Abstract
Two principal concepts of nonlinear normal vibrations modes (NNMs), namely the Kauderer–Rosenberg and Shaw–Pierre concepts, are analyzed. Properties of the NNMs and methods of their analysis are presented. NNMs stability and bifurcations are discussed. Combined application of the NNMs and the Rauscher method to analyze forced and parametric vibrations is discussed. Generalization of the NNMs to continuous systems dynamics is also described.
Issue Section:
Review Articles
References
1.
Lyapunov
, A.
M.
, 1947,
The General Problem of the Stability of Motion
,
Princeton University
,
Princeton, NJ
.2.
3.
Seifert
,
H.
,
1948, “Periodische
bewegungen mechaischen systeme
,” Math. Z.
,
51
, pp. 197
–216
.4.
Rosenberg
, R.
M.
, and Atkinson
,
C. P.
, 1959,
“On the Natural Modes and Their Stability in Nonlinear
Two-degree-of-freedom Systems
,” ASME J. Appl.
Mech.
, 26
, pp.
377
–385
.5.
Rosenberg
,
R.
,
1960, “Normal Modes of
Nonlinear Dual Mode Systems
,” ASME J. Appl.
Mech.
, 27
, pp.
263
–268
.6.
Rosenberg
,
R.
,
1961, “On Normal
Vibration of a General Class of Nonlinear Dual Mode
Systems
,” ASME J. Appl. Mech.
28
, pp. 275
–283
.7.
Rosenberg,
R.
,
1962, “The Normal Modes
of Nonlinear n-Degree-of-Freedom Systems
,” ASME J.
Appl. Mech.
, 29
, pp.
7
–14
.8.
Rosenberg
,
R.
,
1964, “On Normal Mode
Vibration
,” Proc. Cambridge. Philos. Soc.
60
, pp. 595
–611
.9.
Rosenberg
,
R.
,
1966, “Nonlinear
Vibrations of Systems With Many Degrees of Freedom
,”
Adv. Appl. Mech.
, 9
, pp.
156
–243
.10.
Rosenberg
,
R.
, and
Kuo
,
J.
,
1964, “Nonsimilar Normal
Mode Vibrations of Nonlinear Systems Having Two Degrees of
Freedom
,” ASME J. Appl. Mech.
,
31
, pp.
283
–290
.11.
Rand
,
R.
,
1971, “A Higher Order
Approximation for Nonlinear Normal Modes in Two Degrees of Freedom
Systems
,” Int. J. Non-Linear Mech.
,
6
, pp. 545
–547
.12.
Manevich
,
L.
, and
Mikhlin
,
Y.
,
1972, “Periodic
Solutions Close to Rectilinear Normal Vibration Modes
,”
Prikl. Mat. Mekh
., 36
, pp.
1051
–1058
.13.
Mikhlin
,
Y.
,
1996, “Normal Vibrations
of a General Class of Conservative Oscillators
,”
Nonlinear. Dyn.
, 11
, pp.
1
–16
.14.
Manevich
,
L.
,
Mikhlin
,
Y.
, and
Pilipchuk
,
V.
,
1989, The Method of
Normal Oscillation for Essentially Nonlinear Systems
,
Nauka
, Moscow (in
Russian)
.15.
Vakakis
,
A.
,
Manevitch
,
L.
,
Mikhlin
,
Y.
,
Pilipchuk
,
V.
, and
Zevin
,
A.
,
1996, Normal Modes and
Localization in Nonlinear Systems
,
Wiley
, New
York
.16.
Vakakis
,
A.
, and,
R. H.
Rand
1992, “Normal Modes and
Global Dynamics of a Two-Degree-of Freedom Non-Linear System. I. Low
Energies
,” Int. J. Non-Linear Mech.
,
27
, pp. 861
–888
.17.
Mikhlin
,
Y.
,
1995, “Matching of Local
Expansions in the Theory of Nonlinear Vibrations
,”
J. Sound Vib.
, 182
, pp.
577
–588
.18.
Shaw
, S.
W.
, and Pierre
,
C.
,
1994, “Normal Modes of
Vibration for Non-Linear Continuous Systems
,” J.
Sound Vib
., 169
(3
), pp.
319
–347
.19.
Pesheck
,
E.
,
Pierre
,
C.
, and
Shaw
, S.
W.
, 2002,
“A New Galerkin-Based Approach for Accurate Non-Linear Normal
Modes Through Invariant Manifolds
,” J. Sound
Vib.
, 249
(5
), pp.
971
–993
.20.
Boivin
,
N.
,
Pierre
,
C.
, and
Shaw
, S.
W.
, 1995,
“Non-Linear Modal Analysis of Structural Systems Featuring
Internal Resonances
,” J. Sound Vib
.,
182
(2
),pp.
336
–341
.21.
Jiang
,
D.
,
Pierre
,
C.
, and
Shaw
, S.
W.
, 2005,
“The Construction of Non-Linear Normal Modes for Systems With
Internal Resonances
,” Int. J. Non-Linear
Mech.
, 40
, pp.
729
–746
.22.
Malkin
,
I.
,
1956, Some Problems of the
Theory of Nonlinear Vibrations
,
Geotechteorizdat
, Moscow (in
Russian)
.23.
Kinney
,
W.
, and
Rosenberg
,
R.
,
1966, “On the Steady
State Vibrations of Nonlinear Systems With Many Degrees of
Freedom
,” ASME J. Appl. Mech
.,
33
, pp.
406
–412
.24.
Mikhlin
,
Y.
,
1974, “Resonance Modes
of Near-Conservative Nonlinear Systems
,” Prikl. Mat.
Mekh.
, 38
, pp.
425
–429
.25.
Mikhlin
,
Y.
, and
Morgunov
,
B.
,
2001, “Normal Vibrations
in Near-Conservative Self-Exited and Viscoelastic Nonlinear
Systems
,” Nonlinear Dyn
.,
25
, pp. 33
–48
.26.
