Toupin’s Theorem plays the most influential role in the history of development concerning Saint-Venant’s Principle. We now review the history and the previous works, distinguishing Saint-Venant type decay from Toupin-type decay and arguing that Toupin’s Theorem is not a formulation of Saint-Venant’s Principle; Saint-Venant’s Principle stated by Love can be disproved mathematically from Toupin’s Theorem, so Toupin’s Theorem is mathematically inconsistent with Saint-Venant’s Principle; Modified Saint-Venant’s Principle can be proved or formulated, though Saint-Venant’s Principle in its general form stated by Boussinesq and Love is not true.

References

References
1.
de Saint-Venant
,
A-J-C B
, 1855, “
Mémoire sur la Torsion des Prismes
,”
Mémoires présentes pars divers Savants à l’ Académie des Sciences de l’ Institut Impérial de France
,
14
, pp.
233
560
.
2.
de Saint-Venant
,
A-J-C B
, 1855, “
Mémoire sur la Flexion des Prismes
,”
J Math Pures Appl
,
1
, pp.
89
189
.
3.
Boussinesq
,
M. J.
, 1885, Application des Potentiels à l’ Étude de l’ Équilibre et des Mouvements des Solides Élastiques Gauthier-Villars, Paris.
4.
Love
,
A. E. H.
, 1927,
A Treatise on the Mathematical Theory of Elasticity
,
4th ed.
,
The University Press
,
Cambridge, England
.
5.
Mises
,
R. v.
, 1945, “
On Saint-Venant’ Principle
,”
Bull Am. Math Soc
,
51
, pp.
555
562
.
6.
Sternberg
,
E.
, 1954, “
On Saint-Venant’s Principle
,”
Q. Appl. Math.
,
11
, pp.
393
402
.
7.
Zanaboni
,
O.
, 1937, “
Dimostrazione Generale del Principio del De Saint-Venant
,”
Atti Acad Naz dei Lincei, Rendiconti
,
25
, pp.
117
121
.
8.
Zanaboni
,
O.
, 1937, “
Valutazione Dell’errore Massimo cui dà Luogo L’applicazione del Principio del De Saint-Venant in un Solido Isotropo
,”
Atti Acad Naz dei Lincei, Rendiconti
,
25
, pp.
595
601
.
9.
Zanabolni
,
O.
, 1937, “
Sull’approssimazione Dovuta al Principio del De Saint-Venant nei Solidi Prismatici Isotropi
,”
Atti Acad Naz dei Lincei, Rendiconti
,
26
, pp.
340
345
.
10.
Truesdell
,
C.
, 1959, “
The Rational Mechanics of Materials - Past, Present, Future
,”
Appl. Mech. Rev.
,
12
, pp.
75
80
.
11.
Toupin
,
R. A.
, 1965, “
Saint-Venant’s Principle
,”
Archive for Rational Mech and Anal
,
18
, pp.
83
96
.
12.
Toupin
,
R. A.
, 1965, “
Saint-Venant and a Matter of Principle
,”
Trans N. Y. Acad. Sci.
,
28
, pp.
221
232
.
13.
Berdichevskii
,
V. L.
, 1974, “
On the Proof of the Saint-Venant’s Principle for Bodies of Arbitrary Shape
,”
Prikl. Mat. Mekh.
,
38
, pp.
851
864
Berdichevskii
,
V. L.
, [
J. Appl. Math. Mech.
,
38
,
799
813
(1975)].
14.
Horgan
,
C. O.
, and
Knowles
,
J. K.
, 1983, “
Recent Developments Concerning Saint-Venant’s Principle
,”
Advances in Applied Mechanics
,
T. Y.
Wu
and
J. W.
Hutchinson
, eds.,
Academic
,
New York
, Vol.
23
, pp.
179
269
.
15.
Horgan
,
C. O.
, 1989, “
Recent Developments Concerning Saint-Venant’s Principle: An Update
,”
Appl. Mech. Rev.
,
42
, pp.
295
303
.
16.
Horgan
,
C. O.
, 1996, “
Recent Developments Concerning Saint-Venant’s Principle: A Second Update
,”
Appl. Mech. Rev.
,
49
, pp.
S101
S111
.
17.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
, 1970,
Theory of Elasticity
,
3rd ed.
,
McGraw-Hill
,
New York
, pp.
62
283
.
18.
