Many of the early works on symplectic elasticity were published in Chinese and as a result, the early works have been unavailable and unknown to researchers worldwide. It is the main objective of this paper to highlight the contributions of researchers from this part of the world and to disseminate the technical knowledge and innovation of the symplectic approach in analytic elasticity and applied engineering mechanics. This paper begins with the history and background of the symplectic approach in theoretical physics and classical mechanics and subsequently discusses the many numerical and analytical works and papers in symplectic elasticity. This paper ends with a brief introduction of the symplectic methodology. A total of more than 150 technical papers since the middle of 1980s have been collected and discussed according to various criteria. In general, the symplectic elasticity approach is a new concept and solution methodology in elasticity and applied mechanics based on the Hamiltonian principle with Legendre’s transformation. The superiority of this symplectic approach with respect to the classical approach is at least threefold: (i) it alters the classical practice and solution technique using the semi-inverse approach with trial functions such as those of Navier, Lévy, and Timoshenko; (ii) it consolidates the many seemingly scattered and unrelated solutions of rigid body movement and elastic deformation by mapping with a series of zero and nonzero eigenvalues and their associated eigenvectors; and (iii) the Saint–Venant problems for plane elasticity and elastic cylinders can be described in a new system of equations and solved. A unique feature of this method is that bending of plate becomes an eigenvalue problem and vibration becomes a multiple eigenvalue problem.

3.
Koszul
,
J.
, and
Zou
,
Y.
, 1986,
Theory of Symplectic Geometry
,
Science
,
Beijing
, in Chinese.
4.
Kauderer
,
M.
, 1994,
Symplectic Matrices: First Order Systems and Special Relativity
,
World Scientific
,
Singapore
.
5.
De Gosson
,
M. A.
, 2001,
The Principles of Newtonian and Quantum Mechanics
,
World Scientific
,
Singapore
.
6.
De Gosson
,
M.
, 2006,
Symplectic Geometry and Quantum Mechanics
,
Birkhauser
,
Switzerland
.
7.
Krauth
,
W.
, and
Staudacher
,
M.
, 2000, “
Yang-Mills Integrals for Orthogonal, Symplectic and Exceptional Groups
,”
Nucl. Phys. B
0550-3213,
584
(
1–2
), pp.
641
655
.
8.
Feng
,
K.
, 1985, “
On Difference Schemes and Symplectic Geometry
,”
Proceedings of Beijing Symposium Differential Geometry and Differential Equations
,
F.
Kang
, ed.,
Science
,
Beijing
.
9.
Feng
,
K.
, 1986, “
Difference Schemes for Hamiltonian Formalism and Symplectic Geometry
,”
J. Comput. Math
0254-9409,
4
(
3
), pp.
279
289
.
10.
Feng
,
K.
, 1986, “
Symplectic Geometry and Numerical Methods in Fluid Dynamics
,”
Proceedings of the Tenth International Conference on Numerical Methods on Fluid Dynamics
,
Springer
,
Beijing
, pp.
1
7
.
11.
Feng
,
K.
, 1986, “
Canonical Difference Schemes for Hamiltonian Canonical Differential Equations
,”
International Workshop on Applied Differential Equations
,
World Scientific
,
Singapore
, pp.
59
73
.
12.
Feng
,
K.
, and
Qin
,
M. -Z.
, 1987, “
The Symplectic Methods for the Computation of Hamiltonian Equations
,”
Lect. Notes Math.
0075-8434,
1297
, pp.
1
37
.
13.
Ge
,
Z.
, and
Feng
,
K.
, 1988, “
On the Approximation of Linear Hamiltonian Systems
,”
J. Comput. Math.
0254-9409,
6
(
1
), pp.
88
97
.
14.
Feng
,
K.
,
Wu
,
H. M.
,
Qin
,
M. Z.
, and
Wang
,
D. L.
, 1989, “
Construction of Canonical Difference Schemes for Hamiltonian Formalism via Generating Functions
,”
J. Comput. Math.
0254-9409,
7
(
1
), pp.
71
96
.
15.
Feng
,
K.
,
Wu
,
H. M.
, and
Qin
,
M. Z.
, 1990, “
Symplectic Difference Schemes for Linear Hamiltonian Canonical Systems
,”
J. Comput. Math.
0254-9409,
8
(
4
), pp.
371
380
.
16.
Feng
,
K.
, and
Qin
,
M. Z.
, 1991, “
Hamiltonian Algorithms for Hamiltonian Dynamical Systems
,”
Prog. Nat. Sci.
1002-0071,
1
(
2
), pp.
105
116
.
17.
Feng
,
K.
, 1991, “
The Hamiltonian Way for Computing Hamiltonian Dynamics
,”
Applied and Industrial Mathematics
, Vol.
56
,
R.
Spigler
, ed.,
Kluwer Academic
,
The Netherlands
, pp.
17
35
.
18.
Feng
,
K.
, and
Qin
,
M. -Z.
, 1991, “
Hamiltonian Algorithms and a Comparative Numerical Study
,”
Comput. Phys. Commun.
0010-4655,
65
, pp.
173
187
.
19.
Feng
,
K.
, and
Wang
,
D. L.
, 1991, “
A Note on Conservation Laws of Symplectic Difference Schemes for Hamiltonian Systems
,”
J. Comput. Math.
0254-9409,
9
(
3
), pp.
229
237
.
20.
Feng
,
K.