Avramov
, K.
V.
, 2009,
“Nonlinear Modes of Parametric Vibrations and Their
Applications to Beams Dynamics
,” J. Sound
Vib
., 322
(3
), pp.
476
–489
.27.
Mishra
, A.
K.
, and Singh
, M.
C.
, 1974,
“The Normal Modes of Nonlinear Symmetric Systems by Group
Representation Theory
,” Int. J. Nonlinear
Mech
., 9
, pp.
463
–480
.28.
Chechin
, G.
M.
, Sakhnenko
, V.
P.
, Stokes
, H.
T.
, Smith
, A.
D.
, and Hatch
, D.
M.
, 2000,
“Non-Linear Normal Modes for Systems With Discrete
Symmetry
,” Int. J. Nonlinear Mech
.,
35
, pp. 497
–513
.29.
Chechin
, G.
M.
, and Dzhelauhova
,
G. S.
, 2009,
“Discrete Breathers and Nonlinear Normal Modes in Monoatomic
Chains
,” J. Sound Vib
.,
322
(3
), pp.
490
–512
.30.
Vedenova
,
E.
,
Manevich
,
L.
, and
Pilipchuk
,
V.
,
1985, “Normal
Oscillations of a String With Concentrated Masses on Non-Linearly Elastic
Support
,” Prikl.
Matem
Mekh
., 49
, pp.
203
–211
.31.
Zuo
,
L.
, and
Curnier
,
A.
,
1994, “Non-Linear Real
and Complex Modes of Conewise Linear Systems
,” J.
Sound Vib
., 174
(3
), pp.
289
–313
.32.
Pilipchuk
, V.
N.
, 2001,
“Impact Modes in Discrete Vibrating Systems With Rigid
Barriers
,” Int. J. Nonlinear Mech
.,
36
, pp. 999
–1012
.33.
Avramov
, K.
V.
, Mikhlin
,
Y.
, and
Kurilov
,
E.
,
2007, “Asymptotic
Analysis of Nonlinear Dynamics of Simply Supported Cylindrical
Shells
,” Nonlinear Dyn
.,
47
, pp. 331
–352
.34.
Belizzi
,
S.
, and
Bouc
,
R.
,
2005, “A New Formulation
for the Existence and Calculation of Nonlinear Normal
Modes
,” J. Sound Vib
., 287
(3
), pp.
545
–569
.35.
King
, M.
E.
, and Vakakis
, A.
F.
, 1993,
“An Energy-Based Formulation for Computing Nonlinear Normal
Modes in Undamped Continuous Systems
,” ASME J. Vibr.
Acoust
. 116
(3
), pp.
332
–340
.36.
Nayfeh
,
A.
, and
Nayfeh
,
S.
,
1994, “On Nonlinear
Modes of Continuous Systems
,” ASME J. Vibr.
Acoust.
116
, pp. 129
–136
.37.
Carr
,
J.
,
1981, Applications of Centre
Manifold Theory
, Springer-Verlag
,
New York
.38.
Avramov
, K.
V.
, “Many-Dimensional Models of
Traveling Waves and Nonlinear Modes in Cylindrical Shell
,”
Int. Appl. Mech. (in press).39.
Breslavsky
, I.
D.
, Strel’nikova
,
E. A.
, and Avramov
, K.
V.
, 2011,
“Dynamics of Shallow Shells With Geometrical Nonlinearity
Interacting With Fluid
,” Comp. and Struc.
,
89
, pp.
496
–506
.40.
Vakakis
, A.
F.
, Manevitch
, L.
I.
, Gendelman
,
O.
, and
Bergman
,
L.
,
2003, “Dynamics of
Linear Discrete Systems Connected to Local, Essentially Non-Linear
Attachments
,” J. Sound Vibr.
,
264
, pp. 559
–577
.41.
Gendelman
, O.
V.
, 2004,
“Bifurcations of Nonlinear Normal Modes of Linear Oscillator
With Strongly Nonlinear Damped Attachment
,”
Nonlinear Dyn.
, 37
(2
), pp.
115
–128
.42.
Avramov
, K.
V.
, and Mikhlin
,
Y.
,
2004, “Snap-Through
Truss as a Vibration Absorber
,” J. Vib.
Control
10
, pp. 291
–308
.43.
Avramov
, K.
V.
, and Mikhlin
,
Y.
,
2004, “Forced
Oscillations of a System Containing a Snap-Through Truss, Close to Its
Equilibrium Position
,” Nonlinear Dyn.
,
35
, pp. 361
–379
.44.
Avramov
, K.
V.
, and Mikhlin
,
Y.
,
2006, “Snap-Through
Truss as an Absorber of Forced Oscillations
,” J.
Sound Vib.
, 29
, pp.
705
–722
.45.
Mikhlin
,
Y.
, and
Reshetnikova
, S.
N.
, 2005,
“Dynamical Interaction of an Elastic System and Essentially
Nonlinear Absorber
,” J. Sound Vibr.
,
283
, pp. 91
–120
.46.
Breslavsky
,
I.
,
Avramov
, K.
V.
, Mikhlin
,
Y.
, and
Kochurov
,
R.
,
2008, “Nonlinear Modes
of Snap-Through Motions of a Shallow Arch
,” J. Sound
Vib.
, 311
, pp.
297
–313
.47.
Breslavsky
,
I.
, and
Avramov
, K.
V.
“Nonlinear Modes of Cylindrical
Panels With Complex Boundaries. R-Function Method
,”
Meccanica (in press).48.
Kochurov
,
R.
, and
Avramov
, K.
V.
, 2010,
“Nonlinear Modes and Traveling Waves of Parametrically
Excited Cylindrical Shells
,” J. Sound
Vibr.
, 329
, pp.
2193
–2204
.49.
Legrand
,
M.
,
Jiang
,
D.
,
Pierre
,
C.
, and
Shaw
, S.
W.
