This review summarizes the most recent advances in multifunctional polymer nanocomposites reinforced by carbon nanotubes and aims to stimulate further research in this field. Experimental and theoretical investigations of the mechanical, thermal, and electrical properties of carbon nanotubes and their composite counterparts are presented. This review identifies the processing challenges associated with this class of materials and presents techniques that are currently being adopted to address these challenges and their relative merits. This review suggests possible future trends, opportunities, and challenges in the field and introduces the use of these multifunctional nanocomposites in structural health monitoring applications.

1.
Kim
,
B. C.
,
Park
,
S. W.
, and
Lee
,
D. G.
, 2008, “
Fracture Toughness of the Nano-Particle Reinforced Epoxy Composite
,”
Compos. Struct.
0263-8223,
86
(
1–3
), pp.
69
77
.
2.
Zhai
,
L. L.
,
Ling
,
G. P.
, and
Wang
,
Y. W.
, 2008, “
Effect of Nano-Al2O3 on Adhesion Strength of Epoxy Adhesive and Steel
,”
Int. J. Adhes. Adhes.
0143-7496,
28
(
1–2
), pp.
23
28
.
3.
Salehi-Khojin
,
A.
,
Jana
,
S.
, and
Wei-Hong
,
Z.
, 2007, “
Thermal-Mechanical Properties of a Graphitic-Nanofibers Reinforced Epoxy
,”
J. Nanosci. Nanotechnol.
1533-4880,
7
(
3
), pp.
898
906
.
4.
Huang
,
C. K.
, 2007, “
Prediction Model of Thermal Conductivity for Composite Materials With Nano Particles
,”
NSTI Nanotechnology Conference and Trade Show–NSTI Nanotech 2007 Technical Proceedings
, Vol.
4
, pp.
320
323
.
5.
Qinghua
,
L.
, and
Jianhua
,
Z.
, 2007, “
Effects of Nano Fillers on the Conductivity, Adhesion Strength, and Reliability of Isotropic Conductive Adhesives (ICAs)
,”
Key Eng. Mater.
1013-9826,
353–358
, pp.
2879
2882
.
6.
Moniruzzaman
,
M.
, and
Winey
,
K. I.
, 2006, “
Polymer Nanocomposites Containing Carbon Nanotubes
,”
Macromolecules
0024-9297,
39
, pp.
5194
5205
.
7.
Thostenson
,
E. T.
,
Ziaee
,
S.
, and
Chou
,
T. W.
, 2009, “
Processing and Electrical Properties of Carbon Nanotube/Vinyl Ester Nanocomposites
,”
Compos. Sci. Technol.
0266-3538,
69
(
6
), pp.
801
804
.
8.
Gojny
,
F. H.
,
Wichmann
,
M. H. G.
,
Kopke
,
U.
,
Fiedler
,
B.
, and
Schulte
,
K.
, 2004, “
Carbon Nanotube Reinforced Epoxy Composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube Content
,”
Compos. Sci. Technol.
0266-3538,
64
(
15
), pp.
2363
2371
.
9.
Gojny
,
F. H.
,
Wichmann
,
M. H. G.
,
Fiedler
,
B.
,
Kinloch
,
I. A.
,
Bauhofer
,
W.
,
Windle
,
A. H.
, and
Schulte
,
K.
, 2006, “
Evaluation and Identification of Electrical and Thermal Conduction Mechanisms in Carbon Nanotube/Epoxy Composites
,”
Polymer
0032-3861,
47
(
6
), pp.
2036
2045
.
10.
Biercuk
,
M. J.
,
Llaguno
,
M. C.
,
Radosavljevic
,
M.
,
Hyun
,
J. K.
,
Johnson
,
A. T.
, and
Fischer
,
J. E.
, 2002, “
Carbon Nanotube Composites for Thermal Management
,”
Appl. Phys. Lett.
0003-6951,
80
(
15
), pp.
2767
2769
.
11.
Xie
,
L.
,
Xu
,
F.
,
Qiu
,
F.
,
Lu
,
H.
, and
Yang
,
Y.
, 2007, “
Single-Walled Carbon Nanotubes Functionalized With High Bonding Density of Polymer Layers and Enhanced Mechanical Properties of Composites
,”
Macromolecules
0024-9297,
40
(
9
), pp.
3296
3305
.
12.
Liu
,
J. Q.
,
Xiao
,
T.
,
Liao
,
K.
, and
Wu
,
P.
, 2007, “
Interfacial Design of Carbon Nanotube Polymer Composites: A Hybrid System of Noncovalent and Covalent Functionalizations
,”
Nanotechnology
0957-4484,
18
(
16
), p.
165701
.
13.
Koval’chuk
,
A. A.
,
Shevchenko
,
V. G.
,
Shchegolikhin
,
A. N.
,
Nedorezova
,
P. M.
,
Klyamkina
,
A. N.
, and
Aladyshev
,
A. M.
, 2008, “
Effect of Carbon Nanotube Functionalization on the Structural and Mechanical Properties of Polypropylene/MWCNT Composites
,”
Macromolecules
0024-9297,
41
(
20
), pp.
7536
7542
.
14.
Yang
,
K.
,
Gu
,
M.
,
Guo
,
Y.
,
Pan
,
X.
, and
Mu
,
G.
, 2009, “
Effects of Carbon Nanotube Functionalization on the Mechanical and Thermal Properties of Epoxy Composites
,”
Carbon
0008-6223,
47
(
7
), pp.
1723
1737
.
15.
Meguid
,
S. A.
, and
Sun
,
Y.
, 2004, “
On the Tensile and Shear Strength of Nano-Reinforced Composite Interfaces
,”
Mater. Des.
0264-1275,
25
(
4
), pp.
289
296
.
16.
Dai
,
H.
,
Hafner
,
J. H.
,
Rinzler
,
A. G.
,
Colbert
,
D. T.
, and
Smalley
,
R. E.
, 1996, “
Nanotubes as Nanoprobes in Scanning Probe Microscopy
,”
Nature (London)
0028-0836,
384
(
6605
), pp.
147
150
.
17.
Wang
,
Q. H.
,
Corrigan
,
T. D.
,
Dai
,
T. Y.
,
Chang
,
R. P. H.
, and
Krauss
,
A. R.
, 1997, “
Field Emission From Nanotube Bundle Emitters at Low Fields
,”
Appl. Phys. Lett.
0003-6951,
70
(
24
), pp.
3308
3310
.
18.
de Heer
,
W. A.
,
Chatelain
,
A.
, and
Ugarte
,
D.
, 1995, “
A Carbon Nanotube Field-Emission Source
,”
Science
0036-8075,
270
(
5239
), pp.
1179
1180
.
19.
Rinzler
,
A. G.
,
Hafner
,
J. H.
,
Nikolaev
,
P.
,
Lou
,
L.
,
Kim
,
S. G.
,
TomRanek
,
D.
,
Nordlander
,
P.
,
Colbert
,
D. T.
, and
Smalley
,
R. E.
, 1995, “
Unraveling Nanotubes: Field Emission From an Atomic Wire
,”
Science
0036-8075,
269
(
5230
), pp.
1550
1553
.
20.
Semet
,
V.
,
Binh
,
V. T.
,
Vincent
,
P.
,
Guillot
,
D.
,
Teo
,
K. B. K.
,
Chhowalla
,
M.
,
Amaratunga
,
G. A. J.
,
Milne
,
W. I.
,
Legagneux
,
P.
, and
Pribat
,
D.
, 2002, “
Field Electron Emission From Individual Carbon Nanotubes of a Vertically Aligned Array
,”
Appl. Phys. Lett.
0003-6951,
81
(
2
), pp.
343
345
.
21.
Dillon
,
A. C.
,
Jones
,
K. M.
,
Bekkedahl
,
T. A.
,
Kiang
,
C. H.
,
Bethune
,
D. S.
, and
Heben
,
M. J.
, 1997, “
Storage of Hydrogen in Single-Walled Carbon Nanotubes
,”
Nature (London)
0028-0836,
386
(
6623
), pp.
377
379
.
22.
Yao
,
Z.
,
Postma
,
H. W. C.
,
Balents
,
L.
, and
Dekker
,
C.
, 1999, “
Carbon Nanotube Intramolecular Junctions
,”
Nature (London)
0028-0836,
402
(
6759
), pp.
273
276
.
23.
Tans
,
S. J.
,
Verschueren
,
A. R. M.
, and
Dekker
,
C.
, 1998, “
Room-Temperature Transistor Based on a Single Carbon Nanotube
,”
Nature (London)
0028-0836,
393
(
6680
), pp.
49
52
.
24.
Bachtold
,
A.
,
Hadley
,
P.
,
Nakanishi
,
T.
, and
Dekker
,
C.
, 2001, “
Logic Circuits With Carbon Nanotube Transistors
,”
Science
0036-8075,
294
(
5545
), pp.
1317
1320
.
25.
Huang
,
Y.
,
Duan
,
X.
,
Cui
,
Y.
,
Lauhon
,
L. J.
,
Kim
,
K. -H.
, and
Liber
,
C. M.
, 2001, “
Logic Gates and Computation From Assembled Nanowire Building Blocks
,”
Science
0036-8075,
294
(
5545
), pp.
1313
1317
.
26.
Derycke
,
V.
,
Martel
,
R.
,
Appenzeller
,
J.
, and
Avouris
,
P.
, 2001, “
Carbon Nanotube Inter-and Intramolecular Logic Gates
,”
Nano Lett.
1530-6984,
1
(
9
), pp.
453
456
.
27.
Iijima
,
S.
, 1991, “
Helical Microtubules of Graphitic Carbon
,”
Nature (London)
0028-0836,
354
(
6348
), pp.
56
58
.
28.
Oberlin
,
A.
,
Endo
,
M.
, and
Koyama
,
T.
, 1976, “
Filamentous Growth of Carbon Through Benzene Decomposition
,”
J. Cryst. Growth
0022-0248,
32
(
3
), pp.
335
349
.
29.
Radushkevich
,
L. V.
, and
Lukyanovich
,
V. M.
, 1952, “
O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte
,”
Zurn. Fisica Chimica
,
26
, pp.
88
95
.
30.
Saito
,
Y.
,
Yoshikawa
,
T.
,
Bandow
,
S.
,
Tomita
,
M.
, and
Hayashi
,
T.
, 1993, “
Interlayer Spacings in Carbon Nanotubes
,”
Phys. Rev. B
0556-2805,
48
(
3
), pp.
1907
1909
.
31.
Zhou
,
O.
,
Fleming
,
R. M.
,
Murphy
,
D. W.
,
Chen
,
C. H.
,
Haddon
,
R. C.
,
Ramirez
,
A. P.
, and
Glarum
,
S. H.
, 1994, “
Defects in Carbon Nanostructures
,”
Science
0036-8075,
263
(
5154
), pp.
1744
1747
.
32.
Li
,
C.
, and
Chou
,
T. -W.
, 2003, “
A Structural Mechanics Approach for the Analysis of Carbon Nanotubes
,”
Int. J. Solids Struct.
0020-7683,
40
(
10
), pp.
2487
2499
.
33.
Lu
,
J. P.
, 1997, “
Elastic Properties of Carbon Nanotubes and Nanoropes
,”
Phys. Rev. Lett.
0031-9007,
79
(
7
), pp.
1297
1300
.
34.
Hernández
,
E.
,
Goze
,
C.
,
Bernier
,
P.
, and
Rubio
,
A.
, 1998, “
Elastic Properties of C and BxCyMZ Composite Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
80
(
20
), pp.
4502
4505
.
35.
Jin
,
Y.
, and
Yuan
,
F. G.
, 2003, “
Simulation of Elastic Properties of Single-Walled Carbon Nanotubes
,”
Compos. Sci. Technol.
0266-3538,
63
(
11
), pp.
1507
1515
.
36.
Tombler
,
T. W.
,
Zhou
,
C.
,
Alexseyev
,
L.
,
Kong
,
J.
,
Dai
,
H.
,
Liu
,
L.
,
Jayanthi
,
C. S.
,
Tang
,
M.
, and
Wu
,
S. -Y.
, 2000, “
Reversible Electromechanical Characteristics of Carbon Nanotubes Under Local-Probe Manipulation
,”
Nature (London)
0028-0836,
405
(
6788
), pp.
769
772
.
37.
Yu
,
M. F.
,
Files
,
B. S.
,
Arepalli
,
S.
, and
Ruoff
,
R. S.
, 2000, “
Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties
,”
Phys. Rev. Lett.
0031-9007,
84
(
24
), pp.
5552
5555
.
38.
Harris
,
P. J. F.
, 2001,
Carbon Nanotubes and Related Structures
,
Cambridge University Press
,
Cambridge, UK
.
39.
Lourie
,
O.
, and
Wagner
,
H. D.
, 1998, “
Evaluation of Young’s Modulus of Carbon Nanotubes by Micro-Raman Spectroscopy
,”
J. Mater. Res.
0884-2914,
13
(
9
), pp.
2418
2422
.
40.
Yu
,
M. F.
,
Lourie
,
O.
,
Dyer
,
M. J.
,
Moloni
,
K.
,
Kelly
,
T. F.
, and
Ruoff
,
R. S.
, 2000, “
Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load
,”
Science
0036-8075,
287
(
5453
), pp.
637
640
.
41.
Krishnan
,
A.
,
Dujardin
,
E.
,
Ebbesen
,
T. W.
,
Yianilos
,
P. N.
, and
Treacy
,
M. M. J.
, 1998, “
Young’s Modulus of Single-Walled Nanotubes
,”
Phys. Rev. B
0556-2805,
58
(
20
), pp.
14013
14019
.
42.
Salvetat
,
J. P.
,
Briggs
,
G. A. D.
,
Bonard
,
J. M.
,
Bacsa
,
R. R.
,
Kulik
,
A. J.
,
Stockli
,
T.
,
Burnham
,
N. A.
, and
Forro
,
L.
, 1999, “
Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes
,”
Phys. Rev. Lett.
0031-9007,
82
(
5
), pp.