, and
Wang
,
D. L.
, 1991, “
Symplectic Difference Schemes for Hamiltonian Systems in General Symplectic Structure
,”
J. Comput. Math.
0254-9409,
9
(
1
), pp.
86
96
.
21.
Feng
,
K.
, 1992, “
How to Compute Properly Newton’s Equation of Motion
,”
Proceedings of the Second Conference on Numerical Methods for Partial Differential Equations
,
World Scientific
,
Singapore
, pp.
15
22
.
22.
Feng
,
K.
, 1991, “
Formal Power Series and Numerical Algorithms for Dynamical Systems
,”
Proceedings of International Conference on Scientific Computation
,
World Scientific
,
Singapore
, pp.
28
35
.
23.
Feng
,
K.
, 1992, “
Symplectic, Contact and Volume-Preserving Algorithms
,”
Proceedings of the First China-Japan Conference on Numerical Mathematics
,
World Scientific
,
Singapore
, pp.
1
28
.
24.
Feng
,
K.
, 1993, “
Formal Dynamical Systems and Numerical Algorithms
,”
Conference on Computation of Differential Equations and Dynamical Systems
,
World Scientific
,
Singapore
, pp.
1
10
.
25.
Feng
,
K.
, and
Wang
,
D. L.
, 1994, “
Dynamical Systems and Geometric Construction of Algorithms
,”
Contemporary Mathematics
, Vol.
163
, pp.
1
32
.
26.
Feng
,
K.
, and
Wang
,
D. L.
, 1998, “
Variations on a Theme by Euler
,”
J. Comput. Math.
0254-9409,
12
, pp.
97
106
.
27.
Feng
,
K.
, 1998, “
The Step-Transition Operators for Multi-Step Methods of ODE’s
,”
J. Comput. Math.
0254-9409,
16
, pp.
193
202
.
28.
Feng
,
K.
, 1998, “
The Calculus of Generating Functions and the Formal Energy for Hamiltonian Algorithms
,”
J. Comput. Math.
0254-9409,
16
(
6
), pp.
481
498
.
29.
Feng
,
K.
, 1998, “
Contact Algorithms for Contact Dynamical Systems
,”
J. Comput. Math.
0254-9409,
16
(
1
), pp.
1
14
.
30.
Feng
,
K.
, and
Shang
,
J. Z.
, 1995, “
Volume-Preserving Algorithms for Source-Free Dynamical Systems
,”
Numer. Math.
0029-599X,
71
(
4
), pp.
451
463
.
31.
Feng
,
K.
, 1995, “
Symplectic Algorithms for Hamiltonian Systems
,”
Collected Works of Feng Kang (II)
,
National Defense Industrial
,
Beijing
, pp.
327
352
.
32.
Feng
,
K.
, 1995,
Collected Works of Feng Kang (I)
,
National Defense Industrial
,
Beijing
, partly in Chinese.
33.
Feng
,
K.
, 1995,
Collected Works of Feng Kang (II)
,
National Defense Industrial
,
Beijing
, one paper in Chinese and majority in English.
34.
Feng
,
K.
, and
Qin
,
M.
, 2004,
Symplectic Geometric Algorithm for Hamiltonian Systems
,
Zhejiang Science and Technology
,
Hangzhou
, in Chinese.
35.
Lax
,
P.
, and
Feng
,
K.
, 1993, “
Feng Kang
,”
SIAM News
,
26
(
11
); see http://www.siam.org/news/archives.phphttp://www.siam.org/news/archives.php
36.
Zhong
,
W. X.
,
OuYang
,
H. J.
, and
Deng
,
Z. C.
, 1993,
Computational Structural Mechanics and Optimal Control
,
Dalian University of Technology Press
,
Dalian
.
37.
Zhong
,
W. X.
, 1995,
A New Systematic Methodology for Theory of Elasticity
,
Dalian University of Technology Press
,
Dalian
, in Chinese.
38.
Zhong
,
W. X.
, 2002,
Duality System in Apply Mechanics
,
Science
,
Beijing
, in Chinese.
39.
Zhong
,
W. X.
, 2004,
Duality System in Applied Mechanics and Optimal Control
,
Kluwer Academic
,
Boston
.
40.
Zhong
,
W. X.
, 2006,
Symplectic Solution Methodology in Applied Mechanics
,
Higher Education Press
,
Beijing
, in Chinese.
41.
Zhong
,
W. X.
,
Wu
,
Z. G.
, and
Tan
,
S. J.
, 2007,
Theory and Computation of State-Space Control System
,
Science
,
Beijing
, in Chinese.
42.
Yao
,
W. A.
,
Zhong
,
W. X.
, and
Lim
,
C. W.
, 2009,
Symplectic Elasticity
,
World Scientific
,
Singapore
.
43.
Zhong
,
W. X.
, 2009,
Force, Work, Energy and Symplectic Mathematics
,
2nd ed.
,
Dalian University of Technology Press
,
Dalian
, in Chinese.
44.
Timoshenko
,
S. P.
, and
Woinowsky-Krieger
,
S.
, 1970,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
45.
Navier
,
C. L. M. N.
, 1823, Bulletin des Science de la Societe Philomarhique de Paris.
46.
Lévy
,
M.
, 1899, “
Memoires sur la theories des plaques planes
,”
J. Math. Pures Appl.
0021-7824,
3
(
1877
), pp.
219
306
.
47.
Rao
,
J. S.
, 1992,
Advanced Theory of Vibration
,
Wiley
,
India
.
48.
Rao
,
J. S.
, 1999,
Dynamics of Plates
,
Narosa
,
New Delhi, India
, p.
