This paper reviews recent research studies on the buckling of carbon nanotubes. The structure and properties of carbon nanotubes are introduced to the readers. The various buckling behaviors exhibited by carbon nanotubes are also presented herein. The main factors, such as dimensions, boundary conditions, temperature, strain rate, and chirality, influencing the buckling behaviors are also discussed, as well as a brief introduction of the two most used methods for analyzing carbon nanotubes, i.e., continuum models and atomistic simulations. Summary and recommendations for future research are also given. Finally, a large body of papers is given in the reference section. It is hoped that this paper provides current knowledge on the buckling of carbon nanotubes, reviews the computational methods for determining the buckling loads, and inspires researchers to further investigate the buckling properties of carbon nanotubes for practical applications.

1.
Iijima
,
S.
, 1991, “
Helical Microtubules of Graphitic Carbon
,”
Nature (London)
0028-0836,
354
, pp.
56
58
.
2.
Iijima
,
S.
, and
Ichihashi
,
T.
, 1993, “
Single-Shell Carbon Nanotubes of 1-nm Diameter
,”
Nature (London)
0028-0836,
363
, pp.
603
605
.
3.
Bethune
,
D. S.
,
Kiang
,
C. H.
,
de Vries
,
M. S.
,
Gorman
,
G.
,
Savoy
,
R.
,
Vazquez
,
J.
, and
Beyers
,
R.
, 1993, “
Cobalt-Catalyzed Growth of Carbon Nanotubes With Single-Atomic-Layer Walls
,”
Nature (London)
0028-0836,
363
, pp.
605
607
.
4.
Dresselhaus
,
M. S.
,
Dressehaus
,
G.
, and
Saito
,
R.
, 1995, “
Physics of Carbon Nanotubes
,”
Carbon
0008-6223,
33
(
7
), pp.
883
891
.
5.
Ebbesen
,
T. W.
, 1996, “
Carbon Nanotubes
,”
Phys. Today
0031-9228,
49
(
6
), pp.
26
32
.
6.
Yakobson
,
B. I.
, and
Richard
,
E. S.
, 1997, “
Fullerene Nanotubes: C1,000,000 and Beyond
,”
Am. Sci.
0003-0996,
85
, pp.
324
337
.
7.
Ball
,
P.
, 2001, “
Roll Up for the Revolution
,”
Nature (London)
0028-0836,
414
, pp.
142
144
.
8.
Thostenson
,
E. T.
,
Ren
,
Z. F.
, and
Chou
,
T. W.
, 2001, “
Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review
,”
Compos. Sci. Technol.
0266-3538,
61
, pp.
1899
1912
.
9.
Baughman
,
R. H.
,
Zakhidov
,
A. A.
, and
de Heer
,
W. A.
, 2002, “
Carbon Nanotube-Route Toward Applications
,”
Science
0036-8075,
297
, pp.
787
792
.
10.
Lau
,
K. T.
,
Gu
,
C.
, and
Hui
,
D.
, 2006, “
A Critical Review on Nanotube and Nanotube/Nanoclay Related Polymer Composite Materials
,”
Composites, Part B
1359-8368,
37
, pp.
425
436
.
11.
Qian
,
D.
,
Wagner
,
G. J.
,
Liu
,
W. K.
,
Yu
,
M. F.
, and
Ruoff
,
R. S.
, 2002, “
Mechanics of Carbon Nanotubes
,”
Appl. Mech. Rev.
0003-6900,
55
, pp.
495
533
.
12.
Saito
,
Y.
,
Yoshikawa
,
T.
,
Bandow
,
S.
,
Tomita
,
M.
, and
Hayashi
,
T.
, 1993, “
Interlayer Spacing in Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
48
, pp.
1907
1909
.
13.
Charlier
,
C.
, and
Michenaud
,
J. P.
, 1993, “
Energetics of Multilayered Carbon Tubules
,”
Phys. Rev. Lett.
0031-9007,
70
, pp.
1858
1861
.
14.
Kiang
,
C. H.
,
Endo
,
M.
,
Ajayan
,
P. M.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
, 1998, “
Size Effects in Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
81
, pp.
1869
1872
.
15.
Yu
,
M. F.
,
Yakobson
,
B. I.
, and
Ruoff
,
R. S.
, 2000, “
Controlled Sliding and Pullout of Nested Shells in Individual Multiwalled Carbon Nanotubes
,”
J. Phys. Chem. B
1089-5647,
104
, pp.
8764
8767
.
16.
Kolmogorov
,
A. N.
, and
Crespi
,
V. H.
, 2000, “
Smoothest Bearings: Interlayer Sliding in Multiwalled Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
85
, pp.
4727
4730
.
17.
Cumings
,
J.
, and
Zettl
,
A.
, 2000, “
Low-Friction Nanoscale Linear Bearing Realized From Multiwall Carbon Nanotubes
,”
Science
0036-8075,
289
, pp.
602
604
.
18.
Lide
,
D. R.
, 1994,
CRC Handbook of Chemistry and Physics
,
75th ed.
,
CRC
,
Boca Raton, FL
.
19.
Dresselhaus
,
M. S.
,
Dressulhaus
,
G.
, and
Avouris
,
P.
, 2001,
Carbon Nanotubes
,
Springer
,
Heidelberg
.
20.
Collins
,
P. G.
, and
Avouris
,
P.
, 2000, “
Nanotubes for Electronics
,”
Sci. Am.
0036-8733,
283
, pp.
62
69
.
21.
Che
,
J. W.
,
Cagin
,
T.
, and
Goddard
,
W. A.
, 2000, “
Thermal Conductivity of Carbon Nanotubes
,”
Nanotechnology
0957-4484,
11
, pp.
65
69
.
22.
Berber
,
S.
,
Kwon
,
Y. K.
, and
Tománek
,
D.
, 2000, “
Unusually High Thermal Conductivity of Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
84
(
20
), pp.
4613
4616
.
23.
Osman
,
M. A.
, and
Srivastava
,
D.
, 2001, “
Temperature Dependence of the Thermal Conductivity of Carbon Nanotubes
,”
Nanotechnology
0957-4484,
12
(
1
), pp.
21
22
.
24.
Kim
,
P.
, and
Lieber
,
C. M.
, 1999, “
Nanotube Nanotweezers
,”
Science
0036-8075,
286
, pp.
2148
2150
.
25.
Dai
,
H. J.
,
Hafner
,
J. H.
,
Rinzler
,
A. G.
,
Colbert
,
D. T.
, and
Smalley
,
R. E.
, 1996, “
Nanotubes as Nanoprobes in Scanning Probe Microscopy
,”
Nature (London)
0028-0836,
384
, pp.
147
150
.
26.
Sharke
,
P.
, 2001, “
Hybrid NEMS
,”
ASME Mechanical Engineering-CIME
, Vol.
123
, pp.
42
45
.
27.
Majumdar
,
A.
, 2001, “
Not Without Engineering—Promises and Challenges of Nanotechnology
,”
ASME Mechanical Engineering
, Vol.
123
, pp.
46
49
.
28.
Maney
,
K.
, 2000, “
Nanotech Is Near: Celebrate or Take Cover? Scientists Explore New Frontier of Promising Microscopic Technology
,” USA Today, Oct. 24.
29.
Zhao
,
Q.
,
Gan
,
Z. H.
, and
Zhuang
,
O. K.
, 2002, “
Electrochemical Sensors Based on Carbon Nanotubes
,”
Electroanalysis
1040-0397,
14
, pp.
1609
1613
.
30.
Mahar
,
B.
,
Laslau
,
C.
,
Yip
,
R.
, and
Sun
,
Y.
, 2007, “
Development of Carbon Nanotube-Based Sensors—A Review
,”
IEEE Sens. J.
1530-437X,
7
(
2
), pp.
266
284
.
31.
Baughman
,
R. H.
,
Cui
,
C. X.
,
Zakhidov
,
A. A.
,
Iqbal
,
Z.
,
Barisci
,
J. N.
,
Spinks
,
G. M.
,
Wallace
,
G. G.
,
Mazzoldi
,
A.
