This review article addresses the dynamics and control of low-frequency unsteadiness, as observed in some aerodynamic applications. It presents a coherent and rigorous linearized approach, which enables both to describe the dynamics of commonly encountered open-flows and to design open-loop and closed-loop control strategies, in view of suppressing or delaying instabilities. The approach is global in the sense that both cross-stream and streamwise directions are discretized in the evolution operator. New light will therefore be shed on the streamwise properties of open-flows. In the case of oscillator flows, the unsteadiness is due to the existence of unstable global modes, i.e., unstable eigenfunctions of the linearized Navier–Stokes operator. The influence of nonlinearities on the dynamics is studied by deriving nonlinear amplitude equations, which accurately describe the dynamics of the flow in the vicinity of the bifurcation threshold. These equations also enable us to analyze the mean flow induced by the nonlinearities as well as the stability properties of this flow. The open-loop control of unsteadiness is then studied by a sensitivity analysis of the eigenvalues with respect to base-flow modifications. With this approach, we manage to a priori identify regions of the flow where a small control cylinder suppresses unsteadiness. Then, a closed-loop control approach was implemented for the case of an unstable open-cavity flow. We have combined model reduction techniques and optimal control theory to stabilize the unstable eigenvalues. Various reduced-order-models based on global modes, proper orthogonal decomposition modes, and balanced modes were tested and evaluated according to their ability to reproduce the input-output behavior between the actuator and the sensor. Finally, we consider the case of noise-amplifiers, such as boundary-layer flows and jets, which are stable when viewed in a global framework. The importance of the singular value decomposition of the global resolvent will be highlighted in order to understand the frequency selection process in such flows.

1.
Reed
,
H. L.
,
Saric
,
W. S.
, and
Arnal
,
D.
, 1996, “
Linear Stability Theory Applied to Boundary Layers
,”
Annu. Rev. Fluid Mech.
0066-4189,
28
(
1
), pp.
389
428
.
2.
Chedevergne
,
F.
,
Casalis
,
G.
, and
Féraille
,
T.
, 2006, “
Biglobal Linear Stability Analysis of the Flow Induced by Wall Injection
,”
Phys. Fluids
1070-6631,
18
, p.
014103
.
3.
Jacquin
,
L.
,
Fabre
,
D.
,
Sipp
,
D.
, and
Coustols
,
E.
, 2005, “
Unsteadiness, Instability and Turbulence in Trailing Vortices
,”
C. R. Phys.
1631-0705,
6
(
4–5
), pp.
399
414
.
4.
Jacquin
,
L.
,
Molton
,
P.
,
Deck
,
S.
,
Maury
,
B.
, and
Soulevant
,
D.
, 2009, “
Experimental Study of Shock Oscillation Over a Transonic Supercritical Profile
,”
AIAA J.
0001-1452,
47
(
9
), pp.
1985
1994
.
5.
Deprés
,
D.
,
Reijasse
,
P.
, and
Dussauge
,
J.
, 2004, “
Analysis of Unsteadiness in Afterbody Transonic Flows
,”
AIAA J.
0001-1452,
42
(
12
), pp.
2541
2550
.
6.
Chauvet
,
N.
,
Deck
,
S.
, and
Jacquin
,
L.
, 2007, “
Numerical Study of Mixing Enhancement in a Supersonic Round Jet
,”
AIAA J.
0001-1452,
45
(
7
), pp.
1675
1687
.
7.
Rowley
,
C.
,
Colonius
,
T.
, and
Basu
,
A.
, 2002, “
On Self-Sustained Oscillations in Two-Dimensional Compressible Flow Over Rectangular Cavities
,”
J. Fluid Mech.
0022-1120,
455
, pp.
315
346
.
8.
Khorrami
,
M. R.
,
Berkman
,
M. E.
, and
Choudhari
,
M.
, 2000, “
Unsteady Flow Computations of a Slat With a Blunt Trailing Edge
,”
AIAA J.
0001-1452,
38
(
11
), pp.
2050
2058
.
9.
Mauffrey
,
Y.
,
Rahier
,
G.
, and
Prieur
,
J.
, 2009, “
Numerical Investigation on Blade/Wake-Interaction Noise Generation
,”
J. Aircr.
0021-8669,
46
(
5
), pp.
1479
1486
.
10.
Nash
,
E. C.
,
Lowson
,
M. V.
, and
McAlpine
,
A.
, 1999, “
Boundary-Layer Instability Noise on Aerofoils
,”
J. Fluid Mech.
0022-1120,
382
, pp.
27
61
.
11.
Schmid
,
P. J.
, 2007, “
Nonmodal Stability Theory
,”
Annu. Rev. Fluid Mech.
0066-4189,
39
, pp.
129
162
.
12.
Schmid
,
P. J.
, and
Henningson
,
D. S.
, 2001,
Stability and Transition in Shear Flows
,
Springer-Verlag
,
New York
.
13.
Huerre
,
P.
, and
Rossi
,
M.
, 1998, “
Hydrodynamic Instabilities in Open Flows
,”
Hydrodynamics and Nonlinear Instabilities
,
C.
Godrèche
and
P.
Manneville
, eds.,
Cambridge University Press
,
Cambridge
, pp.
81
294
.
14.
Ellingsen
,
T.
, and
Palm
,
E.
, 1975, “
Stability of Linear Flow
,”
Phys. Fluids
1070-6631,
18
(
4
), pp.
487
488
.
15.
Landahl
,
M. T.
, 1980, “
A Note on an Algebraic Instability of Inviscid Parallel Shear Flows
,”
J. Fluid Mech.
0022-1120,
98
, pp.
243
251
.
16.