944
947
.
43.
Walters
,
D. A.
,
Ericson
,
L. M.
,
Casavant
,
M. J.
,
Liu
,
J.
,
Colbert
,
D. T.
,
Smith
,
K. A.
, and
Smalley
,
R. E.
, 1999, “
Elastic Strain of Freely Suspended Single-Wall Carbon Nanotube Ropes
,”
Appl. Phys. Lett.
0003-6951,
74
(
25
), pp.
3803
3805
.
44.
Cumings
,
J.
, and
Zettl
,
A.
, 2000, “
Low-Friction Nanoscale Linear Bearing Realized From Multiwall Carbon Nanotubes
,”
Science
0036-8075,
289
, pp.
602
604
.
45.
Chandraseker
,
K.
, and
Mukherjee
,
S.
, 2007, “
Atomistic-Continuum and Ab Initio Estimation of the Elastic Moduli of Single-Walled Carbon Nanotubes
,”
Comput. Mater. Sci.
0927-0256,
40
, pp.
147
158
.
46.
Troya
,
D.
,
Mielke
,
S. L.
, and
Schatz
,
G. C.
, 2003, “
Carbon Nanotube Fracture—Differences Between Quantum Mechanical Mechanisms and Those of Empirical Potentials
,”
Chem. Phys. Lett.
0009-2614,
382
, pp.
133
141
.
47.
Ding
,
F.
, 2005, “
Theoretical Study of the Stability of Defects in Single-Walled Carbon Nanotubes as a Function of Their Distance From the Nanotube End
,”
Phys. Rev. B
0556-2805,
72
, p.
245409
.
48.
An
,
W.
,
Wu
,
X.
,
Yang
,
J. L.
, and
Zeng
,
X. C.
, 2007, “
Adsorption and Surface Reactivity on Single-Walled Boron Nitride Nanotubes Containing Stone-Wales Defects
,”
J. Phys. Chem. C
1932-7447,
111
, pp.
14105
14112
.
49.
Galano
,
A.
, and
Francisco-Marquez
,
M.
, 2008, “
Reactivity of Silicon and Germanium Doped CNTs Toward Aromatic Sulfur Compounds: A Theoretical Approach
,”
Chem. Phys.
0301-0104,
345
, pp.
87
94
.
50.
Zhao
,
J.
, and
Ding
,
Y.
, 2008, “
Silicon Carbide Nanotubes Functionalized by Transition Metal Atoms: A Density-Functional Study
,”
J. Phys. Chem. C
1932-7447,
112
, pp.
2558
2564
.
51.
Wang
,
C.
,
Zhou
,
G.
,
Liu
,
H.
,
Wu
,
J.
,
Qiu
,
Y.
,
Gu
,
B.
, and
Duan
,
W.
, 2006, “
Chemical Functionalisation of Carbon Nanotubes by Carboxyl Groups on Stone-Wales Defects: A Density Functional Theory Study
,”
J. Phys. Chem. B
1089-5647,
110
, pp.
10266
10271
.
52.
Cao
,
G.
, and
Chen
,
X.
, 2006, “
Buckling Behavior of Single-Walled Carbon Nanotubes and a Targeted Molecular Mechanics Approach
,”
Phys. Rev. B
0556-2805,
74
, p.
165422
.
53.
Gong
,
N.
,
Liang
,
Y.
,
Yao
,
Y.
, and
Liu
,
B.
, 2008, “
Static and Dynamic Analysis of Carbon Nanotube Cantilever Based on Molecular Dynamics Simulation
,”
Key Eng. Mater.
1013-9826,
375–376
, pp.
631
635
.
54.
Buehler
,
M.
,
Kong
,
Y.
, and
Gao
,
H.
, 2004, “
Deformation Mechanisms of Very Long Single-Wall Carbon Nanotubes Subject to Compressive Loading
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
, pp.
245
249
.
55.
Esfarjani
,
K.
,
Gorjizadeh
,
N.
, and
Nasrollahi
,
Z.
, 2006, “
Molecular Dynamics of Single Wall Carbon Nanotube Growth on Nickel Surface
,”
Comput. Mater. Sci.
0927-0256,
36
, pp.
117
120
.
56.
Zhao
,
X.
, and
Cummings
,
P. T.
, 2006, “
Molecular Dynamics Study of Carbon Nanotube Oscillators Revisited
,”
J. Chem. Phys.
0021-9606,
124
, p.
134705
.
57.
Cao
,
G.
, and
Chen
,
X.
, 2007, “
The Effects of Chirality and Boundary Conditions on the Mechanical Properties of Single-Walled Carbon Nanotubes
,”
Int. J. Solids Struct.
0020-7683,
44
, pp.
5447
5465
.
58.
Cao
,
G.
, and
Chen
,
X.
, 2006, “
Buckling of Single-Walled Carbon Nanotubes Upon Bending: Molecular Dynamics Simulations and the Finite Element Method
,”
Phys. Rev. B
0556-2805,
73
, p.
155435
.
59.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernhole
,
J.
, 1996, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
0031-9007,
76
, pp.
2511
2514
.
60.
Pantano
,
A.
,
Parks
,
D. M.
, and
Boyce
,
M. C.
, 2004, “
Mechanics of Deformation of Single-and Multi-Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
789
821
.
61.
Giannopoulos
,
G. I.
,
Kakavas
,
P. A.
, and
Anifantis
,
N. K.
, 2008, “
Evaluation of the Effective Mechanical Properties of Single Walled Carbon Nanotubes Using a Spring Based Finite Element Approach
,”
Comput. Mater. Sci.
0927-0256,
41
, pp.
561
569
.
62.
To
,
C. W. S.
, 2006, “
Bending and Shear Moduli of Single-Walled Carbon Nanotubes
,”
Finite Elem. Anal. Design
0168-874X,
42
, pp.
404
413
.
63.
Silvestre
,
N.
, 2008, “
Length Dependence of Critical Measures in Single-Walled Carbon Nanotubes
,”
Int. J. Solids Struct.
0020-7683,
45
, pp.
4902
4920
.
64.
Wang
,
O.
, and
Varadan
,
V. K.
, 2005, “
Stability Analysis of Carbon Nanotubes via Continuum Models
,”
Smart Mater. Struct.
0964-1726,
14
, pp.
281
286
.
65.
Maiti
,
A.
, 2008, “
Multiscale Modeling With Carbon Nanotubes
,”
Microelectron. J.
0026-2692,
39
, pp.
208
221
.
66.
Ruoff
,
R. S.
,
Qian
,
D.
, and
Liu
,
W. K.
, 2003, “
Mechanical Properties of Carbon Nanotubes, Theoretical Predictions and Experimental Measurements
,”
C. R. Phys.
1631-0705,
4
, pp.
993
1008
.
67.
Collins
,
P. G.
,
Zettl
,
A.
,
Bando
,
H.
,
Thess
,
A.
, and
Smalley
,
R. E.
, 1997, “
Nanotube Nanodevice
,”
Science
0036-8075,
278
, pp.
100
102
.
68.
Song
,
S. N.
,
Wang
,
X. K.
,
Chang
,
R. P. H.
, and
Ketterson
,
J. B.
, 1994, “
Electronic Properties of Graphite Nanotubes From Galvanomagnetic Effects
,”
Phys. Rev. Lett.
0031-9007,
72
(
5
), pp.
697
700
.
69.
Langer
,
L.
,
Stockman
,
L.
,
Heremans
,
J. P.
,
Bayot
,
V.
,
Olk
,
C. H.
,
Van Haesendonck
,
C.
,
Bruynseraede
,
Y.
, and
Issi
,
J. -P.
, 1994, “
Electrical Resistance of a Carbon Nanotube Bundle
,”
J. Mater. Res.
0884-2914,
9
, pp.
927
932
.
70.
Langer
,
L.
,
Bayot
,
V.
,
Grivei
,
B.
,
Issi
,
J. -P.
,
Heremans
,
J. P.
,
Olk
,
C. H.
,
Stockman
,
L.
,
Van Haesendonck
,
C.
, and
Bruynseraede
,
Y.
, 1996, “
Quantum Transport in a Multiwalled Carbon Nanotube
,”
Phys. Rev. Lett.
0031-9007,
76
(
3
), pp.
479
482
.
71.
Tans
,
S. J.
,
Devoret
,
M. H.
,
Dai
,
H.
,
Thess
,
A.
,
Smalley
,
R. E.
,
Geerligs
,
L. J.
, and
Dekker
,
C.
, 1997, “
Individual Single-Wall Carbon Nanotubes as Quantum Wires
,”
Nature (London)
0028-0836,
386
(
6624
), pp.
474
477
.
72.
Bachtold
,
A.
,
Strunk
,
C.
,
Salvetat
,
J. -P.
,
Bonard
,
J. -M.
,
Forró
,
L.
,
Nussbaumer
,
T.
, and
Schönenberger
,
C.
, 1999, “
Aharonov–Bohm Oscillations in Carbon Nanotubes
,”
Nature (London)
0028-0836,
397
(
6721
), pp.
673
675
.
73.
Bezryadin
,
A.
,
Verschueren
,
A. R. M.
,
Tans
,
S. J.
, and
Dekker
,
C.
, 1998, “
Multiprobe Transport Experiments on Individual Single-Wall Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
4036
4039
.
74.
Paulson
,
S.
,
Falvo
,
M. R.
,
Snider
,
N.
,
Heiser
,
A.
,
Hudson
,
T.
,
Seegar
,
A.
,
Taylor
,
R. M.
,
Superfine
,
R.
, and
Washburn
,
S.
, 1999, “
In Situ Resistance Measurements of Strained Carbon Nanotubes
,”
Appl. Phys. Lett.
0003-6951,
75
(
19
), pp.
2936
2938
.
75.
Tian
,
W.
, and
Datta
,
S.
, 1994, “
Aharonov-Bohm-Type Effect in Graphene Tubules: A Landauer Approach
,”
Phys. Rev. B
0556-2805,
49
(
7
), pp.
5097
5100
.
76.
Saito
,
R.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
, 1996, “
Tunneling Conductance of Connected Carbon Nanotubes
,”
Phys. Rev. B
0556-2805,
53
(
4
), pp.
2044
2050
.
77.
Chico
,
L.
,
Benedict
,
L. X.
,
Louie
,
S. G.
, and
Cohen
,
M. L.
, 1996, “
Quantum Conductance of Carbon Nanotubes With Defects
,”
Phys. Rev. B
0556-2805,
54
(
4
), pp.
2600
2606
.
78.
Tamura
,
R.
, and
Tsukada
,
M.
, 1997, “
Condtance of Nanotube Junctions and Its Scaling Law
,”
Phys. Rev. B
0556-2805,
55
(
8
), pp.
4991
4998
.
79.
Tamura
,
R.
, and
Tsukada
,
M.
, 1998, “
Analysis of Quantum Conductance of Carbon Nanotube Junctions by the Effective-Mass Approximation
,”
Phys. Rev. B
0556-2805,
58
(
12
), pp.
8120
8124
.
80.
Anantram
,
M. P.
, and
Govindan
,
T. R.
, 1998, “
Conductance of Carbon Nanotubes With Disorder: A Numerical Study
,”
Phys. Rev. B
0556-2805,
58
(
8
), pp.
4882
4887
.
81.
Farajian
,
A. A.
,
Esfarjani
,
K.
, and
Kawazoe
,
Y.
, 1999, “
Nonlinear Coherent Transport Through Doped Nanotube Junctions
,”
Phys. Rev. Lett.
0031-9007,
82
(
25
), pp.
5084
5087
.
82.
Choi
,
H. J.
, and
Ihm
,
J.
, 1999, “
Ab Initio Pseudopotential Method for the Calculation of Conductance in Quantum Wires
,”
Phys. Rev. B
0556-2805,
59
(
3
), pp.
2267
2275
.
83.
Rochefort
,
A.
,
Lesage
,
F.
,
Salahub
,
D. R.
, and
Avouris
,
P.
, 1999, “
Electrical and Mechanical Properties of Distorted Carbon Nanotubes
,”
Phys. Rev. B
0556-2805,
60
(
19
), pp.
13824
13830
.
84.
Saito
,
R.
,
Fujita
,
M.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
, 1992, “
Electronic Structure of Chiral Graphene Tubules
,”
Appl. Phys. Lett.
0003-6951,
60
(
18
), pp.
2204
2206
.
85.
Hamada
,
N.
,
Sawada
,
S. -I.
, and
Oshiyama
,
A.
, 1992, “
New One-Dimensional Conductors: Graphitic Microtubules
,”
Phys. Rev. Lett.
0031-9007,
68
(
10
), pp.
1579
1581
.
86.
Mintmire
,
J. W.
,
Dunlop
,
B. I.
, and
White
,
C. T.
, 1992, “
Are Fullerene Tubules Metallic?
,”
Phys. Rev. Lett.
0031-9007,
68
(
5
), pp.
631
634
.
87.
Dresselhaus
,
M. S.
,
Dresselhaus
,
G.
,
Charlier
,
J. C.
, and
Hernandez
,
E.
, 2004, “
Electronic, Thermal and Mechanical Properties of Carbon Nanotubes
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
362
, pp.
2065
2098
.
88.
Tang
,
Z. K.
,
Zhang
,
L.
,
Wang
,
N.
,
Zhang
,
X. X.
,
Wen
,
G. H.
,
Li
,
G. D.
,
Wang
,
J. N.
,
Chan
,
C. T.
, and
Sheng
,
P.
, 2001, “
Superconductivity in 4 Angstrom Single-Walled Carbon Nanotubes
,”
Science
0036-8075,
292
, pp.
2462
2465
.
89.
Dubay
,
O.
,
Kresse
,
G.
, and
Kuzmany
,
H.
, 2002, “
First-Principle Calculations of Small Diameter Tubes
,”
Phys. Rev. Lett.
0031-9007,
88
, p.
235506
.
90.
Liu
,
B. B.
,
Sundqvist
,
B.