,
De Rossi
,
D.
,
Rinzler
,
A. G.
,
Jaschinski
,
O.
,
Roth
,
S.
, and
Kertesz
,
M.
, 1999, “
Carbon Nanotube Acuators
,”
Science
0036-8075,
284
(
5418
), pp.
1340
1344
.
32.
Minett
,
A.
,
Fraysse
,
J.
,
Gang
,
G.
,
Kim
,
G. T.
, and
Roth
,
S.
, 2002, “
Nanotube Actuators for Nanomechanics
,”
Curr. Appl. Phys.
1567-1739,
2
(
1
), pp.
61
64
.
33.
Yang
,
X. B.
, and
Ni
,
J.
, 2006, “
Calculations of Hydrogen Coverage on Single-Walled Carbon Nanotubes: Dependence on Nanotube Size, Temperature, and Pressure
,”
Phys. Rev. B
0163-1829,
74
, p.
195437
.
34.
Ye
,
X.
,
Gu
,
X.
,
Gong
,
X. G.
,
Shing
,
T. K. M.
, and
Liu
,
Z. F.
, 2007, “
A Nanocontainer for the Storage of Hydrogen
,”
Carbon
0008-6223,
45
(
2
), pp.
315
320
.
35.
Treacy
,
M. M. J.
,
Ebbesen
,
T. W.
, and
Gibson
,
J. M.
, 1996, “
Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes
,”
Nature (London)
0028-0836,
381
, pp.
678
680
.
36.
Wong
,
E. W.
,
Sheehan
,
P. E.
, and
Lieber
,
C. M.
, 1997, “
Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes
,”
Science
0036-8075,
277
, pp.
1971
1975
.
37.
Lu
,
J. P.
, 1997, “
Elastic Properties of Carbon Nanotubes and Nanoropes
,”
Phys. Rev. Lett.
0031-9007,
79
, pp.
1297
1300
.
38.
Krishnan
,
A.
,
Dujardin
,
E.
,
Ebbesen
,
T. W.
,
Yianilos
,
P. N.
, and
Treacy
,
M. M. J.
, 1998, “
Young’s modulus of single-walled nanotubes
,”
Phys. Rev. B
0163-1829,
58
, pp.
14013
14019
.
39.
Yao
,
N.
, and
Lordi
,
V.
, 1998, “
Young’s Modulus of Single-Walled Carbon Nanotubes
,”
J. Appl. Phys.
0021-8979,
84
, pp.
1939
1943
.
40.
Hernández
,
E.
,
Goze
,
C.
,
Bernier
,
P.
, and
Rubio
,
A.
, 1998, “
Elastic Properties of C and BxCyNz Composite Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
4502
4505
.
41.
Salvetat
,
J. P.
,
Bonard
,
J. M.
,
Thomson
,
N. H.
,
Kulik
,
A. J.
,
Forro
,
L.
,
Benoit
,
W.
, and
Zuppiroli
,
L.
, 1999, “
Mechanical Properties of Carbon Nanotubes
,”
Appl. Phys. A
0721-7250,
69
, pp.
255
260
.
42.
Sánchez-Portal
,
D.
,
Artacho
,
D.
,
Soler
,
J. M.
,
Rubio
,
A.
, and
Ordejon
,
P.
, 1999, “
Ab Initio Structural, Elastic, and Vibrational Properties of Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
59
, p.
12678
.
43.
Popov
,
V. N.
,
Van Doren
,
V. E.
, and
Balkanski
,
M.
, 2000, “
Elastic Properties of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
61
, pp.
3078
3084
.
44.
Kudin
,
K. N.
,
Scuseria
,
G. E.
, and
Yakobson
,
B. I.
, 2001, “
C2F, BN, and C Nanoshell Elasticity From Ab Initio Computations
,”
Phys. Rev. B
0163-1829,
64
, p.
235406
.
45.
Li
,
C. Y.
, and
Chou
,
T. W.
, 2003, “
A Structural Mechanics Approach for the Analysis of Carbon Nanotubes
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
2487
2499
.
46.
Sears
,
A.
, and
Batra
,
R. C.
, 2004, “
Macroscopic Properties of Carbon Nanotubes From Molecular-Mechanics Simulations
,”
Phys. Rev. B
0163-1829,
69
, p.
235406
.
47.
Li
,
C. Y.
, and
Chou
,
T. W.
, 2004, “
Elastic Properties of single-Walled Carbon Nanotubes in Transverse Directions
,”
Phys. Rev. B
0163-1829,
69
, p.
073401
.
48.
Shen
,
L. X.
, and
Li
,
J.
, 2005, “
Transversely Isotropic Elastic Properties of Multiwalled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
71
, p.
035412
.
49.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1996, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
0031-9007,
76
, pp.
2511
2514
.
50.
Xiao
,
T.
,
Xu
,
X. J.
, and
Liao
,
K.
, 2004, “
Characterization of Nonlinear Elasticity and Elastic Instability in Single-Walled Carbon Nanotubes
,”
J. Appl. Phys.
0021-8979,
95
, pp.
8145
8148
.
51.
Shen
,
H. S.
, and
Zhang
,
C. L.
, 2007, “
Postbuckling of Double-Walled Carbon Nanotubes With Temperature Dependent Properties and Initial Defects Under Combined Axial and Radial Mechanical Loads
,”
Int. J. Solids Struct.
0020-7683,
44
, pp.
1461
1487
.
52.
Wang
,
Q.
,
Duan
,
W. H.
,
Liew
,
K. M.
, and
He
,
X. Q.
, 2007, “
Inelastic Buckling of Carbon Nanotubes
,”
Appl. Phys. Lett.
0003-6951,
90
, p.
033110
.
53.
Yu
,
M. F.
,
Lourie
,
O.
,
Dyer
,
M. J.
,
Moloni
,
K.
,
Kelly
,
T. F.
, and
Ruoff
,
R. S.
, 2000, “
Strength and Breaking Mechanism of Multi-Walled Carbon Nanotubes Under Tensile Load
,”
Science
0036-8075,
287
, pp.
637
640
.
54.
Yakobson
,
B. I.
,
Campbell
,
M. P.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1997, “
High Strain Rate Fracture and C-Chain Unraveling in Carbon Nanotubes
,”
Comput. Mater. Sci.
0927-0256,
8
, pp.
341
348
.
55.
Yakobson
,
B. I.
, 1998, “
Mechanical Relaxation and ‘Intramolecular Plasticity’ in Carbon Nanotubes
,”
Appl. Phys. Lett.
0003-6951,
72
, pp.
918
920
.
56.
Dumitrică
,
T.
,
Belytschko
,
T.
, and
Yakobson
,
B. I.
, 2003, “
Bond-Breaking Bifurcation States in Carbon Nanotube Fracture
,”
J. Chem. Phys.
0021-9606,
118
, pp.
9485
9488
.
57.
Belytschko
,
T.
,
Xiao
,
S. P.
,
Schatz
,
G. C.
, and
Ruoff
,
R. S.
, 2002, “
Atomistic Simulation of Nanotubes Frature
,”
Phys. Rev. B
0163-1829,
65
, p.
235430
.
58.
Zhang
,
P.
,
Jiang
,
H.
,
Huang
,
Y.
,
Geubelle
,
P. H.
, and
Huang
,
K. C.
, 2004, “
An Atomistic-Based Continuum Theory for Carbon Nanotubes: Analysis of Fracture Nucleation
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
977
998
.
59.
Dresselhaus
,
M. S.
, and
Eklund
,
P. C.
, 2000, “
Phonons in Carbon Nanotubes
,”
Adv. Phys.
0001-8732,
49
, pp.
705
814
.
60.
Gibson
,
R. F.
,
Ayorinde
,
E. O.
, and
Wen
,
Y. F.
, 2007, “
Vibrations of Carbon Nanotubes and Their Composites: A Review
,”
Compos. Sci. Technol.
0266-3538,
67
, pp.
1
28
.
61.
Iijima
,
S.
,
Brabec
,
C.
,
Maiti
,
A.