Butler
,
K. M.
, and
Farrell
,
B. F.
, 1992, “
3-Dimensional Optimal Perturbations in Viscous Shear-Flow
,”
Phys. Fluids A
0899-8213,
4
(
8
), pp.
1637
1650
.
17.
Farrell
,
B. F.
, and
Ioannou
,
P. J.
, 1993, “
Optimal Excitation of 3-Dimensional Perturbations in Viscous Constant Shear-Flow
,”
Phys. Fluids A
0899-8213,
5
(
6
), pp.
1390
1400
.
18.
Reddy
,
S. C.
, and
Henningson
,
D. S.
, 1993, “
Energy Growth in Viscous Channel Flows
,”
J. Fluid Mech.
0022-1120,
252
, pp.
209
238
.
19.
Farrell
,
B. F.
, 1988, “
Optimal Excitation of Perturbations in Viscous Shear Flow
,”
Phys. Fluids
1070-6631,
31
(
8
), pp.
2093
2102
.
20.
Luchini
,
P.
, and
Bottaro
,
A.
, 1998, “
Gortler Vortices: A Backward-in-Time Approach to the Receptivity Problem
,”
J. Fluid Mech.
0022-1120,
363
, pp.
1
23
.
21.
Andersson
,
P.
,
Berggren
,
M.
, and
Henningson
,
D. S.
, 1999, “
Optimal Disturbances and Bypass Transition in Boundary Layers
,”
Phys. Fluids
1070-6631,
11
(
1
), pp.
134
150
.
22.
Luchini
,
P.
, 2000, “
Reynolds-Number-Independent Instability of the Boundary Layer Over a Flat Surface: Optimal Perturbations
,”
J. Fluid Mech.
0022-1120,
404
, pp.
289
309
.
23.
Corbett
,
P.
, and
Bottaro
,
A.
, 2000, “
Optimal Perturbations for Boundary Layers Subject to Stream-Wise Pressure Gradient
,”
Phys. Fluids
1070-6631,
12
(
1
), pp.
120
130
.
24.
Corbett
,
P.
, and
Bottaro
,
A.
, 2001, “
Optimal Linear Growth in Swept Boundary Layers
,”
J. Fluid Mech.
0022-1120,
435
, pp.
1
23
.
25.
Guégan
,
A.
,
Huerre
,
P.
, and
Schmid
,
P. J.
, 2007, “
Optimal Disturbances in Swept Hiemenz Flow
,”
J. Fluid Mech.
0022-1120,
578
, pp.
223
232
.
26.
Guégan
,
A.
,
Schmid
,
P. J.
, and
Huerre
,
P.
, 2008, “
Spatial Optimal Disturbances in Swept Attachment-Line Boundary Layers
,”
J. Fluid Mech.
0022-1120,
603
, pp.
179
188
.
27.
Zebib
,
A.
, 1987, “
Stability of a Viscous Flow Past a Circular Cylinder
,”
J. Eng. Math.
0022-0833,
21
(
2
), pp.
155
165
.
28.
Jackson
,
C. P.
, 1987, “
A Finite-Element Study of the Onset of Vortex Shedding in Flow Past Variously-Shaped Bodies
,”
J. Fluid Mech.
0022-1120,
182
, pp.
23
45
.
29.
Noack
,
B. R.
, and
Eckelmann
,
H.
, 1994, “
A Global Stability Analysis of the Steady and Periodic Cylinder Wake
,”
J. Fluid Mech.
0022-1120,
270
, pp.
297
330
.
30.
Natarajan
,
R.
, and
Acrivos
,
A.
, 1993, “
The Instability of the Steady Flow Past Spheres and Disks
,”
J. Fluid Mech.
0022-1120,
254
, pp.
323
344
.
31.
Lin
,
R. S.
, and
Malik
,
M. R.
, 1996, “
On the Stability of Attachment-Line Boundary Layers. Part 1. The Incompressible Swept Hiemenz Flow
,”
J. Fluid Mech.
0022-1120,
311
, pp.
239
255
.
32.
Edwards
,
W. S.
,
Tuckerman
,
L. S.
,
Friesner
,
R. A.
, and
Sorensen
,
D. C.
, 1994, “
Krylov Methods for the Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
0021-9991,
110
, pp.
82
102
.
33.
Barkley
,
D.
, and
Henderson
,
R. D.
, 1996, “
Three-Dimensional Floquet Analysis of the Wake of a Circular Cylinder
,”
J. Fluid Mech.
0022-1120,
322
, pp.
215
241
.
34.
Lehoucq
,
R. B.
, and
Sorensen
,
D. C.
, 1996, “
Deflation Techniques for an Implicitly Restarted Arnoldi Iteration
,”
SIAM J. Matrix Anal. Appl.
0895-4798,
17
(
4
), pp.
789
821
.
35.
Theofilis
,
V.
, 2003, “
Advances in Global Linear Instability Analysis of Nonparallel and Three-Dimensional Flows
,”
Prog. Aerosp. Sci.
0376-0421,
39
(
4
), pp.
249
315
.
36.
Barkley
,
D.
,
Gomes
,
M. G. M.
, and
Henderson
,
R. D.
, 2002, “
Three-Dimensional Instability in Flow Over a Backward-Facing Step
,”
J. Fluid Mech.
0022-1120,
473
, pp.
167
190
.
37.
Gallaire
,
F.
,
Marquillie
,
M.
, and
Ehrenstein
,
U.
, 2007, “
Three-Dimensional Transverse Instabilities in Detached Boundary Layers
,”
J. Fluid Mech.
0022-1120,
571
, pp.
221
233
.
38.
Sipp
,
D.
, and
Lebedev
,
A.
, 2007, “
Global Stability of Base and Mean Flows: A General Approach and Its Applications to Cylinder and Open Cavity Flows
,”
J. Fluid Mech.
0022-1120,
593
, pp.