, 2004,
“Nonlinear Normal Modes of a Rotating Shaft Based on the
Invariant Manifold Method
,” Int. J. Rotating
Mach.
, 10
(4
), pp.
319
–335
.50.
Avramov
, K.
V.
, 2010,
“Nonlinear Modes of Self-Sustained Vibrations of One Disk
Rotor in Two Journal Bearings
,” Strength
Mater
. 4
, pp.
130
–144
.51.
Mikhlin
,
Y.
, and
Mitrokhin
,
S.
2008, “Nonlinear Vibration
Modes of the Double Tracked Road Vehicle
,” J. Theor.
Appl. Mech.
, 46
(3
), pp.
581
–596
.52.
Manevitch
, L.
I.
, 2001,
“The Description of Localized Normal Modes in a Chain of
Nonlinear Coupled Oscillators Using Complex Variables
,”
Nonlinear Dyn.
, 25
, pp.
95
–109
.53.
Vakakis
, A.
F.
, 2001,
“Inducing Passive Nonlinear Energy Sinks in Vibrating
Systems
,” ASME J. Vib. Acoust.
123
(3
), pp.
324
–32
.54.
Gendelman
,
O.
,
2001, “Transition of
Energy to a Nonlinear Localized Mode in a Highly Asymmetric System of Two
Oscillators
,” Nonlinear Dyn.
,
25
, pp. 237
–253
.55.
Gendelman
, O.
V.
, Vakakis
, A.
F.
, Manevitch
, L.
I.
, and McCloskey
,
R.
,
2001, “Energy Pumping in
Nonlinear Mechanical Oscillators I: Dynamics of the Underlying Hamiltonian
System
,” ASME J. Appl. Mech.
,
68
, pp. 34
–41
.56.
Gendelman
, O.
V.
, Gorlov
, D.
V.
, Manevitch
, L.
I.
, and Musienko
,
A. I.
, 2005,
“Dynamics of Coupled Linear and Essentially Nonlinear
Oscillators With Substantially Different Masses
,” J.
Sound Vibr.
, 286
, pp.
1
–19
.57.
Vakakis
, A.
F.
, Gendelman
, O.
V.
, Bergman
, L.
A.
, McFarland
, D.
M.
, Kerschen
,
G.
, and
Lee
, Y.
S.
, 2008,
Nonlinear Targeted Energy Transfer in Mechanical and
Structural Systems
(Solid Mechanics and Its
Applications
, Vol. 156
),
Springer-Verlag
,
Berlin
.58.
Pilipchuk
, V.
N.
, 2009,
“Transition From Normal to Local Modes in an Elastic Beam
Supported by Nonlinear Springs
,” J. Sound
Vib.
, 322
, pp.
554
–563
.59.
Pilipchuk
, V.
N.
2010, Nonlinear Dynamics: Between
Linear and Impact Limits
,
Springer–Verlag
,
Berlin
.60.
Avramov
, K.
V.
, and Mikhlin
,
Y.
,
2010, Nonlinear Dynamics
of Elastic Systems, Vol. 1: Models, Methods, and Approaches
(Regular and Chaotic Dynamics
), Scientific
Centre
, Moscow
(in
Russian).61.
Vakakis
, A.
F.
, 1997,
“Non-Linear Normal Modes (NNMs) and Their Applications in
Vibration Theory: An Overview
,” Mech. Syst. Signal
Process
. 11
(1
), pp.
3
–22
.62.
Kerschen
,
G.
,
Peeters
,
M.
,
Golinval
, J.
C.
, and Vakakis
, A.
F.
, 2009,
“Nonlinear Normal Modes, Part I: A Useful Framework for the
Structural Dynamicist
,” Mech. Syst.
Signal
Process. 23
, pp. 170
–194
.63.
Lanczos
,
C.
,
1962, The Variational
Principles of Mechanics
, University of
Toronto
,
Toronto
.64.
Lusternik
, L.
A.
, and Shnirel’man
,
L. G.
, 1930,
Topological Methods in Nonlinear Sciences
,
GNTI
, Moscow
(in Russian)65.
van Groesen
, E. W.
C.
, 1983,
“On Normal Modes in Classical Hamiltonian
Systems
,” Int. J. Nonlinear Mech.
,
18
(1
), pp.
55
–70
.66.
Atkinson
, C.
P.
, Bhatt
, S.
J.
, and Pacitti
,
T.
,
1963, “The Stability of
the Normal Modes of Nonlinear Systems With Polynomial Restoring Forces of
High Degree
,” ASME J. Appl. Mech.
,
30
, pp.
163
–198
.67.
Rosenberg
, R.
M.
, and Hsu
, C.
S.
, 1963,
“On the Geometrization of Normal Vibrations of Nonlinear
Systems Having Many Degrees of Freedom
,” Proceedings
of the International Symposium on Nonlinear Vibrations IUTAM
,
Kiev, Ukraine
, Vol. 1
, pp.
380
–416
.68.
Blaquiere
,
A.
1966, Nonlinear System
Analysis
, Academic Press
,
New York
.69.
King
, M.
E.
, and Vakakis
, A.
F.
, 1996,
“An Energy-Based Approach to Computing Resonant Nonlinear
Normal Modes
,” ASME J. Appl. Mech.
63
, pp. 810
–819
.70.
Yang
, T.
L.
, and Rosenberg
,
R. M.
, 1967,
“On the Vibrations of a Particle in the
Plane
,” Int. J. Nonlinear Mech.
,
2
(1
), pp.
1
–25
.71.
Rand
, R.
H.
, 1974,
“A Direct Method for Non-Linear Normal
Modes
,” Int. J. Nonlinear Mech.
,
9
, pp. 363
–368
.72.
Johnson
, T.
L.
, andRand.
,
R.
1979, “On the Existence and
Bifurcation of Minimal Normal Modes
,” Int. J.
Nonlinear Mech.
, 14
, pp.
1
–12
.73.
Xinhua
,
Z.