, and
Bernholc
,
J.
, 1996, “
Structural Flexibility of Carbon Nanotubes
,”
J. Chem. Phys.
0021-9606,
104
, pp.
2089
2092
.
62.
Falvo
,
M. R.
,
Clary
,
G. J.
,
Taylor
,
R. M.
,
Chi
,
V.
,
Brooks
,
F. P.
, Jr.
,
Washburn
,
S.
, and
Superfine
,
R.
, 1997, “
Bending and Buckling of Carbon Nanotubes Under Large Strain
,”
Nature (London)
0028-0836,
389
, pp.
582
584
.
63.
Knechtel
,
W. H.
,
Dusberg
,
G. S.
,
Blau
,
W. J.
,
Hernandez
,
E.
, and
Rubio
,
A.
, 1998, “
Reversible Bending of Carbon Nanotubes Using a Transmission Electron Microscope
,”
Appl. Phys. Lett.
0003-6951,
73
, pp.
1961
1963
.
64.
Lourie
,
O.
,
Cox
,
D. M.
, and
Wagner
,
H. D.
, 1998, “
Buckling and Collapse of Embedded Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
81
, pp.
1638
1641
.
65.
Bower
,
C.
,
Rosen
,
R.
,
Jin
,
L.
,
Han
,
J.
, and
Zhou
,
O.
, 1999, “
Deformation of Carbon Nanotubes in Nanotube-Polymer Composites
,”
Appl. Phys. Lett.
0003-6951,
74
, pp.
3317
3319
.
66.
Poncharal
,
P.
,
Wang
,
Z. L.
,
Ugarte
,
D.
, and
de Heer
,
W. A.
, 1999, “
Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes
,”
Science
0036-8075,
283
, pp.
1513
1516
.
67.
Peters
,
M. J.
,
McNeil
,
L. E.
,
Lu
,
J. P.
, and
Kahan
,
D.
, 2000, “
Structural Phase Transition in Carbon Nanotube Bundles Under Pressure
,”
Phys. Rev. B
0163-1829,
61
, pp.
5939
5944
.
68.
Venkateswaran
,
U. D.
,
Brandsen
,
E. A.
,
Schlecht
,
U.
,
Eklund
,
P. C.
,
Rao
,
A. M.
,
Richter
,
E.
,
Loa
,
L.
,
Syassen
,
K.
, and
Eklund
,
P. C.
, 2001, “
High Pressure Studies of the Raman-Active Phonons in Carbon Nanotubes
,”
Phys. Status Solidi B
0370-1972,
223
, pp.
225
236
.
69.
Gaál
,
R.
,
Salvetat
,
J. P.
, and
Forro
,
L.
, 2000, “
Pressure Dependence of the Resistively of Single-Wall Carbon Nanotube Ropes
,”
Phys. Rev. B
0163-1829,
61
, pp.
7320
7323
.
70.
Tang
,
D. S.
,
Bao
,
Z. X.
,
Wang
,
L. J.
,
Chen
,
L. C.
,
Sun
,
L. F.
,
Liu
,
Z. Q.
,
Zhou
,
W. Y.
, and
Xie
,
S. S.
, 2000, “
The Electrical Behavior of Carbon Nanotubes Under High Pressure
,”
J. Phys. Chem. Solids
0022-3697,
61
, pp.
1175
1178
.
71.
Ni
,
B.
,
Sinnott
,
S. B.
,
Mikulski
,
P. T.
, and
Harrison
,
J. A.
, 2002, “
Compression of Carbon Nanotubes Filled With C60, CH4, or Ne: Predictions From Molecular Dynamics Simulations
,”
Phys. Rev. Lett.
0031-9007,
88
, p.
205505
.
72.
Buehler
,
M. J.
,
Kong
,
J.
, and
Gao
,
H. J.
, 2004, “
Deformation Mechanism of Very Long Single-Wall Carbon Nanotubes Subject to Compressive Loading
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
, pp.
245
249
.
73.
Pantano
,
A.
,
Boyce
,
M. C.
, and
Parks
,
D. M.
, 2004, “
Mechanics of Axial Compression of Single-And Multi-Wall Carbon Nanotubes
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
, pp.
279
284
.
74.
Ru
,
C. Q.
, 2000, “
Effect of Van Der Waals Forces on Axial Buckling of a Doublewalled Carbon Nanotube
,”
J. Appl. Phys.
0021-8979,
87
, pp.
7227
7231
.
75.
Ru
,
C. Q.
, 2000, “
Effective Bending Stiffness of Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
62
, pp.
9973
9976
.
76.
Ru
,
C. Q.
, 2001, “
Axially Compressed Buckling of a Doublewalled Carbon Nanotube Embedded in an Elastic Medium
,”
J. Mech. Phys. Solids
0022-5096,
49
, pp.
1265
1279
.
77.
Ru
,
C. Q.
, 2001, “
Degraded Axial Buckling Strain of Multiwalled Carbon Nanotubes Due to Interlayer Slips
,”
J. Appl. Phys.
0021-8979,
89
, pp.
3426
3433
.
78.
Ru
,
C. Q.
, 2000, “
Column Buckling of Multiwalled Carbon Nanotubes With Interlayer Radial Displacements
,”
Phys. Rev. B
0163-1829,
62
, pp.
16962
16967
.
79.
Waters
,
J. F.
,
Riester
,
L.
,
Jouzi
,
M.
,
Guduru
,
P. R.
, and
Xu
,
J. M.
, 2004, “
Buckling Instabilities in Multiwalled Carbon Nanotubes Under Uniaxial Compression
,”
Appl. Phys. Lett.
0003-6951,
85
, pp.
1787
1789
.
80.
Waters
,
J. F.
,
Guduru
,
P. R.
,
Jouzi
,
M.
,
Xu
,
J. M.
,
Hanlon
,
T.
, and
Suresh
,
S.
, 2005, “
Shell Buckling of Individual Multi-Walled Carbon Nanotubes Using Nanoindentation
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
103109
.
81.
Duan
,
X. J.
,
Tang
,
C.
,
Zhang
,
J.
,
Guo
,
W. L.
, and
Liu
,
Z. F.
, 2007, “
Two Distinct Buckling Modes in Carbon Nanotube Bending
,”
Nano Lett.
1530-6984,
7
, pp.
143
148
.
82.
Shibutani
,
Y.
, and
Ogata
,
S.
, 2004, “
Mechanical Integrity of Carbon Nanotubes for Bending and Torsion
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
12
, pp.
599
610
.
83.
Wang
,
Q.
,
Liew
,
K. M.
,
He
,
X. Q.
, and
Xiang
,
Y.
, 2007, “
Local Buckling of Carbon Nanotubes Under Bending
,”
Appl. Phys. Lett.
0003-6951,
91
, p.
093128
.
84.
Kutana
,
A.
, and
Giapis
,
K. P.
, 2006, “
Transient Deformation Regime in Bending of Single-Walled Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
97
, p.
245501
.
85.
Yang
,
H. K.
, and
Wang
,
X.
, 2006, “
Bending Stability of Multi-Wall Carbon Nanotubes Embedded in an Elastic Medium
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
14
, pp.
99
116
.
86.
Wang
,
X.
, and
Yang
,
H. K.
, 2006, “
Bending Stability of Multiwalled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
73
, p.
085409
.
87.
Wang
,
Q.
, 2008, “
Torsional Buckling of Double-Walled Carbon Nanotubes
,”
Carbon
0008-6223,
46
, pp.
1172
1174
.
88.
Zhang
,
Y. Y.
, and
Wang
,
C. M.
, 2008, “
Torsional Responses of Double-Walled Carbon Nanotubes via Molecular Dynamics Simulations
,”
J. Phys.: Condens. Matter
0953-8984,
20
, p.
455214
.
89.
Jeong
,
B. W.
,
Lim
,
J. K.
, and
Sinnott
,
S. B.
, 2007, “
Elastic Torsional Response of Carbon Nanotube Systems
,”
J. Appl. Phys.
0021-8979,
101
, p.
084309
.
90.