75
.
49.
Reddy
,
J. N.
, 2002,
Energy Principles and Variational Methods in Applied Mechanics
,
2nd ed.
,
Wiley
,
New York
.
50.
Reddy
,
J. N.
, 2007,
Theory and Analysis of Elastic Plates and Shells
,
2nd ed.
,
CRC
,
Boca Raton, FL
/
Taylor & Francis
,
Philadelphia, PA
, p.
333
.
51.
Zhong
,
W.
, 1991, “
Plane Elasticity Problem in Strip Domain and Hamiltonian System
,”
Journal of Dalian University of Technology
,
31
(
4
), pp.
373
384
.
52.
Zhong
,
W.
, 1992, “
On the Reciprocal Theorem and Adjoint Symplectic Orthogonal Relation
,”
Acta Mech. Sin.
0459-1879,
24
(
4
), pp.
432
437
.
53.
Zhong
,
W. -x.
, 1994, “
Plane Elasticity Sectorial Domain and the Hamiltonian System
,”
Appl. Math. Mech.
0253-4827,
15
(
12
), pp.
1113
1123
.
54.
Zhong
,
W. X.
,
Xu
,
X. S.
, and
Zhang
,
H. W.
, 1995, “
Hamiltonian System and the Saint Venant Problem in Elasticity
,”
J. Appl. Math. Mech.
0021-8928,
17
(
9
), pp.
827
836
.
55.
Xu
,
X. S.
,
Zhong
,
W. X.
, and
Zhang
,
H. W.
, 1997, “
The Saint-Venant Problem and Principle in Elasticity
,”
Int. J. Solids Struct.
0020-7683,
34
(
22
), pp.
2815
2827
.
56.
Xu
,
X. S.
,
Jia
,
H. Z.
, and
Sun
,
F. M.
, 2005, “
A Method of Symplectic Eigensolutions in Elastic Transverse Isotropy Cylinders
,”
Journal of Dalian University of Technology
,
45
(
4
), pp.
617
628
.
57.
Xu
,
X. S.
,
Zhang
,
H. W.
,
Qi
,
Z. H.
, and
Zhong
,
W. X.
, 1997, “
Direct Method for Problem of Body of Revolution in Elasticity
,”
Journal of Dalian University of Technology
,
37
(
5
), pp.
516
519
.
58.
Yao
,
W. A.
, 1999, “
Hamiltonian System for Plane Anisotropic Elasticity and Analytical Solutions of Saint–Venant Problem
,”
Journal of Dalian University of Technology
,
39
(
5
), pp.
612
615
.
59.
Zhao
,
L.
, and
Chen
,
W. Q.
, 2008, “
On the Numerical Calculation in Symplectic Approach for Elasticity Problems
,”
J. Zhejiang Univ., Sci.
1009-3095,
9
(
5
), pp.
583
588
.
60.
Tarn
,
J. Q.
,
Tseng
,
W. D.
, and
Chang
,
H. H.
, 2009, “
A Circular Elastic Cylinder Under Its Own Weight
,”
Int. J. Solids Struct.
0020-7683,
46
, pp.
2886
2896
.
61.
Tarn
,
J. Q.
,
Chang
,
H. H.
, and
Tseng
,
W. D.
, 2009, “
Axisymmetric Deformation of a Transversely Isotropic Cylindrical Body: A Hamiltonian State Space Approach
,”
J. Elast.
0374-3535,
97
, pp.
131
154
.
62.
Tarn
,
J. Q.
,
Chang
,
H. H.
, and
Tseng
,
W. D.
, 2010, “
A Hamiltonian State Space Approach for 3D Analysis of Circular Cantilevers
,”
J. Elast.
0374-3535,
101
(
2
), pp.
207
237
.
63.
Leung
,
A. Y. T.
, and
Mao
,
S. G.
, 1995, “
A Symplectic Galerkin Method for Non-Linear Vibration of Beams and Plates
,”
J. Sound Vib.
0022-460X,
183
(
3
), pp.
475
491
.
64.
Leung
,
A. Y. T.
, and
Mao
,
S. G.
, 1995, “
Symplectic Integration of an Accurate Beam Finite Element in Nonlinear Vibration
,”
Comput. Struct.
0045-7949,
54
, pp.
1135
1147
.
65.
Mao
,
S. G.
, and
Leung
,
A. Y. T.
, 1995, “
Symplectic Integration and Nonlinear Dynamic Symmetry Breaking of Frames
,”
Shock Vib.
1070-9622,
2
, pp.
481
492
.
66.
Zhong
,
W. X.
,
Xu
,
X. S.
, and
Zhang
,
H. W.
, 1996, “
On a Direct Method for the Problem of Elastic Curved Beams
,”
Journal of Dalian University of Technology
,
13
(
4
), pp.
16
8
.
67.
Xu
,
X. S.
,
Guo
,
X. L.
,
Ma
,
G. J.
, and
Qi
,
Z. H.
, 2003, “
A Method of Hamiltonian Formulation for Elastic Structural Vibration in Rotating System
,”
J. Vib. Eng.
,
16
(
1
), pp.
36
40
.
68.
Ma
,
G. J.
,
Xu
,
X. S.
, and
Guo
,
X. L.
, 2004, “
A Symplectic Method for the Coupling Vibration of Elastic Beams in the Revolution System
,”
Chinese Journal of Computational Mechanics
,
21
(
6
), pp.
671
677
.
69.