,
2004, “Non-Linear Normal
Modes as the Extremal Geodesics of the Riemaniam Manifold
,”
Proceedings of the EUROMECH Colloquium 457 on Non linear modes of
vibrating systems
, Frejus, France
pp. 177
–180
.74.
Anand
, G.
V.
, 1972,
“Natural Modes of a Coupled Nonlinear System,
I.
” J. Nonlinear Mech.
,
7
, pp. 81
–91
.75.
Yen
,
D.
,
1974, “On the Normal
Modes of Nonlinear Dual-Mass Systems,”
Int. J. Nonlinear Mech.
, 9
, pp.
45
–53
.76.
Vakakis
,
A.
,
1992, “Non-Similar
Normal Oscillations in a Strongly Non-Linear Discrete
System
,” J. Sound Vib.
, 158
,
pp. 341
–361
.77.
Happawana
, G.
S.
, Bajaj
, A.
K.
, and Azene
,
M.
,
1995, “An Analytical
Solutions to Non-Similar Normal Modes in a Strongly Non-Linear Discrete
System
, J. Sound Vibr.
,
183
(2
), pp.
361
–367
.78.
Bhattacharyya
,
R.
,
Jain
,
P.
, and
Nair
,
A.
,
2002, “Normal Mode
Localization for a Two Degree-of-Freedom System With Quadratic and Cubic
Non-Linearities
,” J. Sound Vib.
,
249
(5
), pp.
909
–919
.79.
Mikhlin
,
Y.
,
1997, “On Non-Linear
Normal Vibration Modes that Exist only in an Intermediate Amplitude
Range
,” J. Sound Vib.
, 204
(1
), pp.
159
–161
.80.
Szemplinska-Stupnickayyt
,
W.
1990, The Behavior of Nonlinear
Vibrating Systems
, Vols. I and II
,
Kluwer Academic Publishers
,
Dordrecht
.81.
Pak
, C.
H.
1999, Nonlinear Normal Mode
Dynamics
, Inha University
,
Seoul, Korea
.82.
Rand
, R.
H.
, and Ramani
, D.
V.
, 2001,
“Nonlinear Normal Modes in a System With Nonholonomic
Constraints
,” Nonlinear Dyn.
,
25
, pp. 49
–64
.83.
Pak
, C.
H.
, 2006,
“On the Coupling of Non-Linear Normal Modes
,”
Int. J. Nonlinear Mech.
, 41
, pp.
716
–725
.84.
Wang
,
F.
,
Bajaj
, A.
K.
, and Kamiya
,
K.
,
2005, “Nonlinear Normal
Modes and Their Bifurcations for an Inertially Coupled Nonlinear
Conservative System
,” Nonlinear Dyn.
,
42
, pp. 233
–265
.85.
Wang
,
F.
, and
Bajaj
, A.
K.
, 2008,
“Nonlinear Normal Modes of an Inertially Coupled Conservative
System
,” J. Vib. Control
14
(1–2
), pp.
107
–134
.86.
Manevitch
, L.
I.
, 2001,
“The Description of Localized Normal Modes in a Chain of
Nonlinear coupled Oscillators using Complex Variables
,”
Nonlinear Dyn.
, 25
, pp.
95
–109
.87.
Morgenthaler
, G.
W.
, 1966,
“Normal Modal Vibrations for Some Damped n-Degree-of-Freedom
Nonlinear Systems
, ASME J. Appl. Mech.
,
33
, pp.
877
–880
.88.
Mikhlin
,
Y.
,
1985, “The Joining of
Local Expansions in the Theory of Nonlinear Oscillations
,”
Prikl. Matem. Mekh.
, 49
(5
),
pp. 738
–743
.89.
Manevitch
, L.
I.
, and Pinsky
, M.
A.
, 1972,
“On Nonlinear Normal Vibrations in Systems With Two Degrees
of Freedom
,” Prikl. Matem. Mech.
,
8
(9
), pp.
83
–90
.90.
Manevitch
, L.
I.
, and Pinsky
, M.
A.
, 1972,
“On the Use of Symmetry for Nonlinear Oscillations
Calculation
,” Izv. AN SSSR MTT
7
(2
), pp. 43
–46
(in Russian).91.
Ovsiannikov
, L.
S.
1982, Group Analysis of
Differential Equations
, Academic
,
New York
.92.
Manevich
, L.
I.
, and Cherevatskii
,
B. P.
, 1969,
“On the Approximate Determination of Normal Vibrations of
Nonlinear Systems With Two Degrees of Freedom
,”
Proceedings of the Dnepropetrovsk Railway Transport Institute:
Problems of Strength, Reliability and Destruction of Mechanical
Systems
, Dnepropetrovsk
,
Ukraine,
pp.
45
–56
(in Russian).93.
Mikhlin
,
Y.
, and
Lartseva
,
I.
,
1995, “Symmetries of
Nonlinear Dynamical Models and Normal Vibration Modes
,”
Proceedings of the IMACS Symposium on System Analysis and
Simulation
Berlin
[J. Math. Model. Simulation, pp.
207
–210
(1995)].94.
Chechin
, G.
M.
, Novikova
, N.
V.
, and Abramenko
,
A. A.
, 2002,
“Bushes of Vibrational Modes for Fermi-Pasta-Ulam
Chains
,” Phys. D
166
, pp. 208
–238
.95.
Chechin
,
M.
, and
Ryabov
, D.
S.
, 2004,
“Three-Dimensional Chaotic Flows With Discrete
Symmetries
,” Phys. Rev. E
69
, pp. 1
–9
.96.
Rand
, R.
H.
, 1973,
“The Geometrical Stability of NNMs in Two DOF
Systems
,” Int. J. Nonlinear Mech.
,
8
, pp. 161
–168
.97.
Pecelli
,
G.
, and
Thomas
, E.
S.
, 1979,
“Normal Modes, Uncoupling, and Stability for a Class of
Nonlinear Oscillators
,” Q. Appl. Math.
,
37
, pp.