Jeong
,
B. W.
,
Lim
,
J. K.
, and
Sinnott
,
S. B.
, 2007, “
Turning Stiffness of Carbon Nanotube Systems
,”
Appl. Phys. Lett.
0003-6951,
91
, p.
093102
.
91.
Wang
,
Q.
, 2009, “
Atomic Transportation via Carbon Nanotubes
,”
Nano Lett.
1530-6984,
9
, pp.
245
249
.
92.
Wang
,
Q.
, 2009, “
Transportation of Hydrogen Molecules Using Carbon Nanotube in Torsion
,”
Carbon
0008-6223,
47
, pp.
1870
1873
.
93.
Han
,
Q.
, and
Lu
,
G. X.
, 2003, “
Torsional Buckling of a Double-Walled Carbon Nanotube Embedded in an Elastic Medium
,”
Eur. J. Mech. A/Solids
0997-7538,
22
, pp.
875
883
.
94.
Wang
,
X.
,
Yang
,
H. K.
, and
Dong
,
K.
, 2005, “
Torsional Buckling of Multi-Walled Carbon Nanotubes
,”
Mater. Sci. Eng., A
0921-5093,
404
, pp.
314
322
.
95.
Han
,
Q.
,
Yao
,
X. H.
, and
Li
,
L. F.
, 2006, “
Theoretical and Numerical Study of Torsional Buckling of Multiwall Carbon Nanotubes
,”
Mech. Adv. Mater. Structures
,
13
, pp.
329
337
.
96.
Yao
,
X. H.
, and
Han
,
Q.
, 2006, “
Buckling Analysis of Multiwalled Carbon Nanotubes Under Torsional Load Coupling With Temperature Changes
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
, pp.
419
427
.
97.
Yang
,
H. K.
, and
Wang
,
X.
, 2007, “
Torsional Buckling of Multi-Wall Carbon Nanotubes Embedded in an Elastic Medium
,”
Compos. Struct.
0263-8223,
77
, pp.
182
192
.
98.
Wang
,
Q.
,
Quek
,
S. T.
, and
Varadan
,
V. K.
, 2007, “
Torsional Buckling of carBon Nanotubes
,”
Phys. Lett. A
0375-9601,
367
, pp.
135
139
.
99.
Zhang
,
C. L.
, and
Shen
,
H. S.
, 2007, “
Buckling and Postbuckling of Single-Walled Carbon Nanotubes Under Combined Axial Compression and Torsion in Thermal Environments
,”
Phys. Rev. B
0163-1829,
75
, p.
045408
.
100.
Jeong
,
B. W.
,
Lim
,
J. K.
, and
Sinnott
,
S. B.
, 2008, “
Tuning the Torsional Properties of Carbon Nanotube Systems With Axial Prestress
,”
Appl. Phys. Lett.
0003-6951,
92
, p.
253114
.
101.
Wang
,
X.
,
Sun
,
B.
, and
Yang
,
H. K.
, 2006, “
Stability of Multi-Walled Carbon Nanotubes Under Combined Bending and Axial Compression Loading
,”
Nanotechnology
0957-4484,
17
, pp.
815
823
.
102.
Lu
,
Y. J.
, and
Wang
,
X.
, 2006, “
Combined Torsional Buckling of Multi-Walled Carbon Nanotubes
,”
J. Phys. D
0022-3727,
39
, pp.
3380
3387
.
103.
Wang
,
X.
,
Lu
,
G. X.
, and
Lu
,
Y. J.
, 2007, “
Buckling of Embedded Multi-Walled Carbon Nanotubes Under Combined Torsion and Axial Loading
,”
Int. J. Solids Struct.
0020-7683,
44
, pp.
336
351
.
104.
Srivastava
,
D.
,
Menon
,
M.
, and
Cho
,
K.
, 1999, “
Nanoplasticity of Single-Wall Carbon Nanotubes Under Uniaxial Compression
,”
Phys. Rev. Lett.
0031-9007,
83
, pp.
2973
2976
.
105.
Huang
,
J. Y.
,
Chen
,
S.
,
Wang
,
Z. Q.
,
Kempa
,
K.
,
Wang
,
Y. M.
,
Jo
,
S. H.
,
Chen
,
G.
,
Dresselhaus
,
M. S.
, and
Ren
,
Z. F.
, 2006, “
Superplastic Carbon Nanotubes: Conditions Discovered That Allow Extensive Deformation of Rigid Single-Walled Nanotubes
,”
Nature (London)
0028-0836,
439
, p.
281
.
106.
Huang
,
J. Y.
,
Chen
,
S.
,
Ren
,
Z. F.
,
Wang
,
Z.
,
Kempa
,
K.
,
Naughton
,
M. J.
,
Chen
,
G.
, and
Dresselhaus
,
M. S.
, 2007, “
Enhanced ductile behavior of Tensile-Elongated Individual Double-Walled and Triple-Walled Carbon Nanotubes at High Temperatures
,”
Phys. Rev. Lett.
0031-9007,
98
, p.
185501
.
107.
Donnell
,
L. H.
, 1976,
Beams, Plates and Shells
,
McGraw-Hill
,
New York
.
108.
Flugge
,
W.
, 1960,
Stresses in Shells
,
Springer-Verlag
,
Berlin
.
109.
Li
,
C. Y.
, and
Chou
,
T. W.
, 2004, “
Modeling of Elastic Buckling of Carbon Nanotubes by Molecular Structural Mechanics Approach
,”
Mech. Mater.
0167-6636,
36
, pp.
1047
1055
.
110.
Chang
,
T. C.
,
Li
,
G. Q.
, and
Guo
,
X. M.
, 2005, “
Elastic Axial Buckling of Carbon Nanotubes via a Molecular Mechanics Model
,”
Carbon
0008-6223,
43
, pp.
287
294
.
111.
Chang
,
T. C.
,
Guo
,
W. L.
, and
Guo
,
X. M.
, 2005, “
Buckling of Multiwalled Carbon Nanotubes Under Axial Compression and Bending via a Molecular Mechanics Model
,”
Phys. Rev. B
0163-1829,
72
, p.
064101
.
112.
Wang
,
C. Y.
,
Ru
,
C. Q.
, and
Mioduchowski
,
A.
, 2003, “
Axially Compressed Buckling of Pressured Multiwall Carbon Nanotubes
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
3893
3911
.
113.
Liew
,
K. M.
,
Wong
,
C. H.
,
He
,
X. Q.
,
Tan
,
M. J.
, and
Meguid
,
S. A.
, 2004, “
Nanomechanics of Single and Multiwalled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
69
, p.
115429
.
114.
Sears
,
A.
, and
Batra
,
R. C.
, 2006, “
Buckling of Multiwalled Carbon Nanotubes Under Axial Compression
,”
Phys. Rev. B
0163-1829,
73
, p.
085410
.
115.
Zhang
,
Y. Y.
,
Wang
,
C. M.
, and
Tan
,
V. B. C.
, 2008, “
Examining the Effects of Wall Numbers on Buckling Behavior and Mechanical Properties of Multiwalled Carbon Nanotubes via Molecular Dynamics Simulations
,”
J. Appl. Phys.
0021-8979,
103
, p.
053505
.
116.
Thostenson
,
E. T.
, and
Chou
,
T. W.
, 2004, “
Nanotube Buckling in Aligned Multi-Wall Carbon Nanotube Composites
,”
Carbon
0008-6223,
42
, pp.
3015
3018
.
117.
Wang
,
C. Y.
, and
Mioduchowski
,
A.
, 2007, “
The Effect of Dimensional Factors on Buckling of Multiwall Carbon Nanotubes
,”
J. Appl. Phys.
0021-8979,
101
, p.
014306
.
118.
Zhang
,
Y. Y.
,
Wang
,
C. M.
,
Duan
,
W. H.
,
Xiang
,
Y.
, and
Zong
,
Z.
, 2009, “
Assessment of Continuum Mechanics Models in Predicting Buckling Strains of Single-Walled Carbon Nanotubes
,”
Nanotechnology
0957-4484,
20
, p.
395707
.