Flavin
,
J. N.
, 1978, “
Another Aspect of Saint-Venant’s Principle in Elasticity
,”
ZAMP
,
29
, pp.
328
332
.
19.
Flavin
,
J. N.
, 1982, “
Saint-Venant Pointwise Decay Estimates
,”
J. Elasticity
,
12
, pp.
313
316
.
20.
Roseman
,
J.
, 1966, “
A Pointwise Estimate for the Stress in a Cylinder and its Application to Saint-Venant’s Principle
,”
Archive for Rational Mech. and Anal.
,
21
, pp.
23
48
.
21.
Fung
,
Y. C.
, 1965,
Foundations of Solid Mechanics
,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
300
303
.
22.
Zhao
,
J.-Z.
, 1986, “
Toupin-Berdichevskii Theorem Can’t be Considered as a Mathematical Expression of Saint-Venant’s Principle
,”
Appl. Math. Mech., English ed.
,
7
, pp.
971
974
.
23.
Knowles
,
J. K.
, 1966, “
On Saint-Venant’s Principle in the Two-Dimensional Linear Theory of Elasticity
,”
Archive for Rational Mech and Anal
,
21
, pp.
1
22
.
24.
Knowles
,
J. K.
, and
Sternberg
E.
, 1966, “
On Saint-Venant’s Principle and the Torsion of Solids of Revolution
,”
Archive for Rational Mech and Anal
,
22
, pp.
100
120
.
25.
Knowles
,
J. K.
, 1967, “
A Saint-Venant’s Principle for a Class of Second-Order Elliptic Boundary Value Problems
,”
ZAMP
,
18
, pp.
473
490
.
26.
Flavin
,
J. N.
, 1974, “
On Knowles’ Version of Saint-Venant’s Principle in Two-Dimensional Elastostatics
,”
Archive for Rational Mech and Anal
,
53
, pp.
366
375
.
27.
Flavin
,
J. N.
, and
Knops
,
R. J.
, 1988, “
Some Convexity Considerations for a Two-Dimensional Traction Problem
,”
ZAMP
,
39
, pp.
166
176
.
28.
Flavin
,
J. N.
, and
Knops
,
R. J.
, 1988, “
Some Decay and Other Estimates in Two-Dimensional Linear Elastostatics
,”
Q. J. Mech. Appl. Math.
,
41
, pp.
223
238
.
29.
Horgan
,
C. O.
, 1989, “
Decay Estimates for the Biharmonic Equation With Applications to Saint-Venant’s Principles in Plane Elasticity and Stokes Flows
,”
Q. Appl. Math.
,
47
, pp.
147
157
.
30.
Miller
,
K. L.
, and
Horgan
,
C. O.
, 1995, “
End Effects for Plane Deformations of an Elastic Anisotropic Semi-Infinite Strip
,”
J. Elasticity
,
38
, pp.
261
316
.
31.
Knops
,
R. J.
, and
Villaggio
,
P.
, 2000, “
Spatial Behavior in Plane Incompressible Elasticity on a Half-Strip
,”
Q. Appl. Math.
,
58
, pp.
355
367
.
32.
Flavin
,
J. N.
, 2003, “
Spatial-Decay Estimates for a Generalized Biharmonic Equation in Inhomogeneous Elasticity
,”
J. Engineering Math
,
46
, pp.
241
252
.
33.
Gregory
,
R. D.
, and
Wan
,
F. Y. M.
, 1985, “
On Plate Theories and Saint-Venant’s Principle
,”
Inter. J. Solids Structures
,
10
, pp.
1005
1024
.
34.
Flavin
,
J. N.
,
Knops
R. J.
, and
Payne
,
L. E.
, 1989, “
Decay Estimates for the Constrained Elastic Cylinder of Variable Cross Section
,”
Q. Appl. Math.
,
47
, pp.
325
350
.
35.
Horgan
,
C. O.
, and
Payne
,
L. E.
, 1993, “
On the Asymptotic Behavior of Solutions of Linear Second-Order Boundary-Value Problems on a Semi-Infinite Strip
,”
Archive for Rational Mech. and Anal.
,
124
, pp.
277
303
.
36.
Horgan
,
C. O.
, 1995, “
Anti-Plane Shear Deformations in Linear and Nonlinear Solid Mechanics
,”
SIAM Rev.
,
37
, pp.
53
81
.
37.
Lin
,
C.