281
–301
.98.
Pecelli
,
G.
, and
Thomas
, E.
S.
, 1980,
“Stability of for a Class of Nonlinear Planar
Oscillators
,” Int. J. Nonlinear Mech.
,
15
, pp. 57
–70
.99.
Ince
, E.
L.
, 1926,
Ordinary Differential Equations
, Lomgman
Green
,
London
.100.
Zhupiev
,
A.
, and
Mikhlin
,
Y.
,
1981, “Stability and
Branching of Normal Modes of Nonlinear Systems
,”
Prikl. Matem. Mekh.
, 45
(3
),
pp. 450
–455
.101.
Mikhlin
,
Y.
,and
Zhupiev
,
A.
,
1997, “An Application of
the Ince Algebraization to the Stability of Nonlinear Normal Vibration
Modes
,” Int. J. Nonlinear Mech.
,
32
(1
), pp.
493
–509
.102.
Bateman
,
H.
,and
Erdelyi
,
A.
1952, Higher Transcendental
Functions
, McGraw-Hill
,
New York
.103.
Zhupiev
,
A.
,and
Mikhlin
,
Y.
,
1984, “Conditions for
Finite Numbers of Instability Domains for Nonlinear Normal
Modes
,” Prikl. Matem. Mekh.
,
48
(4
), pp.
681
–684
.104.
Dubrovin
, B.
A.
,and Novikov
, S.
P.
, 1974,
“Periodic and Almost Periodic Analogy of Multi-Soliton
Solutions of Korteweg-de-Vries Equation
,” Sov. Phys.
JETP
, 67
(12
), pp.
2131
–2144
.105.
Novikov
, S.
P.
, 1980,
Theory of Solitons. Inverse Problems Method
,
Nauka, Moscow
.106.
Pak
, C.
H.
, 1989,
“On the Stability Behavior of Bifurcated Normal Modes in
Coupled Nonlinear Systems
,” ASME J. Appl.
Mech.
, 56
, pp.
155
–161
.107.
Rand
, R.
H.
, Pak
, C.
H.
,and Vakakis
, A.
F.
, 1992,
“Bifurcation of Nonlinear Normal Modes in a Class of Two
Degree of Freedom Systems
,” Acta Mech.
,
3
, pp.
129
–145
.108.
Pak
, C. H.
R.
, and
, R.
H.
, Moon
, F.
C.
, 1992,
“Free Vibrations of a Thin Elastica by Normal
Modes
, Nonlinear Dyn.
, 3
,
pp. 347
–364
.109.
Vakakis
, A.
F.
,and Rand
, R.
H.
,
1992, “Normal Modes and
Global Dynamics of a Two-Degree-of-Freedom Nonlinear System. II. High
Energies
,” Int. J. Nonl. Mech.
,
27
(5
), pp.
875
–888
.110.
Ng
,
R.
,and
Rand
, R.
H.
, 2003,
“Nonlinear Effects on Coexistence Phenomenon in Parametric
Excitation
,” Nonlinear Dyn.
31
, pp. 73
–89
.111.
Manevich
A. I.
, and Manevitch
,
L. I.
, 2003,
“Free Oscillations in Conservative and Dissipative Symmetric
Cubic Two-Degree-of-Freedom Systems With Closed Natural
Frequencies
,” Meccanica
38
, pp. 335
–348
.112.
Manevich
, A.
I.
,and Manevitch
,
L. I.
, 2005,
The Mechanics of Nonlinear Systems With Internal
Resonances
, Imperial College
,
London
.113.
Manevich
, A.
I.
, 2004,
“Normal and Elliptic Modes at Forced Oscillations of Cubic
2DOF Systems With Close Natural Frequencies
,”
Proceedings of the EUROMECH Colloq. 457 on Non Linear Modes of
Vibrating Systems
, Frejus, France
,
pp. 33
–36
.114.
Manevich
, A.
I.
, 2007,
“Primary Resonances in Nonlinear Symmetric 2DOF Systems
Having Close Natural Frequencies
,” The Second
International Conference of “ Nonlinear Dynamics,”
Kharkov, Ukraine,
pp.
198
–203
.115.
Xinye
,
L.
,
Yushu
,
C.
,and
Zhiqiang
,
W.
,
2004, “Non-Linear Normal
Modes and Their Bifurcation of a Class of Systems With Three Double of Pure
Imaginary Roots and Dual Internal Resonances
,” Int.
J. Nonlinear Mech.
, 39
, pp.
189
–199
.116.
Pak
, C.
H.
,and Choi
, Y.
S.
, 2007,
“On the Sensitivity of Non-generic Bifurcation of Non-Linear
Normal Modes
,” Int. J. Nonlinear Mech.
,
2
, pp. 973
–980
.117.
Synge
, J.
L.
, 1926,
“On the Geometry of Dynamics
,”
Philos. Trans. R. Soc. London Ser. A
226
, pp. 33
–106
.118.
Siegel
, C.
L.
,and Moser
, J.
K.
, 1971,
Celestial Mechanics (Grundlehren Bd. 187)
,
Spronger
,
Berlin
.119.
Birkhoff
, G.
D.
1927, Dynamical Systems,
AMS Publications
,
Providence
.120.
Whittaker
, E.
T.
, 1959,
A Treatise on the Analytical Dynamics of Particles and Rigid
Bodies
, Cambridge University
,
Cambridge.
121.
Month
, L.
A.
, and Rand
,
R.H.
,
1980, “An Application of
the Poincare Map to the Stability of Nonlinear Normal
Modes
,” ASME J. Appl. Mech.
,
47
, pp. 645
–651
.122.
Shaw
,
S.
,and
Pierre
,
C.
,
1991, “Nonlinear Normal
Modes and Invariant Manifolds
,” J. Sound
Vib.
, 150
, pp.
170
–173
.123.
Shaw
,
S.
,and
Pierre
,
C.
,
1993, “Normal Modes for
Nonlinear Vibratory Systems
,” J. Sound
Vib.