119.
Chang
,
T. C.
, and
Hou
,
J.
, 2006, “
Molecular Dynamics Simulations on Buckling of Multiwalled Carbon Nanotubes Under Bending
,”
J. Appl. Phys.
0021-8979,
100
, p.
114327
.
120.
Li
,
X. Y.
,
Yang
,
W.
, and
Liu
,
B.
, 2007, “
Bending Induced Rippling and Twisting of Multiwalled Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
98
, p.
205502
.
121.
Chang
,
T. C.
, 2007, “
Torsional Behavior of Chiral Single-Walled Carbon Nanotubes in Loading Direction Dependent
,”
Appl. Phys. Lett.
0003-6951,
90
, p.
201910
.
122.
Wang
,
C. M.
,
Ma
,
Y. Q.
,
Zhang
,
Y. Y.
, and
Ang
,
K. K.
, 2006, “
Buckling of Double-Walled Carbon Nanotubes Modeled by Solid Shell Elements
,”
J. Appl. Phys.
0021-8979,
99
, p.
114317
.
123.
Wang
,
Y.
,
Wang
,
X. X.
,
Ni
,
X. G.
, and
Wu
,
H. A.
, 2005, “
Simulation of the Elastic Response and the Buckling Modes of Single-Walled Carbon Nanotubes
,”
Comput. Mater. Sci.
0927-0256,
32
, pp.
141
146
.
124.
Leung
,
A. Y. T.
,
Guo
,
X.
,
He
,
X. Q.
,
Jiang
,
H.
, and
Huang
,
Y.
, 2006, “
Postbuckling of Carbon Nanotubes by Atomic-Scale Finite Element
,”
J. Appl. Phys.
0021-8979,
99
, p.
124308
.
125.
Cornwell
,
C. F.
, and
Wille
,
L. T.
, 1997, “
Elastic Properties of Single-Walled Carbon Nanotubes in Compression
,”
Solid State Commun.
0038-1098,
101
, pp.
555
558
.
126.
Cao
,
G. X.
, and
Chen
,
X.
, 2006, “
Buckling of Single-Walled Carbon Nanotubes Upon Bending: Molecular Dynamics Simulations and Finite Element Method
,”
Phys. Rev. B
0163-1829,
73
, p.
155435
.
127.
Pantano
,
A.
,
Boyce
,
M. C.
, and
Parks
,
D. M.
, 2003, “
Nonlinear Structural Mechanics Based Modeling of Carbon Nanotube Deformation
,”
Phys. Rev. Lett.
0031-9007,
91
, p.
145504
.
128.
Akita
,
S.
,
Nishio
,
M.
, and
Nakayama
,
Y.
, 2006, “
Buckling of Multiwall Carbon Nanotubes Under Axial Compression
,”
Jpn. J. Appl. Phys.
0021-4922,
45
, pp.
5586
5589
.
129.
Chang
,
T. C.
,
Geng
,
J. Y.
, and
Guo
,
X. M.
, 2005, “
Chirality- and Size-Dependent Elastic Properties of Single-Walled Carbon Nanotubes
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
251929
.
130.
Shen
,
L. X.
, and
Li
,
J.
, 2004, “
Transversely Isotropic Elastic Properties of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
69
, p.
045414
.
131.
Huang
,
Y.
,
Wu
,
J.
, and
Hwang
,
K. C.
, 2006, “
Thickness of Graphene and Single-Wall Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
74
, p.
245413
.
132.
Ozaki
,
T.
,
Iwasa
,
Y.
, and
Mitani
,
T.
, 2000, “
Stiffness of Single-Walled Carbon Nanotube Under Large Strain
,”
Phys. Rev. Lett.
0031-9007,
84
, pp.
1712
1715
.
133.
Xiao
,
J. R.
,
Lopatnikov
,
S. L.
,
Gama
,
B. A.
, and
Gillespie
,
J. W.
, Jr.
, 2006, “
Nanomechanics on the Deformation of Single- and Multi-Walled Carbon Nanotubes Under Radial Pressure
,”
Mater. Sci. Eng., A
0921-5093,
416
, pp.
192
204
.
134.
Zhang
,
Y. Y.
,
Tan
,
V. B. C.
, and
Wang
,
C. M.
, 2006, “
Effect of Chirality on Buckling Behavior of Single-Walled Carbon Nanotubes
,”
J. Appl. Phys.
0021-8979,
100
, p.
074304
.
135.
He
,
X. Q.
,
Kitipornchai
,
S.
, and
Liew
,
K. M.
, 2005, “
Buckling Analysis of Multi-Walled Carbon Nanotubes: A Continuum Model Accounting for Van Der Waals Interaction
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
303
326
.
136.
Qian
,
H.
, and
Xu
,
K. Y.
, 2006, “
Curvature Effects on Pressure-Induced Buckling of Empty or Filled Double-Walled Carbon Nanotubes
,”
Acta Mech.
0001-5970,
187
, pp.
55
73
.
137.
Gao
,
R. P.
,
Wang
,
Z. L.
,
Bai
,
Z. G.
,
de heer
,
W. A.
,
Dai
,
L. M.
, and
Gao
,
M.
, 2000, “
Nanomechanics of Aligned Carbon Nanotube Arrays
,”
Phys. Rev. Lett.
0031-9007,
85
, pp.
622
625
.
138.
Sammalkorpi
,
M.
,
Krasheninnikov
,
A.
,
Kuronen
,
A.
,
Nordlund
,
K.
, and
Kaski
,
K.
, 2004, “
Mechanical Properties of Carbon Nanotubes With Vacancies and Related Defects
,”
Phys. Rev. B
0163-1829,
70
, p.
245416
.
139.
Guduru
,
P. R.
, and
Xia
,
Z.
, 2007, “
Experiments and Analysis of Buckling in Imperfect Multiwalled Carbon Nanotubes
,”
Exp. Mech.
0014-4851,
47
, pp.
153
161
.
140.
Xia
,
Y. Y.
,
Zhao
,
M. W.
,
Ma
,
Y.
,
Ying
,
M.
,
Liu
,
X.
,
Liu
,
P.
, and
Mei
,
L.
, 2002, “
Tensile Strength of Single-Walled Carbon Nanotubes With Defects Under Hydrostatic Pressure
,”
Phys. Rev. B
0163-1829,
65
, p.
155415
.
141.
Mielke
,
S. L.
,
Troya
,
D.
,
Zhang
,
S. L.
,
Li
,
J. J.
,
Xiao
,
S. P.
,
Car
,
R.
,
Ruoff
,
R. S.
,
Schatz
,
G. C.
, and
Belytschko
,
T.
, 2004, “
The Role of Vacancy Defects and Holes in the Fracture of Carbon Nanotubes
,”
Chem. Phys. Lett.
0009-2614,
390
, pp.
413
420
.
142.
Jeng
,
Y. R.
,
Tsai
,
P. C.
, and
Fang
,
T. H.
, 2004, “
Effects of Temperature and Vacancy Defects on Tensile Deformation of Single-Walled Carbon Nanotubes
,”
J. Phys. Chem. Solids
0022-3697,
65
, pp.
1849
1856
.
143.
Zhang
,
S. L.
,
Mielke
,
S. L.
,
Khare
,
R.
,
Troya
,
D.
,
Ruoff
,
R. S.
,
Schatz
,
G. C.
, and
Belytschko
,
T.
, 2005, “
Mechanics of Defects in Carbon Nanotubes: Atomistic and Multiscale Simulations
,”
Phys. Rev. B
0163-1829,
71
, p.
115403
.
144.
Hirai
,
Y.
,
Nishimaki
,
S.
,
Mori
,
H.
,
Kimoto
,
Y.
,
Akita
,
S.
,
Nakayama
,
Y.
, and
Tanaka
,
Y.
, 2003, “
Molecular Dynamics Studies on Mechanical Properties of Carbon Nano Tubes With Pinhole Defects
,”
Jpn. J. Appl. Phys.
0021-4922,
42
, pp.
4120
4123
.
145.
Shen
,
G. A.
,
Namilae
,
S.