,
Li
,
D. M.
, and
Zou
,
G. T.
, 2002, “
Resistivity and Fractal Structure in Carbon Nanotube Networks
,”
J. Phys.: Condens. Matter
0953-8984,
14
(
44
), pp.
11125
11129
.
91.
Sánchez-Portal
,
D.
,
Artacho
,
E.
,
Soler
,
J. M.
,
Rubio
,
A.
, and
Ordejón
,
P.
, 1999, “
Ab Initio Structural, Elastic, and Vibrational Properties of Carbon Nanotubes
,”
Phys. Rev. B
0556-2805,
59
(
19
), pp.
12678
12688
.
92.
Odom
,
T. W.
,
Huang
,
J. -L.
,
Kim
,
P.
, and
Lieber
,
C. M.
, 1998, “
Atomic Structure and Electronic Properties of Single-Walled Carbon Nanotubes
,”
Nature (London)
0028-0836,
391
(
6662
), pp.
62
64
.
93.
Wilder
,
J. W. G.
,
Venema
,
L. C.
,
Rinzler
,
A. G.
,
Smalley
,
R. E.
, and
Dekker
,
C.
, 1998, “
Electronic Structure of Atomically Resolved Carbon Nanotubes
,”
Nature (London)
0028-0836,
391
(
6662
), pp.
59
62
.
94.
Kim
,
G. T.
,
Choi
,
E. S.
,
Kim
,
D. C.
,
Suh
,
D. S.
,
Park
,
Y. W.
,
Liu
,
K.
,
Duesberg
,
G.
, and
Roth
,
S.
, 1998, “
Magnetoresistance of an Entangled Single-Wall Carbon-Nanotube Network
,”
Phys. Rev. B
0556-2805,
58
(
24
), pp.
16064
16069
.
95.
Fischer
,
J. E.
,
Dai
,
H.
,
Thess
,
A.
,
Lee
,
R.
,
Hanjani
,
N. M.
,
Dehaas
,
D. L.
, and
Smalley
,
R. E.
, 1997, “
Metallic Resistivity in Crystalline Ropes of Single-Wall Carbon Nanotubes
,”
Phys. Rev. B
0556-2805,
55
(
8
), pp.
R4921
R4924
.
96.
Bozhko
,
A. D.
,
Sklovsky
,
D. E.
,
Nalimova
,
V. A.
,
Rinzler
,
A. G.
,
Smalley
,
R. E.
, and
Fischer
,
J. E.
, 1998, “
Resistance vs. Pressure of Single-Wall Carbon Nanotubes
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
67
(
1
), pp.
75
77
.
97.
Ebbesen
,
T. W.
,
Lezec
,
H. J.
,
Hiura
,
H.
,
Bennett
,
J. W.
,
Ghaemie
,
H. F.
, and
Thio
,
T.
, 1996, “
Electrical Conductivity of Individual Carbon Nanotubes
,”
Nature (London)
0028-0836,
382
(
6586
), pp.
54
56
.
98.
Lee
,
J. -O.
,
Park
,
C.
,
Kim
,
J. -J.
,
Kim
,
J.
,
Park
,
J. W.
, and
Yoo
,
K. -H.
, 2000, “
Formation of Low Resistance Ohmic Contact Between Carbon Nanotubes and Metal Electrodes by a Rapid Thermal Annealing Method
,”
J. Phys. D
0022-3727,
33
(
16
), pp.
1953
1956
.
99.
Dai
,
H.
,
Wong
,
E. W.
, and
Lieber
,
C. M.
, 1996, “
Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes
,”
Science
0036-8075,
272
(
5261
), pp.
523
526
.
100.
Buongiorno Nardelli
,
M.
,
Fattebert
,
J. -L.
,
Orlikowski
,
D.
,
Roland
,
C.
,
Zhao
,
Q.
, and
Bernholc
,
J.
, 2000, “
Mechanical Properties, Defects and Electronic Behavior of Carbon Nanotubes
,”
Carbon
0008-6223,
38
(
11–12
), pp.
1703
1711
.
101.
Hsiou
,
Y. -F.
,
Chen
,
C.
,
Chan
,
C. -H.
,
Stobinski
,
L.
, and
Yang
,
Y. -J.
, 2005, “
Defect Effect on Electrical Transport of Multiwalled Carbon Nanotubes
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
44
(
6A
), pp.
4245
4247
.
102.
Suzuura
,
H.
, 2006, “
Conductance of Twisted Carbon Nanotubes
,”
Physica E (Amsterdam)
1386-9477,
34
, pp.
674
677
.
103.
Tseng
,
S. -H.
,
Tai
,
N. -H.
,
Chang
,
M. -T.
, and
Chou
,
L. -J.
, 2009, “
Exploiting the Effect of Twisting on the Electrical Resistance of a Single-Walled Carbon Nanotube Rope to Trigger Ignition Using a 9V Battery
,”
Carbon
0008-6223,
47
, pp.
3472
3478
.
104.
Svizhenko
,
A.
,
Mehrez
,
H.
,
Anantram
,
M. P.
, and
Maiti
,
A.
, 2004, “
Sensing Mechanical Deformation in Carbon Nanotubes by Electrical Response: A Computational Study
,”
Proc. SPIE
0277-786X,
5593
, pp.
416
428
.
105.
Ruoff
,
R. S.
, and
Lorents
,
D. C.
, 1995, “
Mechanical and Thermal Properties of Carbon Nanotubes
,”
Carbon
0008-6223,
33
(
7
), pp.
925
930
.
106.
Berber
,
S.
,
Kwon
,
Y. K.
, and
Tomanek
,
D.
, 2000, “
Unusually High Thermal Conductivity of Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
84
, pp.
4613
4616
.
107.
Hone
,
J.
, 2009,
Carbon Nanotubes: Thermal Properties, Dekker Encyclopedia of Nanoscience and Nanotechnology
,
Taylor & Francis
,
London
, pp.
603
610
.
108.
Osman
,
M. A.
, and
Srivastava
,
D.
, 2001, “
Temperature Dependence of the Thermal Conductivity of Single-Wall Carbon Nanotubes
,”
Nanotechnology
0957-4484,
12
, pp.
21
24
.
109.
Li
,
D.
, 2002, “
Thermal Transport in Individual Nanowires and Nanotubes
,” Ph.D. thesis, Department of Mechanical Engineering, University of California, Berkeley, CA.
110.
Hone
,
J.
,
Whitney
,
M.
,
Piskoti
,
C.
, and
Zettl
,
A.
, 1999, “
Thermal Conductivity of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
0556-2805,
59
, pp.
R2514
R2516
.
111.
Hone
,
J.
,
Llaguno
,
M. C.
,
Nemes
,
N. M.
,
Johnson
,
A. T.
,
Fischer
,
J. E.
,
Walters
,
D. A.
,
Casavant
,
M. J.
,
Schmidt
,
J.
, and
Smalley
,
R. E.
, 2000, “
Electrical and Thermal Transport Properties of Magnetically Aligned Single Wall Carbon Nanotube Films
,”
Appl. Phys. Lett.
0003-6951,
77
, pp.
666
668
.
112.
Small
,
J. P.
,
Shi
,
L.
, and
Kim
,
P.
, 2003, “
Mesoscopic Thermal and Thermoelectric Measurements of Individual Carbon Nanotubes
,”
Solid State Commun.
0038-1098,
127
(
2
), pp.
181
186
.
113.
Yi
,
W.
,
Lu
,
L.
,
Zhang
,
D. L.
,
Pan
,
Z. W.
, and
Xie
,
S. S.
, 1999, “
Linear Specific Heat of Carbon Nanotubes
,”
Phys. Rev. B
0556-2805,
59
, pp.
R9015
R9018
.
114.
Che
,
J.
,
Çağin
,
T.
, and
Goddard
,
W. A.
, III
, 2000, “
Thermal Conductivity of Carbon Nanotubes
,”
Nanotechnology
0957-4484,
11
, pp.
65
69
.
115.
Fan
,
H.
,
Zhang
,
K.
, and
Yuen
,
M. M. F.
, 2007, “
Effect of Defects on Thermal Performance of Carbon Nanotube Investigated by Molecular Dynamics Simulation
,”
Eighth International Conference on Electronic Materials and Packaging
, pp.
792
795
.
116.
Yan
,
X. H.
,
Xiao
,
Y.
, and
Li
,
Z. M.
, 2006, “
Effects of Intertube Coupling and Tube Chirality on Thermal Transport of Carbon Nanotubes
,”
J. Appl. Phys.
0021-8979,
99
, p.
124305
.
117.
Troung
,
V. -T.
,
Tsang
,
K. M. C.
,
Keough
,
S. J.
, and
St John
,
N. G.
, 2006, “
Effect of Sonication on the Mechanical Properties of Poly (Vinyl Alcohol)/Carbon Nanotube Composites
,”
Proc. SPIE
0277-786X,
6415
, p.
641503
.
118.
Yang
,
Z.
,
Pu
,
Y.
,
Zhou
,
L.
,
Chen
,
C.
,
Li
,
W.
,
Xu
,
L.
,
Yi
,
B.
, and
Wang
,
Y.
, 2007, “
Facile Approach to Obtain Individual-Nanotube Dispersion at High Loading in Carbon Nanotubes/Polyimide Composites
,”
Polym. Adv. Technol.
1042-7147,
18
, pp.
458
462
.
119.
Fagan
,
J. A.
,
Landi
,
B. J.
,
Mandelbaum
,
I.
,
Simpson
,
J. R.
,
Bajpai
,
V.
,
Bauer
,
B. J.
,
Migler
,
K.
,
Walker
,
A. R. H.
,
Reffaelle
,
R.
, and
Hobbie
,
E. K.
, 2006, “
Comparative Measures of Single-Wall Carbon Nanotube Dispersion
,”
J. Phys. Chem. B
1089-5647,
110
, pp.
23801
23805
.
120.
Narh
,
K. A.
,
Jallo
,
L.
, and
Rhee
,
K. Y.
, 2008, “
The Effect of Carbon Nanotube Agglomeration on the Thermal and Mechanical Properties of Polyethylene Oxide
,”
Polym. Compos.
0272-8397,
29
(
7
), pp.
809
817
.
121.
Xie
,
X. -L.
,
Mai
,
Y. -W.
, and
Zhou
,
X. -P.
, 2005, “
Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix: A Review
,”
Mater. Sci. Eng. R.
0927-796X,
49
, pp.
89
112
.
122.
Liu
,
T.
,
Xiao
,
Z.
,
Zhang
,
C.
, and
Wang
,
B.
, 2008, “
Preparative Ultracentrifuge Method for Characterization of Carbon Nanotube Dispersions
,”
J. Phys. Chem. C
1932-7447,
112
, pp.
19193
19202
.
123.
Yoon
,
D.
,
Kang
,
S. J.
,
Choi
,
J. B.
,
Kim
,
Y. J.
, and
Baik
,
S.
, 2007, “
The Evaluation of Individual Dispersion of Single-Walled Carbon Nanotubes Using Absorption and Fluorescence Spectroscopic Techniques
,”
J. Nanosci. Nanotechnol.
1533-4880,
7
(
11
), pp.
3727
3730
.
124.
Bonavolontà
,
C.
,
Valentino
,
M.
,
Meola
,
C.
,
Carlomagno
,
G. M.
,
Volponi
,
R.
, and
Rosca
,
I. D.
, 2009, “
Non-Destructive Testing of a Carbon-Nanotube-Reinforced Composite Using HTS-SQUID and Electromagnetic Techniques
,”
Supercond. Sci. Technol.
0953-2048,
22
, p.
095001
.
125.
Hilding
,
J.
,
Grulke
,
E. A.
,
Zhang
,
Z. G.
, and
Lockwood
,
F.
, 2003, “
Dispersion of Carbon Nanotubes in Liquids
,”
J. Dispersion Sci. Technol.
0193-2691,
24
(
1
), pp.
1
41
.
126.
Fiedler
,
B.
,
Gojny
,
F. H.
,
Wichmann
,
M. H. G.
,
Nolte
,
M. C. M.
, and
Schulte
,
K.
, 2006, “
Fundamental Aspects of Nano-Reinforced Composites
,”
Compos. Sci. Technol.
0266-3538,
66
, pp.
3115
3125
.
127.
Zaragoza-Contreras
,
E. A.
,
Lozano-Rodríguez
,
E. D.
,
Román-Aguirre
,
M.
,
Antunez-Flores
,
W.
,
Hernández-Escobar
,
C. A.
,
Flores-Gollardo
,
S. G.
, and
Aguilar-Elguezabal
,
A.
, 2009, “
Evidence of Multi-Walled Carbon Nanotube Fragmentation Induced by Sonication During Nanotube Encapsulation via Bulk-Suspension Polymerization
,”
Micron
0968-4328,
40
, pp.
621
627
.
128.
Weisenberger
,
M. C.
,
Grulke
,
E. A.
,
Jacques
,
D.
,
Rantell
,
T.
, and
Andrews
,
R.
, 2003, “
Enhanced Mechanical Properties of Polyacrylonitrile/Multiwall Carbon Nanotube Composite Fibers
,”
J. Nanosci. Nanotechnol.
1533-4880,
3
, pp,
535
539
.
129.
Kearns
,
J. C.
, and
Shambaugh
,
R. L.
, 2002, “
Polypropylene Fibers Reinforced With Carbon Nanotubes
,”
J. Appl. Polym. Sci.
0021-8995,
86
, pp.
2079
2084
.
130.
Wichmann
,
M. H. G.
,
Sumfleth
,
J.
,
Fidler
,
B.
,
Gojny
,
F. H.
, and
Schulte
,
K.
, 2006, “
Multiwall Carbon Nanotube/Epoxy Composites Produced by a Masterbatch Process
,”
Mech. Compos. Mater.
0191-5665,
42
(
5
), pp.
395
406
.
131.
Bozlar
,
M.
,
He
,
D.
,
Bai
,
J.
,
Chalopin
,
Y.
,
Mingo
,
N.
, and
Volz
,
S.