, 1994, “
Exponential Decay Estimates for Solutions of the Polyharmonic Equation in a Semi-Infinite Cylinder
,”
J. Math Anal. Appl.
,
181
, pp.
626
647
.
38.
Knops
,
R. J.
, and
Payne
,
L. E.
, 1996, “
The Effect of a Variation in the Elastic Moduli on Saint-Venant’s Principle for a Half-Cylinder
,”
J. Elasticity
,
44
, pp.
161
182
.
39.
Quintanilla
,
R.
, 1997, “
Spatial Decay Estimates and Upper Bounds in Elasticity for Domains With Unbounded Cross-Sections
,”
J. Elasticity
,
46
, pp.
239
254
.
40.
Horgan
,
C. O.
, and
Payne
,
L. E.
, 1997, “
Saint-Venant’s Principle in Linear Isotropic Elasticity for Incompressible or Nearly Incompressible Materials
,”
J. Elasticity
,
46
, pp.
43
52
.
41.
Knops
,
R. J.
, 2000, “
Alternative Spatial Behaviour in the Incompressible Linear Elastic Prismatic Constrained Cylinder
,”
J. Engineering Math
,
37
, pp.
111
128
.
42.
Quintanilla
,
R.
, 2002, “
On the Spatial Decay for the Dynamical Problem of Thermo-Microstretch Elastic Solids
,”
Inter. J Engineering Science
,
40
, pp.
109
121
.
43.
Flavin
,
J. N.
, and
Gleeson
,
B.
, 2005, “
Decay and Other Estimates for an Annular Elastic Cylinder in an Axisymmetric State of Stress
,”
Math Mech. of Solids
,
10
, pp.
213
225
.
44.
Roseman
,
J.
, 1967, “
The Principle of Saint-Venant in Linear and Non-Linear Plane Elasticity
,”
Archive for Rational Mech and Anal
,
26
, pp.
142
162
.
45.
Breuer
,
S.
, and
Roseman
,
J.
, 1977, “
On Saint-Venant’s Principle in Three-Dimensional Nonlinear Elasticity
,”
Archive for Rational Mech and Anal
,
63
, pp.
191
203
.
46.
Knops
,
R. J.
, and
Payne
,
L. E.
, 1983, “
A Saint-Venant Principle for Nonlinear Elasticity
,”
Archive for Rational Mech and Anal
,
81
, pp.
1
12
.
47.
Horgan
,
C. O.
, and
Payne
,
L. E.
, 1984, “
Decay Estimates for Second-Order Quasilinear Partial Differential Equations
,”
Adv. Appl. Math.
,
5
, pp.
309
332
.
48.
Horgan
,
C. O.
, and
Payne
,
L. E.
, 1984, “
Decay Estimates for a Class of Second-Order Quasilinear Equations in Three Dimensions
,”
Archive for Rational Mech and Anal
,
86
, pp.
279
289
.
49.
Galdi
,
G. P.
,
Knops
,
R. J.
, and
Rionero
S.
, 1985, “
Asymptotic Behaviour in the Nonlinear Elastic Beam
,”
Archive for Rational Mech and Anal
,
87
, pp.
305
318
.
50.
Vafeades
,
P.
, and
Horgan
,
C. O.
, 1988, “
Exponential Decay Estimates for Solutions of the von Karman Equations on a Semi-Infinite Strip
,”
Archive for Rational Mech and Anal
,
104
, pp.
1
25
.
51.
Horgan
,
C. O.
, and
Payne
,
L. E.
, 1989, “
On the Asymptotic Behavior of Solutions of Inhomogeneous Second-Order Quasilinear Partial Differential Equations
,”
Q. Appl. Math.
,
47
, pp.
753
771
.
52.
Horgan
,
C. O.
, and
Payne
,
L. E.
, 1992, “
A Saint-Venant Principle for a Theory of Nonlinear Plane Elasticity
,”
Q. Appl. Math.
,
50
, pp.
641
675
.
53.
Flavin
,
J. N.
,
Knops
,
R. J.
, and
Payne
,
L. E.
, 1992, “
Asymptotic Behaviour of Solutions to semi-Linear Elliptic Equations on the Half-Cylinder
,”
ZAMP
,
43
, pp.
405
421
.
54.
Breuer
,
S.
, and
Roseman
,
J.
