Boron nitride (BN) nanotubes have structural and mechanical properties similar to carbon nanotubes and are known to be the strongest insulators. Great interest has been focused on understanding the mechanical properties of BN nanotubes as a function of their structural and physical properties. Yet, the published data have not been reviewed and systematically compared. In this paper, we critically review the mechanical properties of BN nanotubes from both experimental and simulation perspectives. The experimental reports include thermal vibrations, electric induced resonance method, and in situ force measurements inside transmission electron microscopy. The modeling and simulation efforts encompass tight bonding methods and molecular dynamics. Replacing the covalent sp2 bond (C–C) by ionic bond (B–N) results in differences in the mechanical properties of BN nanotubes in comparison to carbon nanotubes. The experimental and computational simulations indicate that BN nanotubes are highly flexible. High necking angles in BN nanotubes are assumed to be correlated with unfavorable bonding in B–B and N–N atoms.

1.
Loiseau
,
A.
,
Willaime
,
F.
,
Demoncy
,
N.
,
Hug
,
G.
, and
Pascard
,
H.
, 1996, “
Boron Nitride Nanotubes With Reduced Numbers of Layers Synthesized by Arc Discharge
,”
Phys. Rev. Lett.
0031-9007,
76
, pp.
4737
4740
.
2.
Wen
,
Z. G.
,
Ze
,
Z.
,
Gang
,
B. Z.
, and
Peng
,
Y. D.
, 1999, “
Catalyst Effects on Formation of Boron Nitride Nano-Tubules Synthesized by Laser Ablation
,”
Solid State Commun.
0038-1098,
109
, pp.
555
559
.
3.
Golberg
,
D.
,
Bando
,
Y.
,
Han
,
W.
,
Kurashima
,
K.
, and
Sato
,
T.
, 1999, “
Single-Walled B-Doped Carbon, B/N-Doped Carbon and BN Nanotubes Synthesized From Single-Walled Carbon Nanotubes Through a Substitution Reaction
,”
Chem. Phys. Lett.
0009-2614,
308
, pp.
337
342
.
4.
Moscatello
,
J. P.
,
Wang
,
J.
,
Ulmen
,
B.
,
Mensah
,
S. L.
,
Xie
,
M.
,
Wu
,
S.
,
Pandey
,
A.
,
Lee
,
C. H.
,
Prasad
,
A.
,
Kayastha
,
V. K.
, and
Yap
,
Y. K.
, 2008, “
Controlled Growth of Carbon, Boron Nitride, and Zinc Oxide Nanotubes
,”
IEEE Sens. J.
1530-437X,
8
, pp.
922
929
.
5.
Shan
,
B.
,
Lakatos
,
G. W.
,
Peng
,
S.
, and
Cho
,
K.
, 2005, “
First-Principles Study of Band-Gap Change in Deformed Nanotubes
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
173109
.
6.
Demczyk
,
B. G.
,
Cumings
,
J.
,
Zettl
,
A.
, and
Ritchie
,
R. O.
, 2001, “
Structure of Boron Nitride Nanotubules
,”
Appl. Phys. Lett.
0003-6951,
78
, pp.
2772
2774
.
7.
Zheng
,
F.
,
Zhou
,
G.
,
Hao
,
S.
, and
Duan
,
W.
, 2005, “
Structural Characterizations and Electronic Properties of Boron Nitride Nanotube Crystalline Bundles
,”
J. Chem. Phys.
0021-9606,
123
, p.
124716
.
8.
Blase
,
X.
,
De Vita
,
A.
,
Charlier
,
J. C.
, and
Car
,
R.
, 1998, “
Frustration Effects and Microscopic Growth Mechanisms for BN Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
1666
1669
.
9.
Golberg
,
D.
,
Bando
,
Y.
,
Tang
,
C. C.
, and
Zhi
,
C. Y.
, 2007, “
Boron Nitride Nanotubes
,”
Adv. Mater.
0935-9648,
19
, pp.
2413
2432
.
10.
Chopra
,
N. G.
, and
Zettl
,
A.
, 1998, “
Measurement of the Elastic Modulus of a Multi-Wall Boron Nitride Nanotube
,”
Solid State Commun.
0038-1098,
105
, pp.
297
300
.
11.
Suryavanshi
,
A. P.
,
Yu
,
M. F.
,
Wen
,
J.
,
Tang
,
C.