333
358
.
39.
Åkervik
,
E.
,
Hoepffner
,
J.
,
Ehrenstein
,
U.
, and
Henningson
,
D. S.
, 2007, “
Optimal Growth, Model Reduction and Control in a Separated Boundary-Layer Flow Using Global Eigenmodes
,”
J. Fluid Mech.
0022-1120,
579
, pp.
305
314
.
40.
Bagheri
,
S.
,
Schlatter
,
P.
,
Schmid
,
P. J.
, and
Henningson
,
D. S.
, 2009, “
Global Stability of a Jet in Cross-Flow
,”
J. Fluid Mech.
0022-1120,
624
, pp.
33
44
.
41.
Robinet
,
J. -C.
, 2007, “
Bifurcations in Shock-Wave/Laminar-Boundary-Layer Interaction: Global Instability Approach
,”
J. Fluid Mech.
0022-1120,
579
, pp.
85
112
.
42.
Brès
,
G. A.
, and
Colonius
,
T.
, 2008, “
Three-Dimensional Instabilities in Compressible Flow Over Open Cavities
,”
J. Fluid Mech.
0022-1120,
599
, pp.
309
339
.
43.
Mack
,
C. J.
,
Schmid
,
P. J.
, and
Sesterhenn
,
J. L.
, 2008, “
Global Stability of Swept Flow Around a Parabolic Body: Connecting Attachment-Line and Crossflow Modes
,”
J. Fluid Mech.
0022-1120,
611
, pp.
205
214
.
44.
Chomaz
,
J. -M.
, 2005, “
Global Instabilities in Spatially Developing Flows: Non-Normality and Nonlinearity
,”
Annu. Rev. Fluid Mech.
0066-4189,
37
, pp.
357
392
.
45.
Monkewitz
,
P. A.
,
Huerre
,
P.
, and
Chomaz
,
J. -M.
, 1993, “
Global Linear-Stability Analysis of Weakly Nonparallel Shear Flows
,”
J. Fluid Mech.
0022-1120,
251
, pp.
1
20
.
46.
Pier
,
B.
, and
Huerre
,
P.
, 2001, “
Nonlinear Self-Sustained Structures and Fronts in Spatially Developing Wake Flows
,”
J. Fluid Mech.
0022-1120,
435
, pp.
145
174
.
47.
Hammond
,
D. A.
, and
Redekopp
,
L. G.
, 1997, “
Global Dynamics of Symmetric and Asymmetric Wakes
,”
J. Fluid Mech.
0022-1120,
331
, pp.
231
260
.
48.
Pier
,
B.
, 2002, “
On the Frequency Selection of Finite-Amplitude Vortex Shedding in the Cylinder Wake
,”
J. Fluid Mech.
0022-1120,
458
, pp.
407
417
.
49.
Barkley
,
D.
, 2006, “
Linear Analysis of the Cylinder Wake Mean Flow
,”
Europhys. Lett.
0295-5075,
75
(
5
), pp.
750
756
.
50.
Khor
,
M.
,
Sheridan
,
J.
,
Thompson
,
M. C.
, and
Hourigan
,
K.
, 2008, “
Global Frequency Selection in the Observed Time-Mean Wakes of Circular Cylinders
,”
J. Fluid Mech.
0022-1120,
601
(
1
), pp.
425
441
.
51.
Leontini
,
J. S.
,
Thompson
,
M. C.
, and
Hourigan
,
K.
, 2010, “
A Numerical Study of Global Frequency Selection in the Time-Mean Wake of a Circular Cylinder
,”
J. Fluid Mech.
0022-1120,
645
(
1
), pp.
435
446
.
52.
Williamson
,
C. H.
, 1988, “
Defining a Universal and Continuous Strouhal-Reynolds Number Relationship for the Laminar Vortex Shedding of a Circular Cylinder
,”
Phys. Fluids
1070-6631,
31
(
10
), pp.
2742
2744
.
53.
Trefethen
,
L. N.
,
Trefethen
,
A. E.
,
Reddy
,
S. C.
, and
Driscoll
,
T. A.
, 1993, “
Hydrodynamic Stability Without Eigenvalues
,”
Science
0036-8075,
261
(
5121
), pp.
578
584
.
54.
Ehrenstein
,
U.
, and
Gallaire
,
F.
, 2005, “
On Two-Dimensional Temporal Modes in Spatially Evolving Open Flows: The Flat-Plate Boundary Layer
,”
J. Fluid Mech.
0022-1120,
536
, pp.
209
218
.
55.
Alizard
,
F.
, and
Robinet
,
J. -C.
, 2007, “
Spatially Convective Global Modes in a Boundary Layer
,”
Phys. Fluids
1070-6631,
19
(
11
), p.
114105
.
56.
Akervik
,
E.
,
Ehrenstein
,
U.
,
Gallaire
,
F.
, and
Henningson
,
D. S.
, 2008, “
Global Two-Dimensional Stability Measures of the Flat Plate Boundary-Layer Flow
,”
Eur. J. Mech. B/Fluids
0997-7546,
27
(
5
), pp.
501
513
.
57.
Alizard
,
F.
,
Cherubini
,
S.
, and
Robinet
,
J. -C.
, 2009, “
Sensitivity and Optimal Forcing Response in Separated Boundary Layer Flows
,”
Phys. Fluids
1070-6631,
21
(
6
), p.
064108
.
58.
Huerre
,
P.
, and
Monkewitz
,
P. A.
, 1985, “
Absolute and Convective Instabilities in Free Shear Layers
,”
J. Fluid Mech.
0022-1120,
159
, pp.
151
168
.
59.
Giannetti
,
F.
, and
Luchini
,
P.
, 2007, “
Structural Sensitivity of the First Instability of the Cylinder Wake
,”
J. Fluid Mech.
0022-1120,
581
, pp.
