.
, 1948, “
Investigations of Pulsed Second Sound in Liquid Helium
,”
Phys. Rev.
,
75
(
8
),
1183
1194
.
45.
Ackermann
,
C. C.
,
Bertram
,
B.
,
Fairbank
,
H. A.
, and
Guyer
,
R. A.
, 1966, “
Second Sound in Solid Helium
,”
Phys. Rev.
,
18
,
789
791
.
46.
Ackermann
,
C. C.
, and
Overton
,
W. C.
, 1969, “
Second Sound in Solid Helium-3
,”
Phys. Review. Lett.
22
(
15
),
764
767
.
47.
Jackson
,
H. E.
,
Walker
,
C. T.
, and
McNelly
,
T. F.
, 1970, “
Second Sound in NaF
,”
Phys. Rev.
,
25
(
1
),
26
28
.
48.
Narayanamurti
,
V.
, and
Dynes
,
R. C.
, 1972, “
Observation of Second Sound in Bismuth
,”
Phys. Rev.
,
28
,
1461
1464
.
49.
Cattaneo
,
C.
, 1948, “
Atti del Seminario Matematico e Fisico della Universita di Modena
,”
Atti Semin. Mat. Fis. Univ. Modena
,
3
,
3
21
.
50.
Vernotte
,
P.
, 1958, “
Les paradoxes de la théorie Continue de léquation de la chaleur
,”
C. R. Acad. Sci.
,
246
,
3154
3155
.
51.
Wilson
,
R. K.
, and
Aifantis
,
E. C.
, 1982, “
On the Theory of Stress-Assisted Diffusion, I
,”
Acta Mech.
,
45
,
273
296
.
52.
Unger
,
D. J.
, and
Aifantis
,
E. C.
, 1983, “
On the Theory of Stress-Assisted Diffusion, II
,”
Acta Mech.
47
,
117
151
.
53.
Ferry
,
J. D.
, 1980,
Viscoelastic Properties of Polymers
,
3rd ed.,
Wiley
,
New York
.
54.
Grest
,
G. S.
, and
Cohen
,
M. H.
, 1981, “
Liquids, Glasses, and the Glass Transition: A Free-volume Approach
,”
Advances in Chemical Physics
, Vol.
48
,
I.
Prigogine
and
S. A.
Rice
, eds.,
Wiley
,
New York
, pp.
455
525
.
55.
Hong
,
W.
,
Zhao
,
X.
,
Zhou
,
J.
, and
Suo
,
Z.
, 2008, “
A Theory of Coupled Diffusion and Large Deformation in Polymeric Gels
,”
J. Mech. Phys. Solids
,
56
,
1779
1793
.
56.
Hong
,
W.
,
Zhao
,
X.
, and
Suo
,
Z.
, 2010, “
Large Deformation and Electrochemistry of Polyelectrolyte Gels
,”
J. Mech. Phys. Solids
,
58
,
558
577
.
57.
58.
Simo
,
J. C.
, 1998, “
Topics on the Numerical Analysis and Simulation of Plasticity
,”
Handbook of Numerical Analysis
, Vol.
VI
,
P. G.
Ciarlet
and
J. L.
Lions
, eds.,
North-Holland
,
Amsterdam
, pp.
183
499
.
59.
Cottrell
,
A. H.
, 1948, “
Effect of Solute Atoms on the Behavior of Dislocations
,”
Report of a Conference on Strength of Solids, The Physical Society, London
,
H. H.
Wills
, ed.,
University of Bristol
,
Bristol, UK
,pp.
30
36
.
60.
Zohdi
,
T. I.
, and
Wriggers
,
P.
, 1999, “
On the Effects of Microstress on Macroscopic Diffusion Processes
,”
Acta Mech.
,
136
,
91
107
.
61.
Thomas
,
N.
, and
Windle
,
A. H.
, 1977, “
Discontinuous Shape Changes Associated With Case II Transport of Methanol in Thin Sheets of PMMA
,”
Polymer
,
18
(
11
), 1195.
62.
Thomas
,
N.
, and
Windle
,
A. H.
, 1978, “
Transport of Methanol in Poly(methylmethacrylate)
,”
Polymer
,
19
,
255
265
.
63.
Durning
,
C. J.
, and
Tabor
,
M.
, 1986, “
Mutual Diffusion in Concentrated Polymer Solutions Under a Small Driving Force
,”
Macromolecules
,
19
,
2220
2232
.