,
C. F.
,
Lim
,
C. W.
, and
Yao
,
W. A.
, 2009, “
A New Analytical Symplectic Elasticity Approach for Beams Resting on Pasternak Elastic Foundations
,”
J. Mech. Mater. Struct.
1559-3959,
4
(
10
), pp.
1741
1754
.
70.
Xu
,
X. S.
,
Ma
,
C.
,
Chu
,
H.
, and
Lim
,
C. W.
, 2010, “
Nonlinear Local Thermal Buckling of Elastic Beams Subjected to Thermal Impact
,”
Acta Armamentarri
1000-1093,
31
(
1
), pp.
131
135
.
71.
Chu
,
H.
,
Xu
,
X.
,
Lim
,
C. W.
,
Jiang
,
N.
, and
Ma
,
J.
, 2011, “
Non-Linear Thermal Buckling of Elastic Beams and an Expanding Method of Symplectic Eigensolutions
,”
Journal of Dalian University of Technology
,
51
(
1
), pp.
1
6
.
72.
Zou
,
G. P.
, and
Tang
,
L. M.
, 1993, “
A Semi-Analytical Solution for Thermal Stress Analysis of Laminated Composited Plates in the Hamiltonian System
,”
Comput. Struct.
0045-7949,
55
(
1
), pp.
113
l18
.
73.
Zou
,
G. P.
, and
Tang
,
L. M.
, 1995, “
A Semi-Analytical Solution for Laminated Composite Plates in Hamiltonian System
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
128
, pp.
395
404
.
74.
Zhong
,
W. X.
, and
Yao
,
W. A.
, 1997, “
The Saint Venant Solutions of Multi-Layered Composite Plates
,”
Adv. Struct. Eng.
1369-2768,
1
(
2
), pp.
127
133
.
75.
Zou
,
G. P.
, 1997, “
The Hamilton System and Analytical Symplectic Solution for Reissner Plates
,”
Acta Mech. Sin.
0459-1879,
29
(
2
), pp.
252
256
.
76.
Zou
,
G. P.
, 1997, “
The Hamilton System and Analytical Symplectic Solution for the Free Vibration Analysis of Mindlin Plates
,”
Chinese Quarterly Mechanics
,
18
(
3
), pp.
260
265
.
77.
Zhong
,
W. X.
, and
Yao
,
W. A.
, 1997, “
Analytical Solutions on Saint-Venant Problem of Layered Plates
,”
Acta Mech. Sin.
0459-1879,
29
(
5
), pp.
617
626
.
78.
Zou
,
G.
, 1998, “
An Exact Symplectic Geometry Solution for the Static and Dynamic Analysis of Reissner plates
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
156
, pp.
171
178
.
79.
Zhong
,
W. X.
, and
Yao
,
W. A.
, 1999, “
New Solution System for Plate Bending and Its Application
,”
Acta Mech. Sin.
0459-1879,
31
(
2
), pp.
173
184
.
80.
Yao
,
W. A.
,
Zhong
,
W. X.
, and
Su
,
B.
, 1999, “
New Solution System for Circular Sector Plate Bending and Its Application
,”
Acta Mech. Solida Sinica
0894-9166,
12
(
4
), pp.
307
315
.
81.
Yao
,
W. A.
,
Su
,
B.
, and
Zhong
,
W. X.
, 2000, “
Hamiltonian System for Orthotropic Plate Bending Based on Analogy Theory
,”
Sci. China, Ser. E: Technol. Sci.
1006-9321,
44
(
3
), pp.
258
264
.
82.
Yao
,
W. A.
, and
Yang
,
H. T.
, 2001, “
Hamiltonian System Based Saint Venant Solutions for Multi-Layered Composite Plane Anisotropic Plates
,”
Int. J. Solids Struct.
0020-7683,
38
(
32–33
), pp.
5807
5817
.
83.
Yao
,
W. -a.
, and
Sui
,
Y. -f.
, 2004, “
Symplectic Solution System for Reissner Plate Bending
,”
Appl. Math. Mech.
0253-4827,
25
(
2
), pp.
178
185
.
84.
Yao
,
W. A.
, and
Sui
,
Y. F.
, 2004, “
Symplectic Solution System for Reissner Plate Bending
,”
Journal of Dalian University of Technology
,
25
(
2
), pp.
159
165
.
85.
Bao
,
S. Y.
, and
Deng
,
Z. C.
, 2004, “
Symplectic Solutions of Annular Sector Plate Clamped Along Two Circular Edges With Circumferential Coordinate Treated as “Time”
,”
J. Northwest. Polytechnical Univ.
1000-2758,
22
(
6
), pp.
735
738
.
86.
Lim
,
C. W.
,
Cui
,
S.
, and
Leung
,
A. Y. T.
, 2006, “
Symplectic Elasticity Approach for Thin Plate Bending
,”
The Second International Conference on Dynamics, Vibration and Control (ICDVC-2006)
, Beijing, PRC, Aug. 23–26, W19.
87.
Hu
,
C.
,
Fang
,
X. Q.
,
Long
,
G.
, and
Huang
,
W. H.
, 2006, “
Hamiltonian Systems of Propagation of Elastic Waves and Localized Vibrations in the Strip Plate
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
6568
6573
.
88.
Lim
,
C. W.
,
Leung
,
A. Y. T.
, and
Cui
,
S.