, 164
, pp.
85
–124
.124.
Guckenheimer
,
J.
,and
Holmes
,
P.
, 1986,
Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector
Fields
, Springer-Verlag
,
New York
.125.
Steindl
,
A.
and
Troger
,
H.
,
2004, “Invariant
Maniforlds in the Dimension Reduction for Dissipative and Conservative
Systems
,” Proceedings of the EUROMECH Colloq. 457 on
Nonlinear Modes of Vibrating Systems
, Frejus,
France
pp.
79
–82
.126.
Avramov
, K.
V.
,and Strel’nikova
,
E. A.
, 2011,
“Nonlinear Normal Modes of Self-Sustained Vibrations of
Finite-Degree-of-Freedom Mechanical Systems
,”
Notices of the Nat. Acad. of Scien. of Ukraine
,
2
, pp.
44
–51
.127.
Pesheck
,
E.
,
Boivin
,
N.
,and
Pierre
,
C.
,
2001, “Nonlinear Modal
Analysis of Structural Systems Uusing Multi-Mode Invariant
Manifolds
,” Nonlinear Dyn.
,
25
, pp. 183
–205
.128.
Apiwattanalunggarn
,
P.
,
Shaw
,
S.
,and
Pierre
,
C.
,
2005, “Component Mode
Synthesis Using Nonlinear Normal Modes
,” Nonlinear
Dyn.
, 41
, pp.
17
–46
.129.
Jezequel
,
L.
,and
Lamarque
, C.
H.
, 1991,
“Analysis of Nonlinear Dynamics by the Normal Form
Theory
,” J. Sound Vibr.
,
149
(3
), pp.
429
–452
.130.
Touze
,
C.
,
Thomas
,
O.
,and
Chaigne
,
A.
,
2004, “Hardening/
Softening Behaviour in Non-linear Oscillations of Structural Systems Using
Non-linear Normal Modes
,” J. Sound Vib.
,
273
, pp. 77
–101
.131.
Lacarbonara
,
W.
,
Rega
,
G.
,and
Nayfeh
, A.
H.
, 2003,
“Resonant Non-Linear Modes. Part I: Analytical Treatment for
Structural One-dimensional Systems
,” Int. J.
Nonlinear Mech.
, 38
, pp.
851
–872
.132.
Lenci
,
S.
,and
Rega
,
G.
,
2008, “Detecting
Stable-unstable Nonlinear Invariant Manifold and Homoclinic Orbits in
Mechanical Systems
, ASME Int. Mech. Eng. Congr.
Expos.
IMECE2008–66690, CD-Rom.133.
Touze
,
C.
,and
Amabili
,
M.
,
2006, “Nonlinear Normal
Modes for Damped Geometrically Nonlinear Systems: Application to
Reduced-Order Modeling of Harmonically Forced Structures
,”
J. Sound Vib.
, 298
, pp.
958
–981
.134.
Rosenberg
, R.
M.
, 1966,
“Steady-State Forced Vibrations
,”
Int. J. Nonlinear Mech.
, 1
, pp.
95
–108
.135.
Yang
, T.
L.
,and Rosenberg
,
R.
,
1968, “On Forced
Vibrations of a Particle in the Plane
,” Int. J.
Nonlinear Mech.
, 3
, pp.
47
–63
.136.
Vakakis
,
A.
,and
Caughey
,
T.
,
1992, “A Theorem on the
Exact Nonsimilar Steady State Motions of a Nonlinear
Oscillator
,” ASME J. Appl. Mech.
,
59
, pp. 418
–424
.137.
Avramov
, K.
V.
, 2008,
“Analysis of Forced Vibrations by Nonlinear
Modes
,” Nonlinear Dyn.
,
53
, pp. 117
–127
.138.
Warminski
,
J.
,
2008, “Nonlinear Normal
Modes of Coupled Self-Excited Oscillators in Regular and Chaotic Vibration
Regimes
,” J. Theor. Appl. Mech.
,
3
, pp.
693
–714
.139.
Rauscher
,
M.
,
1938, “Steady
Oscillations of Systems With Nonlinear and Unsymmetric
elasticity
,” J. Appl. Mech.
,
5
, pp.
A169
–177
.140.
Jiang
,
D.
,
Pierre
,
C.
, and
Shaw
, S.
W.
, 2005,
“Nonlinear Normal Modes for Vibratory Systems Under Harmonic
Excitation
,” J. Sound Vib.
,
288
(4–5
), pp.
791
–812
.141.
Zhuravlev
, V.
P.
, 1992,
“On Special Directions in Configuration Space of Linear
Vibrating systems
,” Prikl. Matem. Mekh.
,
1
, pp.
16
–23
.142.
Pilipchuk
, V.
N.
, 2000,
“Principal Trajectories of the Forced Vibration for Discrete
and Continuous Systems
,” Meccanica
35
(6
), pp.
497
–517
.143.
Gendelman
, O.
V.
, 2008,
“Nonlinear Normal Modes in Homogeneous System With Time
Delays
,” Nonlinear Dyn.
,
52
, pp. 367
–376
.144.
Seydel
,
R.
,
1997, “Nonlinear
Computation
,” Int. J. Bifurcation Chaos Appl. Sci.
Eng.
, 7
, pp.
2105
–2126
.145.
Slater
, J.
C.
, 1996,
“A Numerical Method for Determining Nonlinear Normal
Modes
, Nonlinear Dyn.
, 10
,
pp. 19
–30
.146.
Burton
, T.
D.
, 2007,
“Numerical Calculations of Nonlinear Normal Modes in
Structural Systems
,” Nonlinear Dyn.
,
49
, pp. 425
–441
.147.
Arquier
,
R
,
Perignon
,
F.
,and
Cochelin
,
B.
,
2004, “Numerical
Continuation of Non Linear Modes of Elastic Structures
,”
Proceedings of the EUROMECH Colloquium 457 on Non Linear Modes of
Vibrating Systems
, Frejus, France
,
pp.17
–20
.148.