, 1982, “
Saint-Venant’s Principle in Nonlinear Plane Elasticity With Sufficiently Small Strains
,”
Archive for Rational Mech and Anal
,
80
, pp.
19
37
.
55.
Breuer
,
S.
, and
Roseman
,
J.
, 1986, “
Phragmen-Lindelof Decay Theorems for Classes of Nonlinear Dirichlet Problems in a Circular Cylinder
,”
J Math Anal Appl
,
113
, pp.
59
77
.
56.
Breuer
,
S.
, and
Roseman
,
J.
, 1986, “
Decay Theorems for Nonlinear Dirichlet Problems in Semi-Infinite Cylinders
,”
Archive for Rational Mech and Anal
,
94
, pp.
363
371
.
57.
Horgan
,
C. O.
, 1985, “
A Note on the Spatial Decay of a Three-Dimensional Minimal Surface over a Semi-Infinite Cylinder
,”
J Math Anal Appl
,
107
, pp.
285
290
.
58.
Horgan
,
C. O.
, and
Olmstead
,
W. E.
, 2003, “
A Saint-Venant Principle for Shear Band Localization
,”
ZAMP
,
54
, pp.
807
814
.
59.
Horgan
,
C. O.
, and
Knowles
,
J. K.
, 1981, “
The Effect of Nonlinearity on a Principle of Saint-Venant Type
,”
J. Elasticity
,
11
, pp.
271
291
.
60.
Horgan
,
C. O.
, and
Payne
,
L. E.
, 1990, “
On Saint-Venant’s Principle in Finite Anti-Plane Shear: An Energy Approach
,”
Archive for Rational Mech. and Anal.
,
109
, pp.
107
137
.
61.
Horgan
,
C. O.
, and
Payne
,
L. E.
, 1993, “
The Effect of Constitutive Law Perturbations on Finite Antiplane Shear Deformations of a Semi-Infinite Strip
,”
Q. Appl. Math.
,
51
, pp.
441
465
.
62.
Horgan
,
C. O.
, and
Payne
,
L. E.
, 1997, “
Spatial Decay Estimates for a Coupled System of Second-Order Quasilinear Partial Differential Equations Arising in Thermoelastic Finite Anti-Plane Shear
,”
J. Elasticity
,
47
, pp.
3
21
.
63.
Borrelli
,
A.
,
Horgan
,
C. O.
, and
Patria
,
M. C.
, 2002, “
Saint-Venant’s Principle for Antiplane Shear Deformations of Linear Piezoelectric Materials
,”
SIAM J. Appl. Math.
,
62
, pp.
2027
2044
.
64.
Horgan
,
C. O.
, and
Abeyaratne
,
R.
, 1983, “
Finite Anti-Plane Shear of a Semi-Infinite Strip Subject to a Self-Equilibrated End Traction
,”
Q. Appl. Math.
,
40
, pp.
407
417
.
65.
Horgan
,
C. O.
,
Payne
,
L. E.
, and
Philippin
,
G. A.
, 1995, “
Poiniwise Gradient Decay Estimates for Solutions of the Laplace and Minimal Surface Equations
,”
Diff. Integral Eq
.
8
, pp.
1761
1773
.
66.
Stephen
,
N. G.
, and
Wang
,
P. J.
, 1996, “
Saint-Venant’s Principle and the Anti-Plane Elastic Wedge
,”
J Strain Anal
.
31
, pp.
231
234
.
67.
Scalpato
,
M. R.
, and
Horgan
,
C. O.
, 1997, “
Saint-Venant Decay Rates for an Isotropic Inhomogeneous Linearly Elastic Solid in Anti-Plane Shear
,”
J. Elasticity
,
48
, pp.
145
166
.
68.
Chan
,
A. M.
, and
Horgan
,
C. O.
, 1998, “
End Effects in Anti-Plane Shear for an Inhomogeneous Isotropic Linearly Elastic Semi-Infinite Strip
,”
J. Elasticity
,
51
, pp.
227
242
.
69.
Horgan
,
C. O.
, and
Quintanilla
,
R.
, 2001, “
Saint-Venant End Effects in Antiplane Shear for Functionally Graded Linearly Elastic Materials
,”
Math. Mech. Solids
6
, pp.
115
132
.
70.
Knops
,
R. J.
, and
Lupoli
,
C.
, 1997, “
End Effects for Plane Stokes Flow Along a Semi-Infinite Strip
,”
ZAMP
,
48
, pp.