167
197
.
60.
Le Dizès
,
S.
,
Huerre
,
P.
, and
Chomaz
,
J. -M.
, 1993, “
Nonlinear Stability Analysis of Slowly-Varying Medias: Limitations of the Weakly Nonlinear Approach
,”
Proceedings of the IUTAM Symposium on Bluff-body Wakes, Dynamics and Instabilities
,
Springer
,
Berlin
, pp.
147
152
.
61.
Cossu
,
C.
, and
Chomaz
,
J. -M.
, 1997, “
Global Measures of Local Convective Instabilities
,”
Phys. Rev. Lett.
0031-9007,
78
(
23
), pp.
4387
4390
.
62.
Gad-el Hak
,
M.
,
Pollard
,
A.
, and
Bonnet
,
J. -P.
, 1998,
Flow Control: Fundamentals and Practices
,
Springer-Verlag
,
Berlin
.
63.
Collis
,
S. S.
,
Joslin
,
R. D.
,
Seifert
,
A.
, and
Theofilis
,
V.
, 2004, “
Issues in Active Flow Control: Theory, Control, Simulation, and Experiment
,”
Prog. Aerosp. Sci.
0376-0421,
40
(
4–5
), pp.
237
289
.
64.
Choi
,
H.
,
Jeon
,
W. -P.
, and
Kim
,
J.
, 2008, “
Control of Flow Over a Bluff Body
,”
Annu. Rev. Fluid Mech.
0066-4189,
40
, pp.
113
139
.
65.
Pier
,
B.
, 2003, “
Open-Loop Control of Absolutely Unstable Domains
,”
Proc. R. Soc. London, Ser. A
0950-1207,
459
(
2033
), pp.
1105
1115
.
66.
Hwang
,
Y.
, and
Choi
,
H.
, 2006, “
Control of Absolute Instability by Basic-Flow Modification in a Parallel Wake at Low Reynolds Number
,”
J. Fluid Mech.
0022-1120,
560
, pp.
465
475
.
67.
Strykowski
,
P. J.
, and
Sreenivasan
,
K. R.
, 1990, “
On the Formation and Suppression of Vortex Shedding at Low Reynolds-Numbers
,”
J. Fluid Mech.
0022-1120,
218
, pp.
71
107
.
68.
Delaunay
,
Y.
, and
Kaiktsis
,
L.
, 2001, “
Control of Circular Cylinder Wakes Using Base Mass Transpiration
,”
Phys. Fluids
1070-6631,
13
(
11
), pp.
3285
3302
.
69.
Arcas
,
D. R.
, and
Redekopp
,
L. G.
, 2004, “
Aspects of Wake Vortex Control Through Base Blowing/Suction
,”
Phys. Fluids
1070-6631,
16
(
2
), pp.
452
456
.
70.
Sevilla
,
A.
, and
Martinez-Bazan
,
C.
, 2004, “
Vortex Shedding in High Reynolds Number Axisymmetric Bluff-Body Wakes: Local Linear Instability and Global Bleed Control
,”
Phys. Fluids
1070-6631,
16
(
9
), pp.
3460
3469
.
71.
Sanmiguel-Rojas
,
E.
,
Sevilla
,
A.
,
Martinez-Bazan
,
C.
, and
Chomaz
,
J. -M.
, 2009, “
Global Mode Analysis of Axisymmetric Bluff-Body Wakes: Stabilization by Base Bleed
,”
Phys. Fluids
1070-6631,
21
(
11
), p.
114102
.
72.
Luchtenburg
,
D. M.
,
Gunther
,
B.
,
Noack
,
B. R.
,
King
,
R.
, and
Tadmor
,
G.
, 2009, “
A Generalized Mean-Field Model of the Natural and High-Frequency Actuated Flow Around a High-Lift Configuration
,”
J. Fluid Mech.
0022-1120,
623
, pp.
283
316
.
73.
Kim
,
H.
, and
Chang
,
K.
, 1995, “
Numerical Study on Vortex Shedding From a Circular Cylinder Influenced by a Nearby Control Wire
,”
Comput. Fluid Dyn. J.
0918-6654,
4
, pp.
151
164
.
74.
Mittal
,
S.
, and
Raghuvanshi
,
A.
, 2001, “
Control of Vortex Shedding Behind Circular Cylinder for Flows at Low Reynolds Numbers
,”
Int. J. Numer. Methods Fluids
0271-2091,
35
(
4
), pp.
421
447
.
75.
Morzynski
,
M.
,
Afanasiev
,
K.
, and
Thiele
,
F.
, 1999, “
Solution of the Eigenvalue Problems Resulting From Global Non-Parallel Flow Stability Analysis
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
169
(
1–2
), pp.
161
176
.
76.
Gunzburger
,
M. D.
, 2003,
Perspectives in Flow Control and Optimization
,
SIAM
,
United States
.
77.
Meliga
,
P.
,
Sipp
,
D.
, and
Chomaz
,
J. -M.
, 2010, “
Open-Loop Control of Compressible Afterbody Flows Using Adjoint Methods
,”
Seventh IUTAM Symposium on Laminar-Turbulent Transition
,
P.
Schlatter
and
D. S.
Henningson
, eds., Vol.
18
, pp.
283
288
.
78.
Marquet
,
O.
, and
Sipp
,
D.
, 2010, “
Active Steady Control of Vortex Shedding: An Adjoint-Based Sensitivity Approach
,”
Seventh IUTAM Symposium on Laminar-Turbulent Transition
,
P.
Schlatter
and
D. S.
Henningson
, eds., Vol.
18
, pp.
259
264
.
79.
Burl
,
J. B.
, 1999,
Linear Optimal Control. H2 and H∞ Methods
,
Addison-Wesley
,
Reading, MA
.