Nguyen
, T.
M.
, Argoul
,
P.
,and
Bonnet
,
G.
,
2006, “Comparison of
Three Methods for Constructing Nonlinear Normal Modes
,”
2nd International Conference on Nonlinear Normal Modes and
Localization in Vibratory Systems, Book of abstracts
,
Samos, Greece
,
57
–58
.149.
Lewandowski
,
R.
,
1997, “Computational
Formulation for Periodic Vibrations of Geometrically Nonlinear Structures.
Part 1: Theoretical Background
,” Int. J. Solids
Struct.
, 34
(15
), pp.
1925
–1947
;Lewandowski
,
R.
,
“Computational Formulation for Periodic Vibrations of
Geometrically Nonlinear Structures. Part 2: Numerical Strategy and
Examples
,” ibid.
34
(15
), pp.
1949
–1964
.150.
Mikhlin
, Y.
V.
, Shmatko
, T.
V.
,and Manucharyan
,
G. V.
, 2004,
“Lyapunov Definition and Stability of Regular or Chaotic
Vibration Modes in Systems With Several Equilibrium
Positions
,” Computers and Structures
,
82
, pp. 2733
–2742
.151.
Mikhlin
, Y.
V.
, Vakakis
, A.
F.
,and Salenger
,
G.
,
1998, “Direct and
Inverse Problems Encountered in Vibro-Impact Oscillations of a Discrete
System
,” J. Sound Vib.
,
216
(2
), pp.
227
–250
.152.
Aziz
, M.
A.
, Vakakis
, A.
F.
,and Manevich
, L.
I.
, 1999,
“Exact Solutions of the Problem of the Vibro-Impact
Oscillations of a Discrete System With Two Degrees of
Freedom
,” J. Appl. Math. Mech.
,
63
(4
), pp.
527
–530
.153.
Pilipchuk
, V.
N.
, 2009,
“Impact Mode Superpositions and Parameter
Variations
,” Vibro-Impact Dynamics of Ocean
Systems
(LNACM 44), R. A.
Ibrahim
, V.
I.
Babitsky
, and
M.
Okuma
, eds.,
Springer-Verlag
,
Berlin
, pp.
231
–243
.154.
Avramov
, K.
V.
,and Borysiuk
, O.
V.
, 2008,
“Analysis of an Impact Duffing Oscillator by Means of a
Nonsmooth Unfolding Transformation
,” J. Sound
Vib.
, 318
, pp.
1197
–1209
.155.
Pilipchuk
, V.
N.
, 2006,
“A Periodic Version of Lie Series for Normal Mode
Dynamics
,” Nonlinear Dyn. Sys. Th.
,
6
(2
), pp.
187
–190
.156.
Vestroni
,
F.
,
Luongo
,
A.
,and
Paolone
,
A.
,
2008, “A Perturbation
Method for Evaluating Nonlinear Normal Modes of a Piecewise Linear 2-DOF
System
,” Nonlinear Dyn.
,
54
, pp. 379
–393
.157.
Chen
, S.
L.
,and Shaw
, S.
W.
, 1996,
“Normal Modes for Piecewise Linear Vibratory
Systems
,” Nonlinear Dyn.
,
10
, pp. 135
–164
.158.
Jiang
,
D.
,
Pierre
,
C.
,and
Shaw
, S.
W.
, 2004,
“Large-Amplitude Non-Linear Normal Modes of Piecewise Linear
Systems
,” J. Sound Vib.
,
272
, pp. 869
–891
.159.
Boivin
,
N.
,
Pierre
,
C.
,and
Shaw
, S.
W.
, 1995,
“Non-Linear Normal Modes, Invariance and Modal Dynamics
Approximations on Non-Linear Systems
,” Nonlinear
Dyn.
, 8
, pp.
315
–346
.160.
Szemplinska-Stupnicka
,
W.
,
1983, “Nonlinear Normal
Modes” and the Generalized Ritz Method in the Problems of Vibrations of
Nonlinear Elastic Continuous Systems
,” Int. J.
Nonlinear Mech.
, 18
(2
), pp.
149
–165
.161.
King
, M.
E.
,and Vakakis
, A.
F.
, 1995,
“Asymptotic Analysis of Nonlinear Mode Localization in a
Class of Coupled Continuous Structures
,” Int. J.
Solid. Struc.
, 32
(8/9
), pp.
1161
–1177
.162.
Nayfeh
, A.
H.
, Chin
,
C.
,and
Nayfeh
, S.
A.
, 1996,
“On Nonlinear Normal Modes of Systems With Internal
Resonance
,” ASME J. Vib. Acostic.
,
118
, pp. 340
–345
.163.
Nayfeh
, A.
H.
2000, Nonlinear
Interactions
, Wiley
,
New York
.164.
Nayfeh
, A.
H.
,and Nayfeh
, S.
A.
, 1995,
“Nonlinear Normal Modes of a Continuous System With Quadratic
Nonlinearities
,” ASME J. Vib. Acostic.
,
117
, pp. 199
–206
.165.
Andrianov
, I.
V.
,and Kholod
, E.
G.
, 1993,
“Intermediate Asymptotical Forms in Nonlinear Dynamics of
Shells
,” Mech. Sol.
,
28
(2
), pp.
160
–165
.166.
Barenblatt
, G.
I.
,and Zel’dovitch
,
Y. a.
, 1971,
“Intermediate Asymptotics in Mathematical
Physics
,” Russ. Math. Surv.
,
26
(2
), pp.
115
–129
.167.
Bolotin
, V.
V.
, 1961,
“An Asymptotic Method for the Study of the Problem of
Eigenvalues of Rectangular Regions
,” Problems of
Continuum Mechanics
, SIAM
,
Philadelphia
, pp.
56
–58
.168.
Andrianov
, I.
V.
,and Kholod
, E.
G.