, 2007, “
Exact Bending Solutions for Rectangular Thin Plates Using a New Symplectic Elasticity Approach
,”
Computational Modeling and Experiments of the Composites Materials With Micro- and Nano-Structure– CMNS 2007 (An ECCOMAS Thematic Conference)
, Liptovský Mikuláš, Slovakia, May 28–31.
89.
Lim
,
C. W.
, (2007),
Symplectic Elasticity Approach for Free Vibration of Rectangular Thin Plates
,”
Sixth International Symposium on Vibrations of Continuous Systems
.
90.
Lim
,
C. W.
,
Cui
,
S.
, and
Yao
,
W. A.
, 2007, “
On New Symplectic Elasticity Approach for Exact Bending Solutions of Rectangular Thin Plates With Two Opposite Sides Simply Supported
,”
Int. J. Solids Struct.
0020-7683,
44
, pp.
5396
5411
.
91.
Lim
,
C. W.
,
Yao
,
W. A.
, and
Cui
,
S.
, 2008, “
Benchmarks of Analytical Symplectic Solutions for Bending of Corner-Supported Rectangular Thin Plates
,”
The IES Journal Part A: Civil & Structural Engineering
,
1
(
2
), pp.
106
115
.
92.
Yao
,
W. A.
, and
Sun
,
Z.
, 2008, “
Symplectic Solution for the Bending of Annular Sector Plane in Circumferential Direction
,”
Chinese Journal of Theoretical and Applied Mechanics
,
40
(
4
), pp.
557
563
.
93.
Xu
,
X. S.
,
Qiu
,
W. B.
,
Zhou
,
Z. H.
, and
Chu
,
H. J.
, 2008, “
Thermal Buckling Problem of Elastic Circular Plates in Hamiltonian System
,”
Journal of Dalian University of Technology
,
48
(
1
), pp.
1
5
.
94.
Ma
,
C. M.
, 2008, “
Symplectic Eigen-Solution for Clamped Mindlin Plate Bending Problem
,”
J. Shanghai Jiaotong Univ.
0253-9942,
12
(
5
), pp.
377
382
.
95.
Lim
,
C. W.
,
,
C. F.
,
Xiang
,
Y.
, and
Yao
,
W. A.
, 2009, “
On New Symplectic Elasticity Approach for Exact Free Vibration Solutions of Rectangular Kirchhoff Plates
,”
Int. J. Eng. Sci.
0020-7225,
47
, pp.
131
140
.
96.
Xu
,
X. S.
,
Qiu
,
W. B.
,
Fu
,
Y.
,
Zhou
,
Z. H.
, and
Chu
,
H. J.
, 2009, “
Symplectic Method With Application to Circular Elastic Plate Buckling
,”
Chinese Journal of Applied Mechanics
,
26
(
3
), pp.
530
534
.
97.
Zhong
,
Y.
, and
Li
,
R.
, 2009, “
Exact Bending Analysis of Fully Clamped Rectangular Thin Plates Subjected to Arbitrary Loads by New Symplectic Approach
,”
Mech. Res. Commun.
0093-6413,
36
, pp.
707
714
.
98.
Zhong
,
Y.
,
Li
,
R.
,
Liu
,
Y. M.
, and
Tian
,
B.
, 2009, “
On New Symplectic Approach for Exact Bending Solutions of Moderately Thick Rectangular Plates With Two Opposite Edges Simply Supported
,”
Int. J. Solids Struct.
0020-7683,
46
, pp.
2506
2513
.
99.
Lim
,
C. W.
, and
Yao
,
W. A.
, 2010, “
Closure on Discussion of “Benchmark Symplectic Solutions for Bending of Corner-Supported Rectangular Thin Plates” by M. Batista
,”
The IES Journal (Part A)
,
3
(
1
), pp.
71
73
.
100.
Lim
,
C. W.
, 2010, “
Symplectic Elasticity Approach for Free Vibration of Rectangular Plates
,”
Advances in Vibration Engineering
,
9
(
2
), pp.
159
163
.
101.
Liu
,
Y. M.
, and
Li
,
R.
, 2010, “
Accurate Bending Analysis of Rectangular Plates With Two Adjacent Edges Free and the Others Clamped or Simply Supported Based on New Symplectic Approach
,”
Appl. Math. Model.
0307-904X,
34
, pp.
856
865
.
102.
Xu
,
X. S.
,
Ma
,
Y.
,
Lim
,
C. W.
, and
Chu
,
H. J.
, 2006, “
Dynamic Buckling of Cylindrical Shells Subject to an Axial Impact in a Symplectic System
,”
Int. J. Solids Struct.
0020-7683,
43
(
13
), pp.
3905
3919
.
103.
Xu
,
X. S.
,
Duan
,
Z.
,
Ma
,
Y.
, and
Chu
,
H. J.
, 2007, “
A Symplectic Method and Dynamic Buckling of Elastic Cylindrical Shells Under Both Axial Impact and Internal or External Pressure
,”
Explosion and Shock Waves
1001-1455,
27
(
6
), pp.
509
514
.
104.
Xu
,
X. S.
,
Zhang
,
W. X.
, and
Li
,
X.
, 2007, “
A Method of Symplectic Eigensolutions for Viscoelastic Hollow Circular Cylinders
,”
Chinese Journal of Computational Mechanics
,
24
(
2
), pp.
153
158
.
105.
Xu
,
X. S.
, and
Chu
,
H. J.
, 2008, “
Hamiltonian System for Dynamic Buckling of Transversely Cylindrical Shells Subjected to an Axial Impact
,”
Int. J. Struct. Stab. Dyn.
0219-4554,
08
(
03
), pp.