80.
Zhou
,
K.
,
Doyle
,
C.
, and
Glover
,
E.
, 1996,
Robust and Optimal Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
81.
Joshi
,
S. S.
,
Speyer
,
J. L.
, and
Kim
,
J.
, 1997, “
A Systems Theory Approach to the Feedback Stabilization of Infinitesimal and Finite-Amplitude Disturbances in Plane Poiseuille Flow
,”
J. Fluid Mech.
0022-1120,
332
, pp.
157
184
.
82.
Bewley
,
T. R.
, and
Liu
,
S.
, 1998, “
Optimal and Robust Control and Estimation of Linear Paths to Transition
,”
J. Fluid Mech.
0022-1120,
365
, pp.
305
349
.
83.
Cortelezzi
,
L.
, and
Speyer
,
J.
, 1998, “
Robust Reduced-Order Controller of Laminar Boundary Layer Transitions
,”
Phys. Rev. E
1063-651X,
58
(
2
), pp.
1906
1910
.
84.
Högberg
,
M.
,
Bewley
,
T. R.
, and
Henningson
,
D. S.
, 2003, “
Linear Feedback Control and Estimation of Transition in Plane Channel Flow
,”
J. Fluid Mech.
0022-1120,
481
, pp.
149
175
.
85.
Hœpffner
,
J.
,
Chevalier
,
M.
,
Bewley
,
T. R.
, and
Henningson
,
D. S.
, 2005, “
State Estimation in Wall-Bounded Flow Systems. Part 1. Laminar Flows
,”
J. Fluid Mech.
0022-1120,
534
, pp.
263
294
.
86.
Chevalier
,
M.
,
Hopffner
,
J.
,
Bewley
,
T. R.
, and
Henningson
,
D. S.
, 2006, “
State Estimation in Wall-Bounded Flow Systems. Part 2. Turbulent Flows
,”
J. Fluid Mech.
0022-1120,
552
, pp.
167
187
.
87.
Högberg
,
M.
, and
Henningson
,
D. S.
, 2002, “
Linear Optimal Control Applied to Instabilities in Spatially Developing Boundary Layers
,”
J. Fluid Mech.
0022-1120,
470
, pp.
151
179
.
88.
Chevalier
,
M.
,
Hoepffner
,
J.
,
Akervik
,
E.
, and
Henningson
,
D. S.
, 2007, “
Linear Feedback Control and Estimation Applied to Instabilities in Spatially Developing Boundary Layers
,”
J. Fluid Mech.
0022-1120,
588
, pp.
163
187
.
89.
Cortelezzi
,
L.
,
Lee
,
K. H.
,
Kim
,
J.
, and
Speyer
,
J. L.
, 1998, “
Skin-Friction Drag Reduction via Robust Reduced-Order Linear Feedback Control
,”
Int. J. Comput. Fluid Dyn.
1061-8562,
11
(
1
), pp.
79
92
.
90.
Lee
,
K. H.
,
Cortelezzi
,
L.
,
Kim
,
J.
, and
Speyer
,
J.
, 2001, “
Application of Reduced-Order Controller to Turbulent Flows for Drag Reduction
,”
Phys. Fluids
1070-6631,
13
(
5
), pp.
1321
1330
.
91.
Kim
,
J.
, 2003, “
Control of Turbulent Boundary Layers
,”
Phys. Fluids
1070-6631,
15
(
5
), pp.
1093
1105
.
92.
Bewley
,
T. R.
, 2001, “
Flow Control: New Challenges for a New Renaissance
,”
Prog. Aerosp. Sci.
0376-0421,
37
(
1
), pp.
21
58
.
93.
Kim
,
J.
, and
Bewley
,
T. R.
, 2007, “
A Linear Systems Approach to Flow Control
,”
Annu. Rev. Fluid Mech.
0066-4189,
39
, pp.
383
417
.
94.
Lauga
,
E.
, and
Bewley
,
T. R.
, 2003, “
The Decay of Stabilizability With Reynolds Number in a Linear Model of Spatially Developing Flows
,”
Proc. R. Soc. London, Ser. A
0950-1207,
459
, pp.
2077
2095
.
95.
Antoulas
,
A. C.
, 2005,
Approximation of Large-Scale Dynamical Systems
,
SIAM
,
United States
.
96.
Henningson
,
D. S.
, and
Akervik
,
E.
, 2008, “
The Use of Global Modes to Understand Transition and Perform Flow Control
,”
Phys. Fluids
1070-6631,
20
(
3
), p.
031302
.
97.
Moore
,
B.
, 1981, “
Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction
,”
IEEE Trans. Autom. Control
0018-9286,
26
, pp.
17
32
.
98.
Laub
,
A. J.
,
Heath
,
M. T.
,
Page
,
C. C.
, and
Ward
,
R. C.
, 1987, “
Computation of System Balancing Transformations and Other Applications of Simultaneous Diagonalization Algorithms
,”
IEEE Trans. Autom. Control
0018-9286,
32
(
2
), pp.
115
122
.
99.
Willcox
,
K.
, and
Peraire
,
J.
, 2002, “
Balanced Model Reduction via Proper Orthogonal Decomposition
,”
AIAA J.
0001-1452,
40
, pp.
2323
2330
.
100.
Rowley
,
C. W.
, 2005, “
Model Reduction for Fluids Using Balanced Proper Orthogonal Decomposition
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
15
, pp.
997
1013
.
101.
Lumley
,
J. L.
, 1970,
Stochastic Tools in Turbulence
,
Academic
,
New York
.
102.
Sirovich
,
L.
, 1987, “
Turbulence and the Dynamics of Coherent Structures
,”
Q. Appl. Math.
0033-569X,
45
(
3
), pp.