, 2009, “
Carbon Nanotube Microarchitectures for Enhanced Thermal Conduction at Ultralow Mass Fraction in Polymer Composites
,”
Adv. Mater.
0935-9648,
21
, pp.
1
5
.
132.
Panagiotou
,
T.
,
Bernard
,
J. M.
, and
Mesite
,
S. V.
, 2008, “
Deagglomeration and Dispersion of Carbon Nanotubes Using Microfluidizer High Shear Fluid Processors
,”
Nano Science and Technology Institute (NSTI) Conference and Expo Proceedings
, Boston, June 1–5, Vol.
1
, pp.
39
42
.
133.
Seyhan
,
A. T.
,
Gojny
,
F. H.
,
Tanoğlu
,
M.
, and
Schulte
,
K.
, 2007, “
Critical Aspects Related to Processing of Carbon Nanotube/Unsaturated Thermoset Polyester Nanocomposites
,”
Eur. Polym. J.
0014-3057,
43
, pp.
374
379
.
134.
Sumfleth
,
J.
,
Prehn
,
K.
,
Wichmann
,
M. H. G.
,
Wedekind
,
S.
, and
Schulte
,
K.
, 2010, “
A Comparative Study of the Electrical and Mechanical Properties of Epoxy Nanocomposites Reinforced by CVD- and Arc-Grown Multi-Wall Carbon Nanotubes
,”
Compos. Sci. Technol.
0266-3538,
70
, pp.
173
180
.
135.
Lordi
,
V.
, and
Yao
,
N.
, 2000, “
Molecular Mechanics of Binding in Carbon-Nanotube-Polymer Composites
,”
J. Mater. Res.
0884-2914,
15
, pp.
2770
2779
.
136.
Simmons
,
T. J.
,
Bult
,
J.
,
Hashim
,
D. P.
,
Linhardt
,
R. J.
, and
Ajayan
,
P. M.
, 2009, “
Noncovalent Functionalization as an Alternative to Oxidative Acid Treatment of Single Wall Carbon Nanotubes With Applications for Polymer Nanocomposites
,”
ACS Nano
1936-0851,
3
(
4
), pp.
865
870
.
137.
Chen
,
J.
,
Liu
,
H.
,
Weimer
,
W. A.
,
Halls
,
M. D.
,
Waldeck
,
D. H.
, and
Walker
,
G. C.
, 2002, “
Noncovalent Engineering of Carbon Nanotube Surfaces by Rigid, Functional Conjugated Polymers
,”
J. Am. Chem. Soc.
0002-7863,
124
, pp.
9034
9035
.
138.
Sung
,
J. H.
,
Kim
,
H. S.
,
Jin
,
H. J.
,
Choi
,
H. J.
, and
Chin
,
I. -J.
, 2004, “
Nanofibrous Membranes Prepared by Multiwalled Carbon Nanotube/Poly(Methyl Methacrylate) Composites
,”
Macromolecules
0024-9297,
37
, pp.
9899
9902
.
139.
Garg
,
A.
, and
Sinnott
,
S. B.
, 1998, “
Effect of Chemical Functionalization on the Mechanical Properties of Carbon Nanotubes
,”
Chem. Phys. Lett.
0009-2614,
295
, pp.
273
278
.
140.
Balasubramanian
,
K.
, and
Burghard
,
M.
, 2005, “
Chemically Functionalized Carbon Nanotubes
,”
Small
1613-6810,
1
(
2
), pp.
180
192
.
141.
Sahoo
,
N. G.
,
Cheng
,
H. K. F.
,
Cai
,
J.
,
Li
,
L.
,
Chan
,
S. H.
,
Zhao
,
J.
, and
Yu
,
S.
, 2009, “
Improvement of Mechanical and Thermal Properties of Carbon Nanotube Composites Through Nanotube Functionalization and Processing Methods
,”
Mater. Chem. Phys.
0254-0584,
117
, pp.
313
320
.
142.
Ajayan
,
P. M.
,
Stephan
,
O.
,
Colliex
,
C.
, and
Trauth
,
D.
, 1994, “
Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin-Nanotube Composite
,”
Science
0036-8075,
265
, pp.
1212
1214
.
143.
deHeer
,
W. A.
,
Bacsa
,
W. S.
,
Châtelain
,
A.
,
Gerfin
,
T.
,
Humphrey-Baker
,
R.
,
Forro
,
L.
, and
Ugarte
,
D.
, 1995, “
Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties
,”
Science
0036-8075,
268
, pp.
845
847
.
144.
Haggenmueller
,
R.
,
Gommans
,
H. H.
,
Rinzler
,
A. G.
,
Fischer
,
J. E.
, and
Winey
,
K. I.
, 2000, “
Aligned Single-Wall Carbon Nanotubes in Composites by Melt Processing Methods
,”
Chem. Phys. Lett.
0009-2614,
330
, pp.
219
225
.
145.
Perrot
,
C.
,
Piccione
,
P. M.
,
Zakri
,
C.
,
Gaillard
,
P.
, and
Poulin
,
P.
, 2009, “
Influence of the Spinning Conditions on the Structure and Properties of Polyamide 12/Carbon Nanotube Composite Fibers
,”
J. Appl. Polym. Sci.
0021-8995,
114
, pp.
3515
3523
.
146.
Rangari
,
V. K.
,
Yousuf
,
M.
,
Jeelani
,
S.
,
Pulikkathara
,
M. X.
, and
Khabashesku
,
V. N.
, 2008, “
Alignment of Carbon Nanotubes and Reinforcing Effects in Nylon-6 Polymer Composite Fibers
,”
Nanotechnology
0957-4484,
19
, p.
245703
.
147.
Camponeschi
,
E.
,
Florkowski
,
B.
,
Vance
,
R.
,
Garrett
,
G.
,
Garmestani
,
H.
, and
Tannenbaum
,
R.
, 2006, “
Uniform Directional Alignment of Single-Walled Carbon Nanotubes in Viscous Polymer Flow
,”
Langmuir
0743-7463,
22
, pp.
1858
1862
.
148.
Lanticse
,
L. J.
,
Tanabe
,
Y.
,
Matsui
,
K.
,
Kaburagi
,
Y.
,
Suda
,
K.
,
Hoteida
,
M.
,
Endo
,
M.
, and
Yasuda
,
E.
, 2006, “
Shear-Induced Preferential Alignment of Carbon Nanotubes Resulted in Anisotropic Electrical Conductivity of Polymer Composites
,”
Carbon
0008-6223,
44
, pp.
3078
3086
.
149.
Yi
,
W.
, and
Yang
,
Q.
, 2010, “
Aligned Growth and Alignment Mechanism of Carbon Nanotubes by Hot Filament Chemical Vapor Deposition
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
98
, pp.
659
669
.
150.
Benedict
,
L. X.
,
Louie
,
S. G.
, and
Cohen
,
M. L.
, 1995, “
Static Polarizabilities of Single-Wall Carbon Nanotubes
,”
Phys. Rev. B
0556-2805,
52
(
11
), pp.
8541
8549
.
151.
Martin
,
C. A.
,
Sandler
,
J. K. W.
,
Windle
,
A. H.
,
Schwarz
,
M. -K.
,
Bauhofer
,
W.
,
Schutle
,
K.
, and
Shaffer
,
M. S. P.
, 2005, “
Electric Field-Induced Aligned Multi-Wall Carbon Nanotube Networks in Epoxy Composites
,”
Polymer
0032-3861,
46
, pp.
877
886
.
152.
Zhu
,
Y. -F.
,
Ma
,
C.
,
Zhang
,
W.
,
Zhang
,
R. -P.
,
Koratkar
,
N.
, and
Liang
,
J.
, 2009, “
Alignment of Multiwalled Carbon Nanotubes in Bulk Epoxy Composites via Electric Field
,”
J. Appl. Phys.
0021-8979,
105
, p.
054319
.
153.
Wang
,
M. -W.
, 2009, “
Alignment of Multiwall Carbon Nanotubes in Polymer Composites by Dielectrophoresis
,”
Jpn. J. Appl. Phys.
0021-4922,
48
, p.
035002
.
154.
Ma
,
C.
,
Zhang
,
W.
,
Zhu
,
Y.
,
Ji
,
L.
,
Zhang
,
R.
,
Koratkar
,
N.
, and
Liang
,
J.
, 2008, “
Alignment and Dispersion of Functionalized Carbon Nanotubes in Polymer Composites Induced by an Electric Field
,”
Carbon
0008-6223,
46
, pp.
706
710
.
155.
Uddin
,
N. M.
,
Ko
,
F.
,
Xiong
,
J.
,
Farouk
,
B.
, and
Capaldi
,
F.
, 2009, “
Process, Structure, and Properties of Electrospun Carbon Nanotube-Reinforced Nanocomposite Yarns
,”
Research Letters in Materials Science
,
2009
, p.
868917
.
156.
Blond
,
D.
,
Walshe
,
W.
,
Young
,
K.
,
Blighe
,
F. M.
,
Khan
,
U.
,
Almecija
,
D.
,
Carpenter
,
L.
,
McCauley
,
J.
,
Blau
,
W. J.
, and
Coleman
,
J. N.
, 2008, “
Strong, Tough, Electrospun, Polymer-Nanotube Composite Membranes With Extremely Low Density
,”
Adv. Funct. Mater.
1616-301X,
18
, pp.
2618
2624
.
157.
Dror
,
Y.
,
Salalha
,
W.
,
Khalfin
,
R. L.
,
Cohen
,
Y.
,
Yarin
,
A. L.
, and
Zussman
,
E.
, 2003, “
Carbon Nanotubes Embedded in Oriented Polymer Nanofibers by Electrospinning
,”
Langmuir
0743-7463,
19
, pp.
7012
7020
.
158.
Ajiki
,
H.
, and
Ando
,
T.
, 1993, “
Magnetic Properties of Carbon Nanotubes
,”
J. Phys. Soc. Jpn.
0031-9015,
62
, pp.
2470
2480
.
159.
Lu
,
J. P.
, 1995, “
Novel Magnetic Properties of Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
74
, pp.
1123
1126
.
160.
Ajiki
,
H.
, and
Ando
,
T.
, 1995, “
Magnetic Properties of Ensembles of Carbon Nanotubes
,”
J. Phys. Soc. Jpn.
0031-9015,
64
, pp.
4382
4391
.
161.
Steinert
,
B. W.
, and
Dean
,
D. R.
, 2009, “
Magnetic Field Alignment and Electrical Properties of Solution Cast PET-Carbon Nanotube Composite Films
,”
Polymer
0032-3861,
50
, pp.
898
904
.
162.
Yonemura
,
H.
,
Yamamoto
,
Y.
,
Yamada
,
S.
,
Fujiwara
,
Y.
, and
Tanimoto
,
Y.
, 2008, “
Magnetic Orientation of Single-Walled Carbon Nanotubes or Their Composites Using Polymer Wrapping
,”
Sci. Technol. Adv. Mater.
1468-6996,
9
, p.
024213
.
163.
Shaver
,
J.
,
Parra-Vasquez
,
A. N. G.
,
Hansel
,
S.
,
Portugall
,
O.
,
Mielke
,
C. H.
,
von Ortenberg
,
M.
,
Hauge
,
R. H.
,
Pasquali
,
M.
, and
Kono
,
J.
, 2009, “
Alignment Dynamics of Single-Walled Carbon Nanotubes in Pulsed Ultrahigh Magnetic Fields
,”
ACS Nano
1936-0851,
3
, pp.
131
138
.
164.
Marquez
,
F.
,
Morant
,
C.
,
Sanz
,
M. J.
, and
Elizalde
,
E.
, 2009, “
Attachment of Magnetite Nanoparticles on Carbon Nanotube Bundles and Their Response to Magnetic Fields
,”
J. Nanosci. Nanotechnol.
1533-4880,
9
(
6
), pp.
3810
3814
.
165.
Correa-Duarte
,
M. A.
,
Grzelczak
,
M.
,
Salgueirino-Maceira
,
V.
,
Giersig
,
M.
,
Liz-Marzan
,
L. M.
,
Farle
,
M.
,
Sierazdki
,
K.
, and
Diaz
,
R.
, 2005, “
Alignment of Carbon Nanotubes Under Low Magnetic Fields Through Attachment of Magnetic Nanoparticles
,”
J. Phys. Chem. B
1089-5647,
109
(
41
), pp.
19060
19063
.
166.
Pichot
,
V.
,
Badaire
,
S.
,
Albouy
,
P. A.
,
Zakri
,
P. A.
,
Poulin
,
P.
, and
Launois
,
P.
, 2006, “
Structural and Mechanical Properties of Single-Wall Carbon Nanotube Fibers
,”
Phys. Rev. B
0556-2805,
74
, p.
245416
.
167.
Jin
,
L.
,
Bower
,
C.
, and
Zhou
,
O.
, 1998, “
Alignment of Carbon Nanotubes in a Polymer Matrix by Mechanical Stretching
,”
Appl. Phys. Lett.
0003-6951,
73
(
9
), pp.
1197
1199
.
168.
Launois
,
P.
,
Marucci
,
A.
,
Vigolo
,
B.
,
Bernier
,
P.
,
Derré
,
A.
, and
Poulin
,
P.
, 2001, “
Structural Characterization of Nanotube Fibers by X-Ray Scattering
,”
J. Nanosci. Nanotechnol.
1533-4880,
1
(
2
), pp.
125
128
.
169.
Sreekumar
,
T. V.
,
Liu
,
T.
,
Min
,
B. G.
,
Guo
,
H.
,
Kumar
,
S.
,
Hauge
,
R. H.
, and
Smalley
,
R. E.
, 2004, “
Polyacrylonitrile Single-Walled Carbon Nanotube Composite Fibers
,”
Adv. Mater.
0935-9648,
16
, pp.
58
61
.
170.
Wood
,
J. R.
,
Zhao
,
Q.
, and
Wagner
,
H. D.
, 2001, “
Orientation of Carbon Nanotubes in Polymers and Its Detection by Raman Spectroscopy
,”
Composites, Part A
1359-835X,
32
, pp.