487
504
.
106.
Xu
,
X. S.
,
Ma
,
J. Q.
,
Lim
,
C. W.
, and
Chu
,
H. J.
, 2009, “
Dynamic Local and Global Buckling of Cylindrical Shells Under Axial Impact
,”
Eng. Struct.
0141-0296,
31
, pp.
1132
1140
.
107.
Xu
,
X. S.
,
Ma
,
J. Q.
,
Lim
,
C. W.
, and
Zhang
,
G.
, 2010, “
Dynamic Torsional Buckling of Cylindrical Shells
,”
Comput. Struct.
0045-7949,
88
(
5–6
), pp.
322
330
.
108.
Xu
,
X. S.
,
Chu
,
H. J.
, and
Lim
,
C. W.
, 2010, “
A Symplectic Hamiltonian Approach for Thermal Buckling of Cylindrical Shells
,”
Int. J. Struct. Stab. Dyn.
0219-4554,
10
(
02
), pp.
273
286
.
109.
Zhong
,
W. X.
, and
Zhang
,
H. W.
, 1995, “
Analytical Formulas on Plane Crack Element
,”
Journal of Mechanical Strength
,
17
(
3
), pp.
1
6
.
110.
Zhang
,
H. W.
,
Zhong
,
W. X.
, and
Li
,
Y. P.
, 1996, “
The Interface Crack Singularity Analysis of the Bimaterial Body Based on Hamiltonian Principle
,”
Acta Mech. Solida Sinica
0894-9166,
1
(
1
), pp.
19
30
.
111.
Zhang
,
H. W.
,
Xu
,
X. S.
,
Li
,
Y. P.
, and
Zhong
,
W. X.
, 1996, “
Stress Singularities Near Corner of Wedged Multi-Dissimilar Materials
,”
Journal of Dalian University of Technology
,
36
(
4
), pp.
391
395
.
112.
Xu
,
X. S.
,
Zheng
,
X. G.
,
Zhang
,
H. W.
, and
Zhong
,
W. X.
, 1999, “
Hamiltonian Structure and Wedge Body in Elasticity
,”
Chinese Journal of Applied Mechanics
,
16
(
2
), pp.
140
144
.
113.
Yao
,
W. A.
, 2001, “
Jordan Solutions for Polar Coordinate Hamiltionian System and Solutions of Paradoxes in Elastic Wedge
,”
Acta Mech. Sin.
0459-1879,
33
(
1
), pp.
79
86
.
114.
Yao
,
W. A.
, and
Xu
,
C.
, 2001, “
A Restudy of the Paradox on an Elastic Wedge Based on the Hamiltonian System
,”
ASME J. Appl. Mech.
0021-8936,
68
(
4
), pp.
678
681
.
115.
Sun
,
Y.
,
Liu
,
Z. X.
, and
Zhong
,
W. X.
, 2001, “
Analysis and Calculation of Stress Singularity at Crack Tip of Hamiltonian System
,”
Acta Mech. Sin.
0459-1879,
21
(
1
), pp.
18
23
.
116.
Zhang
,
H. W.
, and
Zhong
,
W. X.
, 2003, “
Hamiltonian Principle Based Stress Singularity Analysis Near Crack Corners of Multi-Material Junctions
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
493
510
.
117.
Wang
,
C. Q.
, and
Yao
,
W. A.
, 2003, “
Application of the Hamilton System to Dugdale Model in Fracture Mechanics
,”
Chinese Journal of Applied Mechanics
,
39
(
06
), pp.
151
154
.
118.
Yao
,
W. A.
, and
Zhang
,
B. R.
, 2003, “
Paradox Solution on Elastic Wedge Dissimilar Materials
,”
Appl. Math. Mech.
0253-4827,
24
(
8
), pp.
961
969
.
119.
Yao
,
W. A.
, and
Zhang
,
B.
, 2004, “
Solution of Paradox in Cylindrical Orthogonal Anisotropic Elastic Wedge
,”
Acta Mech. Solida Sinica
0894-9166,
25
(
2
), pp.
155
158
.
120.
Tang
,
T. Q.
, and
He
,
X. H.
, 2004, “
Application of the Hamiltonian System in Solving the Mode III Crack Tip Fields
,”
Journal of Mechanical Strength
,
26
, pp.
213
215
.
121.
Wang
,
J. S.
, and
Qin
,
Q. H.
, 2007, “
Symplectic Model for Piezoelectric Wedges and Its Application in Analysis of Electroelastic Singularities
,”
Philos. Mag.
1478-6435,
87
(
2
), pp.
225
251
.
122.
Leung
,
A. Y. T.
,
Xu
,
X. S.
,
Zhou
,
Z. H.
, and
Wu
,
F. Y.
, 2009, “
Analytic Stress Intensity Factors for Finite Elastic Disk Using Symplectic Expansion
,”
Eng. Fract. Mech.
0013-7944,
76
, pp.
1866
1882
.
123.
Zhou
,
Z. H.
,
Xu
,
X. S.
, and
Leung
,
A. Y. T.
, 2009, “
The Mode III Stress/Electric Intensity Factors and Singularities Analysis for Edge-Cracked Circular Piezoelectric Shafts
,”
Int. J. Solids Struct.
0020-7683,
46
, pp.
3577
3586
.
124.
Zhong
,
W. X.
, and
Sun
,
Y.
, 2005, “
Numerical Comparison for Three Different Symplectic Perturbation Methods
,”
Journal of Dynamics and Control
,
3
(
2
), pp.