561
590
.
103.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
, 1993, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
25
, pp.
539
575
.
104.
Ilak
,
M.
, and
Rowley
,
C. W.
, 2008, “
Modeling of Transitional Channel Flow Using Balanced Proper Orthogonal Decomposition
,”
Phys. Fluids
1070-6631,
20
, p.
034103
.
105.
Bagheri
,
S.
,
Henningson
,
D. S.
,
Hoepffner
,
J.
, and
Schmid
,
P. J.
, 2009, “
Input-Output Analysis and Control Design Applied to a Linear Model of Spatially Developing Flows
,”
Appl. Mech. Rev.
0003-6900,
62
(
2
), p.
020803
.
106.
Bagheri
,
S.
,
Brandt
,
L.
, and
Henningson
,
D. S.
, 2009, “
Input-Output Analysis, Model Reduction and Control of the Flat-Plate Boundary Layer
,”
J. Fluid Mech.
0022-1120,
620
, pp.
263
298
.
107.
Ahuja
,
S.
, and
Rowley
,
C. W.
, 2008, “
Low-Dimensional Models for Feedback Stabilization of Unstable Steady States
,” AIAA Paper No. 2008-553.
108.
Aubry
,
N.
,
Holmes
,
P.
,
Lumley
,
J. L.
, and
Stone
,
E.
, 1988, “
The Dynamics of Coherent Structures in Wall Region of a Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
192
, pp.
115
175
.
109.
Samimy
,
M.
,
Debiasi
,
M.
,
Caraballo
,
E.
,
Serrani
,
A.
,
Yuan
,
X.
,
Little
,
J.
, and
Myatt
,
J.
, 2007, “
Feedback Control of Subsonic Cavity Flows Using Reduced-Order Models
,”
J. Fluid Mech.
0022-1120,
579
, pp.
315
346
.
110.
Juang
,
J. N.
, and
Pappa
,
R. S.
, 1985, “
An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction
,”
J. Guid. Control Dyn.
0731-5090,
8
(
5
), pp.
620
627
.
111.
Ma
,
Z.
,
Ahuja
,
S.
, and
Rowley
,
C.
, 2010, “
Reduced-Order Models for Control of Fluids Using the Eigensystem Realization Algorithm
,”
Theor. Comput. Fluid Dyn.
0935-4964, in press.
112.
Huang
,
S. -C.
, and
Kim
,
J.
, 2008, “
Control and System Identification of a Separated Flow
,”
Phys. Fluids
1070-6631,
20
, p.
101509
.
113.
Watson
,
J.
, 1960, “
On the Non-Linear Mechanics of Wave Disturbances in Stable and Unstable Parallel Flows. Part 2: The Development of a Solution for Plane Poiseuille Flow and for Plane Couette Flow
,”
J. Fluid Mech.
0022-1120,
9
(
3
), pp.
371
389
.
114.
Stuart
,
J.
, 1971, “
Nonlinear Stability Theory
,”
Annu. Rev. Fluid Mech.
0066-4189,
3
, pp.
347
370
.
115.
Hill
,
D. C.
, 1995, “
Adjoint Systems and Their Role in the Receptivity Problem for Boundary Layers
,”
J. Fluid Mech.
0022-1120,
292
, pp.
183
204
.
116.
Corbett
,
P.
, and
Bottaro
,
A.
, 2001, “
Optimal Control of Nonmodal Disturbances in Boundary Layers
,”
Theor. Comput. Fluid Dyn.
0935-4964,
15
(
2
), pp.
65
81
.
117.
Bottaro
,
A.
,
Corbett
,
P.
, and
Luchini
,
P.
, 2003, “
The Effect of Base Flow Variation on Flow Stability
,”
J. Fluid Mech.
0022-1120,
476
, pp.
293
302
.
118.
Pironneau
,
O.
, 1984,
Optimal Shape Design for Elliptic Systems
,
Springer
,
New York
.
119.
Jameson
,
A.
,
Martinelli
,
L.
, and
Pierce
,
N. A.
, 1998, “
Fluid Dynamics Optimum Aerodynamic Design Using the Navier–Stokes Equations
,”
Theor. Comput. Fluid Dyn.
0935-4964,
10
, pp.
213
237
.
120.
Mohammadi
,
B.
, and
Pironneau
,
O.
, 2004, “
Shape Optimization in Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
0066-4189,
36
, pp.
255
279
.
121.
Hill
,
D. C.
, 1992, “
A Theoretical Approach for Analyzing the Restabilization of Wakes
,” AIAA Paper No. 1992-0067.
122.
Marquet
,
O.
,
Lombardi
,
M.
,
Chomaz
,
J. -M.
,
Sipp
,
D.
, and
Jacquin
,
L.
, 2009, “
Direct and Adjoint Global Modes of a Recirculation Bubble: Lift-Up and Convective Non-Normalities
,”
J. Fluid Mech.
0022-1120,
622
, pp.
1
21
.
123.
Meliga
,
P.
,
Chomaz
,
J. -M.
, and
Sipp
,
D.
, 2009, “
Unsteadiness in the Wake of Disks and Spheres: Instability, Receptivity and Control Using Direct and Adjoint Global Stability Analyses
,”
J. Fluids Struct.
0889-9746,
25
, pp.
601
616
.
124.
Theofilis
,
V.
,
Hein
,
S.
, and
Dallmann
,
U.
, 2000, “
On the Origins of Unsteadiness and Three-Dimensionality in a Laminar Separation Bubble
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
358
(
1777
), pp.
3229
3246
.
125.
Manneville
,
P.
, 1991,
Structures Dissipatives, Chaos et Turbulence
,
Aléa-Saclay, CEA
,
France
.
126.
Provansal
,
M.
,
Mathis
,
C.