, and
Chandra
,
N.
, 2006, “
Load Transfer Issues in the Tensile and Compressive Behavior of Multiwall Carbon Nanotubes
,”
Mater. Sci. Eng., A
0921-5093,
429
, pp.
66
73
.
146.
Chandra
,
N.
, and
Namilae
,
S.
, 2006, “
Tensile and Compressive Behavior of Carbon Nanotubes: Effects of functionalization and Topological Defects
,”
Mech. Adv. Mater. Structures
,
13
, pp.
115
127
.
147.
Xin
,
H.
,
Han
,
Q.
, and
Yao
,
X. H.
, 2007, “
Buckling and Axially Compressive Properties of Perfect and Defective Single-Walled Carbon Nanotubes
,”
Carbon
0008-6223,
45
, pp.
2486
2495
.
148.
Xia
,
Z. H.
,
Guduru
,
P. R.
, and
Curtin
,
W. A.
, 2007, “
Enhancing Mechanical Properties of Multiwall Carbon Nanotubes via sp3 Interwall Bridging
,”
Phys. Rev. Lett.
0031-9007,
98
, pp.
245501
.
149.
Huq
,
A. M. A.
,
Goh
,
K. L.
,
Zhou
,
Z. R.
, and
Liao
,
K.
, 2008, “
On Defect Interactions in Axially Loaded Single-Walled Carbon Nanotubes
,”
J. Appl. Phys.
0021-8979,
103
, p.
054306
.
150.
Wang
,
Q.
,
Varadan
,
V. K.
,
Xiang
,
Y.
,
Han
,
Q. K.
, and
Wen
,
B. C.
, 2008, “
On Stability of Single-Walled Carbon Nanotubes With a Vacancy Defect
,”
Int. J. Struct. Stab. Dyn.
0219-4554,
8
, pp.
357
366
.
151.
Zhang
,
Y. Y.
,
Xiang
,
Y.
, and
Wang
,
C. M.
, 2009, “
Buckling of Defective Single-Walled Carbon Nanotubes
,”
J. Appl. Phys.
0021-8979,
106
, p.
113503
.
152.
Shen
,
H. S.
, and
Zhang
,
C. L.
, 2006, “
Postbuckling Prediction of Axially Loaded Double-Walled Carbon Nanotubes With Temperature Dependent Properties and Initial Defects
,”
Phys. Rev. B
0163-1829,
74
, p.
035410
.
153.
Thomsen
,
C.
, and
Reich
,
S.
, 2001, “
The Pressure Dependence of the High-Energy Raman Modes in Empty and Filled Multiwalled Carbon Nanotubes
,”
Phys. Status Solidi B
0370-1972,
225
, pp.
R18
R19
.
154.
Zhu
,
J.
,
Pan
,
Z. Y.
,
Wang
,
Y. X.
,
Zhou
,
L.
, and
Jiang
,
O.
, 2007, “
The Effects of Encapsulating C-60 Fullerenes on the Bending Flexibility of Carbon Nanotubes
,”
Nanotechnology
0957-4484,
18
, p.
275702
.
155.
Zhou
,
L.
,
Zhu
,
B. E.
,
Pan
,
Z. Y.
,
Wang
,
Y. X.
, and
Zhu
,
J.
, 2007, “
Reduction of the Buckling Strength of Carbon Nanotubes Resulting From Encapsulation of C60 Fullerenes
,”
Nanotechnology
0957-4484,
18
, p.
275709
.
156.
Hu
,
Z. L.
,
Guo
,
X. M.
, and
Ru
,
C. Q.
, 2008, “
Enhanced Critical Pressure Fore Buckling of Carbon Nanotubes Due to an Inserted Linear Carbon Chain
,”
Nanotechnology
0957-4484,
19
, p.
305703
.
157.
Král
,
P.
, and
Tomanek
,
D.
, 1999, “
Laser-Driven Atomic Pump
,”
Phys. Rev. Lett.
0031-9007,
82
, pp.
5373
5376
.
158.
Bulson
,
P. S.
, 1985,
Buried Structure
,
Chapman and Hall
,
London
.
159.
Vlasov
,
V. Z.
, and
Leont’ev
,
U. N.
, 1966,
Beams, Plates and Shells on Elastic Foundations
,
Israel Program for Scientific Translations
,
Jerusalem
.
160.
Kitipornchai
,
S.
,
He
,
X. Q.
, and
Liew
,
K. M.
, 2005, “
Buckling Analysis of Triple-Walled Carbon Nanotubes Embedded in an Elastic Matrix
,”
J. Appl. Phys.
0021-8979,
97
, p.
114318
.
161.
Pasternak
,
P. L.
, 1954,
On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants
,
Gos. Izd, Lit. Po Strait I Arkh
,
Moscow
, (in Russian).
162.
Zhang
,
Y. Q.
,
Liu
,
G. R.
,
Qian
,
H. F.
, and
Li
,
G. Y.
, 2006, “
Investigation of Buckling of Double-Walled Carbon Nanotubes Embedded in an Elastic Medium Using the Energy Method
,”
Int. J. Mech. Sci.
0020-7403,
48
, pp.
53
61
.
163.
Yao
,
X. H.
, and
Han
,
Q.
, 2007, “
Postbuckling Prediction of Double-Walled Carbon Nanotubes Under Axial Compression
,”
Eur. J. Mech. A/Solids
0997-7538,
26
, pp.
20
32
.
164.
Garg
,
A.
, and
Sinnott
,
S. B.
, 1998, “
Effect of Chemical Functionalization on Mechanical Properties of Carbon Nanotubes
,”
Chem. Phys. Lett.
0009-2614,
295
, pp.
273
278
.
165.
Namilae
,
S.
, and
Chandra
,
N.
, 2006, “
Role of Atomic Scale Interfaces in the Compressive Behavior of Carbon Nanotubes in Composites
,”
Compos. Sci. Technol.
0266-3538,
66
, pp.
2030
2038
.
166.
Hadjiev
,
V. G.
,
Lagoudas
,
D. C.
,
Oh
,
E. -S.
,
Thakre
,
P.
,
Davis
,
D.
,
Files
,
B. S.
,
Yowell
,
L.
,
Arepalli
,
S.
,
Bahr
,
J. L.
, and
Tour
,
J. M.
, 2006, “
Buckling Instabilities of Octadecylamine Functionalized Carbon Nanotubes Embedded in Epoxy
,”
Compos. Sci. Technol.
0266-3538,
66
, pp.
128
136
.
167.
Zhang
,
W.
,
Suhr
,
J.
, and
Koratkar
,
N. A.
, 2006, “
Observation of High Buckling Stability in Carbon Nanotube Polymer Composites
,”
Adv. Mater.
0935-9648,
18
, pp.
452
456
.
168.
Zhang
,
C. L.
, and
Shen
,
H. S.
, 2006, “
Temperature-Dependent Elastic Properties of Single-Walled Carbon Nanotubes: Prediction From Molecular Dynamics Simulation
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
081904
.
169.
Wang
,
Y.
,
Ni
,
X. G.
,
Wang
,
X. X.
, and
Wu
,
H. A.
, 2003, “
Effect of Temperature on Deformation of Carbon Nanotube Under Compression
,”
Chin. Phys.
1009-1963,
12
, pp.
1007
1010
.
170.
Zhang
,
C. L.
, and
Shen
,
H. S.
, 2006, “
Buckling and Postbuckling Analysis of Single-Walled Carbon Nanotubes in Thermal Environments via Molecular Dynamics Simulation
,”
Carbon
0008-6223,
44
, pp.
2608
2616
.
171.
Tang
,
C.
,
Guo
,
W. L.
, and
Chen
,
C. F.
, 2008, “
Mechanism for Superelongation of Carbon Nanotubes at High Temperature
,”
Phys. Rev. Lett.
0031-9007,
100
, p.
175501
.
172.
Zhang
,
Y. Y.
,
Wang
,
C. M.
, and
Tan
,
V. B. C.
, 2009, “
Buckling of Carbon Nanotubes at High Temperatures
,”
Nanotechnology
0957-4484,
20
, p.