, and
Bando
,
Y.
, 2004, “
Elastic Modulus and Resonance Behavior of Boron Nitride Nanotubes
,”
Appl. Phys. Lett.
0003-6951,
84
, pp.
2527
2529
.
12.
Golberg
,
D.
,
Bai
,
X. D.
,
Mitome
,
M.
,
Tang
,
C. C.
,
Zhi
,
C. Y.
, and
Bando
,
Y.
, 2007, “
Structural Peculiarities of In Situ Deformation of a Multi-Walled BN Nanotube Inside a High-Resolution Analytical Transmission Electron Microscope
,”
Acta Mater.
1359-6454,
55
, pp.
1293
1298
.
13.
Kuzumaki
,
T.
,
Hayashi
,
T.
,
Ichinose
,
H.
,
Miyazawa
,
K.
, and
Ishida
,
I. Y.
, 1998, “
In-Situ Observed Deformation of Carbon Nanotubes
,”
Philos. Mag. A
0141-8610,
77
, pp.
1461
1469
.
14.
Iijima
,
S.
,
Brabec
,
C.
,
Maiti
,
A.
, and
Bernholc
,
J.
, 1996, “
Structural Flexibility of Carbon Nanotubes
,”
J. Chem. Phys.
0021-9606,
104
, pp.
2089
2092
.
15.
Golberg
,
D.
,
Costa
,
P. M. F. J.
,
Lourie
,
O.
,
Mitome
,
M.
,
Bai
,
X.
,
Kurashima
,
K.
,
Zhi
,
C.
,
Tang
,
C.
, and
Bando
,
Y.
, 2007, “
Direct Force Measurements and Kinking Under Elastic Deformation of Individual Multiwalled Boron Nitride Nanotubes
,”
Nano Lett.
1530-6984,
7
, pp.
2146
2151
.
16.
Asaka
,
K.
,
Ryoei
,
K.
,
Miyazawa
,
K.
, and
Kizuka
,
T.
, 2006, “
Buckling of C60 Whiskers
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
071912
.
17.
Song
,
J.
, and
Jiang
,
H.
, 2007, “
Stone-Wales Transformation in Boron Nitride Nanotubes
,”
Scr. Mater.
1359-6462,
57
, pp.
571
574
.
18.
Stone
,
A. J.
, and
Wales
,
D. J.
, 1986, “
Theoretical Studies of Icosahedral C60 and Some Related Species
,”
Chem. Phys. Lett.
0009-2614,
128
, pp.
501
503
.
19.
Verma
,
V.
,
Jindal
,
V. K.
, and
Dharamvir
,
K.
, 2007, “
Elastic Moduli of a Boron Nitride Nanotube
,”
Nanotechnology
0957-4484,
18
, p.
435711
.
20.
Hernández
,
E.
,
Goze
,
C.
,
Bernier
,
P.
, and
Rubio
,
A.
, 1998, “
Elastic Properties of C and BxCyNz Composite Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
4502
4505
.
21.
Song
,
J.
,
Huang
,
Y.
,
Jiang
,
H.
,
Hwang
,
K. C.
, and
Yu
,
M. F.
, 2006, “
Deformation and Bifurcation Analysis of Boron-Nitride Nanotubes
,”
Int. J. Mech. Sci.
0020-7403,
48
, pp.
1197
1207
.
22.
Peng
,
Z.
,
Yonggang
,
H.
,
Geubelle
,
P. H.
, and
Kehchih
,
H.
, 2002, “
On the Continuum Modeling of Carbon Nanotubes
,”
Acta Mechanica Sinica
0567-7718,
18
, pp.
528
536
.
23.
Enyashin
,
A. N.
, and
Ivanovskii
,
A. L.
, 2006, “
Deformation Mechanisms for Carbon and Boron Nitride Nanotubes
,”
Inorg. Mater.
0020-1685,
42
, pp.
1336
1341
.
24.
Peng
,
B.
,
Locascio
,
M.
,
Zapol
,
P.
,
Li
,
S.
,
Mielke
,
S. L.
,
Schatz
,
G. C.
, and
Espinosa
,
H. D.
, 2008, “
Measurements of Near-Ultimate Strength for Multiwalled Carbon Nanotubes and Irradiation-Induced Crosslinking Improvements
,”
Nat. Nanotechnol.
1748-3387,
3
, pp.
626
631
.
You do not currently have access to this content.