64.
Fu
,
T. Z.
, and
Durning
,
C. J.
, 1993, “
Numerical Simulation of Case II Transport
,”
AIChE J.
,
39
(
6
),
1030
1044
.
65.
Cohen
,
D. S.
,
White
,
A. B.
, and
Witelski
,
P. T.
, 1995, “
Shock Formation in a Multidimensional Viscoelastic Diffusive System
,”
SIAM J. Appl. Math.
,
55
(
2
),
348
368
.
66.
Simo
,
J. C.
, and
Hughes
,
T. J. R.
, 1998, “
Computational Inelasticity
,”
Interdisciplinary Applied Mathematics
, Vol.
7
,
J. E.
Marsden
,
S.
Wiggins
, and
L.
Sirovich
, eds.,
Springer
,
Berlin
.
67.
Lustig
,
S. R.
,
Caruthers
,
J. M.
, and
Peppas
,
N. A.
, 1992, “
Continuum Thermodynamics and Transport Theory of Case II Transport
,”
Chem. Eng. Sci.
,
47
,
3037
3057
.
68.
Flory
,
P. J.
, 1941, “
Thermodynamics of High Polymer Solutions
,”
J. Chem. Phys.
,
9
(
8
),
660
661
.
69.
Huggins
,
M. L.
, 1941, “
Solutions of Long Chain Compounds
,”
J. Chem. Phys.
,
9
,
440
.
70.
Hildebrand
,
J. H.
, 1947, “
The Entropy of Solution of Molecules of Different Size
,”
J. Chem. Phys.
,
15
(
5
)
225
228
.
71.
Malvern
,
L. E.
, 1969,
Introduction to the Mechanics of a Continuous Medium
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
72.
Coleman
,
B. D.
, and
Noll
,
W.
, 1963, “
The Thermodynamics of Elastic Materials With Heat Conduction and Viscosity
,”
Arch. Ration. Mech. Anal.
,
13
,
167
178
.
73.
Grmela
,
M.
, 2010, “
Why GENERIC?
J. Non-Newtonian Fluid Mech.
,
165
,
980
986
.
74.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
, 1987,
Dynamics of Polymeric Fluids, Vol. 1: Fluid Mechanics
,
2nd ed.
,
Wiley
,
New York
.
75.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
, 1987,
Dynamics of Polymeric Fluids, Vol. 2: Kinetic Theory
,
2nd ed.
,
John Wiley
,
New York
.
76.
El
Afif
,
A.
,
Grmela
,
M.
, and
Lebon
,
G.
, 1999, “
Rheology and Diffusion in Simple and Complex Fluids
,”
J. Non-Newtonian Fluid Mech.
,
86
,
253
275
.
77.
Doi
,
M.
, and
Onuki
,
A.
, 1992, “
Dynamic Coupling Between Stress and Composition in Polymer Solutions and Blends
,”
J. Phys. II
,
2
1631
1656
.
78.
Manero
,
O.
, and Rodrí
guez
,
R. F.
, 1999, “
A Thermodynamic Description of Coupled Flow and Diffusion in a Viscoelastic Binary Mixture
,”
J. Non-Equilib. Thermodyn.
,
24
(
2
),
177
195
.
79.
Holzapfel
,
G. A.
, 2001,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
New York
.
80.
Carreau
,
P. J.
, and
Grmela
,
M.
, 1991, “
Conformation Tensor Rheological Models
,”
Rheological Modelling: Thermodynamical and Statistical Approaches
(Lecture Notes in Physics, Vol.
381
),
Springer
,
Berlin
, pp.
126
157
.
81.
Marsden
,
J. E.
, and
Hughes
,
T. J. R.
, 1994,
Mathematical Foundations of Elasticity
,
Dover
,
New York
.
82.
Beris
,
A. N.
, and
Edwards
,
B. J.
, 1994,
Thermodynamics of Flowing Systems: With Internal Microstructure
, (Oxford Engineering Science Series, Vol.
36
),
Oxford University Press
,
Oxford, UK
.
83.
Zohdi
,
T. I.
,
Hutter
,
K.
, and
Wriggers
,
P.
, 1999, “
A Technique to Describe the Macroscopic Pressure Dependence of Diffusive Properties of Solid Materials Containing Heterogeneities
,”
Comput. Mater. Sci.
,
15
,
69
88
.
You do not currently have access to this content.