391
399
.
171.
Liu
,
P.
,
Liu
,
L.
, and
Zhang
,
Y.
, 2003, “
Alignment Characterization of Single-Wall Carbon Nanotubes by Raman Scattering
,”
Phys. Lett. A
0375-9601,
313
, pp.
302
306
.
172.
Hwang
,
J.
,
Gommans
,
H. H.
,
Ugawa
,
A.
,
Tashiro
,
H.
,
Haggenmueller
,
R.
,
Winey
,
K. I.
,
Fischer
,
J. E.
,
Tanner
,
D. B.
, and
Rinzler
,
A. G.
, 2000, “
Polarized Spectroscopy of Aligned Single-Wall Carbon Nanotubes
,”
Phys. Rev. B
0556-2805,
62
(
20
), pp.
R13310
R13313
.
173.
Arco
,
L. G.-D.
,
Lei
,
B.
,
Cronin
,
S.
, and
Zhou
,
C.
, 2008, “
Resonant Micro-Raman Spectroscopy of Aligned Single-Walled Carbon Nanotubes on A-Plane Sapphire
,”
Appl. Phys. Lett.
0003-6951,
93
, p.
123112
.
174.
Abbasi
,
S.
,
Carreau
,
P. J.
, and
Derdouri
,
A.
, 2010, “
Flow Induced Orientation of Multiwalled Carbon Nanotubes in Polycarbonate Nanocomposites: Rheology, Conductivity and Mechanical Properties
,”
Polymer
0032-3861,
51
, pp.
922
935
.
175.
Rudd
,
R. E.
, 2001, “
The Atomic Limit of Finite Element Modeling in MEMS: Coupling of Length Scales
,”
Analog Integr. Circuits Signal Process.
0925-1030,
29
, pp.
17
26
.
176.
Abraham
,
F. F.
,
Walkup
,
R.
,
Gao
,
H.
,
Duchaineau
,
M.
,
De La Rubia
,
T. D.
, and
Seager
,
M.
, 2002, “
Simulating Materials Failure by Using Up to One Billion Atoms and the World’s Fastest Computer: Brittle Fracture
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
99
, pp.
5777
5782
.
177.
Frankland
,
S. J. V.
,
Caglar
,
A.
,
Brenner
,
D. W.
, and
Griebel
,
M.
, 2002, “
Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube-Polymer Interfaces
,”
J. Phys. Chem. B
1089-5647,
106
, pp.
3046
3048
.
178.
Gou
,
J.
,
Minaie
,
B.
,
Wang
,
B.
,
Liang
,
Z.
, and
Zhang
,
C.
, 2004, “
Computational and Experimental Study of Interfacial Bonding of Single-Walled Nanotube Reinforced Composites
,”
Comput. Mater. Sci.
0927-0256,
31
, pp.
225
236
.
179.
Gou
,
J. H.
,
Liang
,
Z. Y.
,
Zhang
,
C.
, and
Wang
,
B.
, 2005, “
Computational Analysis of Effect of Single-Walled Carbon Nanotube Rope on Molecular Interaction and Load Transfer of Nanocomposites
,”
Composites, Part B
1359-8368,
36
, pp.
524
533
.
180.
Zheng
,
Q.
,
Xia
,
D.
,
Xue
,
Q.
,
Yan
,
K.
,
Gao
,
X.
, and
Li
,
Q.
, 2009, “
Computational Analysis of Effect of Modification on the Interfacial Characteristics of Carbon Nanotube-Polyethylene Composite System
,”
Appl. Surf. Sci.
0169-4332,
255
, pp.
3534
3543
.
181.
Wei
,
C.
, 2006, “
Adhesion and Reinforcement in Carbon Nanotube Polymer Composites
,”
Appl. Phys. Lett.
0003-6951,
88
, p.
093108
.
182.
Barber
,
A. H.
,
Cohen
,
S. R.
, and
Wagner
,
H. D.
, 2003, “
Measurement of Carbon Nanotube-Polymer Interfacial Strength
,”
Appl. Phys. Lett.
0003-6951,
82
(
23
), pp.
4140
4142
.
183.
Xiao
,
T.
, and
Liao
,
K.
, 2004, “
A Nonlinear Pullout Model for Unidirectional Carbon Nanotube-Reinforced Composites
,”
Composites, Part B
1359-8368,
35
, pp.
211
217
.
184.
Frankland
,
S. J. V.
,
Harik
,
V. M.
,
Odegard
,
G. M.
,
Brenner
,
D. W.
, and
Gates
,
T. S.
, 2003, “
The Stress-Strain Behavior of Polymer-Nanotube Composites From Molecular Dynamics Simulation
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1655
1661
.
185.
Griebel
,
M.
, and
Hamaekers
,
J.
, 2004, “
Molecular Dynamics Simulations of the Elastic Moduli of Polymer-Carbon Nanotube Composites
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
1773
1788
.
186.
Han
,
Y.
, and
Elliot
,
J.
, 2007, “
Molecular Dynamics Simulations of the Elastic Properties of Polymer/Carbon Nanotube Composites
,”
Comput. Mater. Sci.
0927-0256,
39
, pp.
315
323
.
187.
Zheng
,
Q.
,
Xue
,
Q.
,
Yan
,
K.
,
Gao
,
X.
,
Li
,
Q.
, and
Hao
,
L.
, 2008, “
Influence of Chirality on the Interfacial Bonding Characteristics of Carbon Nanotube Polymer Composites
,”
J. Appl. Phys.
0021-8979,
103
, p.
044302
.
188.
Chowdhury
,
S. C.
, and
Okabe
,
T.
, 2007, “
Computer Simulation of Carbon Nanotube Pull-Out From Polymer by the Molecular Dynamics Method
,”
Composites, Part A
1359-835X,
38
, pp.
747
754
.
189.
Chen
,
H.
,
Xue
,
Q.
,
Zheng
,
Q.
,
Xie
,
J.
, and
Yan
,
K.
, 2008, “
Influence of Nanotube Chirality, Temperature, and Chemical Modification on the Interfacial Bonding Between Carbon Nanotubes and Polyphenylacetylene
,”
J. Phys. Chem. C
1932-7447,
112
, pp.
16514
16520
.
190.
Liu
,
J.
,
Wang
,
X. -L.
,
Zhao
,
L.
,
Zhang
,
G.
,
Lu
,
Z. -Y.
, and
Li
,
Z. -S.
, 2008, “
The Absorption and Diffusion of Polyethylene Chains on the Carbon Nanotube: The Molecular Dynamics Study
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
46
, pp.
272
280
.
191.
Al-Haik
,
M.
, and
Hussaini
,
M. Y.
, 2005, “
Adhesion Energy in Carbon Nanotube-Polyethylene Composite: Effect of Chirality
,”
J. Appl. Phys.
0021-8979,
97
, p.
074306
.
192.
Chang
,
T.
,
Geng
,
J.
, and
Guo
,
X.
, 2006, “
Prediction of Chirality- and Size-Dependent Elastic Properties of Single-Walled Carbon Nanotubes via a Molecular Mechanics Model
,”
Proc. R. Soc. London, Ser. A
0950-1207,
462
, pp.
2523
2540
.
193.
Fisher
,
F. T.
,
Bradshaw
,
R. D.
, and
Brinson
,
L. C.
, 2002, “
Effects of Nanotube Waviness on the Modulus of Nanotube-Reinforced Polymers
,”
Appl. Phys. Lett.
0003-6951,
80
(
24
), pp.
4647
4649
.
194.
Fisher
,
F. T.
,
Bradshaw
,
R. D.
, and
Brinson
,
L. C.
, 2003, “
Fiber Waviness in Nanotube-Reinforced Polymer Composites—I: Modulus Predictions Using Effective Nanotube Properties
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1689
1703
.
195.
Bradshaw
,
R. D.
,
Fischer
,
F. T.
, and
Brinson
,
L. C.
, 2003, “
Fiber Waviness in Nanotube-Reinforced Polymer Composites—II: Modeling via Numerical Approximation of the Dilute Strain Concentration Tensor
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1705
1722
.
196.
Chen
,
X.
,
Beyerlein
,
I. J.
, and
Brinson
,
L. C.
, 2009, “
Curved-Fiber Pull-Out Model for Nanocomposites. Part 1: Bonded Stage Formulation
,”
Mech. Mater.
0167-6636,
41
, pp.
279
292
.
197.
Chen
,
X.
,
Beyerlein
,
I. J.
, and
Brinson
,
L. C.
, 2009, “
Curved-Fiber Pull-Out Model for Nanocomposites. Part 2: Interfacial Debonding and Sliding
,”
Mech. Mater.
0167-6636,
41
, pp.
293
307
.
198.
Pantano
,
A.
,
Modica
,
G.
, and
Cappello
,
F.
, 2008, “
Multiwalled Carbon Nanotube Reinforced Polymer Composites
,”
Mater. Sci. Eng., A
0921-5093,
486
, pp.
222
227
.
199.
Thostenson
,
E. T.
, and
Chou
,
T. -W.
, 2003, “
On the Elastic Properties of Carbon Nanotube-Based Composites: Modeling and Characterization
,”
J. Phys. D
0022-3727,
36
, pp.
573
582
.
200.
Lu
,
W. B.
,
Wu
,
J.
,
Jiang
,
L. Y.
,
Huang
,
Y.
,
Hwang
,
K. C.
, and
Liu
,
B.
, 2007, “
A Cohesive Law for Multi-Wall Carbon Nanotubes
,”
Philos. Mag.
1478-6435,
87
(
14&15
), pp.
2221
2232
.
201.
Jiang
,
L. Y.
,
Huang
,
Y.
,
Jiang
,
H.
,
Ravichandran
,
G.
,
Gao
,
H.
,
Hwang
,
K. C.
, and
Liu
,
B.
, 2006, “
A Cohesive Law for Carbon Nanotube/Polymer Interfaces Based on the Van Der Waals Force
,”
J. Mech. Phys. Solids
0022-5096,
54
, pp.
2436
2452
.
202.
Tan
,
H.
,
Jiang
,
L. Y.
,
Huang
,
Y.
,
Liu
,
B.
, and
Hwang
,
K. C.
, 2007, “
The Effect of Van Der Waals-Based Interface Cohesive Law on Carbon Nanotube-Reinforced Composite Materials
,”
Compos. Sci. Technol.
0266-3538,
67
, pp.
2941
2946
.
203.
Chen
,
X. L.
, and
Liu
,
Y. J.
, 2004, “
Square Representative Volume Elements for Evaluating the Effective Material Properties of Carbon Nanotube-Based Composites
,”
Comput. Mater. Sci.
0927-0256,
29
, pp.
1
11
.
204.
Liu
,
Y. J.
, and
Chen
,
X. L.
, 2003, “
Evaluations of the Effective Material Properties of Carbon Nanotube-Based Composites Using a Nanoscale Representative Volume Element
,”
Mech. Mater.
0167-6636,
35
, pp.
69
81
.
205.
Lusti
,
H. R.
, and
Gusev
,
A. A.
, 2004, “
Finite Element Predictions for the Thermoelastic Properties of Nanotube Reinforced Polymers
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
12
, pp.
S107
S119
.
206.
Selmi
,
A.
,
Friebel
,
C.
,
Doghri
,
I.
, and
Hassis
,
H.
, 2007, “
Prediction of the Elastic Properties of Single Walled Carbon Nanotube Reinforced Polymers: A Comparative Study of Several Micromechanical Models
,”
Compos. Sci. Technol.
0266-3538,
67
, pp.
2071
2084
.
207.
Tadmor
,
E. B.
,
Ortiz
,
M.
, and
Phillips
,
R.
, 1996, “
Quasicontinuum Analysis of Defects in Solids
,”
Philos. Mag. A
0141-8610,
73
, pp.
1529
1563
.
208.
Liu
,
B.
,
Huang
,
Y.
,
Jiang
,
H.
,
Qu
,
S.
, and
Hwang
,
K. C.
, 2004, “
The Atomic-Scale Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
1849
1864
.
209.
Wagner
,
G. J.
, and
Liu
,
W. K.
, 2003, “
Coupling of Atomistic and Continuum Simulations Using a Bridging Scale Decomposition
,”
J. Comput. Phys.
0021-9991,
190
, pp.
249
274
.
210.
Shilkrot
,
L. E.
,
Curtin
,
W. A.
, and
Miller
,
R. E.
, 2002, “
A Coupled Atomistic/Continuum Model of Defects in Solids
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
2085
2106
.
211.
Broughton
,
J. Q.
,
Abraham
,
F. F.
,
Bernstein
,
N.
, and
Kaxiras
,
E.
, 1999, “
Concurrent Coupling of Length Scales: Methodology and Application
,”
Phys. Rev. B
0556-2805,
60
(
4
), pp.
2391
2403
.
212.
Wernik
,
J. M.
, and
Meguid
,
S. A.
, 2009, “
Coupling Atomistics and Continuum in Solids: Status, Prospects, and Challenges
,”
Int. J. Mech. Mater. Des.
,
5
(
1
), pp.
79
110
.
213.
Curtin
,
W. A.
, and
Miller
,
R. E.
, 2003, “
Atomistic/Continuum Coupling in Computational Materials Science
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
11
, pp.
R33
R68
.
214.
Vvedensky
,
D. D.
, 2004, “
Multiscale Modeling of Nanostructures
,”
J. Phys.: Condens. Matter
0953-8984,
16
, pp.
R1537
R1576
.
215.
Namilae
,
S.
, and
Chandra
,
N.
, 2005, “
Multiscale Model to Study the Effect of Interfaces in Carbon Nanotube-Based Composites
,”
ASME J. Eng. Mater. Technol.
0094-4289,
127
, pp.
222
232
.
216.
Odegard
,
G. M.
,
Gates
,
T. S.
,
Wise
,
K. E.
,
Park
,
C.
, and
Siochi
,
E. J.
, 2003, “
Constitutive Modeling of Nanotube-Reinforced Polymer Composites
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1671
1687
.