215702
.
173.
Das
,
P. S.
, and
Wille
,
L. T.
, 2002, “
Atomistic and Continuum Studies of Carbon Nanotubes Under Pressure
,”
Comput. Mater. Sci.
0927-0256,
24
, pp.
159
162
.
174.
Garg
,
A.
,
Han
,
J.
, and
Sinnott
,
S. B.
, 1998, “
Interactions of Carbon-Nanotubule Proximal Probe Tips With Diamond and Graphene
,”
Phys. Rev. Lett.
0031-9007,
81
, pp.
2260
2263
.
175.
Wei
,
C. Y.
,
Cho
,
K.
, and
Srivastava
,
D.
, 2003, “
Tensile Strength of Carbon Nanotubes Under Realistic Temperature and Strain Rate
,”
Phys. Rev. B
0163-1829,
67
, p.
115407
.
176.
Cao
,
G. X.
, and
Chen
,
X.
, 2006, “
The Effect of the Displacement Increment on the Axial Compressive Buckling Behaviours of Single-Walled Carbon Nanotubes
,”
Nanotechnology
0957-4484,
17
, pp.
3844
3855
.
177.
Zhang
,
Y. Y.
,
Tan
,
V. B. C.
, and
Wang
,
C. M.
, 2007, “
Effect of Strain Rate on the Buckling Behavior of Single- and Double-Walled Carbon Nanotubes
,”
Carbon
0008-6223,
45
, pp.
514
523
.
178.
Wang
,
C. Y.
,
Zhang
,
Y. Y.
,
Wang
,
C. M.
, and
Tan
,
V. B. C.
, 2007, “
Buckling of Carbon Nanotubes: A Literature Survey
,”
J. Nanosci. Nanotechnol.
1533-4880,
7
, pp.
4221
4247
.
179.
Davydov
,
A. S.
, 1965,
Quantum Mechanics
,
Pergamon
,
Oxford, New York
.
180.
Ohno
,
K.
,
Esfarjani
,
K.
, and
Kawazoe
,
Y.
, 1999,
Computational Materials Sciences: From Ab Initio to Monte Carlo Methods
,
Springer
,
Berlin
.
181.
Clementi
,
E.
, 2000, “
Ab Initio Computations in Atoms and Molecules
,”
IBM J. Res. Dev.
0018-8646,
44
, pp.
228
245
.
182.
Hohenberg
,
P.
, and
Kohn
,
W.
, 1964, “
Inhomogeneous Electron Gas
,”
Phys. Rev.
0096-8250,
136
, pp.
B864
B871
.
183.
Slater
,
J. C.
, and
Koster
,
G. F.
, 1954, “
Simplified LCAO Method for the Periodic Potential Problem
,”
Phys. Rev.
0096-8250,
94
, pp.
1498
1524
.
184.
Harrison
,
W. A.
, 1989,
Electronic Structure and the Properties of Solids: The Physics of Chemical Bond
,
Dover
,
New York
.
185.
Van Lier
,
G.
,
Van Alsenoy
,
C.
,
Van Doren
,
V.
, and
Geerlings
,
P.
, 2000, “
Ab Initio Study of the Elastic Properties of Singlewalled Carbon Nanotubes and Grapheme
,”
Chem. Phys. Lett.
0009-2614,
326
, pp.
181
185
.
186.
Wang
,
L. F.
,
Zheng
,
Q. S.
,
Liu
,
J. Z.
, and
Jiang
,
Q.
, 2005, “
Size Dependence of the Thin-Shell Model for Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
95
, p.
105501
.
187.
Pullen
,
A.
,
Zhao
,
G. L.
,
Bagayoko
,
D.
, and
Yang
,
L.
, 2005, “
Structural, Elastic, and Electronic Properties of Deformed Carbon Nanotubes Under Uniaxial Strain
,”
Phys. Rev. B
0163-1829,
71
, p.
205410
.
188.
Hasegawa
,
M.
, and
Nishidate
,
K.
, 2006, “
Radial Deformation and Stability of Single-Wall Carbon Nanotubes Under Hydrostatic Pressure
,”
Phys. Rev. B
0163-1829,
74
, p.
115401
.
189.
Dereli
,
G.
, and
Ozdogan
,
C.
, 2003, “
Structural Stability and Energetics of Single-Walled Carbon Nanotubes Under Uniaxial Strain
,”
Phys. Rev. B
0163-1829,
67
, p.
035416
.
190.
Yeak
,
S. H.
,
Ng
,
T. Y.
, and
Liew
,
K. M.
, 2005, “
Multiscale Modeling of Carbon Nanotubes Under Axial Tension and Compression
,”
Phys. Rev. B
0163-1829,
72
, p.
165401
.
191.
Allen
,
M. P.
, and
Tildesley
,
D. J.
, 1987,
Computer Simulation of Liquids
,
Clarendon
,
Oxford
.
192.
Frenkel
,
D.
, and
Smit
,
B.
, 1996,
Understanding Molecular Simulation: From Algorithms to Applications
,
Academic
,
New York
.
193.
Woodcock
,
L. V.
, 1971, “
Isothermal Molecular Dynamics Calculations for Liquid Salts
,”
Chem. Phys. Lett.
0009-2614,
10
, pp.
257
261
.
194.
Berendsen
,
H. J. C.
,
Postma
,
J. P. M.
,
van Gunsteren
,
W. F.
,
Dinola
,
A.
, and
Haak
,
J. R.
, 1984, “
Molecular Dynamics With Coupling to an External Bath
,”
J. Chem. Phys.
0021-9606,
81
, pp.
3684
3690
.
195.
Schneider
,
T.
, and
Stoll
,
E.
, 1978, “
Molecular-Dynamics Study of a 3-Dimensional One-Component Model for Distortive Phase-Transitions
,”
Phys. Rev. B
0163-1829,
17
, pp.
1302
1322
.
196.
Nosé
,
S.
, 1984, “
A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods
,”
J. Chem. Phys.
0021-9606,
81
, pp.
511
519
.
197.
Hoover
,
W. G.
, 1985, “
Canonical Dynamics: Equilibrium Phase-Space Distributions
,”
Phys. Rev. A
1050-2947,
31
, pp.
1695
1697
.
198.
Hunenberger
,
P. H.
, 2005, “
Thermostat Algorithms for Molecular Dynamics Simulations
,”
Adv. Polym. Sci.
0065-3195,
173
, pp.
105
149
.
199.
Heo
,
S. J.
, and
Sinnott
,
S. B.
, 2007, “
Investigation of the Influence of Thermostat Configurations on the Mechanical Properties of Carbon Nanotubes in Molecular Dynamics Simulations
,”
J. Nanosci. Nanotechnol.
1533-4880,
7
, pp.
1518
1524
.
200.
Mylvaganam
,
K.
, and
Zhang
,
L. C.
, 2004, “
Important Issues in a Molecular Dynamics Simulation for Characterizing the Mechanical Properties of Carbon Nanotubes
,”
Carbon
0008-6223,
42
, pp.
2025
2032
.
201.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
, 2002, “
A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons
,”
J. Phys.: Condens. Matter
0953-8984,
14
, pp.
783
802
.
202.
Allinger
,
N. L.
, 1977, “
Conformational-Analysis.130. MM2—Hydrocarbon Force-Field Utilizing V1 and V2 Torsional Terms
,”
J. Am. Chem. Soc.
0002-7863,
99
, pp.
8127
8134
.
203.
Allinger
,
N. L.
,
Yuh
,
Y. H.
, and
Lii
,
J. H.
, 1989, “
The MM3 Force Field for Hydrocarbons
,”
J. Am. Chem. Soc.
0002-7863,
111
, pp.
8551
8566
.
204.
Sun
,
H.
,
Ren
,
P.
, and
Fried
,
J. R.
, 1998, “
The COMPASS Force Field: Parameterization and Validation for Phosphazenes
,”
Comput. Theor. Polym. Sci.
1089-3156,
8
, pp.
229
246
.
205.