, and
Boyer
,
L.
, 1987, “
Benard-von Karman Instability—Transient and Forced Regimes
,”
J. Fluid Mech.
0022-1120,
182
, pp.
1
22
.
127.
Dušek
,
J.
,
Le Gal
,
P.
, and
Fraunié
,
P.
, 1994, “
A Numerical and Theoretical Study of the First Hopf Bifurcation in a Cylinder Wake
,”
J. Fluid Mech.
0022-1120,
264
, pp.
59
80
.
128.
Zielinska
,
B. J. A.
,
Goujon-Durand
,
S.
,
Dusek
,
J.
, and
Wesfreid
,
J. E.
, 1997, “
Strongly Nonlinear Effect in Unstable Wakes
,”
Phys. Rev. Lett.
0031-9007,
79
(
20
), pp.
3893
3896
.
129.
Piot
,
E.
,
Casalis
,
G.
,
Muller
,
F.
, and
Bailly
,
C.
, 2006, “
Investigation of the PSE Approach for Subsonic and Supersonic Hot Jets. Detailed Comparisons With LES and Linearized Euler Equations Results
,”
Int. J. Aeroacoust.
1475-472X,
5
(
4
), pp.
361
393
.
130.
Gondret
,
P.
,
Ern
,
P.
,
Meignin
,
L.
, and
Rabaud
,
M.
, 1999, “
Experimental Evidence of a Nonlinear Transition From Convective to Absolute Instability
,”
Phys. Rev. Lett.
0031-9007,
82
(
7
), pp.
1442
1445
.
131.
Viaud
,
B.
,
Serre
,
E.
, and
Chomaz
,
J. -M.
, 2008, “
The Elephant Mode Between Two Rotating Disks
,”
J. Fluid Mech.
0022-1120,
598
, pp.
451
464
.
132.
Meliga
,
P.
,
Chomaz
,
J. -M.
, and
Sipp
,
D.
, 2009, “
Global Mode Interaction and Pattern Selection in the Wake of a Disk: A Weakly Nonlinear Expansion
,”
J. Fluid Mech.
0022-1120,
633
, pp.
159
189
.
133.
Fabre
,
D.
,
Auguste
,
F.
, and
Magnaudet
,
J.
, 2008, “
Bifurcations and Symmetry Breaking in the Wake of Axisymmetric Bodies
,”
Phys. Fluids
1070-6631,
20
(
5
), p.
051702
.
134.
Brion
,
V.
,
Sipp
,
D.
, and
Jacquin
,
L.
, 2007, “
Optimal Amplification of the Crow Instability
,”
Phys. Fluids
1070-6631,
19
(
11
), p.
111703
.
135.
Marquet
,
O.
,
Sipp
,
D.
, and
Jacquin
,
L.
, 2008, “
Sensitivity Analysis and Passive Control of Cylinder Flow
,”
J. Fluid Mech.
0022-1120,
615
, pp.
221
252
.
136.
Meliga
,
P.
,
Sipp
,
D.
, and
Chomaz
,
J.-M.
, 2010, “
Open-Loop Control of Compressible Afterbody Flows Using Adjoint Methods
,”
Phys. Fluids
1070-6631, in press.
137.
Chomaz
,
J.
,
Huerre
,
P.
, and
Redekopp
,
L.
, 1991, “
A Frequency Selection Criterion in Spatially Developing Flows
,”
Stud. Appl. Math.
0022-2526,
84
(
2
), pp.
119
144
.
138.
Luchini
,
P.
,
Giannetti
,
F.
, and
Pralits
,
J.
, 2009, “
Structural Sensitivity of the Finite-Amplitude Vortex Shedding Behind a Circular Cylinder
,”
IUTAM Symposium on Unsteady Separated Flows and Their Control
, Corfu, Greece, Jun. 18–22,
M.
Braza
and
K.
Hourigan
, eds., Vol.
14
, p.
151
.
139.
Huerre
,
P.
, and
Monkewitz
,
P. A.
, 1990, “
Local and Global Instabilities in Spatially Developing Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
22
, pp.
473
537
.
140.
Marquet
,
O.
,
Sipp
,
D.
,
Jacquin
,
L.
, and
Chomaz
,
J. -M.
, 2008, “
Multiple Time Scale Analysis and Sensitivity Analysis for the Passive Control of the Cylinder Flow
,” AIAA Paper No. 2008-4228.
141.
Barbagallo
,
A.
,
Sipp
,
D.
, and
Schmid
,
P. J.
, 2009, “
Closed-Loop Control of an Open Cavity Flow Using Reduced-Order Models
,”
J. Fluid Mech.
0022-1120,
641
, pp.
1
50
.
142.
Trefethen
,
L. N.
, and
Embree
,
M.
, 2005,
Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators
,
Princeton University Press
,
Princeton, NJ
.
143.
Marquet
,
O.
,
Sipp
,
D.
, and
Jacquin
,
L.
, 2006, “
Global Optimal Perturbations in a Separated Flow Over a Backward-Rounded-Step
,” AIAA Paper No. 2006-2879.
144.
Marquet
,
O.
,
Sipp
,
D.
,
Chomaz
,
J. -M.
, and
Jacquin
,
L.
, 2008, “
Amplifier and Resonator Dynamics of a Low-Reynolds-Number Recirculation Bubble in a Global Framework
,”
J. Fluid Mech.
0022-1120,
605
, pp.
429
443
.
145.
Blackburn
,
H. M.
,
Barkley
,
D.
, and
Sherwin
,
S. J.
, 2008, “
Convective Instability and Transient Growth in Flow Over a Backward-Facing Step
,”
J. Fluid Mech.
0022-1120,
603
, pp.
271
304
.
146.
Blackburn
,
H. M.
,
Sherwin
,
S. J.
, and
Barkley
,
D.