217.
Odegard
,
G. M.
,
Frankland
,
S. J. V.
, and
Gates
,
T. S.
, 2005, “
Effect of Nanotube Functionalization on the Elastic Properties of Polyethylene Nanotube Composites
,”
AIAA J.
0001-1452,
43
(
8
), pp.
1828
1835
.
218.
Spanos
,
P. D.
, and
Kontsos
,
A.
, 2008, “
A Multiscale Monte Carlo Finite Element Method for Determining Mechanical Properties of Polymer Nanocomposites
,”
Probab. Eng. Mech.
0266-8920,
23
, pp.
456
470
.
219.
Shi
,
D. -L.
,
Feng
,
X. -Q.
,
Jiang
,
H.
,
Huang
,
Y. Y.
, and
Hwang
,
K. -C.
, 2005, “
Multiscale Analysis of Fracture of Carbon Nanotubes Embedded in Composites
,”
Int. J. Fract.
0376-9429,
134
, pp.
369
386
.
220.
Li
,
C.
, and
Chou
,
T. W.
, 2006, “
Multiscale Modeling of Compressive Behavior of Carbon Nanotube/Polymer Composites
,”
Compos. Sci. Technol.
0266-3538,
66
, pp.
2409
2414
.
221.
Gao
,
X. -L.
, and
Li
,
K.
, 2005, “
A Shear-Lag Model for Carbon Nanotube-Reinforced Polymer Composites
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
1649
1667
.
222.
Hu
,
N.
,
Fukunaga
,
H.
,
Lu
,
C.
,
Kameyama
,
M.
, and
Yan
,
B.
, 2005, “
Predicition of Elastic Properties of Carbon Nanotube Reinforced Composites
,”
Proc. R. Soc. London, Ser. A
0950-1207,
461
, pp.
1685
1710
.
223.
Tserpes
,
K. I.
,
Papanikos
,
P.
,
Labeas
,
G.
, and
Pantelakis
,
Sp. G.
, 2008, “
Multi-Scale Modeling of Tensile Behavior of Carbon Nanotube-Reinforced Composites
,”
Theor. Appl. Fract. Mech.
0167-8442,
49
, pp.
51
60
.
224.
Liu
,
T. X.
,
Phang
,
I. Y.
,
Shen
,
L.
,
Chow
,
S. Y.
, and
Zhang
,
W. D.
, 2004, “
Morphology and Mechanical Properties of Multiwalled Carbon Nanotubes Reinforced Nylon-6 Composites
,”
Macromolecules
0024-9297,
37
, pp.
7214
7222
.
225.
Liu
,
H.
,
Wang
,
X.
,
Fang
,
P.
,
Wang
,
S.
,
Qi
,
X.
,
Pan
,
C.
,
Xie
,
G.
, and
Liew
,
K. M.
, 2010, “
Functionalization of Multi-Walled Carbon Nanotubes Grafted With Self-Generated Functional Groups and Their Polyamide 6 Composites
,”
Carbon
0008-6223,
48
, pp.
721
729
.
226.
Gojny
,
F. H.
,
Wichmann
,
M. H. G.
,
Fiedler
,
B.
, and
Schulte
,
K.
, 2005, “
Influence of Different Carbon Nanotubes on the Mechanical Properties of Epoxy Matrix Composites—A Comparative Study
,”
Compos. Sci. Technol.
0266-3538,
65
, pp.
2300
2313
.
227.
Ji
,
L.
,
Stevens
,
M. M.
,
Zhu
,
Y.
,
Gong
,
Q.
,
Wu
,
J.
, and
Liang
,
J.
, 2009, “
Preparation and Properties of Multi-Walled Carbon Nanotube/Carbon/Polystyrene Composites
,”
Carbon
0008-6223,
47
, pp.
2733
2741
.
228.
Guo
,
P.
,
Song
,
H.
, and
Chen
,
X.
, 2009, “
Interfacial Properties and Microstucture of Multiwalled Carbon Nanotubes/Epoxy Composites
,”
Mater. Sci. Eng., A
0921-5093,
517
, pp.
17
23
.
229.
Prashantha
,
K.
,
Soulestin
,
J.
,
Lacrampe
,
M. F.
,
Krawczak
,
P.
,
Dupin
,
G.
, and
Claes
,
M.
, 2009, “
Masterbatch-Based Multi-Walled Carbon Nanotube Filled Polypropylene Nanocomposites: Assessment of Rheological and Mechanical Properties
,”
Compos. Sci. Technol.
0266-3538,
69
, pp.
1756
1763
.
230.
Yoo
,
H. J.
,
Jung
,
Y. C.
, and
Cho
,
J. W.
, 2008, “
Effect of Interaction Between Poly(Ethylene Terephthalate) and Carbon Nanotubes on the Morphology and Properties of Their Nanocomposites
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
46
, pp.
900
910
.
231.
Chang
,
T. E.
,
Jensen
,
L. R.
,
Kisliuk
,
A.
,
Pipes
,
R. B.
,
Pyrz
,
R.
, and
Sokolov
,
A. P.
, 2005, “
Microscopic Mechanism of Reinforcement in Single-Wall Carbon Nanotube/Polypropylene Nanocomposite
,”
Polymer
0032-3861,
46
, pp.
439
444
.
232.
Yuan
,
J. -M.
,
Fan
,
Z. -F.
,
Chen
,
X. -H.
,
Wu
,
Z. -J.
, and
He
,
L. -P.
, 2009, “
Preparation of Polystyrene-Multiwalled Carbon Nanotube Composites With Individual-Dispersed Nanotubes and Strong Interfacial Adhesion
,”
Polymer
0032-3861,
50
, pp.
3285
3291
.
233.
Kawashita
,
L. F.
,
Kinloch
,
A. J.
,
Moore
,
D. R.
, and
Williams
,
J. G.
, 2008, “
The Influence of Bond Line Thickness and Peel Arm Thickness on Adhesive Fracture Toughness of Rubber Toughened Epoxy-Aluminium Alloy Laminates
,”
Int. J. Adhes. Adhes.
0143-7496,
28
, pp.
199
210
.
234.
Takemura
,
K.
, 2007, “
Fracture Toughness of Carbon Fiber Reinforced Composites With Rubber Modification
,”
Key Eng. Mater.
1013-9826,
334–335
, pp.
509
512
.
235.
Petrie
,
E. M.
, 2006,
Handbook of Adhesives and Sealants
,
2nd ed.
,
McGraw-Hill Professional
,
New York
.
236.
Grady
,
B. P.
,
Paul
,
A.
,
Peters
,
J. E.
, and
Ford
,
W. T.
, 2009, “
Glass Transition Behaviour of Single-Walled Carbon Nanotube–Polystyrene Composites
,”
Macromolecules
0024-9297,
42
(
16
), pp.
6152
6158
.
237.
Lachman
,
N.
, and
Wagner
,
H. D.
, 2009, “
Correlation Between Interfacial Molecular Structure and Mechanics in CNT/Epoxy Nano-Composites
,”
Composites, Part A
1359-835X,
41
, pp.
1093
1098
.
238.
Ganguli
,
S.
,
Bhuyan
,
M.
,
Allie
,
L.
, and
Aglan
,
H.
, 2005, “
Effect of a Multi-Walled Carbon Nanotube Reinforcement on the Fracture Behaviour of a Tetrafunctional Epoxy
,”
J. Mater. Sci.
0022-2461,
40
, pp.
3593
3595
.
239.
Seyhan
,
A. T.
,
Tanoglu
,
M.
, and
Schulte
,
K.
, 2009, “
Tensile Mechanical Behavior and Fracture Toughness of MWCNT and DWCNT Modified Vinyl-Ester/Polyester Hybrid Nanocomposites Produced by 3-Roll Milling
,”
Mater. Sci. Eng., A
0921-5093,
523
, pp.
85
92
.
240.
Yu
,
N.
,
Zhang
,
Z. H.
, and
He
,
S. Y.
, 2008, “
Fracture Toughness and Fatigue Life of MWCNT/Epoxy Composites
,”
Mater. Sci. Eng., A
0921-5093,
494
, pp.
380
384
.
241.
Garg
,
A. C.
, and
Mai
,
Y. W.
, 1988, “
Failure Mechanisms in Toughened Epoxy Resins—A Review
,”
Compos. Sci. Technol.
0266-3538,
31
, pp.
179
223
.
242.
Huang
,
Y.
, and
Kinloch
,
A. J.
, 1992, “
Modelling of the Toughening Mechanisms in Rubber-Modified Epoxy Polymers, Part I: Finite Element Analysis Studies
,”
J. Mater. Sci.
0022-2461,
27
, pp.
2753
2762
.
243.
Ritchie
,
R. O.
, 1999, “
Mechanisms of Fatigue-Crack Propagation in Ductile and Brittle Solids
,”
Int. J. Fract.
0376-9429,
100
, pp.
55
83
.
244.
Qian
,
D.
,
Dickey
,
E. C.
,
Andrews
,
R.
, and
Rantell
,
T.
, 2000, “
Load-Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites
,”
Appl. Phys. Lett.
0003-6951,
76
, pp.
2868
2870
.
245.
Cooper
,
C. A.
,
Cohen
,
S. R.
,
Barber
,
A. H.
, and
Wagner
,
H. D.
, 2002, “
Detachment of Nanotubes From a Polymer Matrix
,”
Appl. Phys. Lett.
0003-6951,
81
(
20
), pp.
3873
3875
.
246.
Xu
,
X. J.
,
Thwe
,
M. M.
,
Shearwood
,
C.
, and
Liao
,
K.
, 2002, “
Mechanical Properties and Interfacial Characteristics of Carbon Nanotube Reinforced Epoxy Thin Films
,”
Appl. Phys. Lett.
0003-6951,
81
(
15
), pp.
2833
2835
.
247.
Wagner
,
H. D.
,
Lourie
,
O.
,
Feldman
,
Y.
, and
Tenne
,
R.
, 1998, “
Stress-Induced Fragmentation of Multiwall Carbon Nanotubes in a Polymer Matrix
,”
Appl. Phys. Lett.
0003-6951,
72
(
2
), pp.
188
190
.
248.
Watts
,
P. C. P.
, and
Hsu
,
W. K.
, 2003, “
Behaviours of Embedded Carbon Nanotubes During Film Cracking
,”
Nanotechnology
0957-4484,
14
, pp.
L7
L10
.
249.
Zhang
,
W.
,
Picu
,
R. C.
, and
Koratkar
,
N.
, 2007, “
Suppression of Fatigue Crack Growth in Carbon Nanotube Composites
,”
Appl. Phys. Lett.
0003-6951,
91
, p.
193109
.
250.
Thostenson
,
E. T.
, and
Chou
,
T. -W.
, 2006, “
Processing-Structure-Multi-Functional Property Relationship in Carbon Nanotube/Epoxy Composites
,”
Carbon
0008-6223,
44
, pp.
3022
3029
.
251.
Wichmann
,
M. H. G.
,
Schulte
,
K.
, and
Wagner
,
H. D.
, 2008, “
On Nanocomposite Toughness
,”
Compos. Sci. Technol.
0266-3538,
68
, pp.
329
331
.
252.
Blanco
,
J.
,
Garcia
,
E. J.
,
Guzman de Villoria
,
R.
, and
Wardle
,
B. L.
, 2009, “
Limiting Mechanisms of Mode I Interlaminar Toughening of Composites Reinforced With Aligned Carbon Nanotubes
,”
J. Compos. Mater.
0021-9983,
43
(
8
), pp.
825
841
.
253.
Seshadri
,
M.
, and
Saigal
,
S.
, 2007, “
Crack Bridging in Polymer Nanocomposites
,”
J. Eng. Mech.
0733-9399,
133
, pp.
911
918
.
254.
Ma
,
C. -C. M.
,
Huang
,
Y. -L.
,
Kuan
,
H. -C.
, and
Chiu
,
Y. -S.
, 2005, “
Preparation and Electromagnetic Shielding Characteristics of Novel Carbon-Nanotube/Siloxane/Poly(Urea Urethane) Nanocomposites
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
43
, pp.
345
358
.
255.
Park
,
J. G.
,
Louis
,
J.
,
Cheng
,
Q.
,
Bao
,
J.
,
Smithyman
,
J.
,
Liang
,
R.
,
Wang
,
B.
,
Zhang
,
C.
,
Brooks
,
J. S.
,
Kramer
,
L.
,
Fanchasis
,
P.
, and
Dorough
,
D.
, 2009, “
Electromagnetic Interference Shielding Properties of Carbon Nanotube Buckypaper Composites
,”
Nanotechnology
0957-4484,
20
, p.
415702
.
256.
Baughman
,
R. H.
,
Zakhidov
,
A. A.
, and
de Heer
,
W. A.
, 2002, “
Carbon Nanotubes—The Route Toward Applications
,”
Science
0036-8075,
297
, pp.
787
792
.
257.
Lu
,
C.
, and
Mai
,
Y. -W.
, 2008, “
Anomalous Electrical Conductivity and Percolation in Carbon Nanotube Composites
,”
J. Mater. Sci.
0022-2461,
43
, pp.
6012
6015
.
258.
Stauffer
,
D.
, 1984,
Introduction to Percolation Theory
,
Taylor & Francis
,
London
.
259.
Kovacs
,
J. Z.
,
Velagala
,
B. S.
,
Schulte
,
K.
, and
Bauhofer
,
W.
, 2007, “
Two Percolating Thresholds in Carbon Nanotube Epoxy Composites
,”
Compos. Sci. Technol.
0266-3538,
67
, pp.
922
928
.
260.
Hu
,
N.
,
Masuda
,
Z.
, and
Fukunaga
,
H.
, 2007, “
Prediction of Electrical Conductivity of Polymer Filled by Carbon Nanotubes
,”
Proceedings of the 16th International Conference on Composite Materials
, Kyoto, Japan.
261.
Li
,
J.