1
9
.
125.
Zhong
,
W. X.
, and
Sun
,
Y.
, 2005, “
Small Parameter Perturbation Method and Symplectic Conservation
,”
Journal of Dynamics and Control
,
3
(
1
), pp.
1
6
.
126.
Zhong
,
W. X.
, and
Yao
,
Z.
, 2005, “
Time Domain FEM and Symplectic Conservation
,”
Journal of Mechanical Strength
,
27
(
2
), pp.
178
183
.
127.
Zhong
,
W. X.
, 2007, “
Time-Space Harmony Element and Multi-Symplecticity
,”
Chinese Journal of Computational Mechanics
,
24
(
2
), p.
129
.
128.
Gao
,
Q.
, and
Zhong
,
W. X.
, 2009, “
The Symplectic and Preserving Method for the Integration of Hamilton System
,”
Journal of Dynamics and Control
,
7
(
3
), pp.
193
199
.
129.
Gao
,
Q.
,
Tan
,
S. J.
,
Zhang
,
H. W.
, and
Zhong
,
W. X.
, 2009, “
Symplectic Method Based on Dual Variable Principle and Independent Momentum at Two Ends
,”
Journal of Dynamics and Control
,
7
(
2
), pp.
97
103
.
130.
Xu
,
X. S.
,
Zhang
,
W. X.
,
Li
,
X.
, and
Wang
,
G. P.
, 2006, “
An Application of the Symplectic System in Two-Dimensional Viscoelasticity
,”
Int. J. Solids Struct.
0020-7683,
44
, pp.
897
914
.
131.
Zhang
,
W. X.
, and
Xu
,
X. S.
, 2008, “
A Symplectic Method in 2D Thermo-Viscoelasticity
,”
Journal of University of Science and Technology of China
,
38
(
2
), pp.
200
206
.
132.
Xu
,
X. S.
, and
Wang
,
G. P.
, 2006, “
A Method of Symplectic Eigensolutions in Stokes Flow
,”
Chin. J. Theor. Appl. Mech.
,
38
(
5
), pp.
682
687
.
133.
Xu
,
X. S.
,
Wang
,
G. P.
, and
Sun
,
F. M.
, 2008, “
Analytical and Numerical Method of Symplectic System for Stokes Flow in the Two-Dimensional Rectangular Domain
,”
Appl. Math. Mech.
0253-4827,
29
(
6
), pp.
705
714
.
134.
Wang
,
G. P.
,
Xu
,
X. S.
, and
Zhang
,
Y. X.
, 2009, “
Influence of Inlet Radius on Stokes Flow in a Circular Tube via the Hamiltonian Systematic Method
,”
Phys. Fluids
1070-6631,
21
, pp.
103602
.
135.
Wang
,
G. P.
,
Xu
,
X. S.
,
Sun
,
F. M.
, and
Zhang
,
W. X.
, 2009, “
A Method of Hamiltonian System for Viscous Fluid in Lid-Driven Cavities
,”
Chinese Journal of Computational Mechanics
,
26
(
1
), pp.
40
45
.
136.
Dong
,
J. Z.
,
Xu
,
X. S.
, and
Zhang
,
Y.
, “
Nonlinear Waves Driven by Motional Plates in Shallow Liquids of Multiple Layers
,”
Advances in Vibration Engineering
, in press.
137.
Wu
,
Z. G.
, and
Tan
,
S. J.
, 2008, “
Time-Varying Optimal Control via Canonical Transformation of Hamiltonian System
,”
Chin. J. Theor. Appl. Mech.
,
40
(
1
), pp.
86
97
.
138.
Gao
,
Q.
,
Peng
,
H. J.
,
Wu
,
Z. G.
, and
Zhong
,
W. X.
, 2010, “
Symplectic Method for Solving Optimal Control Problem of Nonlinear Dynamical Systems
,”
J. Dynamics and Control
,
8
(
1
), pp.
1
7
.
139.
Leung
,
A. Y. T.
,
Xu
,
X. S.
, and
Zhou
,
Z. H.
, 2010, “
Hamiltonian Approach to Analytical Thermal Stress Intensity Factors. Part 1: Thermal Intensity Factor
,”
J. Therm. Stresses
0149-5739,
33
(
3
), pp.
262
278
.
140.
Leung
,
A. Y. T.
,
Xu
,
X. S.
, and
Zhou
,
Z. H.
, 2010, “
Hamiltonian Approach to Analytical Thermal Stress Intensity Factors: Part 2 Thermal Stress Intensity Factor
,”
J. Therm. Stresses
0149-5739,
33
(
3
), pp.
279
301
.
141.
Dai
,
H.
,
Cheng
,
W.
, and
Li
,
M.
, 2008, “
Static/Dynamic Analysis of Functionally Graded and Layered Magneto-Electro-Elastic Plate/Pipe Under Hamiltonian System
,”
Chinese Journal of Aeronautics
,
21
, pp.
35
42
.
142.
Chen
,
W. Q.
, and
Zhao
,
L.
, 2009, “
The Symplectic Method for Plane Elasticity Problem of Functionally Graded Materials
,”
Acta Mech. Sin.
0459-1879,
41
(
4
), pp.
588
594
(.
143.
Zhao
,
L.
, and
Chen
,
W. Q.
, 2009, “
Symplectic Analysis of Plane Problems of Functionally Graded Piezoelectric Materials
,”
Mech. Mater.
0167-6636,
41
, pp.
1330
1339
.