, 2008, “
Convective Instability and Transient Growth in Steady and Pulsatile Stenotic Flows
,”
J. Fluid Mech.
0022-1120,
607
, pp.
267
277
.
147.
Marquet
,
O.
, 2007, “
Stabilité globale et contrôle d’écoulements de recirculation
,” Ph.D. thesis, Université de Poitiers, Poitiers, France.
148.
Monokrousos
,
A.
,
Åkervik
,
E.
,
Brandt
,
L.
, and
Henningson
,
D. S.
, 2010, “
Global Three-Dimensional Optimal Disturbances in the Blasius Boundary-Layer Flow Using Time-Steppers
,”
J. Fluid Mech.
0022-1120, in press.
149.
Levin
,
O.
, and
Henningson
,
D. S.
, 2003, “
Exponential vs Algebraic Growth and Transition Prediction in Boundary Layer Flow
,”
Flow, Turbul. Combust.
1386-6184,
70
, pp.
182
210
.
150.
Crouch
,
J. D.
, 1992, “
Localized Receptivity of Boundary Layers
,”
Phys. Fluids A
0899-8213,
4
(
7
), pp.
1408
1414
.
151.
Pralits
,
J. O.
,
Hanifi
,
A.
, and
Henningson
,
D. S.
, 2002, “
Adjoint-Based Optimization of Steady Suction for Disturbance Control in Incompressible Flows
,”
J. Fluid Mech.
0022-1120,
467
, pp.
129
161
.
152.
Airiau
,
C.
,
Bottaro
,
A.
,
Walther
,
S.
, and
Legendre
,
D.
, 2003, “
A Methodology for Optimal Laminar Flow Control: Application to the Damping of Tollmien-Schlichting Waves in a Boundary Layer
,”
Phys. Fluids
1070-6631,
15
(
5
), pp.
1131
1145
.
153.
Amestoy
,
P. R.
,
Duff
,
I. S.
,
Koster
,
J.
, and
L’Excellent
,
J. -Y.
, 2001, “
A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling
,”
SIAM J. Matrix Anal. Appl.
0895-4798,
23
(
1
), pp.
15
41
.
154.
Mamun
,
C. K.
, and
Tuckerman
,
L. S.
, 1995, “
Asymmetry and Hopf Bifurcation in Spherical Couette Flow
,”
Phys. Fluids
1070-6631,
7
(
1
), pp.
80
91
.
155.
Tuckerman
,
L.
, and
Barkley
,
D.
, 2000, “
Bifurcation Analysis for Timesteppers
,”
Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems
(
IMA Volumes in Mathematics and Its Applications
Vol.
119
),
E.
Doedel
and
L. S.
Tuckerman
, eds.,
Springer
,
New York
, pp.
453
466
.
156.
Bagheri
,
S.
,
Akervik
,
E.
,
Brandt
,
L.
, and
Henningson
,
D. S.
, 2009, “
Matrix-Free Methods for the Stability and Control of Boundary Layers
,”
AIAA J.
0001-1452,
47
(
5
), pp.
1057
1068
.
157.
Mack
,
C. J.
, and
Schmid
,
P. J.
, 2010, “
A Preconditioned Krylov Technique for Global Hydrodynamic Stability Analysis of Large-Scale Compressible Flows
,”
J. Comput. Phys.
0021-9991,
229
(
3
), pp.
541
560
.
158.
Åkervik
,
E.
,
Brandt
,
L.
,
Henningson
,
D. S.
,
Hœpffner
,
J.
,
Marxen
,
O.
, and
Schlatter
,
P.
, 2006, “
Steady Solutions of the Navier-Stokes Equations by Selective Frequency Damping
,”
Phys. Fluids
1070-6631,
18
(
6
), p.
068102
.
159.
Chomaz
,
J. -M.
, 2004, “
Transition to Turbulence in Open Flows: What Linear and Fully Nonlinear Local and Global Theories Tell Us
,”
Eur. J. Mech. B/Fluids
0997-7546,
23
, pp.
385
399
.
160.
Nagata
,
M.
, 1990, “
Three Dimensional Finite Amplitude Solutions in Plane Couette Flow: Bifurcation From Infinity
,”
J. Fluid Mech.
0022-1120,
217
, pp.
519
527
.
161.
Waleffe
,
F.
, 1997, “
On the Self-Sustaining Process in Shear Flows
,”
Phys. Fluids
1070-6631,
9
, pp.
883
900
.
162.
Faisst
,
H.
, and
Eckhardt
,
B.
, 2003, “
Travelling Waves in Pipe Flow
,”
Phys. Rev. Lett.
0031-9007,
91
, p.
224502
.
163.
Duguet
,
Y.
,
Willis
,
A. P.
, and
Kerswell
,
R.
, 2008, “
Transition in Pipe Flow: The Saddle Structure on the Boundary of Turbulence
,”
J. Fluid Mech.
0022-1120,
613
, pp.
255
274
.
164.
Cossu
,
C.
,
Chevalier
,
M.
, and
Henningson
,
D. S.
, 2007, “
Optimal Secondary Energy Growth in a Plane Channel Flow
,”
Phys. Fluids
1070-6631,
19
(
5
), p.
058107
.
165.
Crouch
,
J. D.
,
Garbaruk
,
A.
, and
Magidov
,
D.
, 2007, “
Predicting the Onset of Flow Unsteadiness Based on Global Instability
,”
J. Comput. Phys.
0021-9991,
224
(
2
), pp.
924
940
.
166.
Cossu
,
C.
,
Pujals
,
G.
, and
Depardon
,
S.
, 2009, “
Optimal Transient Growth and Very Large-Scale Structures in Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
619
, pp.
79
94
.
You do not currently have access to this content.