905
920
.
71.
Horgan
,
C. O.
, 1978, “
Plane Entry Flows and Energy Estimates for the Navier-Stokes Equations
,”
Archive for Rational Mech.
and Anal.
68
, pp.
359
381
.
72.
Horgan
,
C. O.
, and
Wheeler
,
L. T.
, 1978, “
Spatial Decay Estimates for the Navier-Stokes Equations With Application to the Problem of Entry Flow
,”
SIAM J. Appl. Math.
35
, pp.
97
116
.
73.
Ames
,
K. A.
, and
Payne
,
L. E.
, 1989, “
Decay Estimates in Steady Pipe Flow
,”
SIAM J. Math. Anal.
20
, pp.
789
815
.
74.
Ames
,
K. A.
,
Payne
,
L. E.
, and
Schaefer
,
P. W.
, 1993, “
Spatial Decay Estimates in Time-Dependent Stokes Flow
,”
SIAM J. Math. Anal.
24
, pp.
1395
1413
.
75.
Chadam
,
J.
, and
Qin
,
Y.
, 1997, “
Spatial Decay Estimates for Flow in a Porous Medium
,”
SIAM J. Math. Anal.
28
, pp.
808
830
.
76.
Payne
,
L. E.
, and
Song
,
J. C.
, 2000, “
Spatial Decay for a Model of Double Diffusive Convection in Darcy and Brinkman Flow
,”
ZAMP
,
51
, pp.
867
889
.
77.
Song
,
J. C.
, 2002, “
Spatial Decay Estimates in Time-Dependent Double-Diffusive Darcy Plane Flow
,”
J. Math. Anal. Appl.
267
, pp.
76
88
.
78.
Song
,
J. C.
, 2003, “
Improved Decay Estimates in Time-Dependent Stokes Flow
,”
J. Math. Anal. Appl
,
288
, pp.
505
-
517
.
79.
Lin
,
C.
, and
Payne
,
L. E.
, 2004, “
Spatial Decay Bounds in Time Dependent Pipe Flow of an Incompressible Viscous Fluid
,”
SIAM J. Appl. Math
,
65
, pp.
458
474
.
80.
Boley
,
B. A.
, 1958,
“Some Observations on Saint-Venant’s Principle,”
Proceedings of the Third U. S. National Congress in Applied Mechanics
,
ASME
,
New York
, pp.
259
264
.
81.
Boley
,
B. A.
, 1960, “
Upper Bounds and Saint-Venant’s Principle in Transient Heat Conduction
,”
Q. Appl. Math.
18
, pp.
205
208
.
82.
Knowles
,
J. K.
, 1971, “
On the Spatial Decay of Solutions of the Heat Equation
,”
ZAMP
,
22
, pp.
1050
1056
.
83.
Edelstein
,
W. S.
, 1969, “
A Spatial Decay Estimate for the Heat Equation
,”
ZAMP
,
20
, pp.
900
905
.
84.
Horgan
,
C. O.
,
Payne
,
L. E.
, and
Wheeler
,
L. T.
, 1984, “
Spatial Decay Estimates in Transient Heat Conduction
,”
Q. Appl. Math.
42
, pp.
119
127
.
85.
Payne
,
L. E.
, and
Song
,
J. C.
, 1996, “
Phragmen-Lindelof and Continuous Dependence Type Results in Generalized Heat Conduction
,”
ZAMP
,
47
, pp.
527
538
.
86.
Quintanilla
,
R.
, 1996, “
A Spatial Decay Estimate for the Hyperbolic Heat Equation
,”
SIAM J. Math. Anal
,
27
, pp.
78
91
.
87.
Horgan
,
C. O.
, and
Quintanilla
,
R.
, 2001, “
Spatial Decay of Transient End Effects in Functionally Graded Heat Conducting Materials
,”
Q. Appl. Math.
59
, pp.
529
542
.
88.
Payne
,
L. E.
, and
Song
,
J. C.
, 2004, “
Spatial Decay Estimates for the Maxwell-Cattaneo Equations With Mixed Boundary Conditions
,”
ZAMP
,
55
, pp.
962
973
.
89.
Payne
,
L. E.
, and
Song
,
J. C.
, 2005, “
Improved Spatial Decay Bounds in Generalized Heat Conduction
,”
ZAMP
,
56
, pp.
805
820
.
You do not currently have access to this content.