144.
Zhao
,
L.
, and
Chen
,
W. Q.
, 2010, “
Plane Analysis for Functionally Graded Magneto-Electro-Elastic Materials via the Symplectic Framework
,”
Compos. Struct.
0263-8223,
92
(
7
), pp.
1753
1761
.
145.
Zou
,
G. P.
, 1997, “
Hamilton System and Symplectic Algorithms for the Analysis of Piezoelectric Materials
,”
Chinese Journal of Computational Physics
,
14
(
6
), pp.
735
739
.
146.
Gu
,
Q.
,
Xu
,
X. S.
, and
Leung
,
A. Y. T.
, 2005, “
Application of Hamiltonian System for Two-Dimensional Transversely Isotropic Piezoelectric Media
,”
J. Zhejiang Univ., Sci.
1009-3095,
6A
(
9
), pp.
915
921
.
147.
Xu
,
X. S.
,
Gu
,
Q.
,
Leung
,
A. Y. T.
, and
Zheng
,
J. J.
, 2005, “
A Symplectic Eigensolution Method in Transversely Isotropic Piezoelectric Cylindrical Media
,”
J. Zhejiang Univ., Sci.
1009-3095,
6A
(
9
), pp.
922
927
.
148.
Leung
,
A. Y. T.
,
Zheng
,
J. J.
, and
Lim
,
C. W.
, 2005, “
Symplectic Method for a Piezoelectric Cantilever Beam
,”
Proceedings of the Tenth International Conference on Civil, Structures and Environmental Engineering Computing
, Rome, Italy, Aug. 30–Sept. 2, Paper No. 148.
149.
Lim
,
C. W.
, 2006, “
Symplectic Elasticity Exact Analytical Approach for Piezoelectric Composite Thick Beams
,”
Second Symposium on Piezoelectricity, Acoustic Waves, and Device Applications
, Hangzhou, PRC, Dec. 14–17.
150.
Xu
,
X. S.
,
Leung
,
A. Y. T.
,
Gu
,
Q.
,
Yang
,
H.
, and
Zheng
,
J. J.
, 2008, “
3D Symplectic Expansion for Piezoelectric Media
,”
Int. J. Numer. Methods Eng.
0029-5981,
74
(
12
), pp.
1848
1871
.
151.
Leung
,
A. Y. T.
,
Xu
,
X. S.
,
Gu
,
Q.
,
Leung
,
C. T. O.
, and
Zheng
,
J. J.
, 2007, “
The Boundary Layer Phenomena in Two-Dimensional Transversely Isotropic Piezoelectric Media by Exact Symplectic Expansion
,”
Int. J. Numer. Methods Eng.
0029-5981,
69
, pp.
2381
2408
.
152.
Dai
,
H. T.
,
Cheng
,
W.
, and
Li
,
M. Z.
, 2008, “
3D Solutions for Static/Vibration of FGPM Plate/Pipe in Hamiltonian System
,”
Journal of Beijing University of Aeronautics and Astronautics
,
34
(
1
), pp.
104
107
.
153.
Leung
,
A. Y. T.
,
Zheng
,
J. J.
,
Lim
,
C. W.
,
Zhang
,
X. C.
,
Xu
,
X. S.
, and
Gu
,
Q.
, 2008, “
A New Symplectic Approach for Piezoelectric Cantilever Composite Plates
,”
Comput. Struct.
0045-7949,
86
, pp.
1865
1874
.
154.
Liu
,
Y. H.
,
Zhang
,
H. M.
, and
Qing
,
G. H.
, 2009, “
Natural Frequencies Analysis of Piezoelectric Laminated Plates in Hamiltonian System
,”
Journal of Ship Mechanics
,
13
(
5
), pp.
788
794
.
155.
Zhong
,
W. X.
, 2001, “
Symplectic Energy Band Analysis for Periodical Electro-Magnetic Wave Guide
,”
Chinese Journal of Computational Mechanics
,
18
(
4
), pp.
379
387
.
156.
Zhong
,
W. X.
, 2001, “
Symplectic System of Electro-Magnetic Waveguide
,”
Journal of Dalian University of Technology
,
41
(
4
), pp.
379
387
.
157.
Zhong
,
W. X.
, 2003, “
Symplectic Semi-Analytical Method for Electro-Magnetic Wave Guide
,”
Acta Mech. Sin.
0459-1879,
35
(
4
), pp.
401
410
.
158.
Zhong
,
W. X.
,
Williams
,
F. W.
, and
Leung
,
A. Y. T.
, 2003, “
Symplectic Analysis for Periodical Electro-Magnetic Waveguides
,”
J. Sound Vib.
0022-460X,
267
(
2
), pp.
227
244
.
159.
Zhong
,
W. X.
, and
Sun
,
Y.
, 2004, “
Symplectic Finite Element Method for Electromagnetic Resonant Cavity
,”
Chinese Journal of Computational Mechanics
,
21
(
2
), pp.
129
134
.
160.
Yao
,
W. A.
, 2004, “
Symplectic Solution System and Saint-Venant Principle on Anti-Plane Problem of Magnetoelectroelastic Solids
,”
Journal of Dalian University of Technology
,
44
(
5
), pp.
630
633
.
161.
Yao
,
W. A.
, and
Li
,
X. C.
, 2006, “
Symplectic Duality System on the Plane Magnetoelectroelastic Solids
,”
Appl. Math. Mech.
0253-4827,
27
(
2
), pp.
177
185
.
You do not currently have access to this content.