,
Ma
,
P. C.
,
Chou
,
W. S.
,
To
,
C. K.
,
Tang
,
B. Z.
, and
Kim
,
J. K.
, 2007, “
Correlations Between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes
,”
Adv. Funct. Mater.
1616-301X,
17
, pp.
3207
3215
.
262.
Martin
,
C. A.
,
Sandler
,
J. K. W.
,
Shaffer
,
M. S. P.
,
Schwarz
,
M. K.
,
Bauhofer
,
W.
,
Schulte
,
K.
, and
Windle
,
A. H.
, 2004, “
Formation of Percolating Networks in Multi-Wall Carbon-Nanotube–Epoxy Composites
,”
Compos. Sci. Technol.
0266-3538,
64
(
15
), pp.
2309
2316
.
263.
Bhatia
,
R.
,
Prasad
,
V.
, and
Reghu
,
M.
, 2009, “
Electrical Percolation Studies of Polystyrene-Multi Wall Carbon Nanotubes Composites
,”
AIP Conf. Proc.
0094-243X,
1147
, pp.
402
408
.
264.
Zhao
,
D.
,
Lei
,
Q.
,
Qin
,
C.
, and
Bai
,
X.
, 2006, “
Melt Process and Performance of Multi-Walled Carbon Nanotubes Reinforced LDPE Composites
,”
Pigment Resin Technol.
,
35
(
6
), pp.
341
345
.
265.
Bauhofer
,
W.
, and
Kovacs
,
J. Z.
, 2009, “
A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites
,”
Compos. Sci. Technol.
0266-3538,
69
, pp.
1486
1498
.
266.
Bai
,
J. B.
, and
Allaoui
,
A.
, 2003, “
Effect of the Length and the Aggregate Size of MWCNTs on the Improvement Efficiency of the Mechanical and Electrical Properties of Nanocomposites—Experimental Investigation
,”
Composites, Part A
1359-835X,
34
(
8
), pp.
689
694
.
267.
Foygel
,
M.
,
Morris
,
R. D.
,
Anez
,
D.
,
French
,
S.
, and
Sobolev
,
V. L.
, 2005, “
Theoretical and Computational Studies of Carbon Nanotube Composites and Suspensions: Electrical and Thermal Conductivity
,”
Phys. Rev. B
0556-2805,
71
, p.
104201
.
268.
Deng
,
F.
, and
Zheng
,
Q. -S.
, 2008, “
An Analytical Model of Effective Electrical Conductivity of Carbon Nanotube Composites
,”
Appl. Phys. Lett.
0003-6951,
92
, p.
071902
.
269.
Balberg
,
I.
,
Anderson
,
C. H.
,
Alexander
,
S.
, and
Wagner
,
N.
, 1984, “
Excluded Volume and Its Relation to the Onset of Percolation
,”
Phys. Rev. B
0556-2805,
30
(
7
), pp.
3933
3943
.
270.
Hu
,
N.
,
Masuda
,
Z.
,
Yan
,
C.
,
Yamamoto
,
G.
,
Fukunaga
,
H.
, and
Hashida
,
T.
, 2008, “
The Electrical Properties of Polymer Nanocomposites With Carbon Nanotube Fillers
,”
Nanotechnology
0957-4484,
19
, p.
215701
.
271.
Kovacs
,
J. Z.
,
Mandjarov
,
R. E.
,
Blisnjuk
,
T.
,
Prehn
,
K.
,
Sussiek
,
M.
,
Muller
,
J.
,
Schulte
,
K.
, and
Bauhofer
,
W.
, 2009, “
On the Influence of Nanotube Properties, Processing Conditions and Shear Forces on the Electrical Conductivity of Carbon Nanotube Epoxy Composites
,”
Nanotechnology
0957-4484,
20
, p.
155703
.
272.
Bose
,
S.
,
Bhattacharyya
,
A. R.
,
Bondre
,
A. P.
,
Kulkarni
,
A. R.
, and
Pötschke
,
P.
, 2008, “
Rheology, Electrical Conductivity, and the Phase Behavior of Cocontinuous PA6/ABS Blends With MWNT: Correlating the Aspect Ratio of MWNT With the Percolation Threshold
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
46
, pp.
1619
1631
.
273.
Valentini
,
L.
,
Armentano
,
I.
,
Puglia
,
D.
, and
Kenny
,
J. M.
, 2004, “
Dynamics of Amine Functionalized Nanotubes/Epoxy Composites by Dielectric Relaxation Spectroscopy
,”
Carbon
0008-6223,
42
, pp.
323
329
.
274.
Tamburri
,
E.
,
Orlanducci
,
S.
,
Terranova
,
M. L.
,
Valentini
,
F.
,
Palleschi
,
G.
,
Curulli
,
A.
,
Brunetti
,
F.
,
Passeri
,
D.
,
Alippi
,
A.
, and
Rossi
,
M.
, 2005, “
Modulation of Electrical Properties in Single-Walled Carbon Nanotube/Conducting Polymer Composites
,”
Carbon
0008-6223,
43
, pp.
1213
1221
.
275.
Ramasubramaniam
,
R.
,
Chen
,
J.
, and
Liu
,
H.
, 2003, “
Homogeneous Carbon Nanotube/Polymer Composites for Electrical Applications
,”
Appl. Phys. Lett.
0003-6951,
83
(
14
), pp.
2928
2930
.
276.
Hobbie
,
E. K.
,
Obrzut
,
J.
,
Kharchenko
,
S. B.
, and
Grulke
,
E. A.
, 2006, “
Charge Transport in Melt-Dispersed Carbon Nanotubes
,”
J. Chem. Phys.
0021-9606,
125
, p.
044712
.
277.
Du
,
F.
,
Fischer
,
J. E.
, and
Winey
,
K. I.
, 2005, “
Effect of Nanotube Alignment on Percolation Conductivity in Carbon Nanotube/Polymer Composites
,”
Phys. Rev. B
0556-2805,
72
(
12
), p.
121404
.
278.
Behnam
,
A.
,
Guo
,
J.
, and
Ural
,
A.
, 2007, “
Effects of Nanotube Alignment and Measurement Direction on Percolation Resistivity in Single-Walled Carbon Nanotube Films
,”
J. Appl. Phys.
0021-8979,
102
, p.
044313
.
279.
White
,
S. A.
,
DiDonna
,
B. A.
,
Mu
,
M.
,
Lubensky
,
T. C.
, and
Winey
,
K. I.
, 2009, “
Simulations and Electrical Conductivity of Percolated Networks of Finite Rods With Various Degrees of Axial Alignment
,”
Phys. Rev. B
0556-2805,
79
, p.
024301
.
280.
Dalmas
,
F.
,
Dendievel
,
R.
,
Chazeau
,
L.
,
Cavaille
,
J. -Y.
, and
Gauthier
,
C.
, 2006, “
Carbon Nanotube-Filled Polymer Composites. Numerical Simulation of Electrical Conductivity in Three-Dimensional Entangled Networks
,”
Acta Mater.
1359-6454,
54
(
11
), pp.
2923
2931
.
281.
Berhan
,
L.
, and
Sastry
,
A. M.
, 2007, “
Modeling Percolation in High-Aspect-Ratio Fiber Systems. II. The Effect of Waviness on the Percolation Onset
,”
Phys. Rev. E
1063-651X,
75
(
4
), p.
041121
.
282.
Li
,
C.
, and
Chou
,
T. -W.
, 2007, “
Continuum Percolation of Nanocomposites With Fillers of Arbitrary Shapes
,”
Appl. Phys. Lett.
0003-6951,
90
(
17
), p.
174108
.
283.
Yi
,
Y. B.
,
Berhan
,
L.
, and
Sastry
,
A. M.
, 2004, “
Statistical Geometry of Random Fibrous Networks, Revisited: Waviness, Dimensionality, and Percolation
,”
J. Appl. Phys.
0021-8979,
96
(
3
), pp.
1318
1327
.
284.
Sun
,
X.
, and
Song
,
M.
, 2009, “
Highly Conductive Carbon Nanotube/Polymer Nanocomposites Achievable?
Macromol. Theory Simul.
1022-1344,
18
, pp.
155
161
.
285.
Li
,
C.
,
Thostenson
,
E. T.
, and
Chou
,
T. -W.
, 2008, “
Effect of Nanotube Waviness on the Electrical Conductivity of Carbon Nanotube-Based Composites
,”
Compos. Sci. Technol.
0266-3538,
68
, pp.
1445
1452
.
286.
Skakalova
,
V.
,
Dettlaff-Weglikowska
,
U.
, and
Roth
,
S.
, 2005, “
Electrical and Mechanical Properties of Nanocomposites of Single Wall Carbon Nanotubes With PMMA
,”
Synth. Met.
0379-6779,
152
(
1–3
), pp.
349
352
.
287.
Stadermann
,
M.
,
Papadakis
,
S. J.
,
Falvo
,
M. R.
,
Novak
,
J.
,
Snow
,
E.
,
Fu
,
Q.
,
Liu
,
J.
,
Fridman
,
Y.
,
Boland
,
J. J.
,
Superfine
,
R.
, and
Washburn
,
S.
, 2004, “
Nanoscale Study of Conduction Through Carbon Nanotube Networks
,”
Phys. Rev. B
0556-2805,
69
(
20
), p.
201402
.
288.
Hecht
,
D.
,
Hu
,
L. B.
, and
Gruner
,
G.
, 2006, “
Conductivity Scaling With Bundle Length and Diameter in Single Walled Carbon Nanotube Networks
,”
Appl. Phys. Lett.
0003-6951,
89
(
13
), p.
133112
.
289.
Salvato
,
M.
,
Cirillo
,
M.
,
Lucci
,
M.
,
Orlanducci
,
S.
,
Ottaviani
,
I.
,
Terranova
,
M. L.
, and
Toschi
,
F.
, 2008, “
Charge Transport and Tunneling in Single-Walled Carbon Nanotube Bundles
,”
Phys. Rev. Lett.
0031-9007,
101
, p.
246804
.
290.
Li
,
C. Y.
,
Thostenson
,
E. T.
, and
Chou
,
T. W.
, 2007, “
Dominant Role of Tunneling Resistance in the Electrical Conductivity of Carbon Nanotube-Based Composites
,”
Appl. Phys. Lett.
0003-6951,
91
, p.
223114
.
291.
Simmons
,
J. G.
, 1963, “
Generalized Formula for the Electric Tunnel Effect Between Similar Electrodes Separated by a Thin Insulating Film
,”
J. Appl. Phys.
0021-8979,
34
, pp.
1793
1803
.
292.
Fuhrer
,
M. S.
,
Nygard
,
J.
,
Shih
,
L.
,
Forero
,
M.
,
Yoon
,
Y. G.
,
Mazzoni
,
M. S. C.
,
Choi
,
H. J.
,
Ihm
,
J.
,
Louis
,
S. G.
,
Zettl
,
A.
, and
McEuren
,
P. L.
, 2000, “
Crossed Nanotube Junctions
,”
Science
0036-8075,
288
, pp.
494
497
.
293.
Buldum
,
A.
, and
Lu
,
J. P.
, 2001, “
Contact Resistance Between Carbon Nanotubes
,”
Phys. Rev. B
0556-2805,
63
, p.
161403
.
294.
Wang
,
X.
,
Liu
,
H.
,
Wang
,
J.
,
Zhang
,
W.
, and
Li
,
Z.
, 2009, “
Package Heat Dissipation With Integrated Carbon Nanotube Micro Heat Sink
,”
International Conference on Electronic Packaging Technology and High Density Packaging
, pp.
73
76
.
295.
Colin
,
J. R.
, 2006, “
Carbon-Nanotube Arrays Take Heat Off Chips
,”
Electon. Eng. Times
0192-1541, see http://www.eetasia.com/ART_8800419043_480600_NT_4a34d559.HTMhttp://www.eetasia.com/ART_8800419043_480600_NT_4a34d559.HTM.
296.
Ebling
,
D. G.
,
Jacquot
,
A.
,
Bottner
,
H.
,
Schmidt
,
J.
, and
Spies
,
P.
, 2007, “
Nanocomposite Materials: Future and Challenge for the Production of Thermoelectric Devices
,”
Seventh International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications
, pp.
305
310
.
297.
Yang
,
Y.
,
Gupta
,
M. C.
,
Zalameda
,
J. N.
, and
Winfree
,
W. P.
, 2008, “
Dispersion Behavior, Thermal and Electrical Conductivities of Carbon Nanotube-Polystyrene Nanocomposites
,”
Micro & Nano Lett.
,
3
(
2
), pp.
35
40
.
298.
Du
,
F.
,
Guthy
,
C.
,
Kashiwagi
,
T.
,
Fischer
,
J. E.
, and
Winey
,
K. I.
, 2006, “
An Infiltration Method for Preparing Single-Wall Nanotube/Epoxy Composites With Improved Thermal Conductivity
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
44
, pp.
1513
1519
.
299.
Song
,
Y.
, and
Youn
,
J.
, 2006, “
Evaluation of Effective Thermal Conductivity for Carbon Nanotube/Polymer Composites Using Control Volume Finite Element Method
,”
Carbon
0008-6223,
44
, pp.
710
717
.
300.
Bryning
,
M.
,
Milkie
,
D.
,
Islam
,
M.
,
Kikkawa
,
J.
, and
Yodh
,
A.
, 2005, “
Thermal Conductivity and Interfacial Resistance in Single-Wall Carbon Nanotube Epoxy Composites
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
161909
.
301.
Xu
,
Y.
,
Ray
,
G.
, and
Abdel-Magid
,
B.
, 2006, “
Thermal Behavior of Single-Walled Carbon Nanotube Polymer–Matrix Composites
,”
Composites, Part A
1359-835X,
37
, pp.
114
121
.
302.
Huxtable
,
S. T.
,
Cahill
,
D. G.
,
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Barone
,
P.
,
Usrey
,
M.
,
Strano
,
M. S.
,
Siddons
,
G.
,
Shim
,
G.
, and
Keblinski
,
P.
, 2003, “
Interfacial Heat Flow in Carbon Nanotube Suspensions
,”
Nature Mater.