, 1993,
“Non-linear Free Vibration of Shallow Cylindrical Shell by
Bolotin’s Asymptotic Method
, “J. Sound
Vib.
, 165
(1
), pp.
9
–17
.169.
Andrianov
, I.
V.
,and Krizhevsky
,
G. A.
, 1993,
“Free Vibration Analysis of Rectangular Plates With
Structural Inhomogenity
,” J. Sound Vib.
,
162
(2
), pp.
231
–241
.170.
Andrianov
, I.
V.
,and Danishevskiy
,
V. V.
, 1995,
“Asymptotic Investigation of the Nonlinear Dynamic Boundary
Value Problem for Rod
,” Tech. Mech.
,
15
(1
), pp.
53
–55
.171.
Andrianov
, I.
V.
,and Danishevs’kyy
,
V. V.
, 2002,
“Asymptotic Approach for Non–Linear Periodical Vibrations of
Continuous Structures
,” J. Sound Vib.
,
249
(3
), pp.
465
–481
.172.
Andrianov
, I.
V.
, 2008,
“Asymptotic Construction of Nonlinear Normal Modes for
Continuous Systems
,” Nonlinear Dyn.
,
51
(1/2
), pp.
99
–109
.173.
Pierre
,
C.
,and
Dowell
, E.
H.
, 1987,
“Localization of Vibration by Structural
Irregularity
,” J. Sound Vib.
,
114
(3
), pp.
411
–424
.174.
Bendiksen
, O.
O.
, 2000,
“Localization Phenomena in Structural
Dynamics
,” Chaos, Solitons Fractals
11
, pp. 1621
–1660
175.
Vakakis
, A.
F.
,and Cetinkaya
,
C.
,
1993, “Mode Localization
in a Class of Multi-Degree-of-Freedom Systems With Cyclic
Symmetry
,” SIAM J. Appl. Math.
,
53
, pp. 265
–282
.176.
Vakakis
, A.
F.
, Nayfeh
,
T.
,and
King
, M.
E.
, 1993,
“A Multiple-Scales Analysis of Nonlinear, Localized Modes in
Cyclic Periodic System
,” ASME J. Appl.
Mech.
, 60
(2
), pp.
388
–397
.177.
Vakakis
, A.
F.
, 1993,
“Passive Spatial Confinement of Impulsive Excitations in
Coupled Nonlinear Beams
,” AIAA J.
,
32
(9
), pp.
1902
–1910
.178.
King
, M.
E.
,and Vakakis
, A.
F.
, 1995,
“Mode Localization in a System of Coupled Flexible Beams With
Geometric Nonlinearities
,” ZAMM
75
(2
), pp.
127
–139
.179.
King
, M.
E.
,and Layne
, P.
A.
, 1998,
“Dynamics of Nonlinear Cyclic Systems With Structural
Irregularity
,” Nonlinear Dyn.
,
15
, pp. 225
–244
.180.
Cai
, C.
W.
, Chan
, H.
C.
,and Cheung
, Y.
K.
, 1997,
“Localized Modes in Periodic Systems With Nonlinear
Disorders
,” ASME J. Appl. Mech.
,
64
, pp. 940
–945
.181.
Cai
, C.
W.
, Chan
, H.
C.
, Cheung
, and Y.
K.
, 2000,
“Localized Modes in a Two-Degree-Coupling Periodic System
With a Nonlinear Disordered Subsystem
,” Chaos,
Solitons Fractals
11
, pp. 1481
–1492
.182.
Vakakis
, A.
F.
, King
, M.
E.
,and Pearlstrin
,
A. J.
, 1994,
“Forced Localization in a Periodic Chain of Nonlinear
Oscillators
,” Int. J. Nonlinear Mech.
,
29
, pp. 429
–447
.183.
Weinstein
,
A.
,
1973, “Normal Modes for
Nonlinear Hamiltonian Systems
,” Inv. Math.
,
20
, pp. 47
–57
.184.
Moser
, J.
K.
, 1976,
“Periodic Orbits Near an Equilibrium and a Theorem by Alan
Weinstein
,” Comm. Pur. Appl. Math.
,
29
, pp. 727
–747
.185.
Weinstein
,
A.
,
1978, “Periodic Orbits
for Convex Hamiltonian Systems
, Ann. Math.
,
108
, pp. 507
–518
.186.
Ekeland
,
I.
,and
Lasry
, J.
M.
, 1980,
“On the Number of Periodic Trajectories for a Hamiltonian
Flow on a Convex Energy Surface
,” Ann.
Math.
112
, pp. 283
–319
.187.
Rabinowitz
, P.
H.
, 1982,
“On Large Norm Periodic Solutions of Some Differential
Equations
,” Ergod. Theory Dyn. Syst.
,
11
, pp.
193
–210
.188.
Cook
,
C.
,and
Struble
,
R.
,
1966, “On the Existence
of Periodic Solutions and Normal Mode Vibrations of Nonlinear
Systems
,” Quart. Appl. Math.
,
24
(3
), pp.
177
–193
.189.
Cook
,
C.
,and
Struble
, R.
A.
, 1966,
“Perturbations of Normal Mode Vibrations
,”
Int. J. Nonl. Mech.
, 1
(2
),
pp. 147
–155
.190.
Pak
, C.
H.
,and Rosenberg
,
R. M.
, 1968,
“On the Existence of Normal Mode Vibrations of Nonlinear
Systems
,” Quart. Appl. Math
.
26
, pp.
403
–416
.191.
Zevin
, A.
A.
, 1986,
“Non-Local Criteria for the Existence and Stability of
Periodic Oscillations in Autonomous Hamiltonian Systems
,”
Prikl. Matem. Mekh.
, 50
(1
),
pp. 64
–72
.192.
Zevin
, A.
A.
, 1992,
“Qualitative Analysis of Periodic Oscillations in Autonomous
Hamiltonian Systems
,” Int. J. Nonlinear
Mech.
, 28
(3
), pp.
281
–290
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.