Timoshenko
,
S. P.
, 1974,
Vibration Problems in Engineering
,
Wiley
,
New York
.
206.
Doyle
,
J. F.
, 1989,
Wave Propagation in Structure
,
Sprinter-Velag
,
Berlin
.
207.
Gere
,
J. M.
, 2001,
Mechanics of Materials
,
5th ed.
,
Brooke/Cole
,
Belmont, CA
.
208.
Girifalco
,
L. A.
, and
Lad
,
R. A.
, 1956, “
Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System
,”
J. Chem. Phys.
0021-9606,
25
, pp.
693
697
.
209.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
, 1961,
Theory of Elastic Stability
,
McGraw-Hill
,
New York
.
210.
Zhang
,
Y. Y.
,
Wang
,
C. M.
, and
Tan
,
V. B. C.
, 2006, “
Buckling of Multiwalled Carbon Nanotubes Using Timoshenko Beam Theory
,”
J. Eng. Mech.
0733-9399,
132
, pp.
952
958
.
211.
Robertson
,
D. H.
,
Brenner
,
D. W.
, and
Mintmire
,
J. W.
, 1992, “
Energetics of Nanoscale Graphitic Tubules
,”
Phys. Rev. B
0163-1829,
45
, pp.
12592
12595
.
212.
Timoshenko
,
S. P.
, and
Woinowsky-Krieger
,
S.
, 1976,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
213.
Ru
,
C. Q.
, 2004, “
Elastic Models for Carbon Nanotubes
,”
Encyclopedia of Nanosci. Nanotechnol.
,
2
, pp.
731
744
.
214.
Wang
,
C. Y.
,
Ru
,
C. Q.
, and
Mioduchowski
,
A.
, 2004, “
Applicability and Limitations of Simplified Elastic Shell Equations for Carbon Nanotubes
,”
ASME J. Appl. Mech.
0021-8936,
71
, pp.
622
631
.
215.
Wang
,
C. Y.
,
Ru
,
C. Q.
, and
Miduchowski
,
A.
, 2005, “
Axisymmetric and Beamlike Vibrations of Multiwall Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
72
, p.
075414
.
216.
Wang
,
C. Y.
,
Ru
,
C. Q.
, and
Miduchowski
,
A.
, 2003, “
Elastic Buckling of Multiwall Carbon Nanotubes Under High Pressure
,”
J. Nanosci. Nanotechnol.
1533-4880,
3
, pp.
199
208
.
217.
He
,
X. Q.
,
Kitipornchai
,
S.
,
Wang
,
C. M.
, and
Liew
,
K. M.
, 2005, “
Modelling Van Der Waals Forces for Infinitesimal Deformation of Multi-Walled Carbon Nanotubes
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
6032
6047
.
218.
Liew
,
K. M.
,
He
,
X. Q.
, and
Kitipornchai
,
S.
, 2006, “
Buckling Characteristics of Embedded Multi-Walled Carbon Nanotubes
,”
Proc. R. Soc. London, Ser. A
0950-1207,
461
, pp.
3785
3805
.
219.
Sun
,
C. T.
, and
Zhang
,
H.
, 2003, “
Size-Dependent Elastic Module of Platelike Nanotumaterials
,”
J. Appl. Phys.
0021-8979,
93
, pp.
1212
1218
.
220.
Eringen
,
A. C.
, 1972, “
Nonlocal Polar Elastic Continua
,”
Int. J. Eng. Sci.
0020-7225,
10
, pp.
1
16
.
221.
Eringen
,
A. C.
, and
Edelen
,
D. G. B.
, 1972, “
On Nonlocal Elasticity
,”
Int. J. Eng. Sci.
0020-7225,
10
, pp.
233
248
.
222.
Eringen
,
A. C.
, 1983, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
0021-8979,
54
, pp.
4703
4710
.
223.
Sudak
,
L. J.
, 2003, “
Column Buckling of Multiwalled Carbon Nanotubes Using Nonlocal Continuum Mechanics
,”
J. Appl. Phys.
0021-8979,
94
, pp.
7281
7287
.
224.
Zhang
,
Y. Q.
,
Liu
,
G. R.
, and
Wang
,
J. S.
, 2004, “
Small-Scale Effects on Buckling of Multiwalled Carbon Nanotubes Under Axial Compression
,”
Phys. Rev. B
0163-1829,
70
, p.
205430
.
225.
Zhang
,
Y. Q.
,
Liu
,
G. R.
, and
Han
,
X.
, 2006, “
Effect of Small Length Scale on Elastic Buckling of Multi-Walled Carbon Nanotubes Under Radial Pressure
,”
Phys. Lett. A
0375-9601,
349
, pp.
370
376
.
226.
Xie
,
G. Q.
,
Han
,
X.
,
Liu
,
G. R.
, and
Long
,
S. Y.
, 2006, “
Effect of Small Size-Scale on the Radial Buckling Pressure of a Simply Supported Multi-Walled Carbon Nanotube
,”
Smart Mater. Struct.
0964-1726,
15
, pp.
1143
1149
.
227.
Wang
,
C. M.
,
Zhang
,
Y. Y.
,
Ramesh
,
S. S.
, and
Kitipornchai
,
S.
, 2006, “
Buckling Analysis of Micro- and Nano-Rods/Tubes Based on Nonlocal Timoshenko Beam Theory
,”
J. Phys. D
0022-3727,
39
, pp.
3904
3909
.
228.
Wang
,
C. M.
,
Zhang
,
Y. Y.
, and
He
,
X. Q.
, 2007, “
Vibration of Nonlocal Timoshenko Beams
,”
Nanotechnology
0957-4484,
18
, p.
105401
.
229.
Wang
,
C. M.
,
Zhang
,
Y. Y.
, and
Kitipornchai
,
S.
, 2007, “
Vibration of Initially Stressed Micro and Nano-Beams
,”
Int. J. Struct. Stab. Dyn.
0219-4554,
7
, pp.
555
570
.
230.
Wang
,
L. F.
, and
Hu
,
H. Y.
, 2005, “
Flexural Wave Propagation in Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
71
, p.
195412
.
231.
Wang
,
L. F.
,
Hu
,
H. Y.
, and
Guo
,
W. L.
, 2006, “
Validation of the Non-Local Elastic Shell Model for Studying Longitudinal Waves in Single-Walled Carbon Nanotubes
,”
Nanotechnology
0957-4484,
17
, pp.
1408
1415
.
232.
Silvestre
,
N.
,
Wang
,
C. M.
,
Zhang
,
Y. Y.
, and
Xiang
,
Y.
, “
Sanders Shell Model for Buckling of Single-Walled Carbon Nanotubes With Small Length-to-Diameter Ratios
,”
Comput. Mater. Sci.
0927-0256, submitted
233.
Shen
,
H. S.
, and
Zhang
,
C. L.
, 2010, “
Nonlocal Shear Deformable Shell Model for Post-Buckling of Axially Compressed Double-Walled Carbon Nanotubes Embedded in an Elastic Matrix
,”
ASME J. Appl. Mech.
0021-8936,
77
, p.
041006
.
234.
Shen
,
H. S.
, and
Zhang
,
C. L.
, 2010, “
Torsional Buckling and Postbuckling of Double-Walled Carbon Nanotubes by Nonlocal Shear Deformable Shell Model
,”
Compos. Struct.
0263-8223,
92
, pp.
1073
1084
.
235.
Challamel
,
N.
, and
Wang
,
C. M.
, 2008, “
Small Length Scale Effect in Non-Local Cantilever Beams: Paradox Solved
,”
Nanotechnology
0957-4484,
19
, p.
345703
.
236.
Zhang
,
Y. Y.
,
Wang
,
C. M.
, and
Challamel
,
N.
, 2010, “
Bending, Buckling, and Vibration of Micro/Nanobeams by Hybrid Nonlocal Beam Model
,”
J. Eng. Mech.
0733-9399,
136
, pp.
562
574
.
237.
Chang
,
T. C.
, 2008, “
Dominoes in Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
101
, p.
175501
.
You do not currently have access to this content.