1476-1122,
2
, pp.
731
734
.
303.
Nan
,
C. -W.
,
Liu
,
G.
,
Lin
,
Y.
, and
Li
,
M.
, 2004, “
Interface Effect on Thermal Conductivity of Carbon Nanotube Composites
,”
Appl. Phys. Lett.
0003-6951,
85
(
16
), pp.
3549
3551
.
304.
Chen
,
T.
,
Weng
,
G.
, and
Liu
,
W. -C.
, 2005, “
Effect of Kapitza Contact and Consideration of Tube-End Transport on the Effective Conductivity in Nanotube-Based Composites
,”
J. Appl. Phys.
0021-8979,
97
, p.
104312
.
305.
Winey
,
K. I.
,
Kashiwagi
,
T.
, and
Mu
,
M.
, 2007, “
Improving Electrical Conductivity and Thermal Properties of Polymers by the Addition of Carbon Nanotubes as Fillers
,”
MRS Bull.
0883-7694,
32
, pp.
348
353
.
306.
Shenogina
,
N.
,
Shenogin
,
S.
,
Xue
,
L.
, and
Keblinski
,
P.
, 2005, “
On the Lack of Thermal Percolation in Carbon Nanotube Composites
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
133106
.
307.
Kittel
,
C.
, 1986,
Introduction to Solid State Physics
,
Wiley
,
New York
.
308.
Chen
,
G.
, 2005,
Nanoscale Energy Transport and Conversion
,
Oxford University Press
,
New York
.
309.
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Keblinski
,
P.
, and
Cahill
,
D. G.
, 2004, “
Role of Thermal Boundary Resistance on the Heat Flow in Carbon-Nanotube Composites
,”
J. Appl. Phys.
0021-8979,
95
(
12
), pp.
8136
8144
.
310.
Bagchi
,
A.
, and
Nomura
,
S.
, 2006, “
On the Effective Thermal Conductivity of Carbon Nanotube Reinforced Polymer Composites
,”
Compos. Sci. Technol.
0266-3538,
66
, pp.
1703
1712
.
311.
Xue
,
Q. Z.
, 2006, “
Model for the Effective Thermal Conductivity of Carbon Nanotube Composites
,”
Nanotechnology
0957-4484,
17
, pp.
1655
1660
.
312.
Guthy
,
C.
,
Du
,
F.
,
Brand
,
S.
,
Winey
,
K. I.
, and
Fischer
,
J. E.
, 2007, “
“Thermal Conductivity of Single-Walled Carbon Nanotube/PMMA Nanocomposites,” Transactions of the ASME
,”
ASME J. Heat Transfer
0022-1481,
129
(
8
), pp.
1096
1099
.
313.
Spanos
,
P. D.
, and
Esteva
,
M.
, 2009, “
Effect of Stochastic Nanotube Waviness on the Elastic and Thermal Properties of Nanocomposites by Fiber Embedment in Finite Elements
,”
J. Comput. Theor. Nanosci.
1546-1955,
6
(
10
), pp.
2317
2333
.
314.
Gonnet
,
P.
,
Liang
,
Z.
,
Choi
,
E. S.
,
Kadambala
,
R. S.
,
Zhang
,
C.
,
Brooks
,
J. S.
,
Wang
,
B.
, and
Kramer
,
L.
, 2006, “
Thermal Conductivity of Magnetically Aligned Carbon Nanotube Buckypapers and Nanocomposites
,”
Curr. Appl. Phys.
1567-1739,
6
, pp.
119
122
.
315.
Clancy
,
T. C.
, and
Gates
,
T. S.
, 2006, “
Modeling of Interfacial Modification Effects on Thermal Conductivity of Carbon Nanotube Composites
,”
Polymer
0032-3861,
47
, pp.
5990
5996
.
316.
Maruyama
,
S.
,
Igarashi
,
Y.
,
Taniguchi
,
Y.
, and
Shibuta
,
Y.
, 2004, “
Molecular Dynamics Simulation of Heat Transfer Issues in Carbon Nanotubes
,”
Proceedings of the First International Symposium on Micro and Nano Technology
,
M.
Inoue
, eds., Honolulu, HI.
317.
Zhong
,
H.
, and
Lukes
,
J. R.
, 2006, “
Interfacial Thermal Resistance Between Carbon Nanotubes: Molecular Dynamics Simulations and Analytical Thermal Modeling
,”
Phys. Rev. B
0556-2805,
74
, p.
125403
.
318.
Yang
,
J.
,
Waltermire
,
S.
,
Chen
,
Y.
,
Zinn
,
A. A.
,
Xu
,
T. T.
, and
Li
,
D.
, 2010, “
Contact Thermal Resistance Between Individual Multiwall Carbon Nanotubes
,”
Appl. Phys. Lett.
0003-6951,
96
, p.
023109
.
319.
Nan
,
C. -W.
,
Shi
,
Z.
, and
Lin
,
Y.
, 2003, “
A Simple Model for Thermal Conductivity of Carbon Nanotube-Based Composites
,”
Chem. Phys. Lett.
0009-2614,
375
, pp.
666
669
.
320.
Yang
,
R.
,
Chen
,
G.
, and
Dresselhaus
,
M.
, 2005, “
Thermal Conductivity of Simple and Tubular Nanowires Composites in the Longitudinal Direction
,”
Phys. Rev. B
0556-2805,
72
, p.
125418
.
321.
Choi
,
S.
,
Zhang
,
Z.
,
Yu
,
W.
,
Lockwood
,
F.
, and
Grulke
,
E.
, 2001, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
0003-6951,
79
(
14
), pp.
2252
2254
.
322.
Collins
,
P. G.
,
Hersam
,
M.
,
Arnold
,
M.
,
Martel
,
R.
, and
Avouris
,
Ph.
, 2001, “
Current Saturation and Electrical Breakdown in Multiwalled Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
86
(
14
), pp.
3128
3131
.
323.
Mingo
,
N.
, and
Broido
,
D. A.
, 2005, “
Carbon Nanotube Ballistic Thermal Conductance and Its Limits
,”
Phys. Rev. Lett.
0031-9007,
95
(
9
), p.
096105
.
324.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
,
A.
, and
McEuen
,
P. L.
, 2001, “
Thermal Transport Measurements of Individual Multiwalled Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
87
(
21
), p.
215502
.
325.
Duong
,
H. M.
,
Papavassiliou
,
D. V.
,
Mullen
,
K. J.
, and
Maruyama
,
S.
, 2008, “
Computational Modeling of the Thermal Conductivity of Single-Walled Carbon Nanotube-Polymer Composites
,”
Nanotechnology
0957-4484,
19
, p.
065702
.
326.
Seidel
,
G. D.
, and
Lagoudas
,
D. C.
, 2008, “
A Micromechanical Model for the Thermal Conductivity of Nanotube-Polymer Nanocomposites
,”
ASME J. Appl. Mech.
0021-8936,
75
, p.
041025
.
327.
Liu
,
C. H.
, and
Fan
,
S. S.
, 2005, “
Effects of Chemical Modifications on the Thermal Conductivity of Carbon Nanotube Composites
,”
Appl. Phys. Lett.
0003-6951,
86
, p.
123106
.
328.
Shenogin
,
S.
,
Bodapati
,
A.
,
Xue
,
L.
,
Ozisik
,
R.
, and
Keblinski
,
P.
, 2004, “
Effect of Chemical Functionalization on Thermal Transport of Carbon Nanotube Composites
,”
Appl. Phys. Lett.
0003-6951,
85
(
12
), pp.
2229
2231
.
329.
Padgett
,
C. W.
, and
Brenner
,
D. W.
, 2004, “
Influence of Chemisorption on the Thermal Conductivity of Single-Wall Carbon Nanotubes
,”
Nano Lett.
1530-6984,
4
(
6
), pp.
1051
1053
.
330.
Lee
,
Y. S.
, and
Chung
,
M. J.
, 2000, “
Study on Crack Detection Using Eigenfrequency Test Data
,”
Comput. Struct.
0045-7949,
77
, pp.
327
342
.
331.
Ohno
,
H.
,
Naruse
,
H.
,
Kihara
,
M.
, and
Shimada
,
A.
, 2001, “
Industrial Applications of the BOTDR Optical Fiber Strain Sensor
,”
Opt. Fiber Technol.
1068-5200,
7
, pp.
45
64
.
332.
Tikka
,
J.
,
Hedman
,
R.
, and
Siljander
,
A.
, 2003, “
Embedded Microcontroller Based Networked Measurement and Analysis System With Strain Gages Tailored to Fatigue Crack Detection
,”
The Fourth International Workshop on Structural Health Monitoring
, Stanford, CA.
333.
Kirikera
,
G. R.
,
Shinde
,
V.
,
Kang
,
I.
,
Schulz
,
M. J.
,
Shanov
,
V.
,
Datta
,
S.
,
Hurd
,
D.
,
Westheider
,
B.
,
Sundaresan
,
M.
, and
Ghoshal
,
A.
, 2004, “
Mimicking the Biological Neural System Using Electronic Logic Circuits [Structural Crack Detection]
,”
Proc. SPIE
0277-786X,
5384
, pp.
148
157
.
334.
Kang
,
I.
,
Lee
,
J. W.
,
Choi
,
G. R.
,
Jung
,
J. Y.
,
Hwang
,
S. -H.
,
Choi
,
Y. -S.
,
Yoon
,
K. J.
, and
Schulz
,
M. J.
, 2006, “
Structural Health Monitoring Based on Electrical Impedance of a Carbon Nanotube Neuron
,”
Key Eng. Mater.
1013-9826,
321–323
, pp.
140
145
.
335.
Kang
,
I.
,
Schulz
,
M. J.
,
Lee
,
J. W.
,
Choi
,
G. R.
,
Jung
,
J. Y.
,
Choi
,
J. -B.
, and
Hwang
,
S. -H.
, 2007, “
A Carbon Nanotube Smart Material for Structural Health Monitoring
,”
Diffus. Defect Data, Pt. B
1012-0394,
120
, pp.
289
296
.
336.
Li
,
C.
, and
Chou
,
T. W.
, 2006, “
Atomistic Modeling of Carbon Nanotube-Based Mechanical Sensors
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
17
, pp.
247
254
.
337.
Li
,
C.
,
Thostenson
,
E. T.
, and
Chou
,
T. W.
, 2008, “
Sensors and Actuators Based on Carbon Nanotubes and Their Composites: A Review
,”
Compos. Sci. Technol.
0266-3538,
68
, pp.
1227
1249
.
338.
Kostopoulos
,
V.
,
Tsotra
,
P.
,
Vavouliotis
,
A.
,
Karappapas
,
P.
,
Tsantzalis
,
S.
, and
Loutas
,
T.
, 2005,
Nano-Modified Fibre Reinforced Composites: A Way Towards the Development of New Materials for Space Applications
,
Proceedings of the Fifth ESA Symposium on Micro/Nano Technologies for Space
.
339.
Alexopoulos
,
N. D.
,
Bartholome
,
C.
,
Poulin
,
P.
, and
Marioli-Riga
,
Z.
, 2010, “
Structural Health Monitoring of Glass Fibre Reinforced Composites Using Embedded Carbon Nanotube (CNT) Fibers
,”
Compos. Sci. Technol.
0266-3538,
70
, pp.
260
271
.
340.
Yeo-Heung
,
Y.
,
Kang
,
I.
,
Gollapudi
,
R.
,
Jong
,
W. L.
,
Hurd
,
D.
,
Shanov
,
V. N.
,
Schulz
,
M. J.
,
Kim
,
J.
,
Shi
,
D.
,
Boerio
,
J. F.
, and
Subramaniam
,
S.
, 2005, “
Multifunctional Carbon Nanofiber/Nanotube Smart Materials
,”
Proc. SPIE
0277-786X,
5763
, pp.
184
195
.
341.
Lee
,
S. I.
, and
Yoon
,
D. J.
, 2006, “
Structural Health Monitoring for Carbon Fiber/Carbon Nanotube (CNT)/Epoxy Composite Sensor
,”
Key Eng. Mater.
1013-9826,
321–323
, pp.
290
293
.
342.
Kostopoulos
,
V.
,
Tsotra
,
P.
,
Vavouliotis
,
A.
,
Karappapas
,
P.
,
Tsantzalis
,
S.
, and
Loutas
,
T.
, 2007, “
Damage Detection During Fatigue Loading of CNF Doped CFRPs via Resistance Measurements and AE
,”
Solid State Phenom.
1012-0394,
121–123
, pp.
1399
1402
.
343.
Li
,
C.
, and
Chou
,
T. W.
, 2008, “
Modeling of Damage Sensing in Fibre Composites Using Carbon Nanotube Networks
,”
Compos. Sci. Technol.
0266-3538,
68
, pp.
3373
3379
.
344.
Pfautsch
,
E.
, 2007, “
Challenges in Commercializing Carbon Nanotube Composites
,”
WISE Journal of Engineering and Public Policy
,
11
, pp.
1
42
.
345.
Esawi
,
A. M. K.
, and
Farag
,
M. M.
, 2007, “
Carbon Nanotube Reinforced Composites: Potential and Current Challenges
,”
Mater. Des.
0264-1275,
28
, pp.
2394
2401
.
346.
Rothbarth
,
F.
, 2010, “
Bayer Material Science Opens World’s Largest Carbon Nanotube Pilot Facility
,” Bayer Press Release, http://www.press.bayer.com/baynews/baynews.nsf/id/0D55208BDE14F238C12576BA002D6FDA?Open&ccm=001http://www.press.bayer.com/baynews/baynews.nsf/id/0D55208BDE14F238C12576BA002D6FDA?Open&ccm=001
347.
Shaffer
,
M. S. P.
, and
Sandler
,
J. K. W.
, 2006, “
Carbon Nanotube/Nanofibre Polymer Composites
,”
Processing and Properties of Nanocomposites
,
S. G.
Advani
, ed.,
World Scientific
,
Singapore
, pp.
1
59
.
You do not currently have access to this content.